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Abstract

In this paper, we review the use of texture features for cancer detection in Ultrasound (US)
images of breast, prostate, thyroid, ovaries and liver for Computer-Aided Diagnosis (CAD)
systems. This paper shows that texture features are a valuable tool to extract diagnostically
relevant information from US images. This information helps practitioners to discriminate
normal from abnormal tissues. A drawback of some classes of texture features comes from
their sensitivity to both changes in image resolution and grayscale levels. These limitations
pose a considerable challenge to CAD systems, because the information content of a specific
texture feature depends on the US imaging system and its setup. Our review shows that
single classes of texture features are insufficient, if considered alone, to create robust CAD
systems, which can help to solve practical problems, such as cancer screening. Therefore, we
recommend that the CAD system design involves testing a wide range of texture features
along with features obtained with other image processing methods. Having such a compet-
itive testing phase helps the designer to select the best feature combination for a particular
problem. This approach will lead to practical US based cancer detection systems which de-
liver real benefits to patients by improving the diagnosis accuracy while reducing health care
cost.

Keywords: Cancer, Ultrasound, Texture Analysis, Computer Aided Diagnosis

1. Introduction

In 2015, heart diseases were the leading cause of death in the United States and cancer
was the second leading cause of death. It is predicted that the order will reverse in the
future [1]. Therefore, cancer is a big and growing public health problem [2]. Table 1 lists
public health data from the American cancer society [3]. It shows both the estimated new
cases and the estimated deaths for ovarian, liver, thyroid, breast and prostate cancers. These
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Table 1: Estimation of the number of new cases and death for selected cancers in the United states, 2015 [3].

Cancer type Estimated new cases Estimated deaths
Ovarian 21,290 14,180
Liver & intrahepatic bile duct 35,660 24,550
Thyroid 62,450 1,950
Breast 234,190 4,0730
Prostate 220,800 2,7540

All the cancer types from above together 574390 108950

All cancer types 1658370 589430

cancers contribute 34.64% of all the estimated new cancer cases and they are responsible for
more than 18.48% of cancer related deaths. In terms of public health, the problem can be
partitioned into cancer prevention, diagnosis and treatment. Cancer prevention is possible,
because healthy lifestyle choices lower the risk for developing cancer. The link between
lifestyle choices and cancer was discovered by studies which showed that cancer rates of
migrants move towards the rate measured in the indigenous population [4, 5]. Smoking,
consumption of calorie dense food and reproductive behaviors are also known to increase the
risk of getting cancer [4].

Ultrasound (US) is a non-invasive, cost effective and safe1 medical imaging modality
which can be used to detect cancer [6, 7]. Achieving a good diagnosis performance with this
imaging technology requires an integrate interplay of fine motor skills (to operate the ultra-
sound transducer) and cognitive abilities for image interpretation [8]. Hence, practitioners
require extensive initial training and continuous practice. A core problem of this human cen-
tric approach for disease diagnosis is the non-stationary diagnosis quality and inter- as well
as intra-operator variability [9]. Non-stationary refers to the fact that the performance of
human practitioners varies over time. These variations can be positive, such as gaining more
experience over time as well as negative triggered by fatigue and other external factors. Over-
all, the beneficial properties of US technology outweigh these problems. Therefore, a vibrant
research community explores a wide range of application areas for this imaging methodology.
Initially, US was used only for application areas where tissue and bone formations led to
sharp edges in the US images [10, 11]. Unfortunately, a wide range of diseases cannot be
diagnosed based on the edges within an US image alone [12, 13]. Many of the new application
areas target diseases whose symptoms and signs are changes in soft tissues [14]. A prominent
example of that problem class is cancer diagnosis, because cancer cells are very similar to
normal cells. Differentiating malignant from normal cells can be improved by interpreting
image texture, since it contains information about the scanned tissues [15]. For a human
practitioner, the changes in image texture, which indicate the presence of cancer, appear to
be minute. Hence, human texture analysis is tiresome and error prone. As a consequence, a
human centric approach leads to a low diagnostic accuracy.

Computer-Aided Diagnosis (CAD) can help to overcome the problems of human texture
analysis and thereby increase the diagnosis accuracy [16, 17]. The challenge for such computer

1It uses no ionizing radiation.
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based texture analysis is twofold. First, we need to establish mathematical definitions for
relevant image textures. These mathematical definitions lead to texture analysis algorithms
which can be used in practical CAD systems [18]. The second problem is to detect the texture
changes, which indicate malignant tissues. It turns out that these problems cannot be solved a
priori; the texture interpretation can only be done a posteriori. In other words, it is impossible
to know what type of texture analysis algorithm will be sensitive for the subtle differences
between normal and cancer cells in US images. Therefore, empirical methods identify which
texture methods work well for a specific problem [19]. As a consequence, it is necessary to
test a wide range of algorithms and select the ones which show the best performance on
known data. Another complicating factor, for computer based texture analysis, is that most
of the known texture algorithms depend on the image resolution. Hence, specific texture
results are not transferable between different US capturing machines.

Texture information can be extracted using various methods. In order to select the best
algorithm, it is necessary to have a good understanding of the available methods. The current
review provides an overview of the available texture algorithms and their applications. We
review texture-based US image analysis in the areas of breast, prostate, liver, ovarian and
thyroid cancer detection. This review shows that texture features are vital for achieving the
diagnostic accuracy needed for practical CAD systems. Furthermore, we give an overview
of texture algorithms. During the review, we found that only a few CAD systems are solely
based on texture methods. Research work, that considers only texture algorithms, aims
to improve the understanding of the relationship between human tissue formations and US
images. Robust and therefore practical CAD systems must be based on a range of different
feature extraction methods, preferably coming from different imaging methods. We recognize
that texture-based image analysis is a useful and cost effective enhancement of the well-known
US technology. For application areas, such as breast, liver, ovarian, prostate and thyroid
cancer, US based texture features are vital for CAD.

To support our position, on texture analysis for medical US images, we have organized
the article as follows. The next section provides pathological background on breast, prostate,
liver, ovarian and thyroid cancer and their typical characteristics in ultrasound images. The
material section contains a comprehensive review of texture algorithms and we introduce
methods to measure the quality of these algorithms. All studies that were cited in this
review got informed consent from each study participant and protocol approval by an ethics
committee or institutional review board. The review results section presents the review
results for texture-based CAD for breast, prostate, liver, ovarian and thyroid cancer. The
individual results are collected in tables, one for each disease. The subsequent discussion
section puts these results into perspective with other works centered on CAD. The conclusion
section ends the review with concluding thoughts on the topic of texture-based soft tissue
cancer detection.

2. Background

In this section we will give an overview of prostate, ovarian, liver, breast and thyroid
cancers and how US texture features are relevant for the identification of each individual
cancer.
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Figure 1: US image of a normal breast tissue.

2.1. Breast cancer

The female breast is made up of fat as well as connective and gland tissues, and its main
biological purpose is to provide nutrients to newborns. Ultrasound imaging can be used to
diagnose abnormalities in the breast and to distinguish between benign and malignant masses
[20]. Breast tumors are visualized in the ultrasound image as a hypoechoic structure with
a more or less circular form and malignant tumors often lack circumscribed margins, show
heterogenous echo patterns and an increased anterioposterior dimension. Figure 1 shows a
US image of normal female breast tissue. Figure 2 shows a benign cyst. Figure 3 shows a
malignant carcinoma.

2.2. Prostate cancer

The prostate forms a part of the male reproductive system that secretes an alkaline fluid
that constitutes about 30% of the semen volume [21]. Current methods used for screening for
prostate cancer include measuring serum prostate-specific antigen (PSA) levels, transrectal
ultrasound scanning (TRUS), digital rectal exam, and biopsy. Regarding ultrasound imaging,
three dimensional TRUS is currently often used and abnormality in the US images can be
determined by prostates that (1) have capsular irregularity or an ill-defined peripheral and
transitional zone, or (2) are focal hypoechoic, echogenic or isoechoic with focal contour bulged
lesions in the peripheral zone[22]. Figure 4 shows a US image of normal prostate tissue. Figure
5 shows suspicious prostate tissue which is calcified and enlarged.

2.3. Liver cancer

The liver is a vital organ for human health and well-being that filters toxic substances
from the blood, synthesizes proteins and produces biochemicals for digestion [23]. Ultrasound

4



Figure 2: US image of a benign breast cyst at the retroaerolar region.

Figure 3: Breast carcinoma: the lesion (measuring 0.517 × 0.557 cm) has a marked hypoechogenecity, lacks
of circumscribed margins, shows heterogenous echo patterns and an increased anterioposterior dimension.
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Figure 4: US image of a normal prostate tissue.

Figure 5: US image of an enlarged prostate with calcification.
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Figure 6: US images of a normal liver tissue. Top: Shearwave image. Bottom: B-mode ultrasound of the
liver.

imaging is often used to diagnosis liver disease and in detecting lesions. A normal liver appears
as a structure with homogeneous texture and average echogenicity, whereas cysts appear as
an anechoic region with posterior acoustic enhancement and a typical metastasis presents a
“target” appearance with a hyperechoic rim and a hypoechoic center [24]. Texture features
can therefore be very useful in the diagnosis and discrimination of liver cancer. Figure 6
shows a US image of normal liver tissue. Figures 7 and 8 show US images of liver cyst and
liver metastasis respectively.

2.4. Ovarian cancer

Ovaries are a part of the female reproductive system and are also responsible for producing
female sex hormones, such as estrogen and progesterone [25]. Ultrasound imaging is often
employed to image the ovaries and to assist in the detection and classification of ovarian cysts,
which is a sac filled with liquid surrounded by a very thin wall. Ovarian cysts are typically
classified based on size [26] and texture features can also enhance subtle tissue changes which
indicate a malignant tumor. Figure 9 shows an US image of a normal ovary. Figure 10 shows
an ovary cyst.

2.5. Thyroid cancer

The thyroid gland, which is located in front of the neck, secretes hormones that influence
protein synthesis and the metabolic rate [27]. US imaging is often used to diagnose thyroid
nodules which are typically characterized as hypo-, iso-, or hyperechoic [28]. Thyroid nodules
are typically heterogeneous with various internal components, demonstrating how texture
analysis can be a powerful tool in identifying cancer in thyroid US images. Figures 11 and
12 show benign and malignant thyroid respectively.
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Figure 7: US image of a liver cyst.

Figure 8: US image of a liver metastasis.
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Figure 9: US image of a normal ovary tissue.

Figure 10: US image of an ovary cyst.

9



Figure 11: US images of a benign thyroid nodule.

Figure 12: US images of a malignant thyroid.
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Offline system Online system

Known US images

Texture and other feature
assessment

Classification assessment

Captured US images

Feature extraction

Decision support

Figure 13: The offline system is used to design the online or deployed CAD system.

3. Material and methods

The fact that cancer is a big and growing public health problem creates a need to investi-
gate cost effective diagnosis methods. This section shows how US based CAD for soft tissue
cancer can help to address this important problem. Cost efficiency comes from the fact that
both US imaging and digital processing are inexpensive processes. The task of the designer
is to find suitable image processing algorithms, which can extract good quality features from
US images. These feature extraction algorithms feed their results to classification algorithms
which provide diagnosis support.

Figure 13 shows an overview diagram for the design of US based CAD systems. The
data set of known or classified US images is crucial for the validity of the design process.
To be specific, only if the data set, with which the CAD system was developed, is similar
to the measurements obtained when the system is deployed then the performance measures,
acquired during the design process, are valid. The subsequent processing and classification
methods are used to find the most suitable algorithm structure. This process is governed
by empirical science and steered by performance measures. The next section introduces an
example study on texture-based feature extraction from thyroid US images.

3.1. Ultrasound texture

US images show “speckle” texture, which results from the interaction of an ultrasonic
wave with tissue components [29]. In many cases, parenthetical tissue structures are small
compared to the period length of the sound waves used by the US transducer. As a conse-
quence, the sound wave is scattered by these tissue structures. The scattered waves interfere
with one another, because within one resolution cell there are several reflectors and the
transducer sums up the received waves in a coherent manner. The interference produces a
granular texture, known as speckle. The speckle pattern is influenced by a large number
of parameters, including reflector density, tissue type and even the pathological state of the
tissue [30]. All the scientific work reviewed in the next section is based on the assumption
that speckle, i.e. the US image texture, contains information about the investigated tissue
structure. More specifically, the reviewed work aims to differentiate speckle texture of benign
from malignant tissue.
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To demonstrate texture feature extraction, we used 60 texture algorithms on US images
of the thyroid gland. The algorithms were applied to US scans from 223 patients of the
Chiang Mai University Hospital, Thailand [31]. The protocol was approved by the ethics
committee and the informed consent was waived due to retrospective study. The images
show 211 benign and 31 malignant thyroid nodules. Figures 14 and 15 show the performance
of these algorithms in differentiating benign from malignant tissue. The t-value [32, 7]was
used as primary performance measure and the figures list the features in descending order, i.e.
features with the highest t-values come on top of the list. Being on top of the list indicates that
the feature has the ability to discriminate between benign and malignant thyroid nodules.
In addition to the t-value, the figures also indicate mean and standard deviation scores, for
both benign and malignant cases, of a particular feature. Ideally, we would like a feature to
have distinct mean and low standard deviation values for benign and malignant lesions of US
images. It turns out that the Long Run Emphasis (LRE) feature satisfies that requirement
better than all the other tested texture algorithms. As a consequence, the LRE t-value score
is 3.4354, which is the highest amongst the tested feature extraction methods. However,
this result holds true for this particular dataset only. Other datasets, taken with different
imaging equipment, are likely to result in a different feature performance. Therefore, testing
the feature performance with a large and varied dataset, is very important for the design of
CAD systems.

Figure 16 shows a treemap [33] of the t-value results, presented in Table A.7, shown
in the appendix. The Gray-Level Co-occurrence Matrix (GLCM) square shows the largest
sub-squares, indicating that the method is sensitive for detecting malignant thyroid nodules.

The following classifiers were used for diagnosis support: Artificial Neural Network (ANN)
[34], Support Vector Machine (SVM) [35], Decision Tree (DT) [36], Gaussian Mixture Model
(GMM) [37], K-Nearest Neighbour (K-NN) [38], Probabilistic Neural Network (PNN) [39],
Naive Bayes Classifier (NBC) [40], Self Organizing Feature Map (SOFM) [41], Multilayer
Perceptron Neural Networks (MLPNN) [42], Radial Basis Probabilistic Neural Network
(RBPNN) [43]. The next section reports the review results of a wide range of texture-based
computer support systems used for cancer detection using US images.

4. Review results

The algorithms outlined above result from fundamental and applied research. In order for
these algorithms to become technology, they have to work in more complex systems. In this
section, we discuss how these algorithms were used in CAD systems. Each of the following
sections presents the review results for texture-based CAD targeting a specific soft tissue
cancer. We start the discussion by introducing the review results for breast cancer CAD.

4.1. Breast cancer

Table 2 summarizes research work, documented in eight papers, on texture methods for
US based breast cancer detection. The table presents four different assessment criteria. The
first assessment criterion is a list of all features used. We have placed a particular emphasis on
texture algorithms. These algorithms are grouped in terms of GLCM, Gray Level Difference
Matrix (GLDM), LBP , FOP and LTE. The next column states the number of features.
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Feature 0 0.5 1 1.5 2 2.5 3 3.5 4

t-value

−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2

LRE

SV AR

ACORR

SA

SKE

SRE

LRLGE

CS

KUR

MP

HGRE

LTE5

SENT

D

H

SRLGE

SRHGE

RP

LTE1

HOM

DISS

LBP Entropy 162

ICM1

DV AR

CON

DENT

LTE6

E

LTE2

GLNU

Normalized feature values

Figure 14: Error plot of normalized textrue features from US images of benign and malignant thyroid. The
black error bar indicates the feature mean and variance for features taken from images showing benign
thyroid. Similarly, the blue error bar indicates the feature mean and variance for features taken from
images showing malignant thyroid. Both error bars are based on the normalized feature values. The length
of the horizontal bar indicates the t-value.
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Feature 0 0.5 1 1.5 2 2.5 3 3.5 4

t-value

−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2

RLNU

LGRE

LTE20

LBP Entropy 243

LBP Energy 81

LTE7

LTE3

LBP Energy 162

LTE11

LBP Entropy 81

LTE4

LTE8

ICM2

LBP Energy 243

LTE12

LTE21

LTE10

LRHGE

LTE13

LTE22

LTE15

LTE9

LTE14

LTE24

LTE19

LTE23

LTE18

V AR

LTE17

LTE16

Normalized feature values

Figure 15: Error plot of normalized textrue features from US images of benign and malignant thyroid.
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Figure 16: Treemap of the t-Value results presented in Table A.7 of Appendix Appendix A. The five main
squares in the diagram represent the texture extraction methods GLCM, GLRLM, LTE, FOP and LBP .
The number, below the square label, is the cumulative t-Value result of the texture extraction methods.

This number is an important assessment criterion, because it indicates the dimensionality of
the feature vector which is fed into the classification algorithms. Column three states the
classification algorithm used for the breast cancer CAD system. The last column indicates
the performance of the best classification algorithm. As such, the classification performance
gives an indication of the diagnostic quality that can be obtained with a specific system.
However, the performance results need to be qualified with other assessment criteria in order
to have a balanced assessment of the research work.
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Table 2: Summary of breast cancer CAD using texture features in US images.

Author
year

Objective Features Number of
Features

Classifiers Performance and
clinical significance

Huang et
al. 2004
[44]

Detect the textural
variation between
benign and malignant
tissues in US images
for breast tumour
classification.

Auto covariance of neigh-
bouring pixels.

Principal
Com-
ponent
Analy-
sis (PCA)

Threshold classifier
based on Euclidean
distance

Accuracy >89.7%,
Sensitivity >96.1
and Specificity
>85.7%.

Huang et
al. 2006
[45]

Establish an image
retrieval technique
that utilizes a pro-
jected principal vector
to query US images,
which have a simi-
lar texture, from a
database.

• GLCM: Energy (E), En-
tropy (H), Correlation
(CORR), Inertia (IN),
Homogeneity (HOM)

• GLDM: Contrast
(CON), Differential
Mean (DMEAN),
Difference Entropy
(DENT ), Inverse Dif-
ference Moment (IDM),
Angular Second Mo-
ment (ASM)

After
PCA: Fea-
ture vector
dimen-
sionality
between 54
and 406

Threshold Accuracy: 82.38%

Huang et
al. 2006
[46]

Benign and malignant
breast tissue classifi-
cation through tex-
ture features.

block difference of inverse
probabilities (BDIP), block
variation of local corre-
lation coefficients (BVLC)
and auto-covariance matrix

28 SVM Accuracy: 95.2%
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Chen et al.
2002 [47]

GLCM based tissue
classification.

CON , Covariance (COV ),
Dissimilarity (DISS)

32 DT Accuracy: 87.07%,
Sensitivity:
95.35%, Speci-
ficity: 79.10%

Chang et
al. 2003
[48]

Autocovariance coeffi-
cients of speckle tex-
tures for tissue classi-
fication.

Speckle autocovariance ma-
trix

24 SVM Accuracy: 93.2%,
Sensitivity:
95.45%, Speci-
ficity: 91.43%

Garra et
al. 2003
[49]

Texture analysis to
improve the ability of
ultrasound to distin-
guish benign from ma-
lignant nodules.

GLCM: Gray Scale
Mean (GSM), Vari-
ance (V AR), Skew-
ness (SKE), Run per-
centage (RP ), CON ,
ASM , H, CORR, LRE,
Relative frequency of edge
elements, Variants of gradi-
ents, average absolute value
of gradients.

2 Threshold 100% sensitivity,
specificity was 91%
and accuracy was
93%

Shi et al.
2004 [50]

texture-based breast
mass classification.

151 Spatial Gray Level
Dependence Matri-
ces (SGLDM) features

13 Fuzzy SVM Accuracy 74.71%,
Sensitivity 88.89%
and Specificity
64.71%.
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Gómez et
al. 2012
[51]

Sonographic texture
analysis to distin-
guish malignant from
benign breast lesions.

GLCM: Autocorrela-
tion (ACORR), CON ,
CORR1,CORR2, Cluster
Prominence (CP ), Cluster
Shade (CS), DISS, E,
H, HOM1, HOM2, Max-
imum Probability (MP ),
Sum Average (SA), Sum
Entropy (SENT ), Sum
Variances (SV AR), Dif-
ference Variance (DV AR),
DENT , Information Corre-
lation Measure 1 (ICM1),
Information Correlation
Measure 2 (ICM2), In-
verse difference normalized,
Inverse difference moment
normalized.

22 Fisher Linear Dis-
criminant Analysis
(FLDA)

87% accuracy

18



4.2. Prostate cancer

Table 3 discuses seven works on prostate cancer using texture features in US images.
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Table 3: Summary of prostate cancer CAD using texture features in US images.

Author
Year

Objective Features Number of
Features

Classifiers Performance

Scheipers
et al. 2001
[52]

GLCM parameter for
prostate tissue charac-
terization.

• GLCM Details not speci-
fied

• Spectrum

• Parameters of an attenu-
ation model

16 Fuzzy interference
system

Accuracy 75%

Richard
and Keen
1996 [53]

texture-based US
prostate image seg-
mentation.

LTE Not dis-
cussed

Clustering Not applicable for
clustering

Mohamed
et al. 2003
[54]

texture-based malig-
nant mass detection.

Gabor filter texture seg-
mentation.

Magnitude
response
and spatial
smoothing

None –

Basset et
al. 1993
[55]

Detect tissue forma-
tions based on speckle
texture.

GLCM: ASM , CON ,
CORR, V AR, inverse
difference moment, SA,
SV AR, SENT , H,
DENT , Information
measures of correlation,
maximum probability

12 Threshold Sensitivity: 83%,
Specificity: 85%

Han et al.
2008 [56]

texture-based cancer
pixel classification.

multiresolution autocorrela-
tion.

Location,
Shape

SVM Accuracy 96.4%

Huynen et
al. 1994
[57]

Malignancy detection
based on spatial char-
acteristics of image
texture.

GLCM: Uniformity, CON ,
Inverse difference moment,
H, CORR

5 DT Sensitivity 80,6%,
Specificity 77.1%

20



Scheipers
et al. 2003
[58]

texture-based cancer
probability estima-
tion.

• GLCM: ASM , CON ,
CORR, dimension, in-
verse difference moment,
kappa, peak density,
V AR, Signal to Noise
Ratio (SNR)

• Spectrum

28 Fuzzy inference
system

Accuracy 75%
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4.3. Liver cancer

Table 4 presents the automated diagnosis of fatty liver disease using texture features in
US images. We have discussed six papers using texture features.
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Table 4: Summary of liver cancer CAD using texture features in US images.

Author
year

Objective Features Number of
Features

Classifiers Performance

Pavlopoulos
et al. 2000
[59]

texture-based detec-
tion of diffuse liver
disease.

• FOP: Kurtosis (KUR),
V AR

• Gray Level Run Length
Statistics (RUNL): RP

• GLCM: SENT , ASM ,
IDM , CON

• Fractal Dimension Tex-
ture Analysis (FDTA):
Hurst exponent (Hurst),
Fractal Dimension (D)

12 Fuzzy neural net-
work

Classification Ac-
curacy: Normal:
80%, Fatty: 88%,
Cirrhotic: 80%
Overall accuracy
of 82.67% in char-
acterizing the
different pathology

Poonguzhali
and Ravin-
dran, 2008
[60]

Detection of texture
differences in focal le-
sions and normal tis-
sue within the Region
of Interest (ROI).

• GLCM: SENT , H

• GLRLM: LRE, Short
Run Emphasis (SRE)

• Texture Enerrgy Measure
(TEM): Spot (S), Level
(L), Edge (ED)

• Gabor Wavelet

8 ANN Correct classifi-
cation: Normal
liver lesion: 75%,
cystic lesion: 94%,
benign lesion: 81%,
malignant lesion:
90%
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Xian, 2010
[61]

Differentiation of
malignant and benign
liver tumours based
on the idea that
different tissues have
different textures.

• GLCM: SENT , CON ,
CORR, H, HOM

5 Fuzzy SVM Dataset 1(DS1):
accuracy: 97%,
sensitivity:
100%, Speci-
ficity: 95.45%,
Positive Predic-
tive Value (PPV):
91.89%
Dataset 2 (DS2):
accuracy: 95.11%,
sensitivity: 92%,
Specificity: 95.5%,
PPV: 85.19%
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Acharya et
al. 2012
[62]

Fatty liver detection
based on the idea that
the disease changes
the liver tissue tex-
ture.

• GLCM: HOM , Texture
Run Length percentage
(TexRL)

• RUNL: SRE, Gray Level
Non-Uniformity (GLNU)

• Higher Order Spec-
tra (HOS)

• Discrete Wavelet Trans-
form (DWT)

3 (SRE,
ePRes
(12),
DWT-
Mean1sym4)

• DT

• Fuzzy classifier

All features, except
the HOS feature,
ePRes: Fuzzy
(accuracy: 77.3%,
PPV: 88.8%, sen-
sitivity: 71.1%,
specificity: 86.7%)
All features except
the DWT feature
DWTMean1sym4:
DT (accuracy:
93.3%, PPV:
100%, sensitivity:
88.9%, specificity:
100%)
All features except
the texture feature
SRE: DT (accu-
racy: 93.3%, PPV:
100%, sensitivity:
88.9%, specificity:
100%)
All features: DT
(accuracy: 93.3%,
PPV: 100%, sen-
sitivity: 88.9%,
specificity: 100%)
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Singh et al.
2013 [63]

Fatty liver detection,
based on the idea that
an increase in the hep-
atocytes fat content
results in a variation
of the texture of liver
surface.

• GLCM ASM , CON ,
CORR, V AR, IDM , H,
SV AR, DV AR, DENT ,
H (two measures)

• Gray Level Difference
Statistics (GLDS),
HOM , CON , E, H

• FOP GSM SKE Kurto-
sis

• TEM L, ED, S

• Statistical Feature Ma-
trix (SFM) Periodicity
Roughness Coarseness
Contrast

• Frauenhofer Pattern
Sampling (FPS) Radial
sum Angular sum

• Fuzzy Hurst exponent
(two measures)

7 • GLCM

• Fuzzy neural net-
work

• SVM (Radial
Basis Func-
tion (RBF)
kernel)

• Back propaga-
tion ANN

• Fuzzy K-NN

• Proposed fusing
selected features
using a linear
classifier

The proposed
method has an
overall classifica-
tion accuracy of
95%
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Krishnan
et al. 2013
[64]

Extracting diagnosti-
cally relevant texture
information.

GLRLM: SRE, LRE,
GLNU , Run Length Non-
Uniformity (RLNU), RP ,
Low Gray-level Run Em-
phasis (LGRE), High Gray-
level Emphasis (HGRE),
Short Run Low Gray-level
Emphasis (SRLGE), Short
Run High Gray-level Em-
phasis (SRHGE), Long
Run Low Gray-level Em-
phasis (LRLGE), Long
Run High Gray-level
Emphasis (LRHGE)

11 SVM Disease Accuracy:
Cirrhosis: 84.17%,
Fatty: 92.50%,
Hcc: 87.88%, Cyst:
100%, Hepatitis:
100%
Overall Accuracy:
92.91%

Acharya et
al. 2015 [7]

Fatty liver classifica-
tion based on the fact
that steatosis appears
as a diffuse increase in
echogenicity resulting
from an increase in the
parenchymal reflectiv-
ity. That increase re-
sults from the intra-
cellular accumulation
of fat-containing vac-
uoles.

GLRLM, LBP Not re-
ported

ANN, SVM, K-NN,
DT, NBC

Not reported27



Acharya et
al. 2016
[65]

Detecting fatty
change based on US
texture.

GLRLM, GLRLS, LTE 7 DT, SVM, PNN,
K-NN, linear dis-
criminant analysis,
quadrature dis-
criminant analysis,
NBC

Accuracy: 97.33%,
specificity:
100.00% and
sensitivity: 96.00%

Acharya et
al. 2016
[66]

Texture methods to
characterize and clas-
sify the normal and
abnormal liver tissues.

GIST descriptors Clinically
significant
features

DT, SVM, Ad-
aBoost, K-NN,
PNN, NBC

With PNN: Accu-
racy: 98%, speci-
ficity: 100.00% and
sensitivity: 96.00%
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4.4. Ovarian cancer

Table 5 details research work on ovarian cancer using texture features in US images. The
four papers discuss the use of texture features to extract diagnostically relevant information
from US images of the ovaries.
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Table 5: Summary of ovarian cancer CAD using texture features in US images.

Author
year

Objective Features Number of
Features

Classifiers Performance

Acharya et
al. 2013
[67]

Correlation between
tumor type and lesion
diameter. The lesion
diameter manifests
itself as non-linear
texture changes.

• Deviation, Fractal Di-
mension (FD)

• GLCM: H, Moment (mx)
with x = 4

• GLRLM: RLNU ,

• HOS

4 DT Accuracy: 97%,
Sensitivity: 94.3%,
Specificity: 99.7%,
PPV: 99.7%

Acharya et
al. 2013
[68]

texture-based tumor
classification.

• LBP

• LTE

16 SVM with: Lin-
ear, Polynomial or-
der 1,2,3, and RBF
kernel

SVM with RBF
kernel: Accuracy:
99.9%, Sensitivity:
100%, Specificity:
99.8%, PPV:
99.8%
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Acharya et
al. 2014
[69]

texture-based tumor
detection.

• FOP: Mean (MEA),
KUR, V AR

• GLCM: CON , ACORR,
MP , DISS, HOM , E,
CORR, CS, V AR, SA,
SENT , SV AR, DV AR,
DENT , H (Two mea-
sures)

• GLRLM: SRE, LRE,
GLNU , RLNU , RP ,
LGRE, HGRE,
SRLGE, SRHGE,
LRLGE, LRHGE

11 • PNN

• SVM

• DT

• K-NN

Detect ovarian
tumor with 100%
classification ac-
curacy, sensitivity,
specificity, and
positive predictive
value

Khazendar
et al. 2015
[70]

texture-based de-
tection of ovarian
masses.

LBP 187 • SVM

• K-NN

Performance signif-
icantly improved
to an average
accuracy of 0.77
(95% CI: 0.75-0.79)
when images were
pre-processed,
enhanced and
treated with a Lo-
cal Binary Pattern
operator (mean
difference 0.15:
95% 0.11-0.19, p <
0.0001, two-tailed t
test).
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Acharya et
al. 2015
[71]

Using texture to de-
tect the subtle tis-
sue changes which in-
dicate a malignant tu-
mor.

LBP , LTE DT, Fuzzy
Sugeno,
K-NN,
PNN,
SVM

Not reported Not reported

4.5. Thyroid cancer

Table 6 introduces work on US based thyroid cancer detection. The six articles focus on texture-based features to discriminate
between normal and malignant thyroid nodules.

Table 6: Summary of thyroid cancer CAD using texture features in US images.

Author
year

Objective Features Number of
Features

Classifiers Performance
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Chang et
al. 2010
[72]

texture-based thyroid
nodule classification.

• GLCM: CORR, DENT ,
DV AR, SA, SENT ,
Sum of Squares (SoS),
SV AR, CON , E, H,
HOM , CS, CP

• Statistical feature matrix

• GLRLM: SRE, LRE,
GLNU , RLNU , RP

• LTE

• Neighboring grey level
dependence matrix,

• DWT,

• Fourier feature based on
local Fourier coefficients.

78 (13
GLCM, 1
Statistical
feature
matrix, 5
GLRLM,
10 LTE, 5
Neighbor-
ing grey
level de-
pendence
matrix,
12 DWT,
32 Fourier
feature
based
on local
Fourier co-
efficients.

• SVM

• MLPNN

• PCA network

• RBF network

• SOFM network

SVM has the high-
est accuracy of
100%.

Acharya et
al. 2012
[73]

Texture features to
determine thyroid
nodule malignancy.

• GLCM: CON , H, HOM

• DWT

5
(homogeneity,
entropy,
contrast,
D2, D1)

AdaBoost with

• C4 5 configura-
tion

• Perceptron con-
figuration

• Pocket configu-
ration

• Stump

The AdaBoost
with perceptron
configuration per-
formed the best
with classification
accuracy, sensitiv-
ity, specificity of
100%

33



Acharya et
al. 2011
[74]

Based on the idea that
texture indicates the
histopathologic com-
ponents of the thyroid
nodules.

• GLCM: Symme-
try (SYM), H, HOM

• DWT

10
(homogeneity,
entropy,
symmetry,
A2, H2,
H1, V2,
V1, D2,
D1)

• K-NN

• PNN

• DT

K-NN:(Accuracy:
98.9%, Sensitivity:
98%, Specificity:
99.8%)

Acharya et
al. 2012
[75]

Determining the risk
of malignancy by de-
tecting suspicious ul-
trasound features with
texture methods.

• FD

• LBP

• Fourier Spectrum de-
scriptor (FS)

• LTE

16
(1 FD,
6 LBP ,
1 FS, 8
LTE)

SVM:

• Linear

• Polynomial
Order 1

• Polynomial
Order 2

• RBF

Other classifiers:

• DT

• Fuzzy

• GMM

• K-NN

• NBC

• PNN

HRUS dataset:
SVM and Fuzzy
classifiers per-
formed the best
with classification
accuracy, sensitiv-
ity, specificity and
positive predictive
value of 100%
CEUS dataset:
GMM classifier
(Accuracy: 98.1%,
Sensitivity: 97.2%,
Specificity: 98.9%,
Positive predictive
value: 98.9%)
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Kale et al.
2012 [76]

texture-based tissue
information exaction.

GLCM: ACORR, CON ,
CORR, CP , CS, DISS, E,
H, MP

10
(1 FD,
6 LBP ,
1 FS, 8
LTE)

Scaled conjugate
gradient backprop-
agation training
feed forward neu-
tral network

Classified malig-
nant and benign
nodule with ac-
curacy of 95.33%
and 91.89% respec-
tively.
Overall, the accu-
racy of classifier
was 94.11%.

Kale et al.
2013 [77]

Texture features as a
way to increase the
quantitative informa-
tion from thyroid US
images.

GLCM: ACORR, CON ,
CORR, CP , CS, DISS, E,
H, HOM , MP

10
(1 FD,
6 LBP ,
1 FS, 8
LTE)

Linear SVM Classification accu-
racy of 82.39 ±
1.83% for 450 orien-
tations.

Acharya et
al. 2014
[78]

Using homogeneous
and heterogeneous
texture to character-
ize thyroid tissue.

GLCM, LTE, LBP , Fourier
spectrum descriptors

GMM,
SVM,
K-NN,
PNN, DT,
Adaboost,
Fuzzy
Sugeno

Not reported Not reported

Acharya et
al. 2016
[31]

texture-based feature
extraction to classify
benign and malignant
thyroid nodules.

Gabor filter 30 SVM, K-NN, Mul-
tilayer perceptron,
DT

Accuracy: 94.3%
with DT
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5. Discussion

US images are non-uniform, they differ in terms of feature orientation, feature scale, image
resolution and grey level scaling [79, 80]. The orientation ambiguity cannot be fixed, because
the transducer head is flexible, the patient and indeed the scanned tissue itself move. The
problem of feature scale is tackled by specifying a ROI. However, the most difficult problem
for texture features, from US images, is grey level scaling and image resolution, because run
length and GLCM methods are sensitive to these parameters. In other words, the feature
values change in accordance with both spatial and grey level scale. The exact relationship
between scale changes and feature value changes is unexplored. There are scaling invariant
methods in existence, but the resulting features are not discriminative enough for high quality
CAD systems and, in many cases, the associated algorithms are computationally complex
[81]. For example, Local Configuration Pattern (LCP) are rotation invariant and they provide
complementary information to LBP [82].

For texture algorithms, computational complexity is just equipment investment and com-
putation time. In general, computational complexity of feature extraction algorithms impact
on latency and cost [83]. The cost rises in accordance with efforts to keep the latency down.
However, the performance of processing systems doubles every 18 months2, hence keeping
the computational complexity down is a weak research objective.

Classical machine learning systems, such as the ones used in current CAD systems, require
careful engineering and expert knowledge in order to create feature extractors [84]. The tex-
ture algorithms extract feature information from the US images. Subsequently, the extracted
information is fed to machine learning algorithms. While that process is straight forward in
the online system, domain specific expertise is required to test and select the best performing
algorithm combination with the design centric offline system. The process of selecting the
algorithm combination is based on experience as well as on trial and error. The method of
trial and error implies that the resulting CAD system might be sub-optimal. To be specific,
during the design phase only a limited number of feature algorithms can be tested. Hence,
there might be other algorithms which outperform the selected methods. For example, a de-
signer might not be aware of the GLRLM feature extraction methods. That knowledge gap
would have a big impact on the thyroid cancer classification example, presented in Section
2.5, because a GLRLM method (LRE) was the best of the tested methods.

Deep learning eliminates the requirement for domain specific expertise in feature extrac-
tion algorithms, because these methods are fed with raw data. In case of US based soft tissue
cancer detection, the deep learning algorithms would be fed with unprocessed US images. On
the positive side, it eliminates the feature extraction step and the associated ambiguities3 [85].
On the negative side, the diagnosis process becomes very abstract. Throughout the design
of the offline system, there are quality control measures to ensure traceability. That means,
if something goes wrong, it is possible to trace back into the design process and locate the
error. In contrast, deep learning is a one step process without continuous quality monitoring.
Ultimately, the decision on whether or not to use deep learning algorithms will depend on
their performance for well-known standard problems [86]. To be specific, if deep learning

2Moors law, verified by observations from 1975 onward.
3Feature testing and selection.
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based CAD systems deliver higher diagnosis accuracy, when compared to traditional feature
based methods, then the new methods will supersede the traditional algorithm structures.

5.1. Future work

The future direction of US imaging can be summed up in one word: radiomics [87]. The
term refers to the automated extraction and analysis of high dimensional feature vectors [88].
These feature vectors, combined with other patient data form the input to sophisticated
bioinformatics tools which help to improve diagnostic and predictive accuracy [89]. All
processing is done in the digital domain with computer algorithms executed by microchips.
The inherent cost effectiveness, speed and scalability of this technology helps to cope with an
ever increasing amount of medical images [90]. The main idea behind radiomics is to interpret
medical images as data and the interpretation of that data is left to machines [91]. The
assumption is that, new image processing algorithms are able to extract the salient features
from the medical images which are the hidden signatures of the diseases. The postulated
benefits focus on the strong points of computing technology. However, these methods are
inflexible and therefore they fail to accommodate errors in the input data. In other words,
radiomics proposes to replace or at least to diminish the role of the human brain, which has
a negative impact on both safety and reliability of disease diagnosis. This poses considerable
design challenges, which goes beyond ‘good’ engineering practice [92, 93]. Radiomics systems
must be safe, reliable and functional [92]. The design process must ensure that systemic errors
are minimized [94]. Errors may be caused by operator mistakes. The widespread deployment
of CAD systems will depend on trust which is closely linked to justifications given for claims
of reliability and system safety [95].

6. Conclusion

In this paper, we reviewed US texture features for soft tissue cancer detection. The study
focused on thyroid, breast, ovarian, liver and prostate cancers. The texture feature extraction
algorithms were introduced in an example study on thyroid cancer. In our example, the LRE
feature outperformed rest of the algorithms. However, the result is not representative, as it
depends on the type of cancer detection, and on the type of imaging system used. These
texture features are widely used in the development of CAD systems. Therefore, the CAD
system must address the need for accurate and cost effective soft tissue cancer diagnosis.

During the review, we found that texture-based features for US image classification is
an important topic, because these techniques extract useful information. However, these
techniques need to be used in conjunction with other features, such as HOS, DWT and
statistical features. In future, deep algorithms can be used to extract the abstract information
contained in US images, which may improve the performance of US based cancer detection.
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[82] Y. Guo, G. Zhao, M. Pietikäinen, Texture classification using a linear configuration
model based descriptor, BMVC (2011) 1–10.

[83] O. Faust, W. Yu, U. R. Acharya, The role of real-time in biomedical science: A meta-
analysis on computational complexity, delay and speedup, Computers in biology and
medicine 58 (2015) 73–84.

[84] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.

[85] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61
(2015) 85–117.

[86] B. Chandrasekaran, S. Mittal, Deep versus compiled knowledge approaches to diagnostic
problem-solving, International Journal of Man-Machine Studies 19 (5) (1983) 425–436.

[87] V. Parekh, M. A. Jacobs, Radiomics: a new application from established techniques,
Expert Review of Precision Medicine and Drug Development 1 (2) (2016) 207–226.

[88] V. Kumar, Y. Gu, S. Basu, A. Berglund, S. A. Eschrich, M. B. Schabath, K. Forster,
H. J. Aerts, A. Dekker, D. Fenstermacher, Radiomics: the process and the challenges,
Magnetic resonance imaging 30 (9) (2012) 1234–1248.

[89] C. Parmar, E. R. Velazquez, R. Leijenaar, M. Jermoumi, S. Carvalho, R. H. Mak, S. Mi-
tra, B. U. Shankar, R. Kikinis, B. Haibe-Kains, Robust radiomics feature quantification
using semiautomatic volumetric segmentation, PloS one 9 (7) (2014) e102107.

[90] K. Ng, O. Faust, V. Sudarshan, S. Chattopadhyay, Data overloading in medical imaging:
Emerging issues, challenges and opportunities in efficient data management, Journal of
Medical Imaging and Health Informatics 5 (4) (2015) 755–764.

[91] R. J. Gillies, P. E. Kinahan, H. Hricak, Radiomics: images are more than pictures, they
are data, Radiology 278 (2) (2015) 563–577.

[92] O. Faust, U. R. Acharya, T. Tamura, Formal design methods for reliable computer-aided
diagnosis: a review, IEEE reviews in biomedical engineering 5 (2012) 15–28.

[93] O. Faust, R. Acharya, B. H. Sputh, L. C. Min, Systems engineering principles for the
design of biomedical signal processing systems, Computer methods and programs in
biomedicine 102 (3) (2011) 267–276.

44



[94] O. Faust, B. H. Sputh, U. Acharya, A. R. Allen, A pervasive design strategy for dis-
tributed health care systems, Open Medical Imaging Journal 2 (2008) 58–69.

[95] Z. Song, Z. Ji, J.-G. Ma, B. Sputh, U. R. Acharya, O. Faust, A systematic approach to
embedded biomedical decision making, Computer methods and programs in biomedicine
108 (2) (2012) 656–664.

Appendix A. Texture Feature Results

Table A.7: Performance measures for the individual texture features.

Benign Malignant
Mean SD Mean SD p-value t-value

LRE 1.98E+01 1.86E+00 1.81E+01 1.92E+00 0.0011 3.4354
SV AR 4.24E+01 7.64E+00 3.59E+01 7.20E+00 0.0015 3.3356
ACORR 1.87E+01 3.19E+00 1.61E+01 2.97E+00 0.0019 3.2621
SA 7.77E+00 8.78E-01 7.08E+00 7.74E-01 0.0024 3.1786
SKE 3.98E-01 2.66E-01 5.79E-01 2.96E-01 0.0178 2.4424
SRE 1.22E-01 2.99E-02 1.39E-01 2.49E-02 0.0209 2.3790
LRLGE 8.95E+00 1.57E+00 8.04E+00 1.60E+00 0.0339 2.1747
CS 2.16E+01 1.61E+01 2.95E+01 1.17E+01 0.0356 2.1581
KUR 2.38E+00 3.17E-01 2.62E+00 5.18E-01 0.0394 2.1197
MP 1.57E-01 7.91E-02 1.96E-01 6.29E-02 0.0454 2.0494
HGRE 4.06E+01 4.01E+01 6.32E+01 5.23E+01 0.0709 1.8436
LTE5 1.43E+07 2.81E+06 1.30E+07 2.77E+06 0.0737 1.8226
SENT 2.52E+00 1.46E-01 2.46E+00 1.30E-01 0.0767 1.8039
D 2.38E+00 3.30E-02 2.36E+00 3.61E-02 0.0791 1.7887
H 2.90E+00 2.17E-01 2.80E+00 2.10E-01 0.0888 1.7319
SRLGE 4.81E-02 1.05E-02 5.25E-02 9.09E-03 0.0968 1.6895
SRHGE 1.50E+01 3.59E+01 2.95E+01 3.76E+01 0.1374 1.5072
RP 2.47E+01 4.16E+00 2.31E+01 4.53E+00 0.1433 1.4844
LTE1 4.82E+06 2.72E+06 3.82E+06 2.45E+06 0.1463 1.4733
HOM 8.14E-01 3.40E-02 8.27E-01 3.42E-02 0.1549 1.4418
DISS 4.04E-01 8.14E-02 3.74E-01 8.05E-02 0.1630 1.4135
LBP En-
tropy
162

3.46E+00 9.41E-02 3.42E+00 1.19E-01 0.1685 1.3959

ICM1 -5.14E-01 5.13E-02 -5.33E-01 5.29E-02 0.1882 1.3323
DV AR 5.26E-01 1.37E-01 4.79E-01 1.32E-01 0.1909 1.3239
CON 5.26E-01 1.37E-01 4.79E-01 1.32E-01 0.1909 1.3239
DENT 7.62E-01 9.13E-02 7.30E-01 9.44E-02 0.1926 1.3189
LTE6 2.69E+05 1.53E+05 2.21E+05 1.34E+05 0.2157 1.2525
E 8.22E-02 4.14E-02 9.36E-02 2.84E-02 0.2273 1.2225
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LTE2 7.74E+05 5.60E+05 6.10E+05 5.36E+05 0.2590 1.1405
GLNU 2.49E+04 7.87E+03 2.25E+04 8.09E+03 0.2590 1.1403
RLNU 1.70E+04 2.74E+03 1.61E+04 3.27E+03 0.2793 1.0929
LGRE 4.39E-01 6.34E-02 4.22E-01 6.90E-02 0.3429 0.9566
LTE20 2.24E+06 8.34E+05 2.52E+06 1.32E+06 0.3476 0.9486
LBP En-
tropy
243

3.45E+00 1.81E-01 3.40E+00 2.58E-01 0.3523 0.9388

LBP En-
ergy 81

1.57E-01 2.14E-02 1.52E-01 2.23E-02 0.3629 0.9174

LTE7 4.40E+04 3.11E+04 3.68E+04 2.93E+04 0.3660 0.9114
LTE3 4.80E+05 3.97E+05 3.88E+05 3.87E+05 0.3747 0.8949
LBP En-
ergy 162

1.56E-01 1.90E-02 1.61E-01 2.92E-02 0.4645 0.7374

LTE11 7.22E+04 3.94E+04 6.46E+04 4.03E+04 0.4686 0.7297
LBP En-
tropy
81

2.96E+00 1.08E-01 2.98E+00 1.25E-01 0.4929 0.6903

LTE4 1.30E+06 1.19E+06 1.09E+06 1.14E+06 0.5026 0.6747
LTE8 2.07E+04 1.53E+04 1.82E+04 1.58E+04 0.5399 0.6168
ICM2 9.25E-01 1.33E-02 9.27E-01 1.27E-02 0.5583 0.5889
LBP En-
ergy 243

2.14E-01 3.43E-02 2.21E-01 5.17E-02 0.5606 0.5860

LTE12 1.33E+04 8.83E+03 1.20E+04 9.30E+03 0.6002 0.5271
LTE21 8.22E+04 4.14E+04 8.97E+04 6.59E+04 0.6097 0.5139
LTE10 2.48E+06 6.32E+05 2.39E+06 6.97E+05 0.6169 0.5031
LRHGE 5.64E+02 3.36E+02 6.00E+02 3.14E+02 0.6787 0.4165
LTE13 6.97E+03 5.15E+03 6.43E+03 5.50E+03 0.6994 0.3881
LTE22 2.14E+04 1.29E+04 2.30E+04 1.75E+04 0.7037 0.3824
LTE15 1.27E+06 3.96E+05 1.31E+06 5.76E+05 0.7466 0.3249
LTE9 4.26E+04 4.04E+04 3.89E+04 4.72E+04 0.7498 0.3205
LTE14 1.62E+04 1.65E+04 1.51E+04 1.78E+04 0.8164 0.2333
LTE24 7.47E+04 7.51E+04 7.95E+04 8.17E+04 0.8182 0.2309
LTE19 1.74E+04 1.89E+04 1.66E+04 1.81E+04 0.8678 0.1672
LTE23 1.82E+04 1.41E+04 1.88E+04 1.55E+04 0.8824 0.1486
LTE18 5.89E+03 4.47E+03 5.73E+03 4.78E+03 0.8998 0.1265
V AR 5.83E-02 9.38E-03 5.82E-02 1.16E-02 0.9685 0.0396
LTE17 9.27E+03 5.76E+03 9.32E+03 7.24E+03 0.9726 0.0345
LTE16 4.41E+04 2.29E+04 4.42E+04 3.07E+04 0.9861 0.0175
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