
Chalmers Publication Library

Closest point search in lattices

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Transactions on Information Theory (ISSN: 0018-9448)

Citation for the published paper:
Agrell, E. ; Eriksson, T. ; Vardy, A. et al. (2002) "Closest point search in lattices". IEEE
Transactions on Information Theory, vol. 48(8),  pp. 2201-2214.

http://dx.doi.org/10.1109/TIT.2002.800499

Downloaded from: http://publications.lib.chalmers.se/publication/14990

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/TIT.2002.800499
http://publications.lib.chalmers.se/publication/14990


Submitted, October 26, 2000; revised, March 8, 2002 1

Closest Point Search in Lattices
Erik Agrell, Thomas Eriksson, Alexander Vardy, and Kenneth Zeger

Abstract— In this semi-tutorial paper, a comprehensive
survey of closest-point search methods for lattices without
a regular structure is presented. The existing search strate-
gies are described in a unified framework, and differences be-
tween them are elucidated. An efficient closest-point search
algorithm, based on the Schnorr-Euchner variation of the
Pohst method, is implemented. Given an arbitrary point
x ∈ Rm and a generator matrix for a lattice Λ, the algorithm
computes the point of Λ that is closest to x. The algorithm is
shown to be substantially faster than other known methods,
by means of a theoretical comparison with the Kannan algo-
rithm and an experimental comparison with the Pohst algo-
rithm and its variants, such as the recent Viterbo-Boutros
decoder. Modifications of the algorithm are developed to
solve a number of related search problems for lattices, such
as finding a shortest vector, determining the kissing num-
ber, computing the Voronoi-relevant vectors, and finding
a Korkine-Zolotareff reduced basis.

Keywords—Closest-point search, kissing number, Korkine-
Zolotareff reduction, lattice decoding, lattice quantization,
nearest neighbor, shortest vector, Voronoi diagram.

I. Introduction

In lattice theory, a generator matrix G is any matrix with
real entries whose rows are linearly independent over R. We
let n and m denote the number of rows and columns of G,
respectively. Hence n 6 m. The lattice generated by G is

Λ(G)
def
= {uG : u ∈ Zn } .

The rows of G are called basis vectors for Λ, and the num-
ber n of basis vectors is said to be the dimension of Λ.

The closest-point problem is the problem of finding, for
a given lattice Λ and a given input point x ∈ Rm, a vector
ĉ ∈ Λ such that

‖x− ĉ‖ 6 ‖x− c‖ for all c ∈ Λ

where ‖ · ‖ denotes the Euclidean norm. In channel coding,
the closest-point problem is referred to as decoding, and
we adopt this terminology herein. Note, however, that in
source coding, this problem is called encoding (see below).

The Voronoi region of a lattice point is the set of all
vectors in Rm that can be decoded to this point, namely

Ω(Λ, c)
def
= {x ∈ Rm : ‖x− c‖ 6 ‖x− c′‖ ∀ c′ ∈ Λ}

where c ∈ Λ. The Voronoi diagram of a lattice is the set of
all its Voronoi regions. It is known [23] that Voronoi regions
Ω(Λ, c) are convex polytopes, that they are symmetrical

Manuscript submitted October 26, 2000. This work was supported
in part by the National Science Foundation, the David and Lucile
Packard Foundation, and Stiftelsen ISS ’90.

Erik Agrell and Thomas Eriksson are with the Department of
Signals and Systems, Chalmers University of Technology, S–412 96
Göteborg, Sweden. Alexander Vardy and Kenneth Zeger are with
the Department of Electrical and Computer Engineering, University
of California, San Diego, La Jolla, CA 92093–0407 USA.

with respect to reflection in c, and that they are transla-
tions of Ω(Λ,0), where 0 is the origin of Rm.

In communication theory, lattices are used for both mod-
ulation and quantization. If a lattice is used as a code
for the Gaussian channel, maximum-likelihood decoding in
the demodulator is a closest-point search. The decoding of
space-time codes is one example [16,17,25]. Analogously, if
a lattice is used as a codebook for vector quantization and
the mean-squared-error criterion is used, then the encoding
of each input vector is also a closest-point search. Further-
more, if the lattice is truncated into a so-called Voronoi
code [21], another instance of the closest-point problem
arises at the opposite end of the communication system, in
the source decoder and in the modulator. Typical for these
applications in communications is that the same lattice is
decoded numerous times for different input vectors.

Other applications where the closest-point problem ari-
ses include lattice design [3] and Monte-Carlo second-mo-
ment estimation [22]. In both cases, random vectors are
generated uniformly inside a Voronoi region of a lattice us-
ing closest-point search.

The closely related shortest-vector problem has been used
in assessing the quality of noncryptographic random num-
ber generators [50, pp. 89–113] and in the decoding of Chi-
nese remainder codes [38, 40]. It also has important ap-
plications in cryptography [5, 7]. Another related problem
of paramount importance in cryptography [13, 70] is that
of lattice basis reduction. These search problems will be
discussed in Section VI.

The choice of method for solving the closest-point prob-
lem depends on the structure of the lattice. Intuitively, the
more structure a lattice has, the faster can the closest point
be found. For many classical lattices, efficient search meth-
ods are known [23, Ch. 20], [75]. A more general approach is
to represent a lattice by a trellis [72] and use a trellis decod-
ing algorithm such as the Viterbi algorithm [11,33,34,76].
However, finite-state trellises exist if and only if the lat-
tice contains n mutually orthogonal vectors, and even then
decoding complexity quickly becomes prohibitive [73].

Herein, we address the problem of finding the closest
point in a general lattice: we assume that it has no exploit-
able structure. One situation where this problem arises is
when a generator matrix is continuously adjusted, e.g., in
numerical lattice design [3]. Another important application
of this problem is cryptanalysis [13,68]. Yet another exam-
ple is frequency estimation and phase unwrapping [19].

The complexity of the general closest-point problem as
a function of the dimension n was analyzed by van Emde
Boas [74] two decades ago, who showed that this problem is
NP-hard. Micciancio gave a simpler proof in [55]. Thus all
known algorithms for solving the problem optimally have
exponential complexity. It is known [9] that finding an app-
roximate solution, such that the ratio between the distance
found and the true distance is upper-bounded by a con-



2 Submitted, October 26, 2000; revised, March 8, 2002

stant, is also NP-hard. Even finding a suboptimal solution
within a factor nc/ log logn for some constant c > 0 is NP-
hard [27]. Nevertheless, algorithms that find a suboptimal
solution are faster and can handle higher dimensions [52].

A common approach to the general closest-point prob-
lem is to identify a certain region in Rm within which the
optimal lattice point must lie, and then investigate all lat-
tice points in this region, possibly reducing its size dy-
namically. The earliest work in the field was done for the
shortest-vector problem (see Section VI-A) in the context of
assessing the quality of certain random number generators
(cf. [24, 26] and [50, pp. 89–101, 110]). The finite region
searched in these algorithms is a parallelepiped, with its
axes parallel to the basis vectors.

In general, the development of closest-point algorithms
follows two main branches, inspired by two seminal papers:
Pohst [63] in 1981 examined lattice points lying inside a hy-
persphere, whereas Kannan [46] in 1983 used a rectangular
parallelepiped. Both papers later appeared in revised and
extended versions, Pohst’s as [30] and Kannan’s (following
the work of Helfrich [42]) as [47]. The Pohst and Kannan
strategies are discussed in greater detail in Section III-A.

A crucial parameter for the performance of these algo-
rithms is the initial size of the search region. Some sug-
gestions to this point were given in [62, 78] for the Pohst
strategy and in [12] for the Kannan strategy. The latter
reference also includes an extensive complexity analysis.
Applications are discussed in [15,62,78,80].

Another, more subtle, difference between the two strate-
gies is implicit in their presentation. Grossly generalizing,
the Pohst method is intended as a practical tool while the
method of Kannan is intended as a theoretical tool. Papers
dealing with the Pohst strategy typically discuss issues of
implementation, whereas papers dealing with the Kannan
strategy usually focus on asymptotic complexity. This is
probably the reason why the two strategies, despite hav-
ing so much in common, have never been compared and
evaluated against each other in the literature.

Recently, Schnorr and Euchner [67] suggested an impor-
tant improvement of the Pohst strategy, based on examin-
ing the points inside the aforementioned hypersphere in a
different order. In Sections V and VII-C, the strategies by
Pohst, Kannan, and Schnorr-Euchner are compared to each
other, and it is shown that the Schnorr-Euchner strategy
is substantially faster than the other two.

While the discussion above is distilled from the existing
literature, much of this literature is not directly accessi-
ble. Often, the results are buried in the context of specific
applications. For example, the Schnorr-Euchner algorithm
is described in [67] merely as a subroutine, called Enum,
in a function that computes the so-called block Korkine-
Zolotareff reduction, which itself serves as a tool for solv-
ing a certain type of subset-sum problems [67] and attack-
ing the Chor-Rivest cryptosystem [68]. Thus although the
question “What is the best (fastest) algorithm currently
available for decoding a general lattice?” frequently arises
in communication practice, the answer to this question is
not immediately clear.

In this paper, we first describe the two main decoding
strategies, due to Pohst and to Kannan, in a unified frame-
work, which makes it possible to elucidate the similarities
and the differences between them. This is done in Sec-
tion III-A, where we also discuss the Babai nearest-plane
algorithm [10] and the Schnorr-Euchner refinement of the
Pohst strategy. In Section III-B, we present a stand-alone
implementation of what we believe is the fastest closest-
point search algorithm currently available for general lat-
tices. The algorithm is based on the Schnorr-Euchner [67]
strategy, bootstrapped with the Babai [10] nearest point.
It is described in sufficient detail to allow straightforward
implementation, without knowledge of the underlying the-
ory. One of the main contributions of this paper is a theo-
retical and experimental comparison of the various closest-
point search algorithms, presented in Sections V and VII,
respectively. We also show in Section IV how a carefully
selected preprocessing stage can reduce the complexity of
the closest-point search even further. Finally, we describe
in Section VI several modifications to the algorithm of Sec-
tion III-B designed to solve numerous related lattice-search
problems, such as finding a shortest vector, determining
the kissing number, computing the Voronoi-relevant vec-
tors, and finding a Korkine-Zolotareff reduced basis.

II. Preliminaries

We say that two lattices are identical if all lattice points
are the same. Two generator matrices G1 and G2 generate
identical lattices Λ(G1) = Λ(G2) if and only if

G1 = WG2 (1)

where W is a square matrix with integer entries such that
|detW | = 1. A generator matrix G2 is a rotated and ref-
lected representation of another generator matrix G1 if

G1 = G2Q (2)

where QQT = I. This transformation can be regarded
as a change of the coordinate system. If G2 is square
and lower triangular, it is said to be a lower-triangular
representation of G1. Any generator matrix has a lower-
triangular representation, which is unique up to column
negation. How to find a lower-triangular representation of
a given generator matrix is discussed in Section IV.

Two lattices are congruent, or equivalent, if one can be
obtained from the other through scaling, rotation, and
reflection. Two generator matrices G1 and G2 generate
equivalent lattices if and only if

G1 = cWG2Q (3)

where c > 0 is a real constant, while W and Q obey the
same conditions as in (1) and (2), respectively. The equiv-
alence relation is denoted Λ(G2) ∼= Λ(G1).

The process of selecting a good basis for a given lattice,
given some criterion, is called reduction. In many applica-
tions, it is advantageous if the basis vectors are as short



Submitted, October 26, 2000; revised, March 8, 2002 3

as possible and “reasonably” orthogonal to each other (for
lattice-search problems, this was first noted by Coveyou
and MacPherson [24]). This property of the basis vectors
can be formalized in a number of ways, giving rise to several
types of reduction. Simply selecting the n shortest nonzero
vectors in the lattice is however not a practicable approach,
since these vectors do not in general form a basis.

The problem was studied by Hermite in 1850, who sug-
gested [44, pp. 301–303] that a generator matrix G with
rows v1, . . . ,vn is reduced if the following holds for all
i = 1, . . . , n: ||vi|| 6 ||v′i||, for all generator matrices
G′ with rows v′1, . . . ,v

′
n such that Λ(G′) = Λ(G) and

||v′j || = ||vj || for j = 1, . . . , i − 1. In other words, a gen-
erator matrix G is reduced in this sense if the sequence
(||v1||, . . . , ||vn||) comes first in a lexicographically ordered
list of the corresponding sequences for all generator matri-
ces of the same lattice. The first basis vector, v1, is always
a shortest nonzero lattice vector. There exists at least one
reduced basis in this sense for every lattice, but Hermite
gave no algorithm to compute it. Note that this reduction
criterion is usually not referred to as the “Hermite reduc-
tion” in recent literature (see footnote 2).

Minkowski made extensive use of the above reduction
criterion in his earlier work [56–58]. In 1905, he suggested
a subtle but significant modification [61], defining the cri-
terion now known as the Minkowski reduction. A generator
matrix G with rows v1, . . . ,vn is Minkowski-reduced if the
following holds for all i = 1, . . . , n: ||vi|| 6 ||v′i|| for all G′

with rows v′1, . . . ,v
′
n such that Λ(G′) = Λ(G) and v′j = vj

for j = 1, . . . , i− 1.1 This is in essence a “greedy” version
of the stricter criterion by Hermite. Suppose that a set of
vectors v1, . . . ,vi have been found that satisfy Minkowski’s
criterion up to a certain value of i. Then there is always a
Minkowski-reduced basis that contains these vectors, and
the search can be focused on finding the next vector in the
basis, vi+1. This is not necessarily the case with the afore-
mentioned criterion by Hermite. In particular, if there is
more than one inequivalent shortest nonzero vector, it may
well be that only one of them can be included in a reduced
basis in the sense of Hermite, whereas there is always at
least one Minkowski-reduced basis for each of them.

Minkowski reduction has received much attention, par-
ticularly in number theory [18, pp. 27–28], [28, pp. 83–84].
Algorithms to compute a Minkowski-reduced basis of an
arbitrary lattice may be found in [1, 42].

Two types of reduction that are more widely used
in practice are Korkine-Zolotareff (KZ) reduction and
Lenstra-Lenstra-Lovász (LLL) reduction. One reason for
their popularity is that with both of those criteria, the n-
dimensional reduction problem can be recursively reduced
to an (n− 1)-dimensional reduction problem, which is not
feasible with Minkowski reduction.

The Korkine-Zolotareff reduction is named after the au-
thors of [51], who defined this reduction criterion in 1873.
To determine whether a given generator matrix is a KZ-

1We disregard, as is commonly done in recent literature, that
Minkowski also required the scalar product between vi and vi+1 to
be nonnegative for i = 1, . . . , n− 1.

reduced basis, it is convenient to study its lower-triangular
representation. A lower-triangular square generator matrix

G =


v1

v2

...
vn

 =


v11 0 · · · 0
v21 v22 · · · 0
...

...
. . .

...
vn1 vn2 · · · vnn

 (4)

is defined, recursively, to be KZ-reduced if n = 1, or else
each of the following three conditions holds:2

v1 is a shortest nonzero vector in Λ(G) (5)

|vk1| 6
|v11|

2
for k = 2, . . . , n (6)

and the submatrix v22 · · · 0
...

. . .
...

vn2 · · · vnn

 (7)

is KZ-reduced. An arbitrary generator matrix is KZ-re-
duced if and only if its lower-triangular representation is
KZ-reduced. It is known [64] that every lattice has at least
one KZ-reduced generator matrix.

The LLL reduction is named after Lenstra, Lenstra, and
Lovász, who suggested the corresponding reduction cri-
teria in [53]. The LLL reduction is often used in situa-
tions where the Korkine-Zolotareff reduction would be too
time-consuming. A lower-triangular generator matrix (4)
is LLL-reduced if either n = 1 or else each of the following
three conditions holds:

‖v1‖ 6
2√
3
‖v2‖ (8)

|vk1| 6
|v11|

2
for k = 2, . . . , n (9)

and the submatrix (7) is LLL-reduced. As before, an
arbitrary generator matrix is LLL-reduced if its lower-
triangular representation is LLL-reduced.

Any KZ-reduced matrix is clearly also LLL-reduced. The
motivation for the latter reduction is that there exists an ef-
ficient algorithm [53] to convert any n×m generator matrix
into an LLL-reduced one. This algorithm, which operates
in polynomial time in n and m, has become very popular.
It was improved upon in [69] and [66].

The LLL reduction algorithm has been modified in
a number of ways, see [20, pp. 78–104]. Hybrids between
KZ and LLL reduction have also been proposed [65].

2Because the condition (6) was proposed by Hermite in his first and
second letters to Jacobi [44, pp. 269–271, 280–282], KZ reduction is
sometimes called “Hermite reduction” (cf. [42]). The terminology
is further complicated by the fact that in some contexts “Hermite
reduction” refers to a criterion for so-called indefinite quadratic forms,
not immediately applicable to lattices [18, p. 29].



4 Submitted, October 26, 2000; revised, March 8, 2002

III. Closest-Point Search Algorithms

We start with a conceptual description of various lattice
search algorithms in Section III-A. In this framework, we
introduce the Babai nearest-plane algorithm, the Kannan
strategy, the Pohst strategy, and the Schnorr-Euchner re-
finement of the Pohst strategy. In Section III-B, we present
a detailed pseudo-code implementation of a closest-point
search algorithm based on the Schnorr-Euchner strategy.

A. Conceptual Description

To understand lattice search algorithms, a recursive charac-
terization of lattices is useful. Let G be an n×m generator
matrix for a lattice Λ, and let us write G as

G =

[
G∗

vn

]
where G∗ is an (n−1)×m matrix consisting of the top n−1
rows of G. Furthermore, let us write vn as vn = v‖ + v⊥,
with v‖ in the row-space of G∗ and v⊥ in the null space. If
G is lower triangular, as in (4), then this decomposition is
particularly simple, namely, v‖ = (vn1, . . . , vn,n−1, 0) and
v⊥ = (0, . . . , 0, vnn).

With this terminology, any n-dimensional lattice can be
decomposed as follows:

Λ(G) =

+∞⋃
un=−∞

{
c + unv‖ + unv⊥ : c ∈ Λ (G∗)

}
(10)

which is basically a stack of (n−1)-dimensional translated
sublattices. The (n−1)-dimensional hyperplanes that con-
tain these sublattices will be called (n−1)-dimensional lay-
ers. Thus the index un denotes which layer a certain lattice
point belongs to. The vector v‖ is the offset by which one
sublattice is translated within its layer, with respect to an
adjacent sublattice. The vector v⊥ is normal to the layers,
and the distance between two adjacent layers is ‖v⊥‖. For
lower-triangular generator matrices, we have ‖v⊥‖ = |vnn|.
Recalling that any generator matrix can be rotated into a
lower-triangular form with vnn > 0, we let vkk denote the
distance between the (k−1)-dimensional layers, even when
the triangular constraint is not explicitly imposed.

Now, all search algorithms for an n-dimensional lattice
will be described recursively as a finite number of (n−1)-
dimensional search operations. Let x ∈ Rm be a vector
to decode in the lattice Λ(G), which is decomposed into
layers according to (10). The orthogonal distance from x
to the layer with index un is given by

yn
def
= |un − ûn| · ‖v⊥‖ (11)

where ûn
def
=

xvt⊥
‖v⊥‖2

. (12)

Let x̂ denote the closest lattice point to x, and suppose that
an upper bound ρn on ‖x̂−x‖ is known. Then, in order to
ensure that x̂ will be found, it suffices to consider a finite
number of layers in (10). The indices of these layers are

un =

⌈
ûn −

ρn
‖v⊥‖

⌉
, . . . ,

⌊
ûn +

ρn
‖v⊥‖

⌋
(13)

since layers for which yn > ρn are not relevant. Of these,
the layer with un = bûne has the shortest orthogonal dis-
tance to x, where bze denotes the closest integer to z ∈ R.

Four types of search methods will now be identified.
They each search the layers indexed in (13), but they differ
in the order in which these layers are examined and in the
choice of the upper bound ρn−1 to be used, recursively, in
the (n−1)-dimensional search problems.

If only un = bûne is considered, the n-dimensional search
problem is reduced to just one (n−1)-dimensional prob-
lem, and no upper bound ρn is needed. Recursive appli-
cation of this strategy [10] yields the Babai nearest-plane
algorithm, and we call the returned lattice point the Babai
point. The Babai nearest-plane algorithm is a fast method
to find a nearby lattice point, in time polynomial in the
number of rows and columns of G. In general, the Babai
point depends not only on x and the lattice, but also on
the basis used to represent the lattice. It is not necessarily
the closest point, but the error can be bounded. A prob-
abilistic variant of the Babai nearest-plane algorithm was
proposed by Klein [49].

The other three methods all find the optimal (closest)
point. Scanning all the layers in (13), and supplying each
(n−1)-dimensional search problem with the same value
of ρn−1 regardless of un, yields the Kannan strategy.3 Vari-
ants of this strategy [12,42,46,47] differ mainly in how the
bounds ρk are chosen for k = 1, . . . , n. In this context,
a recent improvement by Blömer [14] seems particularly
promising. Geometrically, the Kannan strategy amounts to
generating and examining all lattice points within a given
rectangular parallelepiped.

The n-dimensional decoding error vector x̂−x consists,
in the given recursive framework, of two orthogonal com-
ponents: one in the row space of G∗ and one parallel to v⊥.
The former is the (n−1)-dimensional decoding error while
the length of the latter is yn. Since yn varies with un, the
upper bound ρn−1 can be chosen as

ρn−1 =
√
ρ2n − y2n (14)

which is different for different layers in (13). The idea of
letting ρn−1 depend on un is the Pohst strategy [30, 62,
63, 78, 80]. In geometrical terms, points inside a hyper-
sphere, not a parallelepiped, are investigated. When any
lattice point x′ inside the sphere is found, the bound ρn
can be immediately updated to ‖x′ −x‖, since ‖x′ −x‖ is
an obvious upper bound on ‖x̂− x‖ and ‖x′ − x‖ 6 ρn.

The Schnorr-Euchner strategy, proposed in [67], com-
bines the advantages of the Babai nearest-plane algorithm
and the Pohst strategy. Assume that ûn 6 bûne. Then the
sequence

un = bûne , bûne − 1, bûne+ 1, bûne − 2, . . . (15)

3In its original form [46, 47], Kannan’s strategy is described recur-
sively as a set of (i− 1)-dimensional search problems, where i is the
index of the largest element in (v11, . . . , vnn). This viewpoint may
be useful for a complexity analysis, but because un, un−1, . . . , ui can
be selected sequentially, the strategy is computationally equivalent to
recursively eliminating just one dimension at a time.



Submitted, October 26, 2000; revised, March 8, 2002 5

orders the layers in (13) according to nondecreasing dis-
tance from x. A trivial counterpart holds when ûn > bûne.
The advantages of examining the layers in this order are
subtle but significant. Since the volume of a layer decreases
with increasing yn, the chance of finding the correct layer
early is maximized. Another advantage of the nondecreas-
ing distance yn is that the search can safely be terminated
as soon as yn exceeds the distance to the best lattice point
found so far. Notice that the very first lattice point gener-
ated will, by definition, be the Babai point. Furthermore,
since the ordering in (15) does not depend on ρn, no initial
bound ρn is needed. Instead, this bound can be updated
dynamically during the search, with the first finite value of
ρn being equal to the distance to the Babai point.

B. Detailed Description

This subsection contains a stand-alone presentation of
an efficient closest-point search algorithm, based on the
Schnorr-Euchner strategy. It is intended to be sufficiently
detailed to allow a straightforward implementation, even
without knowledge of the underlying theory.

For efficiency, the recursive operations discussed in the
previous subsection have been restructured into a loop.
The variables H and û are used as input and output
parameters, instead of the more natural G = H−1 and
x̂ = ûG. As discussed in Section IV, this is motivated by
the typical communication application, where numerous in-
put vectors are decoded in the same lattice.

First, some notation needs to be defined. Matrix and
vector elements are named according to the following con-
ventions:

u = (u1, u2, . . . , un)

ek = (ek1, ek2, . . . , ekk) for k = 1, . . . , n

H =


h11 0 · · · 0

h21 h22
. . .

...
...

...
. . . 0

hn1 hn2 · · · hnn

 .

The operation sgn∗(z) returns −1 if z 6 0 and 1 if z > 0
(which may deviate from most built-in sign functions). Ties
in the rounding operation bze are broken arbitrarily.

Algorithm Decode(H,x)

Input: an n × n lower-triangular matrix H with positive
diagonal elements, and an n-dimensional vector x ∈ Rn to
decode in the lattice Λ(H−1).
Output: an n-dimensional vector û ∈ Zn such that ûH−1

is a lattice point that is closest to x.

1 n := the size of H /∗ dimension ∗/
2 bestdist :=∞ /∗ current distance record ∗/
3 k := n /∗ dimension of examined layer ∗/
4 distk := 0 /∗ distance to examined layer ∗/

5 ek := xH /∗ used to compute ûn, see (12) ∗/
6 uk := bekke /∗ examined lattice point ∗/

7 y :=
ekk − uk
hkk

/∗ see (11) ∗/

8 stepk := sgn∗(y) /∗ offset to next layer in (15) ∗/

9 〈loop〉
10 newdist := distk + y2

11 if newdist < bestdist then {

12 if k 6= 1 then { CaseA

13 ek−1,i := eki − yhki for i = 1, . . . , k−1

14 k := k − 1 /∗ move down ∗/
15 distk := newdist

16 uk := bekke /∗ closest layer ∗/

17 y :=
ekk − uk
hkk

18 stepk := sgn∗(y)

19 } else { CaseB

20 û := u /∗ best lattice point so far ∗/
21 bestdist := newdist

/∗ update record ∗/
22 k := k + 1 /∗ move up ∗/
23 uk := uk + stepk /∗ next layer ∗/

24 y :=
ekk − uk
hkk

25 stepk := −stepk − sgn∗ (stepk)

26 }

27 } else { CaseC

28 if k = n then return û (and exit)

29 else {
30 k := k + 1 /∗ move up ∗/
31 uk := uk + stepk /∗ next layer ∗/

32 y :=
ekk − uk
hkk

33 stepk := −stepk − sgn∗ (stepk)

34 }
35 }
36 goto 〈loop〉

In this algorithm, k is the dimension of the sublayer struc-
ture that is currently being investigated. Each time the
algorithm finds a k-dimensional layer the distance to which
is less than the currently smallest distance, this layer is ex-
panded into (k−1)-dimensional sublayers. This is done in
Case A. Conversely, as soon as the distance to the exam-
ined layer is greater than the lowest distance, the algorithm
moves up one step in the hierarchy of layers. This is done
in Case C. Case B is invoked when the algorithm has suc-
cessfully moved down all the way to the zero-dimensional
layer (that is, a lattice point) without exceeding the lowest



6 Submitted, October 26, 2000; revised, March 8, 2002

distance. Then this lattice point is stored as a potential
output point, the lowest distance is updated, and the algo-
rithm moves back up again, without restarting.

IV. Preprocessing and Postprocessing

The algorithm Decode of the previous section requires
a representation of the lattice at hand by a lower-triangular
generator matrix, whose diagonal elements are all positive.
Such a representation exists for any lattice, so this require-
ment does not impose any constraints on the kind of lat-
tices that can be searched. Moreover, for any given lattice,
a representation with the required properties can be found
in infinitely many ways, which leaves the user with the
freedom of choosing one of them. The algorithm computes
a closest vector regardless of the representation choice, but
the speed with which it reaches this result varies consider-
ably between different representations. This is the topic of
this section: How should a given search problem be prepro-
cessed, in order to make the most efficient use of Decode?

To address this question, we now present a general lat-
tice search algorithm. This algorithm can be regarded as
a “front-end” to Decode, where explicit preprocessing and
postprocessing is performed to allow generator matrices
that are not lower triangular, possibly not even square.
As with Decode, we first describe this algorithm concep-
tually, and then suggest how to implement it.

Assume that a generator matrix G and an input vec-
tor x are given. By linear integer row operations, we first
transform G into another matrix, say G2, which generates
an identical lattice. The purpose of this transformation
is to speed-up Decode; see below. Next, we rotate and
reflect G2 into a lower-triangular form G3, so that

Λ(G3) ∼= Λ(G2) = Λ(G) .

It is essential to rotate and reflect the input vector x in the
same way, so that the transformed input vector, say x3, is
in the same relation to Λ(G3) as x is to Λ(G). All this can
be regarded as a change of the coordinate system. Now
the search problem has a form that is suitable for Decode,
which will find the closest lattice point x̂3 in this coordinate
system. Reversing the operations of rotation and reflection
produces x̂, the lattice point closest to x in Λ(G). Follow-
ing these steps, the algorithm is detailed below.

Algorithm ClosestPoint(G,x)

Input: an n ×m generator matrix G, and an m-element
vector x ∈ Rm to decode in Λ(G).
Output: a lattice point x̂ ∈ Λ(G) that is closest to x.

Step 1. Let G2 := WG, where W is an n× n matrix
with integer entries and determinant ±1.

Step 2. Compute an n × m orthonormal matrix Q
such that G2 = G3Q, where G3 is an n × n lower-
triangular matrix with positive diagonal elements.

Step 3. Let H3 := G−13 .

Step 4. Let x3 := xQT .

Step 5. Let û3 := Decode (H3,x3).

Step 6. Return x̂ := û3G2.

Step 1 is a basis reduction. This step is optional: it is pos-
sible to select W as the identity matrix, which amounts to
no reduction at all. This works well for low-dimensional
and not too ill-conditioned generator matrices, as will be
shown in Section VII. However, the speed and the numeri-
cal stability of the search can be improved significantly by
an appropriate reduction, as discussed later in this section.

Step 2 implies rotation and reflection of G2 into a lower-
triangular form, as in (2). The standard method to achieve
this is QR decomposition. Given an arbitrary m × n ma-
trix M , its QR decomposition is a factorization of M of
the form M = QR, where R is an n× n upper-triangular
matrix, and Q is an m×n orthonormal matrix, that is, one
satisfying QQT = I. It is well known that a QR decompo-
sition exists for any matrix; efficient algorithms to compute
it may be found in [41, pp. 208–236] and [71, pp. 166–176],
for example. In our context, QR decomposition of GT

2

gives both QT and G3, with G3 being equal to RT . As an
alternative to QR decomposition, G3 can be obtained by
Cholesky decomposition of G2G

T
2 . Given an n×n positive

definite matrix A, its Cholesky decomposition is a factor-
ization of the form A = UUT where U is an n× n upper-
triangular matrix. In our context, G3 is equal to UT , and
the rotation matrix is given by Q = G−13 G2. Algorithms
for computing the Cholesky decomposition may be found
in [20, pp. 102–104], [41, pp. 84–93], and [71, pp. 332–334].

All these transformations can be thought of as a change
of the coordinate system. Measure the first coordinate
along v1 (the first row of G2), the second in the plane
spanned by v1 and v2, and so on. The generator matrix in
this coordinate system will be square and lower-triangular.

For Decode to work, all diagonal elements of G3 must
be positive. Some implementations of QR factorization do
not do this automatically; if this is the case, we multiply
by −1 all columns of G3 that contain a negative diagonal
element, as well as the corresponding rows of Q.

In Steps 4–6, the input vectors are processed. They are
transformed into the coordinate system of G3, decoded,
and transformed back again.

If a large set of vectors is to be decoded for the same lat-
tice, Steps 1–3 are, of course, carried out only once for the
whole set. In this case, the overall execution time may ben-
efit substantially from an effective but time-consuming re-
duction method applied in Step 1. To understand precisely
what kind of preprocessing would improve the performance
of the search algorithm, recall the recursive representation
of lattices in (10). An n-dimensional lattice consists of par-
allel (n−1)-dimensional sublattices, translated and stacked
on top of each other. This decomposition into sublattices
is controlled by the reduction method. Two properties of
the decomposition are desirable for a given lattice:

(a) The (n−1)-dimensional layers should be as far
apart as possible. This minimizes the number of
layers to be investigated, as only the layers within
a certain distance range need to be scanned. As



Submitted, October 26, 2000; revised, March 8, 2002 7

an extreme case, suppose that the spacing between
(n−1)-dimensional layers is much larger than any
other k-dimensional layer spacing in the lattice.
Then the closest point will always lie in the closest
(n−1)-dimensional layer, and the dimensionality of
the problem is essentially reduced by one.

(b)The zero-dimensional layers (lattice points) should
be as densely spaced as possible in the one-
dimensional layers (lines). The denser they are,
the higher is the probability that the closest lattice
point will belong to the closest lattice line. If the
one-dimensional spacing is much smaller than all
other inter-layer distances, then the closest point
will always lie in the closest line, so the dimension-
ality of the problem is essentially reduced by one.

Both observations can, of course, be applied recursively.
Thus high-dimensional layer spacing should be large, while
low-dimensional spacing should be small. This suggests
two greedy algorithms: (a) sequentially maximizing the dis-
tances between k-dimensional layers, starting at k = n−1,
and (b) minimizing the same distances, starting at k = 0.

These two goals are each other’s duals in a fairly strict
sense. Even though they may appear contradictory, they
are, in fact, very similar (cf. [50, pp. 94–98]). To see this,
observe that a reduction algorithm can choose the numbers
{vkk} in many ways for a given lattice, but their product is
invariant: it equals the volume of the Voronoi region. Now,
(a) is solved by maximizing first vnn, then vn−1,n−1, and so
on. Because of the constant product, this procedure forces
low values for v11, v22, etc. Thus a good solution of (a) is in
general good for (b) too. Conversely, (b) is solved by first
minimizing v11, then v22, and so on, which automatically
produces a good basis in the sense of (a), too.

The smallest possible value of v11 that can be selected
for a given lattice equals the length of the shortest vector
in the lattice. (Shortest-vector problems can be solved by
a variant of the ClosestPoint algorithm, as described in
Section VI-A.) On the other hand, the largest possible vnn
is the reciprocal of the length of the shortest vector in the
dual lattice Λ⊥, since (G−1)T is a generator matrix for Λ⊥

provided that G is square. Applying these shortest-vector
criteria recursively, we conclude that (b) is solved optimally
by Korkine-Zolotareff reduction of any basis for the lattice.
This follows immediately from the recursive definition of
the Korkine-Zolotareff reduction in Section II. Similarly,
(a) is solved optimally by Korkine-Zolotareff reduction of
a basis for the dual lattice, followed by reversing the or-
der of the rows and transposing the inverse of the resulting
matrix (hereafter, we refer to this procedure as Korkine-
Zolotareff reduction of the dual). Finally, the LLL reduc-
tion yields an approximate (but faster) solution to both (a)
and (b), because of its inherent sorting mechanism.

Our recommendation is to use Korkine-Zolotareff reduc-
tion in applications where the same lattice is to be searched
many times, otherwise use LLL. This recommendation is
supported by the experimental results in Section VII.

V. Complexity Analysis

Banihashemi and Khandani [12] observed that the average
complexity of a search method for uniformly distributed
input vectors4 is proportional to the volume of the region
being searched. They used this observation to assess the
complexity of the Kannan algorithm. We adopt the same
approach here to analyze the ClosestPoint algorithm
and compare it with the Kannan algorithm. A compari-
son between ClosestPoint and an algorithm based on the
Pohst strategy is carried out experimentally, in Section VII.

For a given lattice, let Vk(ρ) denote the volume searched
in a k-dimensional layer, when ρ is the given upper bound
on the attainable distance. Since the ClosestPoint al-
gorithm does not require an initial value for ρ, the desired
complexity measure is Vn(∞).

Theorem 1. Let βk =
√
v211+ · · ·+v2kk for k = 1, . . . , n.

Then

Vn(∞) 6
n∏
k=1

βk (16)

Vn(∞) 6

(
2n

πe

)−n/2
βnn . (17)

Proof: As before, we let ρk denote the upper bound
used by the ClosestPoint algorithm when searching
a k-dimensional layer. In view of (14), we have

ρk−1 6
√
ρ2k − y2k for k = 2, . . . , n (18)

where yk is the distance accumulated within the k-dimen-
sional layer, as in (11). Combining (11) and (13), we see
that yk varies from at least −ρk to at most +ρk. Thus,
expressing Vk(ρk) as an integral over Vk−1(ρk−1), we obtain
the following recursive bound

Vk(ρk) 6
∫ ρk

−ρk
Vk−1(ρk−1) dy, for k = 2, . . . , n. (19)

The bounds (16) and (17) follow from this recursion in
conjunction with two different bounds on ρ1, . . . , ρn. In
either case, we use the initial condition

V1(ρ1) = 2ρ1 (20)

which is the volume of a line extending from −ρ1 to +ρ1.
To derive (16), we first use (18) to transform (19) into the
form

Vk(ρ) 6
∫ ρ

−ρ
Vk−1

(√
ρ2 − y2

)
dy

where the index of ρ has been dropped. Solving this recur-
sion with the initial condition (20) yields

Vk(ρ) 6
πk/2

Γ(k/2 + 1)
ρk for k = 1, . . . , n. (21)

4In this context, a “uniform distribution” is assumed to be uniform
over a region large enough to make boundary effects negligible. This
is equivalent to a uniform distribution over just one Voronoi region.



8 Submitted, October 26, 2000; revised, March 8, 2002

Notice that the right-hand side of (21) is the volume of
a k-dimensional sphere of radius ρ.

It is known [10] that for any input vector x, the distance
to the Babai point in k dimensions is at most βk/2, where
βk = (v211+ · · ·+v2kk)1/2. Since the Babai point is the first
lattice point generated by the ClosestPoint algorithm,
we have

Vn(∞) = Vn(βn/2) (22)

and ρk 6 βk/2 for k = 1, . . . , n. Using this bound on ρk in
conjunction with the recursion (19), we obtain

Vk(ρk) 6
k∏
j=1

βk for k = 1, . . . , n (23)

regardless of the value of ρk. This proves (16). Notice that
the right-hand side of (23) is the volume of a k-dimensional
parallelepiped with sides β1, . . . , βk.

To complete the proof of (17), we observe that by (21)
and (22), we have

Vn(∞) 6
πn/2βnn

2nΓ(n/2 + 1)
6

(
2n

πe

)−n/2
βnn (24)

where the last inequality follows from Γ(x + 1) > (x/e)x,
which is the well-known Stirling inequality [29, p. 54].

Let Kn denote the volume of the region being searched in
the Kannan algorithm for an n-dimensional lattice. Since
Kannan [47] focused on proving the existence of an al-
gorithm within a certain complexity bound rather than
presenting a single immediately implementable algorithm,
there is some ambiguity regarding what exactly is to be
meant by “Kannan’s algorithm.” We here adopt the same
interpretation as in [12]. It is shown in [12] that for every
lattice, Kn is in the range

n∏
k=1

βk 6 Kn 6 βnn (25)

where the lower bound is exact if the sequence v11, . . . , vnn
is increasing and the upper bound is exact if it is decreas-
ing. For a “good” lattice (say, one of the first 48 lamina-
ted lattices [23, p. 158]), this sequence generally displays
a decreasing trend, although the decrease is not necessarily
monotonic [48]. Thus Kn is often close to the upper bound.
On the other hand, the recursive cube search algorithm [12],
an improved variant of Kannan’s algorithm, attains the
lower bound in (25) with equality (cf. [12, eq. (19)]).

The ClosestPoint algorithm is faster than the Kannan
algorithm for all dimensions and all lattices, since the upper
bound (16) coincides with the lower bound (25) for the
Kannan algorithm. The magnitude of the gain is suggested
by (17). For lattices such that the upper bound in (25) is
exact, the ClosestPoint algorithm is faster by at least
a factor of (2n/πe)n/2. Notice that this factor is meant
to indicate the asymptotic relation for large n. For low
and moderate values of n, the first inequality in (24) yields
a significantly better bound.

Also notice that in assessing the volume searched by the
ClosestPoint algorithm, the general bound

Vn(∞) 6
πk/2βkk

2kΓ(k/2 + 1)

n∏
j=k+1

βj for k = 0, 1, . . . , n

may be useful. This bound includes (16) and (17) as two ex-
treme special cases. It follows straightforwardly from (19),
(21), and the fact that ρk 6 βk/2 for k = 1, . . . , n.

Banihashemi and Khandani [12] point out that the cov-
ering radii of the lattice and its sublattices, if known, can
be exploited to reduce the complexity of the Kannan algo-
rithm. This option can be incorporated into the Closest-
Point algorithm as well. However, it is difficult to de-
termine the covering radius of a general lattice. The only
known method is the “diamond-cutting” algorithm of [79],
which, as detailed in Section VI-C, is confined by memory
limitations to low dimensions. If an upper bound on the
covering radius for the particular lattice is known, it can
be used as well, as proposed in [78]. Unfortunately, even
though there exist upper bounds on the mimimal possi-
ble covering radius for packings in a given dimension [23,
pp. 39–40], [39, p. 241], no method to upperbound the cov-
ering radius of an arbitrary given lattice is known.

VI. More Lattice Search Problems

Other search problems involving lattices can be solved us-
ing modifications and extensions of the ClosestPoint al-
gorithm. These include computing lattice parameters such
as the shortest vector, the kissing number, and the Voronoi-
relevant vectors. The ClosestPoint algorithm can be
also used to perform the key step in the KZ basis reduction.

A. Shortest Vector

Given a lattice Λ ⊂ Rm, the shortest-vector problem is to
find a vector in Λ − {0} that has the smallest Euclidean
norm. The history of the shortest-vector problem is closely
interlinked with that of the closest-point problem. It has
been conjectured in [74] that the shortest-vector problem
(with Λ ⊆ Zm) is NP-hard, but, in contrast to the closest-
point problem, this is still not proved. The conjecture
of [74] is supported by the result of Ajtai [6], who showed
that the shortest-vector problem is NP-hard under ran-
domized reductions. Micciancio [54] furthermore proved
that finding an approximate solution within any constant
factor less than

√
2 is also NP-hard for randomized reduc-

tions. It is known [37,43], however, that the shortest-vector
problem is not harder than the closest-vector problem.

The ClosestPoint algorithm can be straightforwardly
modified to solve the shortest-vector problem. The idea is
to submit x = 0 as the input and exclude x̂ = 0 as a poten-
tial output. Algorithmically, the changes needed to convert
ClosestPoint into ShortestVector are as follows.

1. Omit x as an input to Decode and ClosestPoint.

2. In ClosestPoint, skip Step 4.



Submitted, October 26, 2000; revised, March 8, 2002 9

3. In Decode, replace line 5 with “ek := 0”.

4. In Decode, replace lines 20–22 with:

if newdist 6= 0 then {
û := u

bestdist := newdist

k := k + 1

}

In any lattice, there is an even number of shortest vectors,
because the lattice is symmetrical with respect to reflection
in 0. Hence, if x̂ is a shortest vector, then so is −x̂. A fac-
tor of two in computation time can be gained by exploiting
this symmetry. This is achieved by rewriting Decode to
scan only half of the candidates u (say, the ones for which
the first nonzero component is positive).

Of course, when a KZ-reduced basis is used for the lat-
tice at hand, a shortest vector is directly available as the
first basis element, and the ShortestVector algorithm
becomes trivial. However, one of the main applications of
the ShortestVector algorithm, at least in our context,
is to precisely to compute a KZ-reduced basis.

B. Kissing Number

The kissing number of a lattice Λ is defined as the num-
ber of shortest nonzero vectors in Λ. If the lattice has no
regular structure (say, if the the basis vectors are drawn
randomly from a continuous distribution), there are typi-
cally exactly two shortest nonzero lattice vectors, and the
kissing number is 2. In general, to compute the kissing
number (say, for a structured lattice), it is essential to
use infinite precision: an arbitrarily small perturbation of
a generator matrix has the potential of reducing the kissing
number to two, regardless of the original value. However,
we do not recommend implementing Decode using exact
arithmetic. The same goal can be achieved far more ef-
ficiently by implementing the time-consuming operations,
as before, using finite-precision real numbers, followed by
an infinite-precision post-processing stage, whereby a finite
set of candidates is evaluated.

The new version of Decode needs to keep track of a set
of potential shortest vectors, not just the single best candi-
date. A margin of accuracy must be included in the com-
parisons, to avoid missing some of the shortest vectors due
to numerical errors. Thus the changes needed to convert
ClosestPoint into KissingNumber are as follows.

1. Apply the changes 1–3 of Section VI-A.

2. In Decode, include “Û := ∅” among the initial
assignments.

3. In Decode, replace line 11 with :

if newdist < (1 + ε)bestdist then {

where ε is a small positive number.

4. In Decode, replace lines 20 and 21 with:

if newdist 6= 0 then {

Û := Û ∪ {u}
bestdist := min(bestdist, newdist)

}

5. In Decode, remove line 22.

6. In Decode, replace û in line 28 with Û . In Clos-

estPoint, replace û3 in Step 5 with Û3.

7. In ClosestPoint, replace Step 6 with:

Step 6. Compute the exact value of ‖uG2‖ for

all u ∈ Û3 and return the number of occurrences
of the lowest value.

As for the shortest-vector problem, a variant of the
closest-point problem can be formulated that, in case of
a tie, returns all the lattice points that have minimum dis-
tance to a given input vector, not just one of them. Specifi-
cally, ClosestPoint can be converted into AllClosest-
Points through the following modifications.

• Apply the changes 2–6 above.

• In ClosestPoint, replace Step 6 with:

Step 6. Compute the exact value of ‖uG2−x‖ for

all u ∈ Û3 and call the lowest value γ. Return

X̂ :=
{
uG2 : u ∈ Û3, ‖uG2 − x‖ = γ

}
The main application of this algorithm lies in the solution
of the next problem.

C. Voronoi-Relevant Vectors

A facet is an (m−1)-dimensional face of an m-dimensional
polytope. The relevant-vector problem is to find the facets
of the Voronoi region Ω(Λ,0) or, in other words, to find
a minimal set N (Λ) ⊆ Λ for which

Ω(Λ,0) = {x ∈ Rm : ‖x‖ 6 ‖x− c‖ ∀ c∈N (Λ)} .

The vectors in N (Λ) are called Voronoi-relevant, or simply
relevant. Our method to solve the relevant-vector problem
is based upon the following proposition.

Proposition 2. The Voronoi regions of any two distinct
lattice points c1∈ Λ and c2∈ Λ share a facet if and only if

‖s− c1‖ = ‖s− c2‖ < ‖s− c′‖ (26)

for all c′∈ Λ− {c1, c2}, where

s
def
=

c1 + c2
2

. (27)

Proof: It follows from (26) that s ∈ Ω(Λ, c1)∩Ω(Λ, c2),
and s 6∈ Ω(Λ, c′) for all c′ ∈ Λ − {c1, c2}. It is known



10 Submitted, October 26, 2000; revised, March 8, 2002

(cf. [23, p. 33]) that if two Voronoi regions Ω1 and Ω2 inter-
sect but do not share a facet, then all points in Ω1∩Ω2 also
belong to some other Voronoi region Ω3. Hence the above
property of the point s = (c1 + c2)/2 suffices to establish
that Ω(Λ, c1) and Ω(Λ, c2) share a facet.

To prove the “only if” part of the proposition, assume
that Ω(Λ, c1) and Ω(Λ, c2) have a common facet. Let x be
any point in the interior of this facet, so that

‖x− c1‖ = ‖x− c2‖ < ‖x− c′‖ (28)

for all c′∈ Λ− {c1, c2}. In addition to (28), we will make
use of the following identity

‖s− c‖2 =
‖x− c‖2

2
+
‖x− 2s + c‖2

2
− ‖x− s‖2 (29)

which holds for any three points s, c,x ∈ Rm. Now, for all
c′ ∈ Λ− {c1, c2} we have

‖s− c1‖2 − ‖s− c′‖2 =
‖x− c1‖2 − ‖x− c′‖2

2

+
‖x− c2‖2 − ‖x− (c1 + c2 − c′)‖2

2
< 0

where the equality follows from (29), while the inequality
follows by applying (28) twice. This establishes (26).

This proposition was proved by Voronöı in a slightly dif-
ferent context [81, vol. 134, pp. 277–278], [23, p. 475], based
on a theory by Minkowski [59, pp. 81–85], [60]. Similar
properties have been established for the Voronoi regions of
binary linear codes [2] and of parallelepipeds [4].

In order to compute N (Λ) for a lattice Λ(G), we now
proceed as follows. Consider a vector z ∈ (Z/2)n, and let
s = zG. It is obvious that any vector s in (27) is of this
form. Notice that Λ(G) is symmetric with respect to reflec-
tion in s. That is, if s+x is a lattice point, then so is s−x.

Although there are infinitely many pairs of lattice points
(c1, c2) that have s as their midpoint, Proposition 2 implies
that at most one such pair can share a facet. A closest-
point search in the lattice Λ(G), with s as the input vec-
tor, will find the pair, if it exists. Therefore, we evaluate
AllClosestPoints(G, s), while distinguishing between
the following three cases.

Case 1: AllClosestPoints returns a single point
s + x ∈ Λ. Since s − x is also a lattice point at the
same distance from s, we conclude that x = 0 and
s is itself a lattice point. Obviously, this happens if
and only if z ∈ Zn, and no pair of lattice points can
satisfy (26) with respect to s in this case.

Case 2: AllClosestPoints returns exactly two lat-
tice points c1 = s + x and c2 = s − x. Then these
points share a facet by Proposition 2. Notice that if
c1, c2 ∈ Λ share a facet, then so do c1 +c′ and c2 +c′

for all c′ ∈ Λ. This establishes an equivalence class
of pairs of points of Λ that share a facet, whose mid-

point is of the form (z + u)G for some u ∈ Zn. We
are interested in only two pairs in this class, namely

(c1 − c1, c2 − c1) = (0, 2c2 − 2s)

(c2 − c2, c1 − c2) = (0, 2c1 − 2s).

In other words, the points 2c1−2s and 2c2−2s are the
only Voronoi-relevant points in the equivalence class.

Case 3: AllClosestPoints returns 4 or more lat-
tice points. Then no pair of points can satisfy (26).

The discussion in Cases 1 and 2 above shows that in order
to determine N (Λ) for a given lattice Λ(G), it suffices to
investigate potential midpoints s in the finite set

M (G)
def
=
{
s = zG : z ∈ {0, 1/2}n − {0}

}
.

For each such vector s, we can use the AllClosestPoints
algorithm to check whether condition (26) of Proposition 2
is satisfied. This leads to the following algorithm.

Algorithm RelevantVectors(G)

Input: an n×m generator matrix G.
Output: set N of the Voronoi-relevant vectors of Λ(G).

Step 1. Let N := ∅.

Step 2. For all vectors s ∈M (G), do:

(a) Let X̂ := AllClosestPoints(G, s);

(b) If |X̂ | = 2, let N := N ∪
{

2x̂− 2s : x̂ ∈ X̂
}

.

Step 3. Return N .

Optional optimization includes moving Steps 1–3 of the
AllClosestPoints algorithm out of the loop, since all
the calls to AllClosestPoints concern the same lattice.
Since for each s ∈ M (G), the lattice is symmetric with
respect to reflection in s, a factor of two in complexity
can be gained through the same symmetry argument as for
ShortestVector in Section VI-A.

It follows from the discussion above that the maximum
number of facets that a Voronoi region can have in any n-di-
mensional lattice is 2|M (G)| = 2n+1−2, which was proved
by Minkowski in 1897 [60]. Voronöı showed that this num-
ber is attained with probability 1 by a lattice whose basis
is chosen at random from a continuous distribution [81,
vol. 134, pp. 198–211 and vol. 136, pp. 67–70].

Relevant vectors have been determined for many classi-
cal lattices [23, Chapters 4 and 21], but we believe that the
RelevantVectors algorithm proposed here is the fastest
known in the general case. The only alternative algorithm
known to the authors is the “diamond-cutting” algorithm
of Viterbo and Biglieri [79], which computes a complete ge-
ometrical description of the Voronoi region of any lattice.
This description includes all vertices, edges, etc., which ev-
idently includes the information about the relevant vectors.
However, using the diamond-cutting algorithm for the sole
purpose of determining the relevant vectors is inefficient.



Submitted, October 26, 2000; revised, March 8, 2002 11

Voronöı showed in his classical work [81] that the num-
ber of (n−k)-dimensional faces of a Voronoi region of an
n-dimensional lattice is upper-bounded by

(k + 1)

k∑
i=0

(−1)i
(
k
i

)
(k − i+ 1)n (30)

and that there exist lattices whose Voronoi regions attain
this number for every k [81, vol. 136, pp. 74–82, 137–143].
One example of such a lattice, given by Voronöı, is the lat-
tice usually denoted by A∗n, which is the dual of the root
lattice An [23, p. 115]. Furthermore, the number of (n−k)-
dimensional faces is lower-bounded by

2k
(
n
k

)
. (31)

This can be proved by induction, keeping in mind that
the Voronoi region, as well as all its k-faces, are symmet-
ric polytopes. The lower bound (31) is attained for every
k by the cubic lattice Zn. Evaluating (30) and (31) for
k = n, n−1, . . . shows that the number of vertices is be-
tween 2n and (n + 1)!, inclusively, the number of edges is
between n2n−1 and (n/2)(n+ 1)!, and so on. This implies
that the memory requirements for the diamond-cutting al-
gorithm grow very rapidly with dimension. This property
limits the use of the diamond-cutting algorithm to low di-
mensions, as the authors of [79] themselves point out.

The RelevantVectors algorithm, on the other hand,
uses negligible memory but does not fully determine the
Voronoi regions. In those cases where a complete descrip-
tion (vertices, edges, etc.) is desired, we suggest preced-
ing the diamond-cutting algorithm with RelevantVec-
tors, since the complexity (both time and memory) of the
diamond-cutting algorithm can be reduced by incorporat-
ing knowledge of the relevant vectors.

D. Korkine-Zolotareff Reduction

The last problem we deal with here is the reduction prob-
lem. This is the problem of finding a KZ-reduced basis,
which has been already mentioned in Sections II and IV.
Theoretical results are available for specific lattices in [48].
Algorithms for general lattices have been proposed by Kan-
nan [47] and by Schnorr [65]. Since Korkine-Zolotareff
reduction essentially consists of solving n shortest-vector
problems, a closest-point algorithm can be used in this con-
text too. In our experiments (see the next section), we have
computed KZ-reduced bases using this method.

The general strategy is to find a shortest vector in the
lattice, project the lattice onto the hyperplane orthogonal
to this vector, and find a KZ-reduced basis of the resulting
(n−1)-dimensional lattice, recursively. In this application
of the ShortestVector algorithm, Step 1 is performed
using the LLL reduction, since a Korkine-Zolotareff re-
duction is obviously not a usable prerequisite for Korkine-
Zolotareff reduction. The implementation details, which
we omit, follow straightforwardly from the definition of
Korkine-Zolotareff reduction in Section II.

E. Closest Point in a Lattice Code

The primary focus of this paper is search problems for lat-
tices viewed as infinite point sets. Under some circum-
stances, the methods discussed above can be modified to
solve search problems for finite subsets of lattices. This
has important applications in communications. Specifi-
cally, demodulation and quantization both involve finding
the closest vector to a given input in a finite point set.
One popular method to design such a point set is to form
a lattice code, which is the intersection of a lattice and
a bounded region in Rm. This bounded region is usually
called the support of the lattice code [35, pp. 470–479], [36].

If a general closest-point algorithm for lattices is applied
to such a problem, there is a risk that the returned lattice
point lies outside the support and hence does not belong to
the lattice code. This typically happens if the input vector
lies outside the support, but it may also happen in some
cases if it lies slightly inside the support boundary.

Several ways to handle this problem have been proposed.
If a lattice point outside the support is returned by the
closest-point algorithm, an obvious option is to declare a
failure or erasure, if the application permits this. Oth-
erwise, the algorithm can be modified to disregard such
points and output the closest point found in the support,
or if no such point is found, to increase the size of the ini-
tial search region and try again [78,80]. Increasing the size
repeatedly ensures that the closest point in the lattice code
will eventually be found.

Alternatively, the input vector may be projected onto the
boundary of the support before the closest-point search al-
gorithm is invoked [8, 31, 32, 45]. Quite often, the closest
lattice point to the projected input vector belongs to the
lattice code and is its closest point to the original input,
but this is not always the case. Hence, it might be advanta-
geous to combine this method with increasing the size of the
search region, or to project the vector onto a surface slightly
inside the support boundary instead. If the input vector is
far outside the support region, a much smaller search re-
gion needs to be considered around the projected vector in
order to find the closest point in the lattice code, compared
to the size of the search region without projection.

The methods described above are applicable for the Kan-
nan, Pohst, and Schnorr-Euchner strategies alike. It can
be argued that increasing the size of the initial search re-
gion is useless for the Schnorr-Euchner strategy, because its
initial value of ρn is unbounded. However, we recommend
giving ρn an explicit finite value in this context, because
if for a certain input vector the Babai point lies outside
the support (and if the line through the Babai point in
the direction of v1 does not pass through any point in the
lattice code), then the unmodified version of Decode will
never terminate. To avoid this, line 2 of Decode should
be appropriately modified.

VII. Experiments

In this section, we report on experiments with the Clo-
sestPoint algorithm of Section III-B. We evaluate its per-



12 Submitted, October 26, 2000; revised, March 8, 2002

formance for both low-dimensional and high-dimensional
lattices. We also compare it with other similar algorithms,
and show how the basis for the lattice at hand should be
preprocessed in order to achieve the best performance.

A. The Setup

To evaluate the performance of the ClosestPoint algo-
rithm, we must decide what class of lattices to investigate.
The closest-point search methods studied here are general.
Thus they do not compete well with algorithms specially
designed for searching a particular lattice; such algorithms
can exploit structure in the lattice and are generally faster
(see Section I). Here, we concentrate on experiments with
random lattices without any apparent structure that can be
exploited in their decoding. However, for comparison, we
also include several experiments where the algorithms were
applied to classical, highly-structured, lattices, such as the
Leech lattice in 24 dimensions and the cubic lattice Zn.

Following the discussion above, we use generator ma-
trices with random elements, drawn from i.i.d. zero-mean,
unit variance Gaussian distributions. For each point in Fig-
ures 1–3, 50 random matrices are generated, and the mean
search time for each matrix is computed by averaging over
a large number of random vectors. The exact number of
input vectors is dependent on dimension: for large dimen-
sions with long search times the average is computed over
200 vectors for each of the 50 matrices, while for small
dimensions the number of vectors is much larger.

Then the median of the average search times for the 50
matrices is computed. Occasionally a random matrix with
very long search times is drawn. Computing the median
rather than the mean guarantees that these rare matrices
do not totally dominate the average search times. The
search times for all the algorithms are averaged using the
same matrices and the same set of input vectors. The re-
sults are given as average time (in seconds), using a DELL
computer based upon a 733 MHz Pentium III processor,
with Visual C++ running under Windows XP.

The random vectors were drawn according to a uniform
distribution. Conway and Sloane [22] report on a method
to generate uniform data within a Voronoi region, which is
equivalent to generating data uniformly distributed over a
infinite-sized region. Uniform data is a reasonable assump-
tion for applications such as source coding and cryptogra-
phy. In channel coding applications, a more reasonable as-
sumption is a Gaussian distribution around a lattice point,
but such experiments have not been performed here.

B. The Preprocessing

An important question for a closest-point algorithm is
whether the performance can be improved by preprocessing
the generator matrix. Since the preprocessing needs to be
performed only once, while the processed basis is typically
used many times (in most communication applications), it
is usually worthwhile to invoke a good preprocessing proce-
dure. In Section IV, three different preprocessing strategies
were discussed: LLL reduction, Korkine-Zolotareff reduc-

0 5 10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

dimension

s
e
a
rc

h
 t
im

e
 [
s
]

None
LLL
KZ
KZ−dual

Figure 1. Comparison of average search times among different reduc-
tion methods for preprocessing of the generator matrix.

tion, and Korkine-Zolotareff reduction of the dual. All of
these strategies basically aim to find as short and as or-
thogonal basis vectors as possible. Here, we present experi-
ments designed to find the best of these reduction methods.

In Figure 1, the simulation results for the three reduction
methods are given (the time needed for the reduction itself
is not included in these results). We see that performance
can be improved significantly by selecting a good preproces-
sor. The best methods in our study are the ones based on
the two Korkine-Zolotareff reductions; as expected, there
is almost no difference between the Korkine-Zolotareff re-
duction and the Korkine-Zolotareff reduction of the dual.
For high dimensions (30+), the Korkine-Zolotareff reduc-
tions lower the average search times by almost two orders of
magnitude, as compared to unreduced bases, and by about
one order of magnitude as compared to the LLL reduc-
tion. On the other hand, up to about 10–15 dimensions,
the polynomial-time LLL reduction gives good results.

C. Comparison with Other Algorithms

To assess the performance of the ClosestPoint algo-
rithm, we have also implemented an algorithm described
by Viterbo and Boutros in [80], which is based on the Pohst
strategy. The Viterbo-Boutros algorithm requires an ini-
tial bound on the attainable distance (see Section III-A).
A natural choice is the covering radius of the lattice, but
it is not clear how to compute the covering radius for ran-
dom lattices. Viterbo [77] suggests to use the length of the
shortest basis vector as an initial guess. If no lattice point
is found within this distance from the input vector, the dis-
tance is multiplied by some factor greater than 1, and the
search is repeated. We have performed some experiments
using factors between 1.1 and 1.6. We have also used the
distance to the Babai point as an initial distance bound,
thereby ensuring that at least one point is found within the
distance. The ClosestPoint algorithm needs no initial



Submitted, October 26, 2000; revised, March 8, 2002 13

0 5 10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

dimension

s
e
a
rc

h
 t
im

e
 [
s
]

ClosestPoint
Viterbo−Boutros, various initializations

Figure 2. Comparison of the average search time for the Closest-
Point algorithm and the Viterbo-Boutros algorithm.

bound for the distance; the Babai point is by default the
first point examined by this algorithm.

In Figure 2, the average time for a single closest-point
search operation is plotted as a function of dimension for
the ClosestPoint and the Viterbo-Boutros algorithms
(with several values for the initial distance bound). For
both algorithms, Korkine-Zolotareff reduction was first ap-
plied to the generator matrices. We see that the Closest-
Point algorithm is faster for all tested dimensions, by a
factor of 2.5–3 in our implementation.

D. Comparison with Classical Lattices

To further illustrate the performance of the Closest-
Point algorithm, we evaluate its performance for classical
lattices, and compare it with the performance for random
matrices (chosen from an i.i.d. Gaussian source). In Fig-
ure 3, the average search times for random lattices and for
the cubic lattice Zn are plotted as a function of dimension,
together with the search times for the Leech lattice in 24
dimensions, and for the Barnes-Wall lattices in dimensions
8, 16, and 32. For the classical lattices just as for random
lattices, Korkine-Zolotareff reduction leads to faster search
times, and is therefore applied before the experiments.

We see that although the search times for the classical,
highly structured, lattices are slightly higher, the general
curve is about the same as that for random lattices. This
is the strength as well as the weakness of search algorithms
of this type: they do not rely on any particular structure.

E. Suboptimal Search

The search algorithms studied here always return a lattice
point that is closest to the input point. However, in certain
applications (e.g. source coding), it may be necessary to
abort the search before the closest point has been found.
Therefore, we have included experiments where the Clos-
estPoint algorithm is aborted after a given time. The

0 5 10 15 20 25 30 35 40 45

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

dimension

s
e
a
rc

h
 t
im

e
 [
s
]

Cubic
Random
Barnes−Wall 8, 16, 32
Leech 24

Figure 3. Average search times for classical and random lattices.

10
−2

10
−1

10
0

10
1

10
2

1

1.05

1.1

1.15

1.2

1.25

Average search

time = 4.3 s

M
e
a
n
 s

q
u
a
re

d
 d

is
ta

n
c
e

search time [s]

Figure 4. Normalized mean squared distance as a function of the
allowed search time, when the search is aborted before the optimal
point is found. The Babai point had a normalized mean squared
distance of 1.49 for this 45-dimensional example.

measure of performance in these experiments is the mean
squared distance to the point produced by an aborted al-
gorithm.

In Figure 4, the ratio between the suboptimal and the op-
timal mean squared distances is given for a 45-dimensional
example, as a function of the time allotted for the search.
From this figure, we see that the ClosestPoint algorithm
quickly finds lattice points fairly close to the optimal one.

We see that if a 10% higher mean squared distance than
the optimal can be tolerated, then the ClosestPoint al-
gorithm is approximately 40 times faster than if the opti-
mal point is required. We only report results for a single
45-dimensional example, but the general conclusion is the
same for all tested dimensions and lattices. If the search



14 Submitted, October 26, 2000; revised, March 8, 2002

is aborted before the optimal point is found, considerable
time savings can be achieved at the cost of a slightly in-
creased mean squared distance. Note that the good results
relies on that the layers are searched according to (13); if
the layers are searched according to (15), the convergence
is considerably slower.

Acknowledgments

The authors gratefully acknowledge helpful comments by
Daniele Micciancio, who brought several recent references
to our attention. We also thank Emanuele Viterbo and
Joseph Boutrous for valuable suggestions regarding opti-
mization of the Viterbo-Boutros algorithm.

References

[1] L. Afflerbach and H. Grothe, “Calculation of Minkowski-reduced
lattice bases,” Computing, vol. 35, no. 3–4, pp. 269–276, 1985.

[2] E. Agrell, “On the Voronoi neighbor ratio for binary linear block
codes,” IEEE Trans. Inform. Theory, vol. 44, pp. 3064–3072,
Nov. 1998.

[3] E. Agrell and T. Eriksson, “Optimization of lattices for quan-
tization,” IEEE Trans. Inform. Theory, vol. 44, pp. 1814–1828,
Sept. 1998.

[4] E. Agrell and T. Ottosson, “ML optimal CDMA multiuser re-
ceiver,” Electronics Letters, vol. 31, pp. 1554–1555, Aug. 1995.

[5] M. Ajtai, “Generating hard instances of lattice problems,” in
Proc. 28-th Annual ACM Symp. Theory of Computing, pp. 99–
108, Philadelphia, PA, May 1996.

[6] M. Ajtai, “The shortest vector problem in L2 is NP-hard for ran-
domized reductions,” in Proc. 30-th Annual ACM Symp. Theory
of Computing, pp. 193–203, Dallas, TX, May 1998.

[7] M. Ajtai and C. Dwork, “A public-key cryptosystem with worst-
case/average-case equivalence,” in Proc. 29-th Annual ACM
Symp. Theory of Computing, pp. 284–293, El Paso, TX, 1997.

[8] M. Antonini, M. Barlaud, and T. Gaidon, “Adaptive entropy
constrained lattice vector quantization for multiresolution image
coding,” Proc. SPIE, vol. 1818, pt. 2, pp. 441–457, Nov. 1992.

[9] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness
of approximate optima in lattices, codes, and systems of linear
equations,” Journal of Computer and System Sciences, vol. 54,
pp. 317–331, Apr. 1997.

[10] L. Babai, “On Lovász’ lattice reduction and the nearest lattice
point problem,” Combinatorica, vol. 6, no. 1, pp. 1–13, 1986.

[11] A. H. Banihashemi and I. F. Blake, “Trellis complexity and min-
imal trellis diagrams of lattices,” IEEE Trans. Inform. Theory,
vol. 44, pp. 1829–1847, Sept. 1998.

[12] A. H. Banihashemi and A. K. Khandani, “On the complexity
of decoding lattices using the Korkine-Zolotarev reduced basis,”
IEEE Trans. Inform. Theory, vol. 44, pp. 162–171, Jan. 1998.

[13] I. F. Blake, “Lattices and cryptography,” preprint, August 2000.
[14] J. Blömer, “Closest vectors, successive minima, and dual HKZ-

bases of lattices,” in Proc. Int. Colloq. Automata, Languages
and Programming (U. Montanari, J. D. P. Rolim, and E. Welzl,
Eds.), pp. 248–259, Geneva, Switzerland, July 2000.

[15] J. Boutros, E. Viterbo, C. Rastello, and J.-C. Belfiore, “Good
lattice constellations for both Rayleigh fading and Gaussian
channels,” IEEE Trans. Inform. Theory, vol. 42, pp. 502–518,
March 1996.

[16] L. Brunel and J. Boutros “Euclidean space lattice decoding for
joint detection in CDMA systems,” in Proc. Int. Workshop on
Inform. Theory, p. 129, Kruger Park, South Africa, June 1999.

[17] L. Brunel and J. Boutros “Lattice decoding for joint detection in
direct sequence CDMA systems,” IEEE Trans. Inform. Theory,
vol. 48, 2002, to appear.

[18] J. W. S. Cassels, An Introduction to the Geometry of Numbers.
Berlin, Germany: Springer, 1959.

[19] I. V. L. Clarkson, “Frequency estimation, phase unwrapping,
and the nearest lattice point problem,” Proc. Int. Conf. Acoust.
Speech Sign. Process., pp. 1609–1612, Phoenix, AZ, March 1999.

[20] H. Cohen, A Course in Computational Algebraic Number The-
ory. Berlin, Germany: Springer-Verlag, 1993.

[21] J. H. Conway and N. J. A. Sloane, “A fast encoding method
for lattice codes and quantizers,” IEEE Trans. Inform. Theory,
vol. IT-29, pp. 820–824, Nov. 1983.

[22] J. H. Conway and N. J. A. Sloane, “On the Voronoi regions
of certain lattices,” SIAM Journal on Algebraic and Discrete
Methods, vol. 5, pp. 294–305, Sept. 1984.

[23] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices
and Groups. New York, NY: Springer-Verlag, 3rd ed., 1999.

[24] R. R. Coveyou and R. D. MacPherson, “Fourier analysis of uni-
form random number generators,” Journal of the ACM, vol. 14,
pp. 100–119, Jan. 1967.

[25] O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder
for space-time codes,” IEEE Communications Letters, vol. 4,
no. 5, pp. 161–163, May 2000.

[26] U. Dieter, “How to calculate shortest vectors in a lattice,” Math-
ematics of Computation, vol. 29, pp. 827–833, July 1975.

[27] I. Dinur, G. Kindler, R. Raz, and S. Safra, “An improved
lower bound for approximating CVP,” preprint, available at
http://www.math.ias.edu/~iritd, 2002.

[28] P. Erdös, P. M. Gruber, and J. Hammer, Lattice Points. Harlow,
U.K. and New York, NY: Longman and Wiley, 1989.

[29] W. Feller, An Introduction to Probability Theory and its Appli-
cations, New York, NY: Wiley, 3rd ed., vol. 1, 1968.

[30] U. Fincke and M. Pohst, “Improved methods for calculating vec-
tors of short length in a lattice, including a complexity analysis,”
Mathematics of Computation, vol. 44, pp. 463–471, Apr. 1985.

[31] T. R. Fischer, “A pyramid vector quantizer,” IEEE Trans. In-
form. Theory, vol. IT-32, pp. 568–583, July 1986.

[32] T. R. Fischer, “Geometric source coding and vector quantiza-
tion,” IEEE Trans. Inform. Theory, vol. 35, pp. 137–145, Jan.
1989.

[33] G. D. Forney, Jr., “The Viterbi algorithm,” Proc. IEEE, vol. 61,
pp. 268–278, March 1973.

[34] G. D. Forney, Jr., “Coset codes—part II: Binary lattices and
related codes,” IEEE Trans. Inform. Theory, vol. 34, pp. 1152–
1187, Sept. 1988.

[35] A. Gersho and R. M. Gray, Vector Quantization and Signal Com-
pression. Boston, MA: Kluwer, 1992.

[36] J. D. Gibson and K. Sayood, “Lattice quantization,” in Advances
in Electronics and Electron Physics (P. W. Hawkes, Ed.), vol. 72,
pp. 259–330, Boston, MA: Academic Press, 1988.

[37] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert, “Approx-
imating shortest lattice vectors is not harder than approximating
closest lattice vectors,” Information Processing Letters, vol. 71,
pp. 55–61, July 1999.

[38] O. Goldreich, D. Ron, and M. Sudan, “Chinese remaindering
with errors,” IEEE Trans. Inform. Theory, vol. 46, pp. 1330–
1338, July 2000.

[39] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers.
Amsterdam, The Netherlands: North-Holland, 1987.

[40] V. Guruswami, A. Sahai, and Madhu Sudan, “ ‘Soft-decision’
decoding of Chinese remainder codes,” in Proc. 41-th Annual
Symp. Found. Computer Science, pp. 159–168, Redondo Beach,
CA, Nov. 2000.

[41] W. W. Hager, Applied Numerical Linear Algebra. Englewood
Cliffs, NJ: Prentice Hall, 1988.

[42] B. Helfrich, “Algorithms to construct Minkowski reduced and
Hermite reduced lattice bases,” Theoretical Computer Science,
vol. 41, nos. 2–3, pp. 125–139, 1985.

[43] M. Henk, “Note on shortest and nearest lattice vectors,” Infor-
mation Processing Letters, vol. 61, pp. 183–188, 1997.

[44] Ch. Hermite, “Extraits de lettres à M. Jacobi sur différents
objets de la théorie des nombres,” Journal für die Reine und
Angewandte Mathematik, vol. 40, no. 3–4, pp. 261–315, 1850
(in French).

[45] D. G. Jeong and J. D. Gibson, “Uniform and piecewise uniform
lattice vector quantization for memoryless Gaussian and Lapla-
cian sources,” IEEE Trans. Inform. Theory, vol. 39, pp. 786–804,
May 1993.

[46] R. Kannan, “Improved algorithms for integer programming and
related lattice problems,” in Proc. of the ACM Symposium on
Theory of Computing, pp. 193–206, Boston, MA, Apr. 1983.

[47] R. Kannan, “Minkowski’s convex body theorem and integer
programming,” Mathematics of Operations Research, vol. 12,
pp. 415–440, Aug. 1987.

[48] A. K. Khandani and M. Esmaeili, “Successive minimization of
the state complexity of the self-dual lattices using Korkine-
Zolotarev reduced basis,” Tech. Rep. UW-E&CE#97-01, De-

erikagrell
Text Box
(13)

erikagrell
Text Box
(15)

erikagrell
Line

erikagrell
Line

erikagrell
Line



Submitted, October 26, 2000; revised, March 8, 2002 15

partment of Electrical and Computer Engineering, Univ. of Wa-
terloo, Waterloo, Ontario, Canada, Jan. 1997.

[49] P. Klein, “Finding the closest lattice vector when it’s unusually
close,” in Proc. 11-th ACM-SIAM Symp. Discrete Algorithms,
pp. 937–941, San Francisco, CA, Jan. 2000.

[50] D. E. Knuth, The Art of Computer Programming, vol. 2, Read-
ing, MA: Addison-Wesley, 2nd ed., 1981.

[51] A. Korkine and G. Zolotareff, “Sur les formes quadratiques,”
Mathematische Annalen, vol. 6, pp. 366–389, 1873 (in French).

[52] C. Lamy and J. Boutros, “On random rotations diversity and
minimum MSE decoding of lattices,” IEEE Trans. Inform. The-
ory, vol. 46, pp. 1584–1589, July 2000.

[53] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, “Factoring
polynomials with rational coefficients,” Mathematische Annalen,
vol. 261, pp. 515–534, 1982.

[54] D. Micciancio, “The shortest vector in a lattice is hard to approx-
imate to within some constant,” in Proc. 39-th Annual Symp.
Found. Computer Science, pp. 92–98, Palo Alto, CA, Nov. 1998.

[55] D. Micciancio, “The hardness of the closest vector problem with
preprocessing,” IEEE Trans. Inform. Theory, vol. 47, pp. 1212–
1215, March 2001.

[56] H. Minkowski, “Sur la réduction des formes quadratiques pos-
itives quaternaires,” Comptes Rendus de l’Académie des Sci-
ences, vol. 96, pp. 1205–1210, 1883 (in French). Also in Gesam-
melte Abhandlungen von Hermann Minkowski (D. Hilbert, Ed.),
Leipzig and Berlin: Teubner, vol. 1, pp. 145–148, 1911.

[57] H. Minkowski, “Über positive quadratische Formen,” Journal für
die Reine und Angewandte Mathematik, vol. 99, no. 1, pp. 1–9,
1886 (in German). Also in Gesammelte Abhandlungen von Her-
mann Minkowski (D. Hilbert, Ed.), Leipzig and Berlin: Teubner,
vol. 1, pp. 149–156, 1911.

[58] H. Minkowski, “Zur Theorie der positiven quadratischen For-
men,” Journal für die Reine und Angewandte Mathematik,
vol. 101, no. 3, pp. 196–202, 1887 (in German). Also in Gesam-
melte Abhandlungen von Hermann Minkowski (D. Hilbert, Ed.),
Leipzig and Berlin: Teubner, vol. 1, pp. 212–218, 1911.

[59] H. Minkowski, Geometrie der Zahlen. Leipzig, Germany, 1896
(in German).

[60] H. Minkowski, “Allgemeine Lehrsätze über die konvexen
Polyeder,” Nachrichten der K. Gesellschaft der Wissenschaften
zu Göttingen. Mathematisch-physikalische Klasse, pp. 198–219,
1897 (in German). Also in Gesammelte Abhandlungen von Her-
mann Minkowski (D. Hilbert, Ed.), Leipzig and Berlin: Teubner,
vol. 2, pp. 103–121, 1911.

[61] H. Minkowski, “Diskontinuitätsbereich für arithmetische

Äquivalenz,” Journal für die Reine und Angewandte Math-
ematik, vol. 129, no. 3–4, pp. 220–274, 1905 (in German).
Also in Gesammelte Abhandlungen von Hermann Minkowski
(D. Hilbert, Ed.), Leipzig and Berlin: Teubner, vol. 2,
pp. 53–100, 1911.

[62] W. H. Mow, “Maximum likelihood sequence estimation from
the lattice viewpoint,” IEEE Trans. Inform. Theory, vol. 40,
pp. 1591–1600, Sept. 1994.

[63] M. Pohst, “On the computation of lattice vectors of minimal
length, successive minima and reduced bases with applications,”
ACM SIGSAM Bulletin, vol. 15, pp. 37–44, Feb. 1981.

[64] S. S. Ryshkov and E. P. Baranovskii, “Classical methods in the
theory of lattice packings,” Uspekhi Matematicheskikh Nauk,
vol. 34, pp. 3–64, July–Aug. 1979 (in Russian). Translated in
Russian Mathematical Surveys, vol. 34, no. 4, pp. 1–68, 1979.

[65] C. P. Schnorr, “A hierarchy of polynomial time lattice basis
reduction algorithms,” Theoretical Computer Science, vol. 53,
nos. 2–3, pp. 201–224, 1987.

[66] C. P. Schnorr, “A more efficient algorithm for lattice basis re-
duction,” Journal of Algorithms, vol. 9, pp. 47–62, March 1988.

[67] C. P. Schnorr and M. Euchner, “Lattice basis reduction: im-
proved practical algorithms and solving subset sum problems,”
Mathematical Programming, vol. 66, pp. 181–191, 1994.

[68] C. P. Schnorr and H. H. Hörner, “Attacking the Chor-Rivest
cryptosystem by improved lattice reduction,” Lect. Notes Com-
puter Science vol. 921, pp. 1–12, Berlin: Springer-Verlag, 1995.

[69] A. Schönhage, “Factorization of univariate integer polynomials
by diophantine approximation and an improved basis reduction
algorithm,” in Proc. Colloq. Automata, Languages and Pro-
gramming (J. Paredaens, Ed.), pp. 436–447, Antwerp, Belgium,
July 1984.

[70] J. Stern, “Lattices and cryptography: An overview,” in Public
Key Cryptography (H. Imai and Y. Zheng, Eds.), pp. 50–54,
Yokohama, Japan, Feb. 1998.

[71] G. Strang, Linear Algebra and Its Applications. San Diego, CA:
Harcourt Brace Jovanovich, 3rd ed., 1988.

[72] V. Tarokh and I. F. Blake, “Trellis complexity versus the coding
gain of lattices,” Parts I and II, IEEE Trans. Inform. Theory,
vol. 42, pp. 1796–1816, Nov. 1996.

[73] V. Tarokh and A. Vardy, “Upper bounds on trellis complexity of
lattices,” IEEE Trans. Inform. Theory, vol. 43, pp. 1294–1300,
July 1997.

[74] P. van Emde Boas, “Another NP-complete partition problem
and the complexity of computing short vectors in a lattice,” Rep.
81-04, Mathematisch Instituut, Amsterdam, The Netherlands,
Apr. 1981.

[75] A. Vardy and Y. Be’ery, “Maximum-likelihood decoding of the
Leech lattice,” IEEE Trans. Inform. Theory, vol. 39, pp. 1435–
1444, July 1993.

[76] A. J. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” IEEE Trans. In-
form. Theory, vol. IT-13, pp. 260–269, Apr. 1967.

[77] E. Viterbo, personal communication, January 2002.
[78] E. Viterbo and E. Biglieri, “A universal decoding algorithm for

lattice codes,” in Proc. GRETSI, pp. 611–614, Juan-les-Pins,
France, Sept. 1993.

[79] E. Viterbo and E. Biglieri, “Computing the Voronoi cell of
a lattice: The diamond-cutting algorithm,” IEEE Trans. In-
form. Theory, vol. 42, pp. 161–171, Jan. 1996.

[80] E. Viterbo and J. Boutros, “A universal lattice code decoder for
fading channels,” IEEE Trans. Inform. Theory, vol. 45, pp. 1639–
1642, July 1999.

[81] G. Voronöı, “Nouvelles applications des paramètres continus à
la théorie des formes quadratiques,” Journal für die Reine und
Angewandte Mathematik, vol. 133, pp. 97–178, 1908; vol. 134,
pp. 198–287, 1908; and vol. 136, pp. 67–181, 1909 (in French).




