
Learning Hidden Quantum Markov Models

Siddarth Srinivasan Geoff Gordon Byron Boots
Georgia Institute of Technology Carnegie Mellon University Georgia Institute of Technology

Abstract

Hidden Quantum Markov Models (HQMMs)
can be thought of as quantum probabilistic
graphical models that can model sequential
data. We extend previous work on HQMMs
with three contributions: (1) we show how
classical hidden Markov models (HMMs) can
be simulated on a quantum circuit, (2) we re-
formulate HQMMs by relaxing the constraints
for modeling HMMs on quantum circuits, and
(3) we present a learning algorithm to esti-
mate the parameters of an HQMM from data.
While our algorithm requires further optimiza-
tion to handle larger datasets, we are able to
evaluate our algorithm using several synthetic
datasets generated by valid HQMMs. We
show that our algorithm learns HQMMs with
the same number of hidden states and predic-
tive accuracy as the HQMMs that generated
the data, while HMMs learned with the Baum-
Welch algorithm require more states to match
the predictive accuracy.

1 INTRODUCTION
We extend previous work on Hidden Quantum Markov
Models (HQMMs), and propose a novel approach to
learning these models from data. HQMMs can be
thought of as a new, expressive class of graphical mod-
els that have adopted the mathematical formalism for
reasoning about uncertainty from quantum mechanics.
We stress that while HQMMs could naturally be imple-
mented on quantum computers, we do not need such
a machine for these models to be of value. Instead,
HQMMs can be viewed as novel models inspired by
quantum mechanics that can be run on classical com-
puters. In considering these models, we are interested
in answering three questions: (1) how can we construct

Proceedings of the 21

st International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2018, Lanzarote,
Spain. PMLR: Volume 84. Copyright 2018 by the author(s).

quantum circuits to simulate classical Hidden Markov
Models (HMMs); (2) what happens if we take full ad-
vantage of this quantum circuit instead of enforcing the
classical probabilistic constraints; and (3) how do we
learn the parameters for quantum models from data?

The paper is structured as follows: first we describe
related work and provide background on quantum in-
formation theory as it relates to our work. Next, we
describe the hidden quantum Markov model and com-
pare our approach to previous work in detail, and give
a scheme for writing any hidden Markov model as an
HQMM. Finally, our main contribution is the intro-
duction of a maximum-likelihood-based unsupervised
learning algorithm that can estimate the parameters
of an HQMM from data. Our implementation is slow
to train HQMMs on large datasets, and will require
further optimization. Instead, we evaluate our learn-
ing algorithm for HQMMs on several simple synthetic
datasets by learning a quantum model from data and
filtering and predicting with the learned model. We
also compare our model and learning algorithm to max-
imum likelihood for learning hidden Markov models
and show that the more expressive HQMM can match
HMMs’ predictive capability with fewer hidden states
on data generated by HQMMs.

2 BACKGROUND
2.1 Related Work
Hidden Quantum Markov Models were introduced by
Monras et al. [2010], who discussed their relationship to
classical HMMs, and parameterized these HQMMs us-
ing a set of Kraus operators. Clark et al. [2015] further
investigated HQMMs, and showed that they could be
viewed as open quantum systems with instantaneous
feedback. We arrive at the same Kraus operator repre-
sentation by building a quantum circuit to simulate a
classical HMM and then relaxing some constraints.

Our work can be viewed as extending previous work
by Zhao and Jaeger [2010] on Norm-observable opera-
tor models (NOOM) and Jaeger [2000] on observable-
operator models (OOM). We show that HQMMs can
be viewed as complex-valued extensions of NOOMs,
formulated in the language of quantum mechanics. We

Learning Hidden Quantum Markov Models

use this connection to adapt the learning algorithm
for NOOMs in Zhao and Jaeger [2007] into the first
known learning algorithm for HQMMs, and demon-
strate that the theoretical advantages of HQMMs also
hold in practice.

Schuld et al. [2015a] and Biamonte et al. [2016] provide
general overviews of quantum machine learning, and
describe relevant work on HQMMs. They suggest that
developing algorithms that can learn HQMMs from
data is an important open problem. We provide just
such a learning algorithm in Section 4.

Other work at the intersection of machine learning and
quantum mechanics includes Wiebe et al. [2016] on
quantum perceptron models and learning algorithms.
Schuld et al. [2015b] discuss simulating a perceptron
on a quantum computer.

2.2 Belief States and Quantum States
Classical discrete latent variable models represent un-
certainty with a probability distribution using a vector
~x whose entries describe the probability of being in
the corresponding system state. Each entry is real and
non-negative, and the entries sum to 1. In general, we
refer to the run-time system component that maintains
a state estimate of the latent variable as an ‘observer’,
and we refer to the observer’s state as a ‘belief state.’

In quantum mechanics, the quantum state of a parti-
cle A can be written using Dirac notation as | i

A

, a
column-vector in some orthonormal basis (the row-
vector is the complex-conjugate transpose

A

h | =

(| i
A

)

†) with each entry being the ‘probability ampli-
tude’ corresponding to that system state. The squared
norm of the probability amplitude for a system state is
the probability of observing that state, so the sum of
squared norms of probability amplitudes over all the
system states must be 1 to conserve probability. For
example, | i =

h
1p
2

�ip
2

i†
is a valid quantum state,

with basis states 0 and 1 having equal probability��� 1p
2

���
2
=

��� ip
2

���
2
=

1
2 . However, unlike classical belief

states such as ~x =

⇥
1
2

1
2

⇤
T , where the probability of

different states reflects ignorance about the underlying
system, a pure quantum state like the one described
above is the true description of the system.

But how can we describe classical mixtures of quantum
systems (‘mixed states’), where we also have classi-
cal uncertainty about the underlying quantum states?
Such information can be captured by a ‘density ma-
trix.’ Given a mixture of N quantum systems, each
with probability p

i

, the density matrix for this ensemble
is defined as follows:

⇢̂ =

NX

i

p
i

|
i

ih
i

| (1)

The density matrix is the general quantum equivalent
of the classical belief state ~x and has diagonal elements
representing the probabilities of being in each system
state. Consequently, the normalization condition is
tr(⇢̂) = 1. The off-diagonal elements represent quan-
tum coherences, which have no classical interpretation.
The density matrix ⇢̂ is Hermitian and can be used to
describe the state of any quantum system.

The density matrix can also be extended to represent
the joint state of multiple variables, or that of ‘multi-
particle’ systems, to use the physical interpretation.
If we have density matrices ⇢̂

A

and ⇢̂
B

for two qudits
(a d-state quantum system, akin to qubits or ‘quan-
tum bits’ which are 2-state quantum systems) A and
B, we can take the tensor product to arrive at the
density matrix for the joint state of the particles, as
⇢̂AB = ⇢̂

A

⌦ ⇢̂
B

. As a valid density matrix, the diagonal
elements of this joint density matrix represent probabil-
ities; tr (⇢̂AB) = 1, and the probabilities correspond to
the states in the Cartesian product of the basis states
of the composite particles. In this paper, the joint den-
sity matrix will serve as the analogue to classical joint
probability distribution, with the off-diagonal terms
encoding extra ‘quantum’ information.

Given the joint state of a multi-particle system, we can
examine the state of just one or few of the particles
using the ‘partial trace’ operation, where we ‘trace over’
the particles we wish to disregard. This lets us recover
a ‘reduced density matrix’ for a subsystem of interest.
The partial trace for a two-particle system ⇢̂

AB

where
we trace over the second particle to obtain the state of
the first particle is:

⇢̂
A

= tr
B

(⇢̂
AB

) =

X

j

B

hj|⇢̂
AB

|ji
B

(2)

For our purposes, this operation will serve as the quan-
tum analogue of classical marginalization.

Finally, we discuss the quantum analogue of ‘condition-
ing’ on an observation. In quantum mechanics, the
act of measuring a quantum system can change the
underlying distribution, i.e., collapses it to the observed
state in the measurement basis, and this is represented
mathematically by applying von Neumann projection
operators (denoted ˆP

y

in this paper) to density matrices
describing the system. One can think of the projection
operator as having ones in the diagonal entries corre-
sponding to observed system states and zeros elsewhere.
If we only observe part of a larger system, the system
collapses to the states where that subsystem had the ob-
served result. For example, suppose we have the follow-
ing density matrix for a two-state two-particle system
with basis {|0i

A

|0i
B

, |0i
A

|1i
B

, |1i
A

|0i
B

, |1i
A

|1i
B

}:

⇢̂

AB

=

2

64

0.25 0 0 0

0 0.25 �0.5 0

0 �0.5 0.25 0

0 0 0 0.25

3

75 (3)

Siddarth Srinivasan, Geoff Gordon, Byron Boots

Table 1: Comparison between classical and quantum representations
Classical probability Quantum Analogue

Description Representation Representation Description
Belief State ~x ⇢̂ Density Matrix
Joint Distribution ~x1 ⌦ ~x2 ⇢̂

X1 ⌦ ⇢̂
X2 Multi-particle Density Matrix

Marginalization ~x =

P
y

(~x⌦ ~y) ⇢̂ = tr
Y

(⇢̂
X

⌦ ⇢̂
Y

) Partial Trace
Conditional probability P (~x|y) = P (y,~x)

P (y) P (states |y) / tr
Y

(

ˆP
y

⇢̂
XY

ˆP †
y

) Projection + Partial Trace

Suppose we measure the state of particle B, and find it
to be in state |1i

B

. The corresponding projection op-

erator is ˆ

P1
B

=

2

64

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

3

75 and the collapsed state is

now: ⇢̂
AB

=

ˆ

P1
B

⇢̂

AB

ˆ

P

†
1
B

normalize�!

2

64

0 0 0 0

0 0.5 0 0

0 0 0 0

0 0 0 0.5

3

75. When

we trace over particle A to get the state of particle B,
the result is ⇢̂

B

=

0 0

0 1

�
, reflecting the fact that particle

B is now in state |1i
B

with certainty. Tracing over par-
ticle B, we find ⇢̂

A

=

0.5 0

0 0.5

�
, indicating that particle

A still has an equal probability of being in either state.
Note that the underlying distribution of the system
⇢̂
AB

has changed; the probability of measuring the
state of particle B to be |0i

B

is now 0, whereas before
measurement we had a 0.25+0.25 = 0.5 chance of mea-
suring |0i

B

. This is unlike classical probability where
measuring a variable doesn’t change the underlying
distribution. We will use this fact when we construct
our quantum circuit to simulate HMMs.

Thus, if we have an n-state quantum system that tracks
a particle’s evolution, and an s-state quantum system
that tracks the likelihood of observing various outputs
as they depend (probabilistically) on the n-state system,
to obtain the n-state system conditioned on observation
y, we apply the projection operator ˆP

y

on the joint
system and trace over the second particle.

2.3 Hidden Markov Models
Classical Hidden Markov Models (HMMs) are graphical
models used to model dynamic processes that exhibit
Markovian state evolution. Figure 1 depicts a classical
HMM, where the transition matrix A and emission ma-
trix C are column-stochastic matrices that determine
the Markovian hidden state-evolution and observation
probabilities respectively. Bayesian inference can be
used to track the evolution of the hidden variable.

Figure 1: Hidden Markov Model
The belief state at time t is a probability distribution
over states, and prior to any observation is written as:

~x0
t

= A~x
t�1

(4)

The probabilities of observing each output at time t is
given by the vector ~s:

~s
t

= C~x0
t

= CA~x
t�1

(5)

We can use Bayesian inference to write the belief state
vector after conditioning on observation y:

~x
t

=

diag(C
(y,:)

)A~x
t�1

1Tdiag(C
(y,:)

)A~x
t�1

(6)

where diag(C
(y,:)

) is a diagonal matrix with the en-
tries of the yth row of C along the diagonal, and the
denominator renormalizes the vector ~x

t

.

An alternate representation of the Hidden Markov
Model uses ‘observable’ operators (Jaeger [2000]). In-
stead of using the matrices A and C, we can write
T

y

= diag(C
(y,:)

)A. There is a different operator T
y

for each possible observable output y and [T
y

]

ij

=

P (y; i
t

|j
t�1

). We can then rewrite Equation 6 as:

~x
t

=

T
y

~x
t�1

1TT
y

~x
t�1

(4)

If we observe outputs y
1

, . . . , y
n

, we apply T
n

. . .T
1

~x
and take the sum of the resulting vector to find the
probability of observing the sequence, or renormalize
to find the belief state after the final observation.

3 HIDDEN QUANTUM MARKOV
MODELS

3.1 A Quantum Circuit to Simulate HMMs
Let us now contrast state evolution in quantum systems
with state evolution in HMMs. The quantum analogue
of observable operators is a set of non-trace-increasing
Kraus operators { ˆK

i

} that are completely positive
(CP) linear maps. Trace-preserving Kraus operatorsP

N

i

ˆK†
i

ˆK
i

= I, can map a density operator to another
density operator. Trace-decreasing Kraus operatorsP

N

i

ˆK†
i

ˆK
i

< I, represent operations on a smaller part
of a quantum system that can allow probability to ‘leak’
to other states that aren’t being considered. This paper
will formulate problems such that all sets of Kraus
operators are trace-preserving. When there is only one
operator in the set, i.e., ˆU such that ˆU†

ˆU = I, then ˆU
is a unitary matrix. Unitary operators generally model
the evolution of the ‘whole’ system, which may be high-
dimensional. But if we care only about tracking the
evolution of a smaller sub-system, which may interact

Learning Hidden Quantum Markov Models

⇢̂
t�1

ˆU
1

⇢̂
X

t

ˆU
2

⇢̂
t

⇢̂
Y

t

(a) Full Quantum Circuit to implement HMM

⇢̂
t�1

ˆU
1

⇢̂
X

t

ˆK
y

t�1
⇢̂
t

(b) Simplified scheme to implement HMM

Figure 2: HMM implementation on quantum circuits

⇢̂
t�1

K
w

ˆK
y

t�1
⇢̂
t

(a) HQMM scheme with separate transition and
emission; K

w

=

P
w

ˆK
w

(·) ˆK†
w

⇢̂
t�1

K
w,y

t�1 ⇢̂
t

(b) A generalized scheme for HQMMs; K
w,y

t�1 =P
w

ˆK
w,y

t�1(·) ˆK†
w,y

t�1

Figure 3: Quantum schemes implementing classical HMMs

with its environment, we can use Kraus operators. The
most general quantum operation that can be performed
on a density matrix is ⇢̂0 =

P
M

i

K

†
i

⇢̂K

i

tr
(

P
M

i

K

†
i

⇢̂K

i

)

, where the
denominator re-normalizes the density matrix.

Now, how do we simulate classical HMMs on quantum
circuits with qudits, where computation is done using
unitary operations? There is no general way to convert
column-stochastic transition and emission matrices to
unitary matrices, so we prepare ‘ancilla’ particles and
construct unitary matrices (see Algorithm 3 in the
appendix for details) to act on the joint state. We then
trace over one particle to obtain the state of the other.

Figure 2a illustrates a quantum circuit constructed
with these unitary matrices. We prepare the ‘ancilla’
states ⇢̂

X

t

and ⇢̂
Y

t

appropriately (i.e., entirely in system
state 1, represented by a density matrix of zeros except
⇢̂
1,1

= 1), and construct ˆU
1

and ˆU
2

from transition ma-
trix A and emission matrix C, respectively. ˆU

1

evolves
(⇢̂

t�1

⌦ ⇢̂
X

t

) to perform Markovian transition, while ˆU
2

updates ⇢̂
Y

t

to contain the probabilities of measuring
each observable output. At runtime, we measure ⇢̂

Y

t

which changes the joint distribution of ⇢̂
X

t

⌦ ⇢̂
Y

t

to give
the updated conditioned state ⇢̂

t

. Mathematically, this
is equivalent to applying a projection operator on the
joint state and tracing over ⇢̂

Y

t

. Thus, the forward al-
gorithm that explicitly models a hidden Markov Model
on a quantum circuit as per Figure 2a is written as:

⇢̂
t

/ tr
⇢̂

Y

t

⇣
ˆP
y

ˆU2

⇣
tr
⇢̂

t�1(
ˆU1(⇢̂t�1 ⌦ ⇢̂

X

t

)

ˆU†
1)⌦ ⇢̂

Y

t

⌘
ˆU†
2
ˆP †
y

⌘

(7)
We can simplify this circuit to use Kraus operators act-
ing on the lower-dimensional state space of ⇢̂

X

t

. Since
we always prepare ⇢̂

Y

t

in the same state, the operation
ˆU
2

on the joint state of ⇢̂
X

t

⌦ ⇢̂
Y

t

followed by the ap-
plication of the projection operator ˆP

y

can be more
concisely written as a Kraus operator on just ⇢̂

X

t

, so
that we need only be concerned with representing how
the particle ⇢̂

X

t

evolves. We would need to construct a
set of Kraus operators { ˆK

y

} for each observable output
y, such that

P
y

(

ˆK
y

)

†
(

ˆK
y

) = I.

Tensoring with an ancilla qudit and tracing over a qudit
can be achieved with an ns⇥n matrix W and an n⇥ns
matrix V

y

respectively, since we always prepare our
ancilla qudits in the same state (details on constructing
these matrices can be found in the appendix), so that:

⇢̂
X

t

⌦ ⇢̂
Y

t

�!W ⇢̂
X

W †

tr
⇢̂

Y

t

(

ˆ

P

y

ˆ

U2W ⇢̂

X

t

W

†
ˆ

U

†
2
ˆ

P

†
y

)

�! V

y

ˆ

P

y

ˆ

U2W ⇢̂

X

t

W

†
ˆ

U

†
2
ˆ

P

†
y

V

†
y

We can then construct Kraus operators such that ˆK
y

=

V
y

ˆP
y

ˆU
2

W . Figure 2b shows this updated circuit, where
ˆU
1

is still the quantum implementation of the transition
matrix and ˆK

y

t

is the quantum implementation of the
Bayesian update after observation. This scheme to
model a classical HMM can be written as:

⇢̂
t

=

ˆK
y

t�1

⇣
tr
⇢̂

t�1(
ˆU
1

(⇢̂
t�1

⌦ ⇢̂
X

t

)

ˆU†
1

)

⌘
ˆK†
y

t�1

tr
⇣
ˆK
y

t�1

⇣
tr
⇢̂

t�1(
ˆU
1

(⇢̂
t�1

⌦ ⇢̂
X

t

)

ˆU†
1

)

⌘
ˆK†
y

t�1

⌘

(8)

We can similarly simplify ˆU
1

to a set of Kraus oper-
ators. We write the unitary operation ˆU

1

in terms
of a set of n Kraus operators { ˆK

w

} as if we were to
measure ⇢̂

t�1

immediately after the operation ˆU
1

. How-
ever, instead of applying one Kraus operator associated
with measurement as we do with Figure 2b, we sum
over all of n possible ‘observations’, as if to ‘ignore’
the observation on ⇢̂

t�1

. Post-multiplying each Kraus
operator in { ˆK

w

} with each operator in { ˆK
y

}, we have
a set of Kraus operators { ˆK

w

y

,y

} that can be used to
model a classical HMM as follows (the full procedure
is described in Algorithm 1):

⇢̂
t

=

P
w

y

ˆK
w

y

,y

t�1 ⇢̂t�1

ˆK†
w

y

,y

t�1

tr
⇣P

w

y

ˆK
w

y

,y

t�1 ⇢̂t�1

ˆK†
w

y

,y

t�1

⌘ (9)

We believe this procedure to be a useful illustration of
performing classical operations on graphical models us-
ing quantum circuits. In practice, we needn’t construct
the Kraus operators in this peculiar fashion to simulate
HMMs; an equivalent but simpler approach is to con-
struct observable operators {T

y

} from transition and

Siddarth Srinivasan, Geoff Gordon, Byron Boots

Algorithm 1 Simulating Hidden Markov Models with HQMMs
Input: Transition Matrix A and Emission Matrix C
Output: Belief State as diag(⇢̂), or P (y

1

, . . . , y
n

|D) where D is the HMM
1: Initialization:
2: Let s = #outputs, n = #hidden states, y

t

= observed output at time t
3: Prepare density matrix ⇢̂

0

in some initial state. ⇢̂
0

= diag(⇡) if priors ⇡ are known.
4: Construct unitary matrices ˆU

1

and ˆU
2

from A and C respectively using Algorithm 3 (in appendix)
5: Using ˆU

1

and ˆU
2

, construct a set of n Kraus Operators { ˆK
w

} and s Kraus operators { ˆK
y

}, with ˆK
w

=

V
w

ˆU
1

W and ˆK
y

= V
y

ˆP
y

ˆU
2

W and combine them into a set { ˆK
w

y

,y

} with ˆK
w

y

,y

=

ˆK
y

ˆK
w

. (Matrix W tensors
with an ancilla, Matrix V

y

carries out a trivial partial trace operation and summing over V
w

for all w carries
out the proper partial trace operation. Details in appendix.)

6: for t = 1 : T do
7: ⇢̂

t+1

P

w

y

ˆK
w,y

t

⇢̂
t

(

ˆK
w

y

,y

i

)

†

8: end for
9: tr(⇢̂

T

) gives the probability of the sequence; renormalizing ⇢̂
T

gives the belief state on the diagonal.

emission matrices as described in section 2.3, and set

the wth column of ˆK
(:,w)

w

y

,y

=

q
T

(:,w)

y

, with all other en-
tries being zero. This ensures

P
w

y

,y

ˆK†
w

y

,y

K
w

y

,y

= I.

3.2 Formulating HQMMs

Monras et al. [2010] formulate Hidden Quantum
Markov Models by defining a set of Kraus operators
{ ˆK

w

y

,y

}, where each observable y has w
y

associated
Kraus operators acting on a state with hidden di-
mension n, and they form a complete set such thatP

w,y

ˆK†
w,y

ˆK
w,y

= I. The update rule for a quantum
operation is exactly the same as Equation 9, which we
arrived at by first constructing a quantum circuit to
simulate HMMs with known parameters and then con-
structing operators { ˆK

w,y

} in a very peculiar way. The
process outlined in the previous section is a particular
parameterization of HQMMs to model HMMs. If we
let the operators ˆU

1

and ˆU
2

be any unitary matrices,
or the Kraus operators be any set of complex-valued
matrices that satisfy

P
w

y

,y

ˆK†
w

y

,y

K
w

y

,y

= I, then we
have a general and fully quantum HQMM.

Indeed, Equation 9 gives the forward algorithm for
HQMMs. To find the probability of emitting an output
y given the previous state ⇢̂

t�1

, we simply take the
trace of the numerator in Equation 9, i.e., p(y

t

|⇢̂
t�1

) =

tr
⇣P

w

y

ˆK
w

y

,y

t

⇢̂
t�1

ˆK†
w

y

,y

t

⌘
.

The number of parameters for a HQMM is determined
by the number of latent states n, outputs s, and Kraus
operators associated with an output w. To exactly
simulate HMM dynamics with an HQMM, we need w =

n as per the derivation above. However, this constraint
need not hold for a general HQMM, which can have
any number of Kraus operators we apply and sum for a
given output. w can also be thought of as the dimension
of the ancilla ⇢̂

X

t

that we tensor with in Figure 2a
before the unitary operation ˆU

1

. Consequently, if we set

w = 1, we do not tensor with an additional particle, but
model the evolution of the original particle as unitary.
In all, a HQMM requires learning n2sw parameters,
which is a factor w times more than a HMM with
the observable operator representation which has n2s
parameters. The canonical representation of HMMs
with with an n ⇥ n transition matrix and an s ⇥ n
emission matrix has n2

+ ns parameters.

HQMMs can also be seen as a complex-valued exten-
sion of norm-observable operator models defined by
Zhao and Jaeger [2010]. Indeed, the HQMM we get by
applying Algorithm 1 on a HMM is also a valid NOOM
(allowing for multiple operators per output), implying
that HMMs can be simulated by NOOMs. Both HMMs
and NOOMs can be simulated by HQMMs (the latter
is trivially true). While Zhao and Jaeger [2010] show
that any NOOM can be written as an OOM, the ex-
act relationship between HQMMs and OOMs requires
further investigation.

4 AN ITERATIVE ALGORITHM
FOR LEARNING HQMMs

We present an iterative maximum-likelihood algorithm
to learn Kraus operators to model sequential data using
an HQMM. Our algorithm is general enough that it
can be applied to any quantum version of a classical
machine learning algorithm for which the loss is defined
in terms of the Kraus operators to be learned.

We begin by writing the likelihood of observing some
sequence y

1

, . . . , y
T

. Recall that for a given out-
put y, we apply the w Kraus operators associated
with that observable in the ‘forward’ algorithm, asP

w

y

ˆK
w

y

,y

(·) ˆK
w

y

,y

. If we do not renormalize the den-
sity matrix after applying these operators, the diagonal
entries contain the joint probability of the correspond-
ing system states and observing the associated sequence.

Learning Hidden Quantum Markov Models

Algorithm 2 Iterative Learning Algorithm for Hidden Quantum Markov Models
Input: A M ⇥ ` matrix Y , where M = # data points and ` =length of a stochastic sequence to be modeled.
Output: A set of ws of n⇥ n Kraus operators { ˆK

w,s

} that maximize the log-likelihood of the data, where n is
the dimension of the hidden state, s is the number of outputs, and w is the number of operators per outputs.

1: Initialization: Randomly generate a set of ws Kraus operators { ˆK
w,s

} of dimension n⇥ n, and stack them
vertically to obtain a matrix of dimension nsw ⇥ n. Let b be the batch size, B the total number of batches
to process, and Y

b

a b⇥ ` matrix of randomly chosen data samples. Let num_iterations be the number of
iterations spent modifying to maximize the likelihood of observing Y

b

.
2: for batch = 1:B do
3: Randomly select b sequences to process, and construct matrix Y

b

4: for it = 1 : num_iterations do
5: Randomly select rows i and j of to modify, i < j
6: Find ~w = (�, , �, ✓) that maximises the log-likelihood of Y

b

under the following update, and update:

i
⇣
e
i�

/2ei cos(✓)
⌘
i +

⇣
e
i�

/2ei� sin(✓)
⌘
j

j
⇣
�ei�

/2e�i�

sin(✓)
⌘
i +

⇣
e
i�

/2e�i

cos(✓)
⌘
j7: end for

8: end for

The trace of this un-normalized density matrix gives
the probability of the sequence since we have summed
over all the ‘hidden’ states. Thus, the log-likelihood of
an HQMM predicting a sequence of length n is:

L = ln tr

0

@
X

w

y

n

ˆ

K

w

y

n

,y

n

. . .

0

@
X

w

y1

ˆ

K

w

y1 ,y1 ⇢̂0
ˆ

K

†
w

y1 ,y1

1

A
. . .

ˆ

K

†
w

y

n

,y

n

1

A

(10)

It is not straightforward to directly maximize this log-
likelihood using gradient descent; we must preserve
the Kraus operator constraints and long sequences can
quickly lead to underflow issues. Our approach is to
learn a nsw ⇥ n matrix ⇤, which is essentially the
set of ws Kraus operators { ˆK

w,y

} of dimension n⇥ n,
stacked vertically. The Kraus operators constraint
requires

P
s

ˆK†
s

ˆK
s

= I, which implies † = I, where
the columns of are orthonormal.
Let be our guess and ⇤ be the true matrix of stacked
Kraus operators that maximizes the likelihood under
the observed data. Then, there must exist some unitary
operator ˆU that maps to ⇤, i.e., ⇤ =

ˆU. Our goal
is now to find the matrix ˆU . To do this, we use the
fact that the matrix ˆU can be written as the product of
simpler matrices H(i, j, ✓,�, , �) (proof in appendix):

H(i, j, ✓,�, , �) =
2

666666666664

1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...
0 · · · e

i�

/2ei cos ✓ · · · e
i�

/2ei� sin ✓ · · · 0

...
...

. . .
...

...
0 · · · �e

i�

/2e�i�

sin ✓ · · · e
i�

/2e�i

cos ✓ · · · 0

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · 1

3

777777777775

i and j specify the two rows in the matrix with the non-
trivial entries, and the other paramters ✓,�, , � are
angles that parameterize the non-trivial entries. The
H matrices can be thought of as Givens rotations gen-
eralized for complex-valued unitary matrices. Applying
such a matrix H(i, j, ✓,�, , �) on has the effect of
combining rows i and j (i < j) of like so:

i
⇣
e
i�

/2ei cos(✓)
⌘
i +

⇣
e
i�

/2ei� sin(✓)
⌘
j

j
⇣
�ei�

/2e�i�

sin(✓)
⌘
i +

⇣
e
i�

/2e�i

cos(✓)
⌘
j

(11)

Now the problem becomes one of identifying the se-
quence of H matrices that can take to ⇤. Since
the optimization is non-convex and the H matrices
need not commute, we are not guaranteed to find the
global maximum. Instead, we look for a local-max ⇤
that is reachable by only multiplying H matrices that
increase the log-likelihood. To find this sequence, we
iteratively find the parameters (i, j, ✓,�, , �) that, if
used in Equation 11, would increase the log-likelihood.
To perform this optimization, we use the fmincon func-
tion in MATLAB that uses interior-point optimization.
It can also be computationally expensive to find the
the best rows i, j to swap at a given step, so in our
implementation, we randomly pick the rows (i, j) to
swap. See Algorithm 2 for a summary. We believe
more efficient implementations are possible, but we
leave this to future work.

5 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our
learning algorithm on simple synthetic datasets, and
compare it to the performance of Expectation Maxi-
mization for HMMs (Rabiner [1989]). We judge the

Siddarth Srinivasan, Geoff Gordon, Byron Boots

quality of the learnt model using its Description Accu-
racy (DA) (Zhao and Jaeger [2007]), defined as:

DA = f

✓
1 +

log

s

P (Y |D)

`

◆
(12)

where ` is the length of the sequence, s is the number
of output symbols in the sequence, Y is the data, and
D is the model. Finally, the function f(·) is a non-
linear function that takes the argument from (�1, 1]
to (�1, 1]:

f(x) =

⇢
x x � 0

1�e

�0.25x

1+e

�0.25x x < 0

(13)

If DA = 1, the model perfectly predicted the stochastic
sequence, while DA > 0 would mean that the model
predicted the sequence better than random.

In each experiment, we generate 20 training sequences
of length 3000, and 10 validation sequences of length
3000, with a ‘burn-in’ of 1000 to disregard the influ-
ence of the starting distribution. We use QETLAB (a
MATLAB Toolbox developed by Johnston [2016]) to
generate random HQMMs. We apply our learning algo-
rithm once to learn HQMMs from data and report the
DA. We use the Baum-Welch algorithm implemented in
the hmmtrain function from MATLAB’s Statistics and
Machine Learning Toolbox to learn HMM parameters.
When training HMMs, we train 10 models and report
the best DA.

The first experiment compares learned models on data
generated by a valid ‘probability clock’ NOOM/HQMM
model (Zhao and Jaeger [2007]) that theoretically can-
not be modeled by a finite-dimensional HMM. The sec-
ond experiment considers a 2-state, 6-output HQMM
which requires at least 4 classical states to model. These
experiments are meant to showcase the greater expres-
siveness of HQMMs compared with HMMs, and we
empirically demonstrate that our algorithm is able to
learn an HQMM that can better predict the generated
data than EM for classical HMMs.

5.1 Probability Clock
Zhao and Jaeger [2010] describes a 2-hidden state, 2-
observable NOOM ‘probability clock,’ where the proba-
bility of generating an observable a changes periodically
with the length of the sequence of as preceding it, and
cannot be modeled with a finite-dimensional HMM:

ˆK1,1 =

✓
0.6 cos(0.6) � sin(0.6)
0.6 sin(0.6) cos(0.6)

◆
ˆK1,2 =

✓
0.8 0

0 0

◆
(14)

This is a valid HQMM since
P

y=2

y=1

K†
1,y

K
1,y

= I. Ob-
serve that this HQMM has only 1 Kraus operator per
observable, which means it models the state evolution
as unitary.

Our results in Table 2 demonstrate that a probability
clock generates data that is hard for HMMs to model
and that our iterative algorithm yields a simple HQMM
that matches the predictive power of the original model.

Table 2: Performance of various HQMMs and HMMs
learned from data generated by the probability clock model.
HQMM parameters are given as (n, s, w) and HMM param-
eters are given as (n, s), where n is the number of hidden
states, s is the number of observables, and w is the number
of Kraus operators per observable. (T) indicates the true
model, (L) indicates learned models. P is the number of pa-
rameters. Both the mean and STD of the DA are indicated
for training and test data.

Model P Train DA Test DA

2, 2, 1�HQMM (T) 8 0.1642 (0.0089) 0.1632 (0.0111)
2, 2, 1�HQMM (L) 8 0.1640 (0.0088) 0.1631 (0.0111)
2, 2�HMM (L) 8 0.0851 (0.0074) 0.0833 (0.0131)
4, 2�HMM (L) 24 0.1459 (0.0068) 0.1446 (0.0100)
8, 2�HMM (L) 80 0.1639 (0.0087) 0.1630 (0.0108)

5.2 A Fully Quantum HQMM
Here, we present the results of our algorithm on a fully
quantum HQMM. Since we use complex-valued entries,
there is no known way of writing our model as an
equivalent-sized HMM or observable operator model.

We motivate this model with a physical system. Con-
sider electron spin: quantized angular momentum that
can either be ‘up’ or ‘down’ along whichever spatial axis
the measurement is made, but not in between. There is
no well-defined 3D vector describing electron spin along
the 3 spatial dimensions, only ‘up’ or ‘down’ along a
chosen axis of measurement (i.e., measurement basis).
This is unlike classical angular momentum which can
be represented by a vector with well-defined compo-
nents in three spatial dimensions. Picking an arbitrary
direction as the z-axis, we can write the electron’s spin
state in the {+z,�z} basis so that

⇥
1 0

⇤
T is | + zi

and
⇥
0 1

⇤
T is |� zi. But electron spin constitutes a

two-state quantum system, so it can be in superposi-
tions of the orthogonal ‘up’ and ‘down’ quantum states,
which can be parameterized with (✓,�) and written as
| i = cos

�
✓

2

�
|+zi+ei� sin

�
✓

2

�
|�zi, where 0 ✓ ⇡

and 0 � 2⇡. The Bloch sphere (sphere with radius
1) is a useful tool to visualize qubits since it can map
any two-state system to a point on the surface of the
sphere using (✓,�) as polar and azimuthal angles. We
could also have chosen {+x,�x} or {+y,�y}, which
can be written in our original basis:

| + xi =

1

p
2

| + zi +
1

p
2

| � zi
✓
✓ =

⇡

2

,� = 0

◆
(15)

| � xi =

1

p
2

| + zi �
1

p
2

| � zi
✓
✓ =

⇡

2

,� = ⇡

◆
(16)

| + yi =

1

p
2

| + zi +
i

p
2

| � zi
✓
✓ =

⇡

2

,� =

⇡

2

◆
(17)

| � yi =

1

p
2

| + zi �
i

p
2

| � zi
✓
✓ =

⇡

2

,� =

3⇡

2

◆
(18)

Learning Hidden Quantum Markov Models

Now consider the following process, inspired by the
Stern-Gerlach experiment (Gerlach and Stern [1922])
from quantum mechanics. We begin with an electron
whose spin we represent in the {+z,�z} basis. At
each time step, we pick one of the x, y, or z directions
uniformly and at random, and apply an inhomogeneous
magnetic field along that axis. This is an act of mea-
surement that collapses the electron spin to either ‘up’
or ‘down’ along that axis, which will deflect the electron
in that direction. Let us use the following encoding
scheme for the results of the measurement: 1: +z, 2:
�z, 3: +x, 4: �x, 5: +y, 6: �y. Consequently, at
each time step, the observation tells us which axis we
measured along, and whether the spin of the particle
is now ‘up’ or ‘down’ along that axis. As an example,
if we prepare an electron spin ‘up’ along the z-axis,
and observe the following sequence: 1, 3, 2, 6, it means
that we applied the inhomogeneous magnetic field in
the z-direction, then x-direction, then z-direction, and
finally the y-direction, causing the electron spin state
to evolve as +z,+x,�z,�y. Note that transitions
1$ 2, 3$ 4, and 5$ 6 are not allowed, since there
are no spin-flip operations in our process. Admittedly,
this is a slightly contrived example, since normally we
think of a hidden state that evolves according to some
rules, producing noisy observation. Here, we select the
observation (down to the pair, (1, 2), (3, 4), (5, 6)) that
we wish to observe, and that tells us how the ‘hidden
state’ evolves as described by a chosen basis.

This model is related to the 2-state HQMM requiring
3 classical states described in Monras et al. [2010]. It
is still a 2-state system, but we add two new Kraus
operators with complex entries and renormalize:

ˆ

K1,1 =

✓ 1p
3

0

0 0

◆
ˆ

K1,2 =

✓
0 0

0

1p
3

◆
(19)

ˆ

K1,3 =

1

2
p

3
1

2
p

3
1

2
p

3
1

2
p

3

!
ˆ

K1,4 =

1

2
p

3
� 1

2
p

3
� 1

2
p

3
1

2
p

3

!
(20)

ˆ

K1,5 =

1

2
p

3
� i

2
p

3
i

2
p

3
1

2
p

3

!
ˆ

K1,6 =

1

2
p

3
i

2
p

3
� i

2
p

3
1

2
p

3

!
(21)

Physically, Kraus operators ˆK
1,1

and ˆK
1,2

keep the
spin along the z-axis, Kraus operators ˆK

1,3

and ˆK
1,4

rotate the spin to lie along the x-axis, while Kraus
operators ˆK

1,5

and ˆK
1,6

rotate the spin to lie along
the y-axis. Following the approach of Monras et al.
[2010], we write down an equivalent 6-state HMM, and
compute the rank of a Hankel matrix with the statistics
of this process, yielding a requirement of 4 classical
states as a weak lower bound.

We present the results of our learning algorithm applied
to data generated by this model in Table 3. We find that
our algorithm can learn a 2-state HQMM (same size
as the model that generated the data) with predictive
power matched only by a 6-state HMM.

Table 3: Performance of various HQMMs and HMMs on
the fully quantum HQMM. HQMM parameters are given as
(n, s, w) and HMM parameters are given as (n, s), where n is
the number of hidden states, s is the number of observables,
and w is the number of Kraus operators per observable

Model P Train DA Test DA

2, 6, 1�HMM (T) 24 0.1303 (0.0042) 0.1303 (0.0047)
2, 6, 1�HQMM (L) 24 0.1303 (0.0042) 0.1301 (0.0047)
2, 6�HMM (L) 16 0.0327 (0.0038) 0.0328 (0.0033)
3, 6�HMM (L) 27 0.0522 (0.0043) 0.0530 (0.0040)
4, 6�HMM (L) 40 0.0812 (0.0042) 0.0822 (0.0045)
5, 6�HMM (L) 55 0.0967 (0.0042) 0.0967 (0.0045)
6, 6�HMM (L) 72 0.1305 (0.0042) 0.1301 (0.0049)

5.3 Discussion
Interestingly, we are able to learn reasonable models
with w = 1, i.e., modeling state evolution as unitary.
Indeed, the probability clock and Stern-Gerlach in-
spired model assume unitary state evolution, and these
HQMMs can model the same sequence with far fewer pa-
rameters compared to an HMM. We provide additional
experimental results in the appendix that show that
we can learn the 2-state HQMM presented by Monras
et al. [2010] from data. In our experiments on HMM-
generated data, we found that small HQMMs outper-
form HMMs with the same number of hidden states,
although the parameter count ends up being larger
(see appendix for results). As model size increases, our
HQMMs are over-parameterized, becoming prone to
getting stuck in local optima, and EM for HMMs may
work better in practice on HMM-generated data.

6 CONCLUSION
We formulated and parameterized HQMMs by first find-
ing quantum circuits to implement HMMs and relaxing
some constraints. We showed how quantum analogues
of classical conditioning and marginalization can be
implemented, and these methods are general enough to
construct quantum versions of any probabilistic graph-
ical model. We also proposed an iterative maximum-
likelihood algorithm to learn the Kraus operators for
HQMMs. We demonstrated that our algorithm could
successfully learn HQMMs that were shown to (theoret-
ically) better model certain sequences in the literature.
While our HQMMs cannot model data any better than
a sufficiently large HMM, we find that HQMMs can
better model the same data with fewer hidden states.
Future work could look at optimizing our algorithm
to scale on larger datasets, and determining more gen-
erally when HQMMs are more suitable than HMMs.
We speculate that quantum models could lead to im-
provements in areas where ‘quantum’ effects may better
model the dynamic processes.

Acknowledgements

We thank Theresa W. Lynn for her advice and input
on this work.

Siddarth Srinivasan, Geoff Gordon, Byron Boots

References
Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick

Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum
machine learning. arXiv preprint arXiv:1611.09347, 2016.

Lewis A Clark, Wei Huang, Thomas M Barlow, and Almut
Beige. Hidden quantum markov models and open quan-
tum systems with instantaneous feedback. In ISCS 2014:

Interdisciplinary Symposium on Complex Systems, pages
143–151. Springer, 2015.

Walther Gerlach and Otto Stern. Der experimentelle nach-
weis der richtungsquantelung im magnetfeld. Zeitschrift

für Physik, 9(1):349–352, 1922.
Herbert Jaeger. Observable operator models for discrete

stochastic time series. Neural Computation, 12(6):1371–
1398, 2000.

Nathaniel Johnston. QETLAB: A MATLAB toolbox for
quantum entanglement, version 0.9. http://qetlab.com,
January 2016.

Alex Monras, Almut Beige, and Karoline Wiesner. Hidden
quantum markov models and non-adaptive read-out of
many-body states. arXiv preprint arXiv:1002.2337, 2010.

Lawrence R Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition. Proceed-

ings of the IEEE, 77(2):257–286, 1989.
Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione.

An introduction to quantum machine learning. Contem-

porary Physics, 56(2):172–185, 2015a.
Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione.

Simulating a perceptron on a quantum computer. Physics

Letters A, 379(7):660–663, 2015b.
Nathan Wiebe, Ashish Kapoor, and Krysta Svore. Quan-

tum perceptron models. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, ed-
itors, Advances in Neural Information Processing

Systems 29, pages 3999–4007. Curran Associates,
Inc., 2016. URL http://papers.nips.cc/paper/

6401-quantum-perceptron-models.pdf.
Ming-Jie Zhao and Herbert Jaeger. Norm observable oper-

ator models. Technical report, Jacobs University, 2007.
Ming-Jie Zhao and Herbert Jaeger. Norm-observable op-

erator models. Neural computation, 22(7):1927–1959,
2010.

http://qetlab.com
http://papers.nips.cc/paper/6401-quantum-perceptron-models.pdf
http://papers.nips.cc/paper/6401-quantum-perceptron-models.pdf

	INTRODUCTION
	BACKGROUND
	Related Work
	Belief States and Quantum States
	Hidden Markov Models

	HIDDEN QUANTUM MARKOV MODELS
	A Quantum Circuit to Simulate HMMs
	Formulating HQMMs

	AN ITERATIVE ALGORITHM FOR LEARNING HQMMs
	EXPERIMENTAL RESULTS
	Probability Clock
	A Fully Quantum HQMM
	Discussion

	CONCLUSION
	Tensor Product and Partial Trace as Matrix Operations
	Tensor Product
	Partial Trace

	Factorizing Unitary Matrices into H Matrices
	monras2010hidden 2-state HQMM
	Synthetic Data from a hand-written HMM
	Converting Column Stochastic Matrices to Unitary Matrices

