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1 Helping Lemmas

Before proving the main theorems of the paper, we state one
known lemma and state and prove two lemmas that will be
used repeatedly in this proofs. The first lemma is known
as Breiman’s generalized ergodic theorem. The second and
the third lemmas concern the continuity of the saddle point
w.r.t. the probability distribution.

Lemma 1 (Ergodicity, [3]). Let X = {Xi}∞−∞ be a station-
ary and ergodic process. For each positive integer i, let Ti
denote the operator that shifts any sequence by i places to
the left. Let f1, f2, . . . be a sequence of real-valued func-
tions such that limn→∞ fn(X) = f(X) almost surely, for
some function f . Assume that E supn |fn(X)| <∞. Then,

lim
n→∞

1

n

n∑
i=1

fi(T
iX) = Ef(X)

almost surely.

We denote by X , [1−B, 1 +B]n.

Lemma 2 (Continuity and Minimax). Let B,Λ,X be com-
pact real spaces. l : B ×Λ×X → R be a continuous func-
tion. Denote by P(X ) the space of all probability measures
on X (equipped with the topology of weak-convergence).
Then the following function L∗ : P(X )→ R is continuous

L∗(Q) = inf
(b,c)∈B

sup
λ∈Λ

EQ [l(b, c, λ, x)] . (1)

Moreover, for any Q ∈ P(X ),

inf
(b,c)∈B

sup
λ∈Λ

EQ [l(b, c, λ, x)] = sup
λ∈Λ

inf
(b,c)∈B

EQ [l(b, c, λ, x)] .

Proof. B,Λ,X are compact, implying that the func-
tion l (b, c, λ, x) is bounded. Therefore, the function
L : B × Λ × P(X )→ R, defined as

L (b, c, λ,Q) = EQ [l (b, c, λ, x)] , (2)

is continuous. By applying Proposition 7.32 from [2], we
have that supλ∈Λ EQ [l(b, c, λ,X)] is continuous in Q×B.
Again applying the same proposition, we get the desired
result. The last part of the lemma follows directly from
Fan’s minimax theorem [4].

Lemma 3 (Continuity of the optimal selection). LetB,Λ,X
be compact real spaces, and let L be as defined in Equa-
tion (2). Then, there exist two measurable selection func-
tions h(b,c),hλ such that

h(b,c)(Q) ∈ arg min
(b,c)∈B

(
max
λ∈Λ

L(b, c, λ,Q)

)
,

hλ(Q) ∈ arg max
λ∈Λ

(
min

(b,c)∈B
L(b, c, λ,Q)

)
for any Q ∈ P(X ). Moreover, let L∗ be as defined in
Equation (1). Then, the set

Gr(L∗) ,

{(u∗, v∗,Q) | u∗ ∈ h(b,c)(Q), v∗ ∈ hλ(Q),Q ∈ P(X )},

is closed in B × Λ× P(X ).

Proof. The first part of the proof follows immediately from
the minimax measurable theorem of [8] due to the com-
pactness of B,Λ,X and the properties of the loss function
L. The proof of the second part is similar to the one pre-
sented in Theorem 3 of [1]. In order to show that Gr(L∗)
is closed, it is enough to show that if (i) Qn → Q∞ in
P(X ); (ii) un → u∞ in B; (iii) vn → v∞ in Λ and (iv)
un ∈ h(b,c)(Qn), vn ∈ hλ(Qn) for all n, then,

u∞ ∈ h(b,c)(Q∞), v∞ ∈ hλ(Q∞).

The function L(b, c, λ,Q), as defined in Equation (2), is
continuous. Therefore,

lim
n→∞

L(un, vn,Qn) = L(u∞, v∞,Q∞).

It remains to show that u∞ ∈ h(b,c)(Q∞) and v∞ ∈
hλ(Q∞). From the optimality of un and vn, we obtain

L(u∞, v∞,Q∞) = lim
n→∞

L(un, vn,Qn) = lim
n→∞

L∗(Qn).

(3)

Finally, from the continuity of L∗ (Lemma 2), we get

(3) = L∗( lim
n→∞

Qn) = L∗(Q∞),

which gives the desired result.
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Corollary 1. Under the conditions of Lemma 3. Define
Ln(b, c, λ,Q) = L(b, c, λ,Q) + ||(b,c)||2−||λ||2

n and de-
note h(b,c)

Ln
(Qn), hλLn

(Qn) to be the measurable selection
functions of Ln. If Qn → Q∞ weakly in P(X ) and
un ∈ h(b,c)

Ln
(Qn), vn ∈ hλLn

(Qn), then

Ln(un, vn,Qn)→ L(u∞, v∞,Q∞)

almost surely for u∞ ∈ h(b,c)(Q∞) and v∞ ∈ hλ(Q∞).

Proof. Denote ûn ∈ h(b,c)(Q∞) and v̂n ∈ hλ(Q∞)

|Ln(un, vn,Qn)− L(u∞, v∞,Q∞)|
≤ |Ln(un, vn,Qn)− L(ûn, v̂n,Qn)|
+|L(ûn, v̂n,Qn)− L(u∞, v∞,Q∞)|. (4)

Note that for every n and for constant E > 0,

min
(b,c)∈B

max
λ∈Λ

L(b, c, λ,Q)− ||λmax||2

n

≤ min
(b,c)∈B

max
λ∈Λ

Ln(b, c, λ,Q)

= min
(b,c)∈B

max
λ∈Λ

(
EQ [l(b, c, λ,X)] +

||(b, c)||2 − ||λ||2

n

)
≤ min

(b,c)∈B
max
λ∈Λ

L(b, c, λ,Q) +
E

n
.

Thus, for some constant C, |Ln(un, vn,Qn) −
L(ûn, v̂n,Qn)| < C

n and from Lemma 3, the last
summand of Equation 4 also converges to 0 as n approaches
∞, we get the desired result, and clearly, if h(b,c)(Q∞) and
hλ(Q∞) are singletons, then, the only accumulation point
of {(vn, un)}∞n=1 is (v∞, u∞).

The importance of Lemma 3 stems from the fact that it
proves the continuity properties of the multi-valued corre-
spondences Q → h(b,c)(Q) and Q → hλ(Q). This leads
to the knowledge that if for the limiting distribution, Q∞,
the optimal set is a singleton, then Q → h(b,c)(Q) and
Q→ hλ(Q) are continuous in Q∞.

2 Proof of Theorem 2

Theorem 2 (Optimality ofW∗). For any investment strat-
egy S ∈ Sγ , whose portfolios are b1,b2, . . . the following
holds a.s.

lim inf
T→∞

1

T

T∑
i=1

f(bi, Xi) ≥ W∗.

Proof. For any given strategy S ∈ Sγ , we will look at the
following sequence:

1

T

T∑
i=1

l(bi, c̃∗i , λ̃
∗
i , Xi). (5)

where λ̃∗i ∈ hλ(PXi|Xi−1
1

) , c̃∗i ∈

arg minc∈R

(
c+ 1

1−αEP
Xi|X

i−1
0

[
(− log(〈bi,X〉)− c)+

])
.

Observe that

(5) =
1

T

T∑
i=1

E
[
l(bi, c̃∗i , λ̃

∗
i , Xi) | Xi−1

1

]
− 1

T

T∑
i=1

(l(bi, c̃∗i , λ̃
∗
i , Xi)

−E
[
l(bi, c̃∗i , λ̃

∗
i , X) | Xi−1

1

]
).

SinceAi = l(bi, c̃∗i , λ̃
∗
i , Xi)−E

[
l(bi, c̃∗i , λ̃

∗
i , Xi) | Xi−1

1

]
is a martingale difference sequence, the last summand con-
verges to 0 a.s., by the strong law of large numbers (see,
e.g., [9]). Therefore,

lim inf
T→∞

1

T

T∑
i=1

l(bi, c̃∗i , λ̃
∗
i , Xi)

= lim inf
T→∞

1

T

T∑
i=1

E
[
l(bi, c̃∗i , λ̃

∗
i , Xi) | Xi−1

1

]
≥ lim inf

T→∞

1

T

T∑
i=1

min
(b,c)∈B()

E
[
l(b, c, λ̃∗i , Xi) | Xi−1

1

]
,

(6)

where the minimum is taken w.r.t. all the σ(Xi−1
1 )-

measurable functions. Because the process is stationary,
we get for λ̂∗i ∈ hλ(PX0|X−1

1−i
),

(6) = lim inf
T→∞

1

T

T∑
i=1

min
(b,c)∈B()

E
[
l(b, c, λ̂∗i , X0) | X−1

1−i

]
= lim inf

T→∞

1

T

T∑
i=1

L∗(PX0|X−1
1−i

). (7)

Using Levy’s zero-one law, PX0|X−1
1−i
→ P∞ weakly as

i approaches ∞ and from Lemma 2 we know that L∗ is
continuous. Therefore, we can apply Lemma 1 and get that
a.s.

(7) = E [L∗(P∞)] = E [EP∞ [l (b∗∞, c
∗
∞, λ

∗
∞, X0)]]

= E [L (b∗∞, c
∗
∞, λ

∗
∞, X0)] . (8)

Note also, that due to the complementary slack-
ness condition of the optimal solution, i.e.,
λ∗∞(EP∞ [c(b∗∞, c

∗
∞, X0)]− γ) = 0, we get

(8) = E [EP∞ [u (b∗∞, c
∗
∞, X0)]] =W∗.

From the uniqueness of λ∗∞, and using Lemma 3 λ̂∗i → λ∗∞
as i approaches ∞. Moreover, since l is continuous on a
compact set, l is also uniformly continuous. Therefore, for



any given ε > 0, there exists δ > 0, such that if |λ′−λ| < δ,
then

|l(b, c, λ′, x)− l(b, c, λ, x)| < ε

for any (b, c) ∈ B and x ∈ X . Therefore, there exists i0
such that if i > i0 then |l(b, c, λ̂∗i , x)− l(b, c, λ∗∞, x)| < ε
for any (b, c) ∈ B and x ∈ X . Thus,

lim inf
T→∞

1

T

T∑
i=1

l(bi, c̃∗i , λ
∗
∞, Xi)

− lim inf
T→∞

1

T

T∑
i=1

l(bi, c̃∗i , λ̂
∗
i , Xi)

= lim inf
T→∞

1

T

T∑
i=1

l(bi, c̃∗i , λ
∗
∞, Xi)

+ lim sup
T→∞

1

T

T∑
i=1

−l(bi, c̃∗i , λ̂∗i , Xi)

≥ lim inf
T→∞

1

T

T∑
i=1

l(bi, c̃∗i , λ
∗
∞, Xi)−

1

T

T∑
i=1

l(bi, c̃∗i , λ̂
∗
i , Xi)

≥ −ε a.s.,

and since ε is arbitrary,

lim inf
T→∞

1

T

T∑
i=1

l(bi, c̃∗i , λ
∗
∞, Xi)

≥ lim inf
T→∞

1

T

T∑
i=1

l(bi, c̃∗i , λ̂
∗
i , Xi).

Therefore we can conclude that

lim inf
T→∞

1

T

T∑
i=1

l(bi, c̃∗i , λ
∗
∞, Xi) ≥ W∗ a.s.

We finish the proof by noticing that since S ∈ Sγ , then by
definition

lim sup
T→∞

1

T

T∑
i=1

min
c∈R

(
c +

1

1− α
EP

Xi|X
i−1
0

[
(− log(〈bi,X〉)− c)

+
])
≤ γ

a.s. and since λ∗∞ is non negative, we will get the desired
result.

3 Proof of Theorem 3

Before proving Theorem 3, we will prove the following two
lemmas:
Lemma 4. Assume that for any vectorwk1 ∈ Rk the random
variable ||Xk

1 − wk1 || as a continuous distribution. Then,
there exists a countable set of experts {Hk,h} for which

lim
k→∞

lim
h→∞

lim
T→∞

1

T

T∑
i=1

l(bik,h, c
i
k,h, λ

i
k,h, Xi) =W∗ a.s.,

where (bik,h, c
i
k,h, λ

i
k,h) are the predictions made by expert

Hk,h at round i.

Proof. We start by defining a countable set of experts
{Hk,h} as follow: For each h = 1, 2, . . ., we choose ph ∈
(0, 1) such that for the sequence {ph}∞h=1, limh→∞ ph = 0.
Moreover, set ĥ = bnphc For expert Hk,h, we define for a
fixed k×n-dimensional vector, denoted by w, the following
set,

B
w,(1,t)
k,h , {xi | k + 1 ≤ i ≤ t,Xi−1

i−k is among the ĥ

nearest neighbors of w among Xk
1 , . . . , X

t−1
t−k},

where Xj+k
j , (Xj , . . . ,Xj+k) ∈ Rk×n. where

Xj+k
j , (Xj , . . . ,Xj+k) ∈ Rk×n

.

Thus, expert Hk,h has a window of length k and it looks
for the ĥ euclidean nearest-neighbors of w in the past. This
results in a set of market vectors Bw,(1,t)k,h . This set can
also be seen as a conditional probability over the space of
possible market vectors. Then, each expert recommends the
actions b, c ∈ B and λ ∈ Λ, which are the corresponding
minimax solution. More formally, we define

hbk,h, c(X
t−1
1 , w) ,

arg min
(b,c)∈B

max
λ∈Λ

1

|Bw,(1,t)k,h |

∑
xi∈Bw,(1,t)

k,h

lk,l,t(b, c, λ, xi)


and

hλk,h(Xt−1
1 , w) ,

arg max
λ∈Λ

 min
(b,c)∈B

1

|Bw,(1,t)k,h |

∑
xi∈Bw,(1,t)

k,h

lk,l,t(b, c, λ, xi)


for

lk,h,t(b, c, λ, xi) ,

l(b, c, λ, xi) +
(
||(b, c)||2 − ||λ||2

)(1

t
+

1

h
+

1

k

)
,

Using the above, we define the predictions of Hk,h to be:

Hb, ck,h(Xt−1
1 ) = hb, ck,h(Xt−1

1 , Xt−1
t−k), (9)

t = 1, 2, 3, . . .

Hλ
k,h(Xt−1

1 ) = hλk,h(Xt−1
1 , Xt−1

t−k), (10)

t = 1, 2, 3, . . .

We will add two experts: H0,0 whose predictions are always
(b0, c0, λmax) and H−1,−1 whose predictions are always
(b0, c0, 0).



Fixing k, h > 0 and w, we will define a (random) measure
P(k,h)
j,w that is the measure concentrated on the setBw,(0,1−j)k,h ,

defined by

P(k,h)
j,w (A) =

∑
Xi∈Bw,(0,1−j)

k,h

1A(Xi)

|Bw,(0,1−j)k,h |
,

where 1A denotes the indicator function of the set A ⊂
[−B,B]n.

In other words, P(k.h)
j,w (A) is the relative frequency of the

the vectors among X1−j+k, . . . , X0 that fall in the set A.
Let rk,l(w) be an arbitrary radius such that

P(||X−1
−k − w|| ≤ rk,l(w)) = pl

Applying Lemma 1, and using similar arguments as in [5],
it is straightforward to prove that for all w, w.p. 1

P(k,h)
j,w → PX0| ||X−1

−k−w||≤rk,l(w)

weakly as j → ∞, where PX0| ||X−1
−k−w||≤rk,l(w) denotes

the distribution of the vector X0 conditioned on the event
||X−1
−k − w|| ≤ rk,l(w).

By definition,
(
hb,ck,h(X−1

1−t, w), hλk,h(X−1
1−t, w)

)
is the min-

imax of lt,k,h w.r.t. P(k,h)
j,w . The sequence of functions lt,k,h

converges uniformly as t approaches∞ to

lk,h(b, c, λ, x) = l(b, c, λ, x)+
(
||b, c||2 − ||λ||2

)( 1

h
+

1

k

)
.

Note also that for any fixed Q, Lk,h(b, c, λ,Q) =
EQ [lk,h(b, c, λ,X)] is strictly convex in (b, c) and strictly
concave in λ, and therefore, has a unique saddle-point (see,
e.g., [7]). Therefore, since w is arbitrary, and following a
Corollary 1 of Lemma 3, we get that a.s.

(btk,h, c
t
k,h)→ (b∗k,h, c

∗
k,h) λtk,h → λ∗k,h,

where
(
b∗k,h, c

∗
k,h, λ

∗
k,h

)
is the minimax of Lk,h w.r.t.

P∗(k,h)

X−1
−k

,. Thus, we can apply Lemma 1 and conclude

that as T approaches∞,

1

T

T∑
i=1

l(bik,h, c
i
k,h, λ

i
k,h, Xi)→ E

[
l(b∗k,h, c

∗
k,h, λ

∗
k,h, X0)

]
.

a.s.. We now evaluate

lim
h→∞

E
[
l(b∗k,h, c

∗
k,h, λ

∗
k,h, X0)

]
.

Using the properties of the nearest neighbour estimates (see,
e.g., [5]), we get that

P∗(k,h)

X−1
−k

→ P{X0|X−1
−k}

weakly as h → ∞. Moreover, the sequence of functions
lk,h converges uniformly as h approaches∞

lk(b, c, λ, x) = l(b, c, λ, x) +
||b, c||2 − ||λ||2

k
.

Note also, that for any fixed Q, Lk(b, c, λ,Q) =
EQ [lk(b, c, λ,X)] is strictly convex-concave, and therefore,
has a unique saddle point. Accordingly, by applying Corol-
lary 1 again, we get that a.s.

(b∗k,h, c
∗
k,h)→ (b∗k, c

∗
k) λ∗k,h → λ∗k,

where (b∗k, c
∗
k, λ
∗
k) is the minimax of Lk w.r.t. P{X0|X−1

−k}.
Therefore, as h approaches∞,

l(b∗k,h, c
∗
k,h, λ

∗
k,h, X0)→ l (b∗k, c

∗
k, λ
∗
k, X0)

a.s.. Thus, by Lebesgue’s dominated convergence,

lim
h→∞

E
[
l(b∗k,h, c

∗
k,h, λ

∗
k,h, X0)

]
= E [l (b∗k, c

∗
k, λ
∗
k, X0)] .

Notice that for any Q ∈ P(X ), the distance between the
saddle point of Lk w.r.t. Q and the the saddle point of L
w.r.t. Q converges to 0 as k approaches ∞. To see this,
notice that

min
(b,c)∈B

max
λ∈Λ

L(b, c, λ,Q)− ||λmax||2

k

≤ min
(b,c)∈B

max
λ∈Λ

Lk(b, c, λ,Q)

≤ min
(b,c)∈B

max
λ∈Λ

L(b, c, λ,Q) +
E

k

for some constant E, since B is bounded. The last part in
our proof will be to show that if (b̂∗k, ĉ

∗
k, λ̂
∗
k) is the min-

imax of L w.r.t. P{X0|X−1
−k}, then as k approaches ∞,

E
[
l
(
b̂∗k, ĉ

∗
k, λ̂
∗
k, X0

)]
will converge a.s. to W∗ and so

E [l (b∗k, c
∗
k, λ
∗
k, X0)].

To show this, we will use the sub-martingale convergence
theorem twice. First, we define Zk as

Zk , min
(b,c)∈B()

E
[

max
λ∈Λ()

E
[
l (b, c, λ,X0) | X−1

−∞
]
| X−1
−k

]
,

where the minimum is taken w.r.t. all σ(X−1
−k)-measurable

strategies and the maximum is taken w.r.t. all σ(X−1
−∞)-

measurable strategies. Notice that Zk is a super-martingale.
We can see this by using the tower property of conditional
expectations,

E[Zk+1 | X−1
−k ] = E

[
E
[
Zk+1 | X−1

−k−1

]
| X−1
−k
]

and since Zk+1 is the optimal choice in B w.r.t. to X−1
−k−1,

≤ E
[
E[Zk | X−1

−k−1] | X−1
−k
]

= E[Zk | X−1
−k ] = Zk.



Note also that E[Zk] is uniformly bounded. Therefore, we
can apply the super-martingale convergence theorem and
get that Zk → Z∞ a.s., where,

Z∞ = E
[
l(b∗∞, c

∗
∞, λ

∗
∞, X0) | X−1

−∞
]

=W∗,

and by using Lebesgue’s dominated convergence theorem,
also E[Zk] → E[Z∞] = W∗. Using the same arguments,
Z ′k, defined as

Z ′k , max
λ∈Λ()

E
[

min
(b,c)∈B()

E
[
l (b, c, λ,X0) | X−1

−∞
]
| X−1
−k

]
,

where the maximum is taken w.r.t. all σ(X−1
−k)-measurable

strategies and the minimum is taken w.r.t. all σ(X−1
−∞)-

measurable strategies, is a sub-martingale that also con-
verges a.s. to Z∞ and thus E[Z ′k]→ E[Z∞] =W∗.

We conclude the proof by noticing that the following relation
holds for any k,

E[Z ′k]

= E
[

max
λ∈Λ()

E
[

min
(b,c)∈B()

E
[
l (b, c, λ,X0) | X−1

−∞
]
| X−1
−k

]]
≤ E

[
max
λ∈Λ()

E
[
E
[
l
(
b̂∗k, ĉ

∗
k, λ,X0

)
| X−1
−∞

]
| X−1
−k

]]
= E

[
max
λ∈Λ()

E
[
l
(
b̂∗k, ĉ

∗
k, λ,X0

)
| X−1
−k

]]
= E

[
l
(
b̂∗k, ĉ

∗
k, λ̂
∗
k, X0

)]
,

and using similar arguments we can show that also

E
[
l
(

ˆb, c∗k, λ̂
∗
k, X0

)]
≤ E[Zk],

and since both E[Zk] and E[Z ′k] converge toW∗, we get the
desired result.

Lemma 5. For {Hk,h} the following relation holds a.s.:

inf
k,h

lim sup
T→∞

1

T

T∑
i=1

l
(
bik,h, c

i
k,h, λi, Xi

)
≤ W∗

≤ sup
k,h

lim inf
T→∞

1

T

T∑
i=1

l
(
bi, ci, λ

i
k,h, Xi

)
,

where (bi, ci, λi) are the predictions of CANN when applied
on {Hk,h}.

Proof. Set

f(b, c,Q) , max
λ∈Λ

EQ [l (b, c, λ,X0)] .

We will start from the LHS,

inf
k,h

lim sup
T→∞

1

T

T∑
i=1

l
(
bik,h, c

i
k,h, λi, Xi

)
, (11)

and similarly to Lemma 2, by using the strong law of large
numbers we can write

(11) = inf
k,h

lim sup
n→∞

1

T

T∑
i=1

E
[
l
(
bik,h, c

i
k,h, λi, X0

)
| X−1

1−i
]

≤ inf
k,h

lim sup
T→∞

1

T

T∑
i=1

f(bik,h, c
i
k,h,PX0|X−1

1−i
) a.s. (12)

For fixed k, h > 0, from the proof of Theorem (4),
(bik,h, c

i
k,h) → (b∗k,h, c

∗
k,h) a.s. as i approaches ∞, and

from Levy’s zero-one law also PX0|X−1
1−i
→ P∞ weakly.

From Lemma 2 we know that f is continuous, therefore, we
can apply Lemma 1 and get that

(12) = inf
k,h

E
[
E
[
f(b∗k,h, c

∗
k,h,P∞)

]]
≤ lim
k→∞

lim
h→∞

E
[
f((b∗k,h, c

∗
k,h,P∞)

]
. (13)

From the uniqueness of the saddle point and from the proof
of Theorem (4), for fiked k > 0,

lim
h→∞

(b∗k,h, c
∗
k,h)→ (b∗k, c

∗
k)

a.s.. Thus, from the continuity of f we get that

lim
h→∞

f(b∗k,h, c
∗
k,h,P∞)→ f(b∗k, c

∗
k,P∞)

and again by Lebesgue’s dominated convergence,

(13) = lim
k→∞

E [f(b∗k, c
∗
k,P∞)]

= lim
k→∞

E
[
max
λ∈Λ

EP∞ [l (b∗k, c
∗
k, λ,X0)]

]
. (14)

Now, from Theorem 4 we know that every accumulation
point of the sequence {(b∗k, c∗k)} is in the optimal set

arg min
(b,c)∈B

(
max
λ∈Λ

EP∞ [l (b, c, λ,X0)]

)
.

Therefore a.s.

lim
k→∞

max
λ∈Λ

EP∞ [l (b∗k, c
∗
k, λ,X0)]→ EP∞ [l (b∗∞, c

∗
∞, λ

∗
∞, X0)] ,

and using Lebesgue’s dominated convergence,

(14) = E [EP∞ [l (b∗∞, c
∗
∞, λ

∗
∞, X0)]] =W∗.

Using similar arguments, we can show the second part of
the lemma.



We are now ready to state and prove the optimality of CANN
.

Theorem 3 (Optimality of CANN ). Assume that for any
vector wk1 ∈ Rk the random variable ||Xk

1 − wk1 || as a
continuous distribution. Then, for any γ > 0 and for any
bounded process {Xi}∞−∞: CANN is a γ-bounded and γ-
universal investment strategy.

Proof. We first show that

lim
T→∞

1

T

T∑
i=1

l(bi, ci, λi, Xi) =W∗ a.s. (15)

Applying Lemma 5 in [6], we know that updates of CANN
guarantee that for every expert Hk,h,

1

T0

T∑
i=1

l(bi, ci, λi, xi) ≤
1

T

T∑
i=1

l(bik,h, c
i
k,h, λi, xi) +

Ck,h√
T

(16)

1

T

T∑
i=1

l(bi, ci, λi, xi) ≥
1

T

T∑
i=1

l(bi, ci, λ
i
k,h, xi)−

C ′k,h√
T
,

(17)

where Ck,h, C ′k,h > 0 are some constants independent of T .
In particular, using Equation (16),

1

T

T∑
i=1

l(bi, ci, λi, xi)

≤ inf
k,h

(
1

T

T∑
i=1

l(bik,h, c
i
k,h, λi, xi) +

Ck,h√
T

)
.

Therefore, we get

lim sup
T→∞

1

T

T∑
i=1

l(bi, ci, λi, xi)

≤ lim sup
T→∞

inf
k,h

(
1

T

T∑
i=1

l(bik,h, c
i
k,h, λi, xi) +

Ck,h√
T

)

≤ inf
k,h

lim sup
T→∞

(
1

T

T∑
i=1

l(bik,h, c
i
k,h, λi, xi) +

Ck,h√
T

)

≤ inf
k,h

lim sup
T→∞

(
1

T

T∑
i=1

l(bik,h, c
i
k,h, λi, xi)

)
, (18)

where in the last inequality we used the fact that lim sup is
sub-additive. Using Lemma (5), we get that

(18) ≤ W∗

≤ sup
k,h

lim inf
n→∞

1

N

N∑
i=1

l
(
bi, ci, λ

i
k,h, Xi

)
. (19)

Using similar arguments and using Equation (17) we can
show that

(19) ≤ lim inf
T→∞

1

T

T∑
i=1

l(bi, ci, λi, xi).

Summarizing, we have

lim sup
T→∞

1

T

T∑
i=1

l(bi, ci, λi, xi) ≤ W∗

≤ lim inf
T→∞

1

T

T∑
i=1

l(bi, ci, λi, xi).

Therefore, we can conclude that a.s.

lim
T→∞

1

T

T∑
i=1

l(bi, ci, λi, Xi) =W∗.

To show that MHA is indeed a γ-bounded strategy and to
shorten the notation, we will denote

g(b, c, λ, x) , λ

(
c+

1

1− α
(ω(b, x)− c)+ − γ

)
.

First, from Equation (17) applied on the expert H0,0, we get
that:

lim sup
T→∞

1

T

T∑
i=1

g(bi, ci, λmax, xi)

≤ lim sup
T→∞

1

T

T∑
i=1

g(bi, ci, λi, xi). (20)

Moreover, since l is uniformly continuous, for any given
ε > 0, there exists δ > 0, such that if |λ′ − λ| < δ, then

|l(b, c, λ′, x)− l(b, c, λ, x)| < ε

for any (b, c) ∈ B and x ∈ X . We also know that

lim
k→∞

lim
h→∞

lim
i→∞

λik,h = λ∗∞.

Therefore, there exist k0, h0, i0 such that |λik0,h0
−λ∗∞| < δ

for any i > i0. Since limk→∞ λ∗k = λ∗∞ there exists k0

such that |λ∗k0 − λ
∗
∞| < δ

3 . Note that limh→∞ λ∗k0,h = λ∗k0 ,
so there exists h0 such that |λ∗k0,h0

− λ∗k0 | <
δ
3 . Finally,

since limi→∞ λik0,l0 = λ∗k0,l0 , there exists i0 such that if
i > i0, then |λik0,l0 − λ

∗
k0,l0
| < δ

3 . Combining all the above,
we get that for k0, h0, i0 if i > i0, then

|λik0,h0
− λ∗∞| < |λik0,h0

− λ∗k0,h0
|

+|λik0,h0
− λ∗k0 |+ |λ

∗
k0 − λ

∗
∞| < δ.

Therefore,



lim sup
T→∞

(
1

T

T∑
i=1

l(bi, ci, λ
∗
∞, xi)−

1

T

T∑
i=1

l(bi, ci, λi, xi)

)
≤

lim sup
T→∞

(
1

T

T∑
i=1

l(bi, ci, λ
∗
∞, xi)−

1

T

T∑
i=1

l(bi, ci, λ
i
k0,h0

, xi)

)
+

lim sup
T→∞

(
1

T

T∑
i=1

l(bi, ci, λ
i
k0,h0

, xi)−
1

T

T∑
i=1

l(bi, ci, λi, xi)

)
(21)

From the uniform continuity we also learn that the first
summand is bounded above by ε, and from Equation (17),
we get that the last summand is bounded above by 0. Thus,

(21) ≤ ε,

and since ε is arbitrary, we get that

lim sup
T→∞

(
1

T

T∑
i=1

l(bi, ci, λ
∗
∞, xi)−

1

T

T∑
i=1

l(bi, ci, λi, xi)

)
≤ 0.

Thus,

lim sup
T→∞

1

T

T∑
i=1

l(bi, ci, λ
∗
∞, Xi) ≤ W∗,

and from Theorem 1 we can conclude that

lim
T→∞

1

T

T∑
i=1

l(bi, ci, λ
∗
∞, Xi) =W∗.

Therefore, we can deduce that

lim sup
T→∞

1

T

T∑
i=1

g(bi, ci, λi, xi)

− lim sup
T→∞

1

T

T∑
i=1

g(bi, ci, λ
∗
∞, xi) =

lim sup
T→∞

1

T

N∑
i=1

g(bi, ci, λi, xi)

+ lim inf
T→∞

1

T

T∑
i=1

−g(bi, ci, λ
∗
∞, xi)

≤ lim sup
T→∞

1

T

T∑
i=1

g(bi, ci, λi, xi)−
1

T

T∑
i=1

g(bi, ci, λ
∗
∞, xi)

= lim sup
T→∞

1

T

T∑
i=1

l(bi, ci, λi, xi)−
1

T

T∑
i=1

l(bi, ci, λ
∗
∞, xi)

= 0,

which results in

lim sup
T→∞

1

T

T∑
i=1

g(bi, ci, λi, xi)

≤ lim sup
T→∞

1

T

T∑
i=1

g(bi, ci, λ
∗
∞, xi).

Combining the above with Equation (20), we get that

lim sup
T→∞

1

T

T∑
i=1

g(bi, ci, λmax, xi)

≤ lim sup
T→∞

1

T

T∑
i=1

g(bi, ci, λ
∗
∞, xi).

Since 0 ≤ λ∗∞ < λmax, we get that

lim sup
T→∞

1

T

T∑
i=1

g(bi, ci, λmax, xi)

≤ γ.

Since the choices of ci are not necessarily optimal w.r.t.
PX0|X−1

−i−1
we get that CANN is γ-bounded. Using Equa-

tion (15), we get that CANN is also γ-universal.
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