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Abstract

Dealing with datasets of very high dimen-
sion is a major challenge in machine learn-
ing. In this paper, we consider the problem
of feature selection in applications where the
memory is not large enough to contain all fea-
tures. In this setting, we propose a novel tree-
based feature selection approach that builds
a sequence of randomized trees on small sub-
samples of variables mixing both variables al-
ready identified as relevant by previous mod-
els and variables randomly selected among
the other variables. As our main contribu-
tion, we provide an in-depth theoretical anal-
ysis of this method in infinite sample setting.
In particular, we study its soundness with re-
spect to common definitions of feature rele-
vance and its convergence speed under vari-
ous variable dependance scenarios. We also
provide some preliminary empirical results
highlighting the potential of the approach.

1 Motivation

We consider supervised learning and more specifically
feature selection in applications where the memory is
not large enough to contain all data. Such memory
constraints can be due either to the large volume of
available training data or to physical limits of the sys-
tem on which training is performed (eg., mobile de-
vices). A straightforward, but often efficient, way to
handle such memory constraint is to build and aver-
age an ensemble of models, each trained on only a
random subset of samples and/or features that can fit
into memory. Such simple ensemble approaches have
the advantage to be applicable to any batch learning
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algorithm, considered as a black-box, and they have
been shown empirically to be very effective in terms of
predictive performance, in particular when combined
with trees, and even when samples and/or features are
selected uniformly at random [see, eg., Chawla et al.,
2004, Louppe and Geurts, 2012]. Independently of any
considerations about memory constraints, feature sub-
sampling has been shown in several works to be a very
effective way to introduce randomization when build-
ing ensembles of models [Ho, 1998, Kuncheva et al.,
2010]. The idea of feature subsampling has also been
investigated for feature selection, where several au-
thors have proposed to repeatedly apply a multivari-
ate feature selection technique on random subsets of
features and then to aggregate the results obtained
on these subsets [see, eg., Dramiński et al., 2008, Lai
et al., 2006, Konukoglu and Ganz, 2014, Nguyen et al.,
2015, Dramiński et al., 2016].

In this work, focusing on feature subsampling, we
adopt a simplistic setting where we assume that only
q input features (among p in total, with typically
q � p) can fit into memory. In this setting, we study
ensembles of randomized decision trees trained each
on a random subset of q features. In particular, we
are interested in the properties of variable importance
scores derived from these models and their exploita-
tion to perform feature selection. In contrast to a
purely uniform sampling of the features, we propose
in Section 3 a modified sequential random subspace
(SRS) approach that biases the random selection of
the features at each iteration towards features already
found relevant by previous models. As our main con-
tribution, we perform in Section 4 an in-depth theo-
retical analysis of this method in infinite sample size
condition. In particular, we show that (1) this algo-
rithm provides some interesting asymptotic guarantees
to find all (strongly) relevant variables, (2) that ac-
cumulating previously found variables can reduce the
number of trees needed to find relevant variables by
several orders of magnitudes with respect to the stan-
dard random subspace method in some scenarios, and
(3) that these scenarios are relevant for a large class of
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(PC1) distributions. As an important additional con-
tribution, our analysis also sheds some new light on
both the popular random subspace and random forests
methods that are special cases of the SRS algorithm.
Finally, Section 5 presents some preliminary empirical
results on several artificial and real datasets.

2 Background

This section gives the necessary background about fea-
ture selection and random forests.

2.1 Feature relevance and feature selection

Let us denote by V the set of input variables, with
|V | = p, and by Y the output. Feature selection is
concerned about the identification in V of the (most)
relevant variables. A common definition of relevance
is as follows [Kohavi and John, 1997]:

Definition 1. A variable X ∈ V is relevant iff there
exists a subset B ⊂ V such that X ⊥6⊥ Y |B. A variable
is called irrelevant if it is not relevant.

Relevant variables can be further divided into two cat-
egories [Kohavi and John, 1997]:

Definition 2. A variable X is strongly relevant iff
Y ⊥6⊥X|V \ {X}. A variable X is weakly relevant if
it is relevant but not strongly relevant.

Strongly relevant variables thus convey information
about the output that no other variable (or combi-
nation of variables) in V conveys.

The problem of feature selection usually can take two
flavors [Nilsson et al., 2007]:
All-relevant problem: finding all relevant features.
Minimal optimal problem: finding a subsetM ⊆ V
such that Y ⊥⊥V \M |M and such that no proper sub-
set of M satisfies this property. A subset M solution
to the minimal optimal problem is called a Markov
boundary (of Y with respect to V ).

A Markov boundary always contains all strongly rel-
evant variables and potentially some weakly relevant
ones. In general, the minimal optimal problem does
not have a unique solution. For strictly positive dis-
tributions2 however, the Markov boundary M of Y is
unique and a feature X belongs to M iff X is strongly
relevant [Nilsson et al., 2007]. In this case, the solution
to the minimal optimal problem is thus the set of all
strongly relevant variables.

1Defined in Section 4.2
2Following [Nilsson et al., 2007], we will define a strictly

positive distribution P over V ∪{Y } as a distribution such
that P (V = v) > 0 for all possible values v of the variables
in V .

In what follows, we will need to qualify relevant vari-
ables according to their degree:

Definition 3. The degree of a relevant variable X,
denoted deg(X), is defined as the minimal size of a
subset B ⊆ V such that Y ⊥6⊥X|B.

Relevant variables X of degree 0, i.e. such that Y ⊥6⊥X
unconditionally, will be called marginally relevant.

We will say that a subset B such that Y ⊥6⊥ X|B is
minimal if there is no proper subset B′ ⊆ B such
that Y ⊥6⊥X|B′. The following two propositions give a
characterization of these minimal subsets.

Proposition 1. A minimal subset B such that Y ⊥6⊥
X|B for a relevant variable X contains only relevant
variables.

Proof. Let us assume that B contains an irrelevant
variable Xi. Let us denote by B−i the subset B\{Xi}.
Since Xi is irrelevant, we have Y ⊥⊥ Xi|B−i ∪ {X}.
Given that B is minimal we furthermore have Y ⊥⊥
X|B−i where B−i = B \ {Xi}. By using the contrac-
tion property of any probability distribution [Nilsson
et al., 2007], one can then conclude from these two in-
dependences that Y ⊥⊥ {X,Xi}|B−i and, by using the
weak union property, that Y ⊥⊥X|B, which proves the
theorem by contradiction.

Proposition 2. Let B denote a minimal subset such
that Y ⊥6⊥X|B for a relevant variable X. For all X ′ ∈
B, deg(X ′) ≤ |B|.

Proof. If we reduce the set of features V to a new set
V ′ = B ∪ {X}, X will remain relevant, as well as all
features in B, given Proposition 1. So, for any feature
X ′ in B, there exists a subset B′ = B ∪ {X} \ X ′
such that Y ⊥6⊥X ′|B′ and the degree of X ′ is therefore
≤ |B|.

These two propositions show that a minimal condition-
ing B that makes a variable dependent on the output
is composed of only relevant variables whose degrees
are all smaller than or equal to the size of B. We will
provide in Section 4.2 a more stringent characteriza-
tion of variables in minimum conditionings in the case
of a specific class of distributions.

2.2 Tree-based variable importances

A decision tree [Breiman et al., 1984] represents an
input-output model with a tree structure, where each
interior node is labeled with a test based on some input
variable and each leaf node is labeled with a value of
the output. The tree is typically grown using a recur-
sive procedure which identifies at each node t the split
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s that maximizes the mean decrease of some node im-
purity measure (e.g., Shannon entropy in classification
and variance in regression).

Typically, decision trees suffer from a high variance
that can be very efficiently reduced by building in-
stead an ensemble of randomized trees and aggre-
gating their predictions. Several techniques have been
proposed in the literature to grow randomized trees.
For example, bagging [Breiman, 1996] builds each tree
with the classical algorithm from a bootstrap sample
from the original learning sample. Ho [1998]’s ran-
dom subspace method grows each tree from a subset
of the features of size q ≤ p randomly drawn from
V . Breiman [2001]’s Random Forests combine bag-
ging with a local random selection of K(≤ p) variables
at each node from which to identify the best split.

Given an ensemble of trees, several methods have been
proposed to evaluate the importance of the vari-
ables for predicting the output [Breiman et al., 1984,
Breiman, 2001]. We will focus here on one particular
measure called the mean decrease impurity (MDI) im-
portance for which some theoretical characterization
has been proposed in [Louppe et al., 2013]. This mea-
sure adds up the weighted impurity decreases over all
nodes t in a tree T where the variable X to score is
used to split and then averages this quantity over all
trees in the ensemble, i.e.:

Imp(X) =
1

NT

∑
T

∑
t∈T :v(st)=X

p(t)∆i(st, t), (1)

with ∆i(st, t) = i(t)− p(tL)

p(t)
i(tL)− p(tR)

p(t)
i(tR)

where i is the impurity measure, p(t) is the proportion
of samples reaching node t, v(st) is the variable used
in the split st at node t, and tL and tR are the left and
right successors of t after the split.

Louppe et al. [2013] derived several interesting prop-
erties of this measure under the assumption that all
variables are discrete and that splits on these variables
are multi-way (i.e., each potential value of the splitting
variable is associated with one successor of the node to
split). In particular, they obtained the following result
in asymptotic sample and ensemble size conditions:
Theorem 1. X ∈ V is irrelevant to Y with respect
to V if and only if its infinite sample importance as
computed with an infinite ensemble of fully developed
totally randomized trees built on V for Y is 0 (Theorem
3 in [Louppe et al., 2013]).

Totally randomized trees are trees obtained by set-
ting Random Forests randomization parameter K to
1. This result shows that MDI importance derived
from trees grown with K = 1 is asymptotically consis-
tent with the definition of variable relevance given in

Algorithm 1 Sequential Random Subspace algorithm
Inputs:
Data: Y the output and V , the set of all input variables
(of size p).
Algorithm: q, the subspace size, and T the number of it-
erations, α ∈ [0, 1], the percentage of memory devoted to
previously found features.
Tree: K, the tree randomization parameter
Output: An ensemble of T trees and a subset F of fea-
tures
Algorithm:

1. F = ∅
2. Repeat T times:

(a) Let Q = R ∪C, with R a subset of min{bαqc, |F |}
features randomly picked in F without replacement
and C a subset of q−|R| features randomly selected
in V \R.

(b) Build a decision tree T from Q using randomiza-
tion parameter K.

(c) Add to F all features from Q that get an impor-
tance greater than zero in T .

the previous section. In Section 4.1, we will actually
extend this result to values of K greater than 1.

3 Sequential random subspace

In this paper, we consider a simplistic memory-
constrained setting where it is assumed that only q
input features can fit into memory at once, with typi-
cally q small with respect to p. Under this hypoth-
esis, Algorithm 1 describes the proposed sequential
random subspace (SRS) algorithm to build an ensem-
ble of randomized trees, which generalizes the Ran-
dom Subspace (RS) method [Ho, 1998]. The idea of
this method is to bias the random selection of the fea-
tures at each iteration towards features that have al-
ready been found relevant by the previous trees. A
parameter α is introduced that controls the degree of
accumulation of previously identified features. When
α = 0, SRS reduces to the standard RS method. When
α = 1, all previously found features are kept while
when α < 1, some room in memory is left for randomly
picked features, which ensures some permanent explo-
ration of the feature space. Further randomization is
introduced in the tree building step through the pa-
rameterK ∈ [1, q], ie. the number of variables sampled
at each tree node for splitting. Variable importance is
assumed to be the MDI importance. This algorithm
returns both an ensemble of trees and a subset F of
variables, those that get an importance (significantly)
greater than 0 in at least one tree of the ensemble.
Importance scores for the variables can furthermore
be derived from the final ensemble using (1). In what
follows, we will denote by FK,αq,T and ImpK,αq,T (X) resp.
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the set of features and the importance of feature X
obtained from an ensemble grown with SRS with pa-
rameters K, α, q and T .

The modification of the RS algorithm is actually mo-
tivated by Propositions 1 and 2, stating that the rele-
vance of high degree features can be determined only
when they are analysed jointly with other relevant fea-
tures of equal or lower degree. From this result, one
can thus expect that accumulating previously found
features will fasten the discovery of higher degree fea-
tures on which they depend through some snowball
effect. We confirm and quantify this effect in the next
section.

Note that the SRS method can also be motivated from
the perspective of accuracy. When q � p and the
number of relevant features r is also much smaller than
the total number of features p (r � p), many trees
with standard RS are grown from subsets of features
that contain only very few, if any, relevant features
and are thus expected not to be better than random
guessing Kuncheva et al. [2010]. In such setting, RS
ensembles are thus expected not to be very accurate.

Example 1. With p = 10000, r = 10 and q = 50, the
proportion of trees in a RS ensemble grown from only
irrelevant variables is Cqp−r/Cqp = 0.95.

With SRS (and α > 0), we ensure that more and more
relevant variables are given to the tree growing algo-
rithm as iterations proceed and therefore we reduce the
chance to include totally useless trees in the ensemble.
In finite settings however, there is a potential risk of
overfitting when accumulating the variables. The pa-
rameter α thus controls a new bias-variance tradeoff
and should be tuned appropriately. We will study the
impact of SRS on accuracy empirically in Section 5.

4 Theoretical analysis

In this section, we carry out a theoretical analysis of
the proposed method when seen as a feature selection
technique. This analysis is performed in asymptotic
sample size condition, assuming that all features, in-
cluding the output, are discrete, and using Shannon
entropy as the impurity measure. We proceed in two
steps. First, we study the soundness of the algorithm,
ie., its capacity to retrieve the relevant variables when
the number of trees is infinite. Second, we study its
convergence properties, ie. the number of trees needed
to retrieve all relevant variables in different scenarios.

4.1 Soundness

Our goal in this section is to characterize the sets of
features FK,αq,∞ that are identified by the SRS algorithm,

depending on the value of its parameters q, α, and
K, in an asymptotic setting, ie. assuming an infinite
sample size and an infinite forest (T =∞). Note that
in asymptotic setting, a variable is relevant as soon as
its importance in one of the trees is strictly greater
than zero and we thus have the following equivalence
for all variables X ∈ V :

X ∈ FK,αq,∞ ⇔ ImpK,αq,∞(X) > 0

Furthermore, in infinite sample size setting, irrelevant
variables always get a zero importance and thus, what-
ever the parameters, we have the following property:

X ∈ V irrelevant⇒ X /∈ FK,αq,∞ (and ImpK,αq,∞(X) = 0).

The method parameters thus only affect the number
and nature of the relevant variables that can be found.
Denoting by r (≤ p) the number of relevant variables,
we will analyse separately the case r ≤ q (all relevant
variables can fit into memory) and the case r > q (all
relevant variables can not fit into memory).

All relevant variables can fit into memory (r ≤
q). Let us first consider the case of the RS method
(α = 0). In this case, Louppe et al. [2013] have shown
the following asymptotic formula for the importances
computed with totally randomized trees (K = 1):

Imp1,0q,∞(X) =

q−1∑
k=0

1

Ckp

∑
B∈Pk(V −m)

I(X;Y |B), (2)

where Pk(V −m) is the set of subsets of V −m = V \
{xm} of cardinality k. Given that all terms are posi-
tive, this sum will be strictly greater than zero if and
only if there exists a subset B ⊆ V of size at most q−1
such that Y⊥6⊥X|B (⇔ I(X;Y |B) > 0), or equivalently
if deg(X) < q. When α = 0, RS with K = 1 will thus
find all and only the relevant variables of degree at
most q − 1. Given Proposition 1, the degree of a vari-
able X can not be larger than r − 1 and thus as soon
as r ≤ q, we have the guarantee that RS with K = 1
will find all and only the relevant variables. Actually,
this result remains valid when α > 0. Indeed, asymp-
totically, only relevant variables will be selected in the
F subset by SRS and given that all relevant variables
can fit into memory, cumulating them will not impact
the ability of SRS to explore all conditioning subsets
B composed of relevant variables. We thus have:

Proposition 3. ∀α, if r ≤ q: X ∈
F 1,α
q,∞ iff X is relevant.

In the case of non-totally randomized trees (K > 1),
we lose the guarantee to find all relevant variables even
when r ≤ q. Indeed, there is potentially a masking ef-
fect due to K > 1 that might prevent the conditioning
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needed for a given variable to be relevant to appear in
a tree branch. However, we have the following general
result:

Theorem 2. ∀α,K, if r ≤ q: X strongly relevant⇒
X ∈ FK,αq,∞

Proof. See Appendix A.

There is thus no masking effect possible for the
strongly relevant features when K > 1 as soon as the
number of relevant features is lower than q. For a
given K, the features found by SRS will thus include
all strongly relevant variables and some (when K > 1)
or all (when K = 1) weakly relevant ones. It is easy to
show that increasing K can only decrease the number
of weakly relevant variables found. Using K = 1 will
thus provide a solution for the all-relevant problem,
while increasing K will provide a better and better ap-
proximation of the minimal-optimal problem in the
case of strictly positive distributions (see Section 2.1).

Interestingly, Theorem 2 remains true when q = p, ie.,
when forests are grown without any feature sampling.
It thus extends Theorem 1 from [Louppe et al., 2013]
for arbitrary K in the case of standard random forests.

All relevant variables can not fit into memory
(r > q). When all relevant variables can not fit into
memory, we do not have the guarantee anymore to
explore all minimal conditionings required to find all
(strongly or not) relevant variables, whatever the val-
ues of K and α. When α = 0, we have the guaran-
tee however to identify the relevant variables of degree
strictly lower than q. When α > 1, some space in
memory will be devoted to previously found variables
that will introduce some further masking effect. We
nevertheless have the following general results (with-
out proof):

Proposition 4.

∀X : X relevant and
deg(X) < (1− α)q ⇒ X ∈ F 1,α

q,∞.

Proposition 5.

∀K,X : X strongly relevant and
deg(X) < (1− α)q ⇒ X ∈ FK,αq,∞ .

In these propositions, (1−α)q is simply the amount of
memory that always remains available for the explo-
ration of variables not yet found relevant.

Discussion. Results in this section show that SRS
is a sound approach for feature selection as soon as

either the memory is large enough to contain all rel-
evant variables or the degree of the relevant variables
is not too high. In this latter case, the approach will
be able to detect all strongly relevant variables what-
ever its parameters (K and α) and the total number
of features p. Of course, these parameters will have
a potentially strong influence on the number of trees
needed to reach convergence (see the next section) and
the performance in finite setting.

4.2 Convergence

Results in the previous section show that accumulat-
ing relevant variables has no impact on the capacity at
finding relevant variables asymptotically (when r ≤ q).
It has however a potentially strong impact on the con-
vergence speed of the algorithm, as measured for ex-
ample by the expected number of trees needed to find
all relevant variables. Indeed, when α = 0 and q � p,
the number of iterations/trees needed to find relevant
variables of high degree can be huge as finding them
requires to sample them together with all features in
their conditioning. Given Proposition 2, we know that
a minimum subset B such that X ⊥6⊥ Y |B for a rele-
vant variable X contains only relevant variables. This
suggests that accumulating previously found relevant
features can improve significantly the convergence, as
each time one relevant variable is found it increases the
chance to find a relevant variable of higher degree that
depends on it. In what follows, we will quantify the
effect of accumulation on convergence speed in differ-
ent best-case and worst-case scenarios and under some
simplifications of the tree building procedure. We will
conclude by a theorem highlighting the interest of the
SRS method in the general class of PC distributions.

Scenarios and assumptions. The convergence
speed is in general very much dependent on the data
distribution. We will study here the following three
specific scenarios (where features {X1, . . . , Xr} are the
only relevant features):

• Chaining: The only and minimal conditioning that
makes variable Xi relevant is {X1, . . . , Xi−1} (for
i = 1, . . . , r). We thus have deg(Xi) = i − 1. This
scenario should correspond to the most favorable sit-
uation for the SRS algorithm.

• Clique: The only and minimal condi-
tioning that makes variable Xi relevant is
{X1, . . . , Xi−1, Xi+1, . . . , Xr} (for i = 1, . . . , r). We
thus have deg(Xi) = r − 1 for all i. This is a rather
defavorable case for both RS and SRS since finding
a relevant variable implies to draw all of them at
the same iteration.

• Marginal-only: All variables are marginally rel-
evant. We will furthermore make the assumption



Random Subspace with Trees for Feature Selection Under Memory Constraints

that these variables are all strongly relevant. They
can not be masked mutually. This scenario is the
most defavorable case for SRS (versus RS) since ac-
cumulating relevant variables is totally useless to
find the other relevant variables and it should ac-
tually slow down the convergence as it will reduce
the amount of memory left for exploration.

In Appendix B.2, we provide explicit formulation of
the expected number of iterations needed to find all r
relevant features in the chaining and clique scenarios
both when α = 0 (RS) and α = 1 (SRS). In Appendix
B.3, we provide order 1 Markov chains that model the
evolution through the iterations of the number of vari-
ables found in the three scenarios when α = 0 and
α = 1. These chains can be used to compute numeri-
cally the expected number of relevant variables found
through the iterations (and in the case of the marginal-
only setting, the expected number of iterations to find
all variables). These derivations are obtained assum-
ing r ≤ q, K = q, and under additional simplifying
assumptions detailed in Appendix B.1.

Results and discussion. Tables 1a, 1b, and 1c
show the expected number of iterations needed to find
all relevant variables for various configurations of the
parameters p, q, and r, in the three scenarios. Figure
1 plots the expected number of variables found at each
iteration both for RS and SRS in the three scenarios
for some particular values of the parameters.

From these results, we can draw several conclusions.
In all cases, expected times (ie., number of iter-
ations/trees to find all relevant variables) depend
mostly on the ratio q

p , not on absolute values of q and
p. The larger this ratio, the faster the convergence.
Parameter r has a strong impact on convergence speed
in all three scenarios.

The most impressive improvements with SRS are ob-
tained in the chaining hypothesis, where convergence
is improved by several orders of magnitude (Table 1a
and Figure 1a) . At fixed p and q, the time needed
by RS indeed grows exponentially with r (' (pq )r if
r � q), while time grows linearly with r for the SRS
method (' r pq if r � q) (see Eq. (1) and (3) in Ap-
pendix B.2).

In the case of cliques, both RS and SRS need many
iterations to find all features from the clique (see Table
1b and Figure 1b). SRS goes faster than RS but the
improvement is not as important as in the chaining
scenario. This can be explained by the fact that SRS
can only improve the speed when the first feature of the
clique has been found. Since the number of iterations
needed to find the r features from the clique for RS
is close to r times the number of iterations needed to

find one feature from the clique, SRS can only decrease
at best the number of iterations by approximately a
factor r (see Eq. (6) and (7) in Appendix B.2).

In the marginal-only setting, SRS is actually slower
than RS because cumulating the variables leaves less
space in memory for exploration. The decrease of com-
puting times is however contained when r is not too
close to q (see Table 1c and Figure 1c).

Since we can obtain very significant improvement in
the case of the chaining and clique scenarios and we
only increase moderately the number of iterations in
the marginal-only scenario (when r is not too close
from q), we can reasonably expect improvement in gen-
eral settings that mix these scenarios.

PC distributions and chaining. Chaining is the
most interesting scenario in terms of convergence im-
provement through variable accumulation. In this sce-
nario, SRS makes it possible to find high degree rele-
vant variables with a reasonable amount of trees, when
finding these variables would be mostly untractable
for RS. We provide below two theorems that show the
practical relevance of this scenario in the specific case
of PC distributions.

A PC distribution is defined as a strictly positive (P)
distribution that satisfies the composition (C) prop-
erty stated as follows [Nilsson et al., 2007]:
Property 1. For any disjoint sets of variables
R,S, T, U ⊆ V ∪ {Y }:

S ⊥⊥ T |R and S ⊥⊥ U |R⇒ S ⊥⊥ T ∪ U |R.

The composition property prevents the occurence of
cliques and is preserved under marginalization. PC ac-
tually represents a large class of distributions that en-
compasses for example jointly Gaussian distributions
and DAG-faithful distributions [Nilsson et al., 2007].

The composition property allows to make Proposition
2 more stringent in the case of PC:
Proposition 6. Let B denote a minimal subset B
such that Y ⊥6⊥ X|B for a relevant variable X. If the
distribution P over V ∪{Y } is PC, then for all X ′ ∈ B,
deg(X ′) < |B|.

Proof. Proposition 2 proves that the degree of all fea-
tures in B is ≤ |B| in the general case. Let us assume
that there exists a feature X ′ ∈ B of degree |B| in
the case of PC distribution. Since this property re-
main true when the set of features V is reduced to a
subset V ′ = B ∪ {X}, the minimal B′ of X ′ can only
be (B \ {Xi}) ∪ {X}. We thus have the following two
properties:

Y ⊥⊥X|B \ {X ′}



Sutera, Châtel, Louppe, Wehenkel and Geurts

Table 1: Expected number of iterations needed to find all relevant variables for various configurations of param-
eters p, q and r with RS (α = 0) and SRS (α = 1) in the three scenarios.

(a) Chaining.
Config (p,q,r) RS SRS
104, 100, 1 100 100
104, 100, 2 10100 200
104, 100, 3 > 106 301
104, 100, 5 > 1010 506
105, 100, 3 > 109 3028

(b) Clique.
Config (p,q,r) RS SRS
104, 100, 1 100 100
104, 100, 2 30300 10302
104, 100, 3 5 · 106 106

104, 100, 4 9 · 108 108

104, 103, 4 83785 11635

(c) Marginal-only.
Config (p,q,r) RS SRS
104, 100, 10 291 312
104, 100, 50 448 757
104, 100, 90 506 2797
104, 100, 100 1123 16187
25000, 100, 50 1123 1900

r r r

Figure 1: Evolution of the number of selected features in the different scenarios.

Y ⊥⊥X ′|B′ \ {X},

because B and B′ are minimal. Together, by the com-
position property, they should imply that

Y ⊥⊥ {X,Xi}|B \ {Xi},

which implies, by weak union: Y ⊥⊥ X|B, which con-
tradicts the hypothesis.

In addition, one has the following result:
Theorem 3. For any PC distribution, let us as-
sume that there exists a non empty minimal subset
B = {X1, . . . , Xk} ⊂ V \ {X} of size k such that
X ⊥6⊥ Y |B for a relevant variable X. Then, variables
X1 to Xk can be ordered into a sequence {X ′1, . . . , X ′k}
such that deg(X ′i) < i for all i = 1, . . . , k.

Proof. Let us denote by {X ′1, X ′2, . . . , X ′k} the vari-
ables in B ordered according to their degree, ie.,
deg(X ′i) ≤ deg(X ′i+1), for i = 1, . . . , k−1. Let us show
that deg(X ′i) < i for all i = 1, . . . , k. If this property
is not true, then there exists at least one X ′i ∈ B such
that deg(X ′i) ≥ i. Let us denote by l the largest i
such that deg(Xi) ≥ i. Using a similar argument as in
the proof of Proposition 6, there exists some minimal
subset B′ ⊆ B \ {Xl} such that Y ⊥6⊥ Xl|B′. Given
that deg(Xl) ≥ l, this subset B should contain l vari-
ables or more from B \ {Xl}. It thus contains at least
one variable Xm with l < m ≤ k, and this variable is
such that deg(Xm) < m. Given Proposition 6, if B′

is minimal and contains Xm, then for a PC distribu-
tion, deg(Xm) should be strictly smaller than |B′| ≥ l,
which contradicts the fact that Xm is after Xl in the
ordering and proves the theorem.

This theorem shows that, with PC distributions, for
all relevant variables of degree k, the k variables in
its minimal conditioning form a chain of variables of
increasing degrees (at worst). For PC distribution,
SRS is thus guaranteed to find all relevant variables
with a number of iterations that grows almost only
linearly with the maximum degree of relevant variables
(see Eq.3 in Appendix B.2), while RS would be unable
to find relevant variables of even small degree.

5 Experiments

Although our main contribution is the theoretical anal-
ysis in asymptotic setting of the previous section, we
present here a few preliminary experiments in finite
setting as a first illustration of the potential of the
method. One of the main difficulties to implement the
SRS algorithm as presented in Algorithm 1 is step 2(c)
that decides which variable should be incorporated in
F at each iteration. In infinite sample size setting, a
variable with a non-zero importance in a single tree
is guaranteed to be truly relevant. Mutual informa-
tions estimated from finite samples however will always
be greater than 0 even for irrelevant variables. One
should thus replace step 2(c) by some statistical sig-
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(a) SRS with q = 0.05 × p on a dataset with p =
50000 features and r = 20 relevant features.
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(b) SRS with q = 0.005 × p on a dataset with
p = 50000 features and r = 20 relevant features.

Figure 2: Evolution of the evaluation of the feature
subset found by RS and SRS using the F1-measure
computed with respect to relevant features. A higher
value means that more relevant features have been
found. This experiment was computed on an artificial
dataset (similar to madelon) of 50000 features with 20
relevant features and for two sizes of memory.

nificance tests to avoid the accumulation of irrelevant
variables that would jeopardize the convergence of the
algorithm. In our experiments here, we use a random
probe (ie., an artificially created irrelevant variable) to
derive a statistical measure assessing the relevance of
a variable [Stoppiglia et al., 2003]. Details about this
test are given in Appendix C.

Figure 2 evaluates the feature selection ability of SRS
for three values of α (including α = 0) and two mem-
ory sizes (250 and 2500) on an artificial dataset with
50000 features, among which only 20 are relevant (see
Appendix C for more details). The two plots show the
evolution of the F1-score comparing the selected fea-
tures (in F ) with the truly relevant ones as a function
of the number of iterations. As expected, SRS (α > 0)
is able to find better feature subsets than RS (α = 0)

for both memory sizes and both values of α > 0.

Additional results are provided in Appendix C that
compare the accuracy of ensembles grown with SRS for
different values of α and on 13 classification problems.
These comparisons clearly show that accumulating the
relevant variables is beneficial most of the time (eg.,
SRS with α = 0.5 is significantly better than RS on
7 datasets, comparable on 5, and significantly worse
on only 1). Interestingly, SRS ensembles with α =
0.5 are also most of the time significantly better than
ensembles of trees grown without memory constraint
(see Appendix C for more details).

6 Conclusions and future work

Our main contribution is a theoretical analysis of the
SRS (and RS) methods in infinite sample setting. This
analysis showed that both methods provide some guar-
antees to identify all relevant (or all strongly relevant)
variables as soon as the number of relevant variables or
their degree is not too high with respect to the memory
size. Compared to RS, SRS can reduce very strongly
the number of iterations needed to find high degree
variables in particular in the case of PC distributions.
We believe that our results shed some new light on
random subspace methods for feature selection in gen-
eral as well as on tree-based methods, which should
help designing better feature selection procedures.

Some preliminary experiments were provided that sup-
port the theoretical analysis, but more work is clearly
needed to evaluate the approach empirically. We be-
lieve that the statistical test used to decide which fea-
ture to include in the relevant set should be improved
with respect to our first implementation based on a
random probe. Other procedures have been proposed
to measure the statistical significance of tree-based
variable importances scores that could be adapted and
evaluated in our context [eg., Janitza et al., 2016]. The
SRS sampling scheme could be analysed theoretically
but it is admittedly very straightforward. It would be
interesting to investigate, both theoretically and em-
pirically, other biased sampling schemes, such as for
example softer selection procedures that would sample
features proportionally to their current importance.
Note that biased feature sampling schemes have been
proposed in the literature with different goals, e.g., in
[Inza et al., 2002] as a wrapper for feature subset se-
lection or in [Amaratunga et al., 2008] to improve the
accuracy of random forests. It would be interesting to
analyse these methods in the light of our work. Fi-
nally, relaxing the main hypotheses of our theoretical
analysis would be also of great interest.
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