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1 Proofs

We reiterate the necessary equations and statements
before presenting the proofs of theorems in this paper.

mZin |Z]lo s.t. X =XZ, diag(Z) =0 (1)
Lemma A. Under the assumptions of Theorem 1, for
any 1 < k < K, with probability 1, any L < dy, points
i the projected data Xk g ]Rpxnk that lie in Sy, are

linearly independent.

Proof. For any set {ije}z L 2 A C X® that are
linearly dependent, let H, £ H A\{%;,} be the subspace
spanned by A\ {x;,} for 1 <¢ < L. Then dim[H,] <

L < dj, and

Pr[{%;, }¢=1: {Xj,}i=; are linearly dependent]
L

<> Prl&;, € Hi

=1

(2)

Also, for any 1 < £ < L, according to Fubini’s Theorem,

Prx;, € Hi| = Prx;, € PV (H,) NSy

x;,€EP ®L (der)
/L sUer) e € (=D (H)NSy —1dp’t
X ¢

/=1

:/ e Pr[x;, € c P 1)(7—[g) ﬁSk|{x]z'}2’¢é}®2/¢zdu(][

X el £

where SU) € {8}, is the subspace that x; lies in,
and 1) is the probabilistic measure of the distribution
in SU). Note that P(~V(H,) NS}, is a subspace lie in
Sy, with dimension less than dj. To see this, suppose
dim[PY(H,) N Sy] = dy, since PCY (H,) NSy, € Sk,
we have P(-D(H,) N Sy = Sk, and it follows that
Ho = Sk, and dim[H,] = dy, contradicting with the fact
that dim[H,] < dg. Since the data distribution in Sy is
continuous, the probability that the random data point
x;, lie in a subspace of S, with dimension less than dj,
is zero, i.e. Pr[x;, € PCY(H,) N S,] = 0. According
to the union bound (2), the conclusion of this lemma
holds. O

Theorem 1. (Subspace detection property holds al-
most surely for DR-£°-SSC under the randomized mod-
els) Under either the semi-random model or the fully-
random model, if n > di + 1 for any 1 < k < K and
P is a subspace preserving transformation, then the
subspace detection property for DR-(°-SSC holds with
probability 1 with the optimal solution Z* to (1).

Proof. We first prove the result under the semi-random
model, wherein the subspaces are fixed and the data
in each subspace are distributed at random.

For any fixed 1 < ¢ < n, note that 7Z*" is the opti-
mal solution to the following ¢° sparse representation
problem

min |Z]jo st % =[X®\ %, XCTP)Z' Zu=0 (3)
Z7/

where X®) = PX®) X(F) = pxX(h X (k) de
notes the data that lie in all subspaces except Si. Let

7 = [ g } where o and B are sparse codes corre-
sponding to X *) \ X; and X (k) respectively.

Suppose B # 0, then %X; belongs to a subspace S
spanned by the projected data points corresponding
to nonzero elements of Z**, and S # &, dim[S'] <
di. To see this, if S = Sk, then the projected data
corresponding to nonzero elements of 3 belong to S,
which is contrary to the definition of X Also,
if dim[S'] > dj, then any dj points in X*) can be
used to linearly represent X; almost surely according
to Lemma A, contradicting with the optimality of Z*".

Let 8" =8 NS, then dim[S”] < dj we now derive
the following results according to the dimension of S :

e dim[S"] < dj. By Fubini’s Theorem, the probability
that x; lies in S is

Prxi eS| = / I s @iy dp®
xmn S(?)

- / Prix; € PCY(S") N Skl{x}j4i] @20
]#s(j)
(4)
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where SU) € {S;}X | is the subspace that x; lies
in, and pU) is the probabilistic measure of the dis-
tribution in SU).

Since dim[S"] < dy, PC-1(S”) N Sy must be a sub-
space in S with dimension less than dj. Otherwise,

if dim[PV(S") N Sy] = di, then PCD(S") NS, =
Sk and § = Sy, and it follows that dim[S | = dj
which contradicts with the condition that dim[S | <

dy;.

Therefore, dim[P(~1(S") N Sy] < di, and the prob-
ability that x; lies in a subspace of dimension less
than dj in Sy is zero by the similar argument used
in the proof of Lemma A. So we have Pr[x; €
PED(S") N Skl{x;}2] = 0, and it follows that
the integral in (4) vanishes, namely Pr[%; € 8] = 0.

e dim[S"] = dj. In this case, " =&’ = &, which in-
dicates that the data points corresponding to nonzero
elements of 3 belong to Sy, contradicting with the
definition of X (%)

Therefore, with probability 1, 3 = 0. By the union
bound over all 1 < < n , the conclusion of Theorem 1
holds for the semi-random model.

In the case of fully-random model, note that the sub-
space detection property holds with probability 1 for
any subspaces {S; }_,. It follows that with probabil-
ity 1 over the subspaces and the data, the subspace
detection property holds with probability 1. O

Theorem 2. (Subspace detection property holds for
DR-/°-SSC under the deterministic model) Under the
deterministic model, suppose ny, > di +1, X is in
general position for any 1 < k < K. Furthermore, if
all the data points in X %) are away from the external
subspaces under the linear transformation P € IRP*¢
forany 1 < k < K, then the subspace detection property
for DR-(°-SSC' holds with the optimal solution Z* to

(1).

Proof. Similar to the proof of Theorem 1, Z** is the op-
timal solution to the following ¢° sparse representation
problem

min |Z' o st %= [X®\ % XTM)Z 2, =0 (5)
ZZ

where X#) = PX®) Xk = pxX(F) Xk de-
notes the data that lie in all subspaces except Si. Let

; o
i!*l

sponding to X ) \ %; and X (~%) respectively.

where ao and B are sparse codes corre-

Suppose 8 # 0, then X; belongs to a subspace S =
Hsz‘ spanned by the projected data points corre-

sponding to nonzero elements of Z*' and S #* S,

dim[S'] < dj, by the argument in the proof of Theo-

rem 1. Since the data points (or columns) in X.i are
linearly independent, it can be verified the data points
in Xg.: are also linearly independent. Therefore,

X; € HXZ“' = X; € P(_l)(Hj(Z ) = X; € P(_l)(P(HXZM.))

And it follows that x; lies in an external subspace
Hx,., spanned by linearly independent points in Xz
under the mapping P(-Y o P, and dim[Hx_,,] =
dim[S] < di. Therefore, 3 = 0. Perform the above

analysis for all 1 < i < n, we can prove that the
subspace detection property holds for all 1 < i < n.

O

Lemma 1. (Corollary 10.9 in [1]) Let pg > 2 and
p' = p—1po >4, then with probability at least 1 — 6e?,
then the spectral norm of X — X is bounded by

||X - X||2 < Cp,po (6)
where
p 8P 1
Cppo = (117, /14 p—?)apo+1 + p,{l(gp:o a3)? (7)

and o1 > 02 > ... are the singular values of X.

Lemma 2. (Perturbation of distance to subspaces)
Let A, B € R™*" are two matrices and rank(A) =r,
rank(B) = s. Also, E= A — B and ||E||2 < C, where
|| - |l2 indicates the spectral norm. Then for any point
x € R™, the difference of the distance of x to the
column space of A and B, i.e. |d(x,Ha) — d(x,Hp)|,
18 bounded by

. _ d(x.Ha Cllx|l2
|d(x,Ha) — d(x, Hp)| < min{o,(A),os(B)} ®

Proof. Note that the projection of x onto the subspace
H, is AATx where AT is the Moore-Penrose pseudo-
inverse of the matrix A, so d(x,Ha) equals to the dis-
tance between x and its projection, namely d(x, Ha) =
lx — AATx||5. Similarly, d(x,Hg) = ||x — BB"x||5.

It follows that
ld(x,Ha) — d(x, Hg)| = [[|x — AA"x|/> — ||x — BB x]Js|
<||AA*x — BB*x|| < [AAT — BB*||s/|x]|2 (9)

According to the perturbation bound on the orthogonal
projection in [2, 3],

[AAT — BB > < max{||[EAT ||, [EB"[2}  (10)

Since |[EAT[> < [[E[2|At]2 < Gy, [EBY|2 <

IE[l2IBT|2 < %B), combining (9) and (10), we have

|d(x, Ha) — d(x, Hp)| < max{%A), %}nxnz
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min{Ur(A)7 Os (B)}

(11)

O

Theorem 3. Under the deterministic model, suppose
n > di+1, X is in general position, o4, > Cpp, for
any 1 <k < K, and Cy p, is defined by (7) with py > 2.
Suppose that data X% are in general position with

margin T such that 7, > 1+ aci Moreover, all

Jk_cp«l’o

the data points in X*) are vj,-away from the external
subspaces of dimension no greater than dy, for any
1 <k < K with v, > 1+U~Ci77’50 Then with

dp, PsPO

probability at least 1 — 6e™P, the subspace detection
property for DR-€0-SSC holds with the optimal solution
Z* to (1), using the linear projection P = QT .

Proof. Suppose there is 1 < k < K and a point x €
X ®) such that d(x,H) = 0 for some H € PVo
P(”Hxﬂk), then there exist L < dj, independent points
{xi,}f., € X such that {x;;}}.; ¢ X® and x ¢
{Xij}§:17 )N( €~P(H{xij}31-’:1) = H{;‘ij}jL:f NOW we
define t = Pt = QQ't for any t € IR?. Since the
rows of P are linearly independent, x € H;, e L=
J73=
X e Hg, e
jli=1

Let A € R™" = [x;,,...,%;,] be the matrix with
{xy, }JL:1 as it columns, and A € R¥™>*L = [x;,,...,%;,]
be the matrix with {X;, }/_, as it columns. Note that

[A-All < [|X -QQ'X|l2 = || X — X||2 < Cpopy

By Weyl [4], |0:(A) — 0;(A)| < [|A — Al]2. Then we

have or,(A) > o (A) — ||A — AHQ >on(A) = Cppy >

03, — Cpp, > 0. It follows that rank(A) = L. In
addition, o, (A) > og,.-

Therefore, according to Lemma 2,

. Chpo 1%l
e, Ha) —dGe Ha)l < Co s o (A)]

CP!PU

< (12)
o4, — Cp.po
Moreover, we have
|d(i7 HA) - d(X7 HA)‘ < ||i - XH2
=1QQ" x — x|z < [[x]l2 < 1 (13)

where ex € R", (ex); = 1 for the index ¢ such that
Xx; = X, and (ex); = 0 for all j # 4. For the first
inequality in (13), note that for any £ > 0, there exists
y € Hjx such that d(Xx,Hz) +¢ > d(X,y). It follows
that ||x — x| + d(x,Hz) + ¢ > [|[x — x|]2 + |[|X —
vz > ||x — yll2 > d(x,Hg) for any € > 0. Therefore,

HX_X”Q 2 d(X, HA)_d(i7 HA) Simﬂaﬂy? H)_C_XHQ >
d(ia HA) - d(X, HA)

Combining (12) and (13), we have

CPvPO

d(x,Hz) — d(x,Ha)| <1+
%, Ha) = i, HA) < 14 2

(14)

Since x € X® is ~i-away from the an external
subspaces of dimension no greater than dy, we have
d(x,HA) > ~%. Therefore, d(x,Hz) > 7 — 1 —
%o 5 0. Tt follows that X ¢ Hy, and % ¢
This contradiction indicates that all the

data points in X (*) are away from the external sub-
spaces under the linear transformation P for any
1 < k < K. It can also be verified that data X*)
are in generation position by similar argument and
the definition of general position with margin. There-
fore, the conclusion of this theorem follows by applying
Theorem 2.

O

Lemma 3. (Lemma 6 in [5], adjusted with our no-
tations) Suppose P satisfies the (?-norm preserving
property. If 0 < ¢ < L then for any two vectors

27
pe?

u € R4, v € RY, with probability at least 1 —de™ <,

[u" P Pv—u'v| < Jull2|v]2e (15)

Lemma 4. Suppose P satisfies the £?-norm preserving
property. If 0 < e < %, then for any vector v € IR?,

pe?

with probability at least 1 — 4de™ "<,

¥ = V]2 < Vd|[v]2e (16)

where v =P T Pv.

Proof. Choosing e; € R™ where (e;); = 1 and (e;); =0
for all j # . Applying Lemma 3 with u = e;, then

pe

with probability at least 1 — 4e™ < |

le; ' P TPv—e; V|

= Vi = vil < [leill2[[vl2e = [[v[l2¢ (17)

By the union bound, with probability at least 1 —

,ﬁ

dde™ ",

[V = vl < Vd|[v]2e (18)

Theorem 4. Let P satisfy the {?-norm preserving
property. Under the deterministic model, suppose nj >
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di + 1, o5 > \/dcfks for 0 < e < %

data X®) are in general position with margin 1y, such

that 7, > V/de(1 + %) Moreover, all the data
O‘CZk -V ddkE

points in X ) are vj,-away from the external subspaces
of dimension no greater than di for any 1 < k < K

with v, > Vde(1 + L@ .
’Yk ( o’dk—\/ ddk&‘)

€2
at least 1 — dnde™ "=, the subspace detection property
for DR-(°-SSC holds with the optimal solution Z* to

(1).

Suppose that

Then with probability

Proof. Suppose there is 1 < k < K and a point
x € X® such that d(x,H) = 0 for some H €
PV o P(H, ;. ), then there exist L < dj, indepen-
dent points {x;,}/_; € X such that {x; }}_, € X (k)
and X ¢ {x;, }ngl- It follows that x € P(H{xij }];:1) =
H{i‘i.j Hea

For any vector t € IRY, define t = P'TPt. Let A €
R&>E = [x;,,...,%;,] be the matrix with {x;, }}_, as
it columns, and A € RL = [x;,,...,%;,] be the
matrix with {X;; }jL:1 as it columns. Then x € Hg.

Since x € X®) is y,-away from the an external sub-
spaces of dimension no greater than di, \;x;, € Ha,
we have d(x,Ha) > 4.

According to Lemma 4, with probability at least 1 —
_pe?

dde™ ", ||1%i; — x4, ]2 < \/&Hxings = V/ds. By union
2

pE

bound, with probability at least 1 — 4Lde™ "<,

IA — Al < |A - Allr = VdLe (19)

By similar argument in the proof of Theomrem 3,
loi(A) — 0;(A)| < ||[A — Al|2. Then we have o7,(A) >
o — VdLe > 0. Tt follows that rank(A) = L. Also,
or(A) > 0z . Based on Lemma 2 and (12), we have

i} T VidLe|x|2
[0, Ha) = dGe Ha)l < S o (A
VdLe

< — 20
B O'Czk_ — \/dLE ( )

In addition,

|d(%,Ha) — d(x,Ha)| < g —x[l2 < Ve (21)

Combining (12) and (13), we have

VL

d(%,Ha) — d(x,Ha)| < Vde(1 + — Y=
|d(x,Hz) — d(x,Ha)| ( P

) (22)

Since x € X% is q-away from the an external
subspaces of dimension no greater than cik, we have
d(x,Ha) > 4. Therefore, d(X,Hz) > v — Vde(1 +

VL__ ) 5 0. It follows that X ¢ Hy, and % ¢

U(Zk —+vdLe

H s, 3¢ . This contradiction shows that all the data
jti=1

points in X *) are away from the external subspaces
under the linear transformation P for any 1 < k < K.
It can also be verified that data X*) are in generation
position by similar argument and the definition of gen-
eral position with margin. Therefore, the conclusion of
this theorem follows by applying Theorem 2. O
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