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APPENDIX

APPENDIX A - A CONCENTRATION
INEQUALITY [1, 2]

Consider a ball B for which the rewards of objective
i are generated by a process {Ri

B(t)}Tt=1 with mean
µi
B = E[Ri

B(t)], where the noise Ri
B(t) − µi

B is 1-
sub-Gaussian. Recall that B(t) is the ball selected
in round t and NB(T ) is the number of times ball B
is selected by the beginning of round T . Let µ̂i

B(T ) =∑T−1
t=1 I(B(t) = B)Ri

B(t)/NB(T ) for NB(T ) > 0 and
µ̂i
B(T ) = 0 for NB(T ) = 0. Then, for any 0 < θ < 1

with probability at least 1− θ we have∣∣µ̂i
B(T )− µi

B

∣∣
≤

√
2

NB(T )

(
1 + 2 log

(
(1 +NB(T ))1/2

θ

))
∀T ∈ N.

APPENDIX B - PROOF OF LEMMA 1

From the definitions of L̃i
B(t), Ũ i

B(t) and ŨC
i

B , it
can be observed that the event UCi

B happens when
µ̃i
B(t) remains away from µi

yB
(xB) for some t ∈

{0, . . . , NB(T+1)}. Using this information, we can use
the concentration inequality given in Appendix A. In
this formulation expected rewards of the arms must be
equal in all time steps, but in our case, µi

ỹB(t)(x̃B(t))

changes since the elements of {x̃B(t), ỹB(t)}NB(T+1)
t=1

are not identical which makes distributions of R̃i
B(t),

t ∈ {1, . . . , NB(T + 1)} different.

In order to overcome this issue, we use the sandwich
technique proposed in [3] and later used in [4]. For
any ball B ∈ B(T ), we have Pr(µi

yB
(xB) /∈ [L̃i

B(0) −
r(B), Ũ i

B(0) + r(B)]) = 0 since µ̃i
B(0) = 0, L̃i

B(0) =
−∞ and Ũ i

B(0) = ∞. Thus, for B ∈ B(T ) \ B′(T ),
we have Pr(UCB |B(T )) = 0. Hence, we proceed by
bounding the probabilities of the events {µi

yB
(xB) /∈

[L̃i
B(t)−r(B), Ũ i

B(t)+r(B)]}, for t > 0 and for the balls

in B′(T ). Recall that R̃i
B(t) = µi

ỹB(t)(x̃B(t)) + κ̃iB(t)

and µ̃i
B(t) =

∑t
l=1 R̃

i
B(l)/t (for t > 0 and B ∈ B′(T )).

For each i ∈ {1, . . . , dr}, B ∈ B′(T ), let

µi
B = sup

(x,y)∈dom(B)

µi
y(x) and µi

B
= inf

(x,y)∈dom(B)
µi
y(x).

We define two new sequences of random variables,
whose sample mean values will lower and upper bound
µ̃i
B(t). The best sequence is defined as {R̄i

B(t)}NB(T+1)
t=1

where R
i

B(t) := µi
B + κ̃iB(t), and the worst sequence

is defined as {Ri
B(t)}NB(T+1)

t=1 where Ri
B(t) := µi

B
+

κ̃iB(t). Let µi
B(t) :=

∑t
l=1R

i

B(l)/t and µi
B

(t) :=∑t
l=1R

i
B(l)/t. We have

µi
B

(t) ≤ µ̃i
B(t) ≤ µi

B(t) ∀t ∈ {1, . . . , NB(T + 1)}.

Let

L
i

B(t) := µi
B(t)− ũB(t)

U
i

B(t) := µi
B(t) + ũB(t)

Li
B(t) := µi

B
(t)− ũB(t)

U i
B(t) := µi

B
(t) + ũB(t).

It can be shown that

{µi
yB

(xB) /∈ [L̃i
B(t)− r(B), Ũ i

B(t) + r(B)]} (1)

⊂ {µi
yB

(xB) /∈ [L
i

B(t)− r(B), U
i

B(t) + r(B)]}
∪ {µi

yB
(xB) /∈ [Li

B(t)− r(B), U i
B(t) + r(B)]}.

Moreover, the following inequalities can be obtained
from Assumption 1:

µi
yB

(xB) ≤ µi
B ≤ µi

yB
(xB) + r(B) (2)

µi
yB

(xB)− r(B) ≤ µi
B
≤ µi

yB
(xB). (3)

Using (2) and (3) it can be shown that

{µi
yB

(xB) /∈ [L
i

B(t)− r(B), U
i

B(t) + r(B)]}
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⊂ {µi
B /∈ [L

i

B(t), U
i

B(t)]},
{µi

yB
(xB) /∈ [Li

B(t)− r(B), U i
B(t) + r(B)]}

⊂ {µi
B
/∈ [Li

B(t), U i
B(t)]}.

Plugging this to (1), we get

{µi
yB

(xB) /∈ [L̃i
B(t)− r(B), Ũ i

B(t) + r(B)]}

⊂ {µi
B /∈ [L

i

B(t), U
i

B(t)]}
⋃
{µi

B
/∈ [Li

B(t), U i
B(t)]}.

Using the equation above and the union bound we ob-
tain

Pr(UCi
B |B(T )) ≤ Pr

NB(T+1)⋃
t=1

{µi
B /∈ [L

i

B(t), U
i

B(t)]}


+ Pr

NB(T+1)⋃
t=1

{µi
B
/∈ [Li

B(t), U i
B(t)]}

 .

Both terms on the right-hand side of the inequality
above can be bounded using the concentration inequal-
ity in Appendix A. Using θ = δ/(2drT ), in Appendix
A gives Pr(UCi

B |B(T )) ≤ δ/(drT ), since 1 + NB(t) ≤
1 + NB(T + 1) ≤ 2T . Then, using the union bound
over all objectives, we obtain Pr(UCB |B(T )) ≤ δ/T .

APPENDIX C - PROOF OF LEMMA 5

The maximum number of times a radius r ball B can
be selected before it becomes a parent ball is upper
bounded by 1 + 2r−2(1 + 2 log(2

√
2drT

3
2 /δ)). From

the result of Lemma 3, we know that the Pareto re-
gret in each of these rounds is upper bounded by 14r.
Note that after ball B becomes a parent ball, it will
create a new radius r/2 child ball every time it is se-
lected. From Lemma 4, we know that the Pareto regret
in each of these rounds is bounded above by 12(r/2).
Therefore, we can include the Pareto regret incurred
in a round in which a new child ball with radius r
is created from a parent ball as a part of the child
ball’s (total) Pareto regret. Hence, the Pareto regret
incurred in a radius r ball is upper bounded by

14r
(

1 + 2r−2(1 + 2 log(2
√

2drT
3
2 /δ))

)
+ 12r

≤ 14r
(

2 + 2r−2(1 + 2 log(2
√

2drT
3
2 /δ))

)
≤ 56r−1 log(2

√
2drT

3
2 e/δ).

Let rl := 2dlog(r0)/ log(2)e. We have r0/2 ≤ rl/2 ≤ r0 ≤
rl ≤ 2r0. The one-round Pareto regret of the balls
whose radii are smaller than rl is bounded by 14rl on
event UCc according to Lemma 3. Also, we know that
14rl ≤ 28r0 by the above inequality. Therefore, the
Pareto regret due to all balls with radii smaller than rl

by time T is bounded by 28Tr0, and the Pareto regret
due to all balls with radii r = 2−i ≥ r0 is bounded by
56r−1Nr log(2

√
2drT

3
2 e/δ). Thus, summing this up

for all possible balls, we obtain the following Pareto
regret bound on event UCc:

Reg(T ) ≤ 28Tr0

+
∑

r=2−i:i∈N,r0≤r≤1

56r−1Nr log(2
√

2drT
3
2 e/δ).

APPENDIX D- SIMULATIONS

We evaluate the performance of PCZ on a synthetic
dataset. We take X = [0, 1], Y = [0, 1], and generate
µ1
y(x) and µ2

y(x) as shown in Figure 1. To generate
µ1
y(x), we first define a line by equation 8x + 10y =

8 and let y1(x) = (8 − 8x)/10. For all context arm
pairs (x, y), we set µ1

y(x) = max{0, (1− 5|y− y1(x)|)}.
Similarly, to generate µ2

y(x), we define the line 8x +
10y = 10 and let y2(x) = (10 − 8x)/10. Then, we set
µ2
y(x) = max{0, (1− 5(y2(x)− y))} for y ≤ y2(x) and
µ2
y(x) = max{0, (1− (y − y2(x))/4)} for y > y2(x).

Based on the definitions given above, the Pareto
optimal arms given context x lie in the interval
[y1(x), y2(x)]. To evaluate the fairness of PCZ, we de-
fine six bins that correspond to context-arm pairs in
the Pareto front. Given context x, the 1st bin con-
tains all arms in the interval [y1(x), y1(x) + 1/30] and
the ith bin i ∈ {2, . . . , 6} contains all arms in the in-
terval (y1(x) + (i − 1)/30, y1(x) + i/30]. Simply, the
first three bins include the Pareto optimal arms whose
expected rewards in the first objective are higher than
the expected rewards in the second objective and the
last three bins include the Pareto optimal arms whose
expected rewards in the second objective are higher
than the expected rewards in the first objective.

We assume that the reward of arm y in objective i
given context x is a Bernoulli random variable with
parameter µi

y(x). In addition, at each round t, the
context xt is sampled from the uniform distribution
over X .

We compare our algorithm with Contextual Zooming
[5] and Random Selection, which chooses in each round
an arm uniformly at random from Y. Contextual
Zooming only uses the rewards in the first objective
to update itself. Both PCZ and Contextual Zooming
uses scaled Euclidean distance.1 We choose δ = 1/T
in PCZ, set T = 105, run each algorithm 100 times,
and report the average of the results in these runs.

1We set D((x, y), (x′, y′)) =√
(x− x′)2 + (y − y′)2/

√
2. While this choice does

not satisfy Assumption 1, we use this setup to illustrate
that learning is still possible when the distance function is
not perfectly known by the learner.
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Figure 1: Expected Rewards of Context-Arm Pairs
(Yellow Represents 1, Dark Blue Represents 0)

The Pareto regret is reported in Figure 2(i) as a func-
tion of the number of rounds. It is observed that the
Pareto regret of PCZ at T = 105 is 3.61% higher than
that of Contextual Zooming and 17.1% smaller than
that of Random Selection. We compare the fairness
of the algorithms in Figure 2(ii). For this, we report
the selection ratio of each Pareto front bin, which is
defined for bin i as the number of times a context-arm
pair in bin i is selected divided by the number of times
a Pareto optimal arm is selected by round T . We ob-
serve that the selection ratio of all bins are almost the
same for PCZ, while Contextual Zooming selects the
context-arm pairs in the 1st bin much more than the
other bins.
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