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Abstract. A constraint that actions can depend on observations only through a

communication channel with finite Shannon capacity is shown to be able to play

a role very similar to that of a signal extraction problem or an adjustment cost in

standard control problems. The resulting theory looks enough like familiar dynamic

rational expectations theories to suggest that it might be useful and practical, while

the implications for policy are different enough to be interesting.

I. Introduction

Keynes’s seminal idea was to trace out the equilibrium implications of the hypothe-

sis that markets did not function the way a seamless model of continuously optimizing

agents, interacting in continuously clearing markets would suggest. His formal de-

vice, price “stickiness”, is still controversial, but those critics of it who fault it for

being inconsistent with the assumption of continuously optimizing agents interacting

in continuously clearing markets miss the point. This is its appeal, not its weakness.

The influential competitors to Keynes’s idea are those that provide us with some

other description of the nature of the deviations from the seamless model that might

account for important aspects of macroeconomic fluctuations. Lucas’s 1973 clas-

sic “International Evidence. . .” paper uses the idea that agents may face a signal-

extraction problem in distinguishing movements in the aggregate level of prices and

wages from movements in the specific prices they encounter in transactions. Much

of subsequent rational expectations macroeconomic modeling has relied on the more

tractable device of assuming an “information delay”, so that some kinds of aggregate

data are observable to some agents only with a delay, though without error after the

delay. The modern sticky-price literature provides stories about individual behavior

that explain price stickiness and provide a handle for thinking about what determines

dynamic behavior of prices.
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Most recently, theories that postulate deviations from the assumption of rational,

computationally unconstrained agents have drawn attention. One branch of such

thinking is in the behavioral economics literature (Laibson, 1997; Bénabou and Tirole,

2001; Gul and Pesendorfer, 2001, e.g.), another in the learning literature (Sargent,

1993; Evans and Honkapohja, 2001, e.g.), another in the robust control literature

(Giannoni, 1999; Hansen and Sargent, 2001; Onatski and Stock, 1999, e.g.). This

paper suggests yet another direction for deviation from the seamless model, based on

the idea that individual people have limited capacity for processing information.

That people have limited information-processing capacity should not be controver-

sial. It accords with ordinary experience, as do the basic ideas of the behavioral,

learning, and robust control literatures. The limited information-processing capacity

idea is particularly appealing, though, for two reasons. It accounts for a wide range

of observations with a relatively simple single mechanism. And, by exploiting ideas

from the engineering theory of coding, it arrives at predictions that do not depend

on the details of how information is processed.1

In this paper we work out formally the implications of adding information-processing

constraints to the kind of dynamic programming problem that is used to model be-

havior in many current macroeconomic models. It turns out that doing so alters

the behavior implied by these models in ways that seem to accord, along several

dimensions, with observed macroeconomic behavior. It also suggest changes in the

way we model the effects of a change in policy “rule” and in the way we construct

welfare criteria in assessing macroeconomic policy. These aspects of the results are

discussed in detail in later sections of the paper, which can be read independently of

the mathematical detail in earlier sections.

II. Information Theory

The basic idea of information theory is to measure the rate of information flow as

the rate of uncertainty-reduction. It therefore starts with a measure of uncertainty,

called entropy. For a random variable X with pdf p(X) the entropy is −E[log(p(X))].

This formula applies whether the pdf is a density with respect to Lebesgue measure

on Rk, so X is “continuously distributed”, or with respect to a discrete measure on

a finite or countable set of points, so that X is a discrete random variable. We think

of p log p as zero for X values where p = 0. It is conventional to take the log in the

1Of course for psychologists, this may make the theory less interesting. But for economists, whose

comparative advantage has been in using the optimization assumption to sweep aside psychological

detail in modeling behavior, the ability of this information-theoretic approach to similarly sidestep

psychological detail may be attractive.
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formula to the base 2, so that the entropy of a discrete distribution with equal weight

on two points is 1, and this unit of information is called one “bit”.2

Then information is thought of as moving through a “channel”, in which one enters

input data, and output data emerges, possibly error-ridden. If we enter input data

that is a realization of a random variable X with pdf p, and the channel provides as

output a random variable Z whose pdf, conditional on X, is q(Z |X), we can form a

conditional pdf for X | Z by Bayes’ rule as

r(X | Z) =
p(X)q(Z | X)
∫

p(x)q(Z | x) dx
. (1)

Then the information acquired is the change in entropy,

E[log2(r(X | Z)) | Z] − E[log2(p(X))] . (2)

This quantity need not be positive for every possible realized value of Z — we can

see a Z that makes us more uncertain about X than we were before we saw Z — but

on average across all values of Z, it is necessarily positive.

Here are two examples of transfers of information at the same rate. In the first

example, we have a device (e.g. a telegraph key transmitting “dot” or “dash”) that

sends one of two signals, and does so without error. We can think of the signals as

zeros and ones. If we draw a 0 or 1 from a distribution with equal probability on the

two values, and transfer it according to this mechanism, then with each transmission

we eliminate all uncertainty in the value of the draw, and thus transmit one bit of

information.

In the second example, we draw a value for a continuously distributed N(0, 1)

random variable and transfer it by a mechanism that contaminates it with an inde-

pendent N(0, 1/3) noise. That is, X ∼ N(0, 1), {Z | X} ∼ N(X, 1/3), and therefore

{X | Z} ∼ N(.75Z, .25). It is easy to verify that the entropy of a N(µ, σ2) random

variable is log2 σ + .5(log2(2πe)) and therefore that the information transmitted in

this example by each observation on Z is log2 1 − log2 .5 = log2 2 = 1 bit.

Note that if this second channel had transmitted X without error, the rate of

information transmittal would have been infinite. This corresponds to the fact that a

real number can be represented as an infinite sequence of digits. If we could transmit

real numbers without error, we could transmit arbitrary infinite sequences of integers

2Entropy is related to the Kullback-Leibler information I(p; q) in statistics (Schervish, 1995,

p.115). For a random variable X with pdf p entropy is −I(p;1), where 1 is the (possibly improper)

“flat” pdf that is identically one. That is, under the usual interpretation of Kullback-Leibler infor-

mation, entropy is minus a measure of how hard it is to tell from observations on X that its pdf is

p, not a uniform density.
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(or of zeros and ones) without error, and thus send infinitely many bits in a single

transmission.

The channel in our first example has a “capacity” of one bit per transmission,

or time unit, say one second. This is the maximum rate at which the channel can

transmit information.3 We could use the channel inefficiently, for example by drawing

the input zeros and ones from a distribution with probability of 0 p 6= .5. But if

we actually had to send a sequence of 0’s and 1’s generated by i.i.d. draws from

a distribution in which p = .99, say, we could in fact, by proper “coding” of the

sequence, send it at as close as we like to a 1 bps rate rather than the −.99 log .99 −

.01 log .01 = .08 bps rate that we would achieve by naively sending each 0 and 1 as it

appeared.

One easily understood way to do this is with “block codes”. For example, we could

consider all 32 possible sequences of 5 zeros and ones. With our assumed p of .99,

the sequence of 5 successive zeros is much more likely than any other sequence, so

we could map that into a unit-length sequence of a single zero. The 5 sequences

containing 4 zeros and 1 one are the next most likely, so we could map them to the

sequences 111, 110, 1011, 1010 and 1000. All the remaining sequences of 5 zeros and

ones would have to be mapped into sequences that begin with 1001, and thus would be

as long or longer than their original length of 5. But since these remaining sequences

are much less common in our signal sequence than the sequences consisting mostly

of zeros, the average length of sequence we transmit will be well under 5.4 Coding

theorems in information theory show that methods like this can allow transmission

at a rate approaching capacity through any channel, regardless of the distribution of

the input that one wishes to send.

Notice that the coding theorem result implies that if we would like to be sending a

N(0, 1) signal with a N(0, 1/3) error, as in our second example, but we have available

only a discrete transmission device like the telegraph key of our second example,

we can, by proper coding, send our normally distributed message with normally

distributed error at 1 transmission per second using the error-free telegraph key.

The reader may wonder what kind of coding could accomplish this. Suppose

X ∼ N(0, 1) and we code positive X to 0 and negative X to 1. This produces

Var(X |Z) = .36, approximately, slightly bigger than .25, which is our target optimal

expected squared error. Of course the conditional distribution of X |Z is a truncated

3Readers may recall, if they use modems with their computers, that modem speeds are rated in

“bits per second”, or bps. This is their channel capacity. Speed increases for modems plateaued at

56000 bps, because telephone connections are designed to have approximately that capacity, so no

change in modem design can achieve greater speed.
4A detailed example like this is worked out in the appendix to my 1998 paper.
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normal, and thus quite non-normal. More sophisticated codes, in general requiring

that blocks of X values be coded jointly, could do better. There is no simple formula

for optimal coding of continuously distributed sources into a discrete “alphabet”, but

there is a literature on methods to do it in particular physical settings (Gray and

Neuhoff, 2000). The important point for our further discussion below, is that it can

be done. Information transmission barriers that take the form of a restriction to send-

ing discrete signals at a finite rate without error are not fundamentally different from

restrictions to sending continuously distributed signals with contaminating noise.

With continuously distributed variables, some apparently natural specifications for

channels can turn out to be unreasonable because they imply infinite capacity. For

example, it can’t be true that an actual channel is capable of transmitting an arbitrary

real number X so that the output signal is X+ε, where ε is, say, N(0, 1), independent

of X. If this were so, we could, by scaling up our input X to have arbitrarily large

variance, achieve arbitrarily high transmission rates. The channel must be specified

in such a way that there is no way, by adjusting input in the permissible range, to

make the signal-to-noise ratio arbitrarily large. This point is central to our discussion

below when we consider dynamically more complicated channels.

A potentially important point that we will ignore in what follows is that optimal

coding generally introduces delay. We will consider dynamic optimization problems in

which a decision must be made at each t on the basis of information at that date. We

will assume that when the decision is made at t, data on Xs, s ≤ t has been observed

via an optimally designed finite capacity channel whose output is available up through

time t. If, say, the optimal channel requires Gaussian noise, but our available channel

were actually a telegraph key, or a set of them, of the same capacity as the optimal

channel, coding optimally will let us approximate the characteristics of the optimal

channel arbitrarily well, but at the price of some delay. The excuses for ignoring the

delay at this stage are (i) that the gap between the performance of finite-code-length

systems and optimal systems declines exponentially in code length, so that coding

delay is likely to be small in practice, and (ii) that when many sources of information

are being coded simultaneously, it is possible to come close to transmission at the

Shannon capacity rate without delay, even when the rate per source is low.5

5Conversion of a continuously distributed source to discrete form for transmission through a

digital channel (like a telegraph key) is known as quantization. The theory is surveyed in Gray and

Neuhoff (2000), with the results underlying the assertion (ii) discussed particularly in the section on

vector quantization, II.B, p.291.
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III. Optimization with information-flow constraints

Suppose we would like to minimize E[(Y −X)2], where Y is our action and X is a

random variable that we must observe through a finite-capacity channel. What is the

optimal choice for the conditional distribution of Y | X, subject to the requirement

that the information flow about X required to generate Y is finite? Formally we

would like, taking the pdf p(·) of X as given, to solve

min
q

{

E[(Y − X)2] =

∫

(y − x)2q(y | x)p(x) dy dx

}

(3)

s.t.

(∀x)

∫

q(y | x) dx = 1 (4)

−E
[

E[log(q(Y | X)) | X]
]

+ E

[

log

(
∫

q(x | Y )p(x)dx

)]

< C . (5)

(6)

This last expression is easy to interpret as the average reduction in entropy when we

use observations on X to reduce uncertainty about Y , which seems to be the opposite

of what we are interested in. However it turns out that the information flow is the

same whether we are using observations on X to inform ourselves about Y or vice

versa. The information flow between the two jointly distributed variables is called

their mutual information.

When the X distribution is Gaussian, it is not too hard to show that the optimal

form for q is also Gaussian and independent of X, so that Y and X end up jointly

normally distributed.6

This example illustrates a more general point. The information-flow constraint

results in an outcome that looks like a signal-extraction problem’s outcome. The op-

timal behavior of Y is as if X were being observed with an i.i.d. error. The variance

of Y is less than that of X, as is usual when actions have to be based on error-ridden

data. But there are important deviations from signal-extraction results in the pre-

dictions of this approach for how response to X will change as the distribution of X

is changed. For example, if the capacity constraint remains the same, doubling the

6When X has a given non-Gaussian marginal distribution, it is still optimal to make the distri-

bution of X | Y Gaussian and independent of Y , if possible. This can be accomplished by forming

h̃ = p̃/ϕ̃, where the ˜ indicates Fourier transform (or characteristic function) and ϕ is the standard

Normal pdf. Taking the inverse Fourier transform h of h̃ gives us a marginal pdf for y, which we

can then multiply by a Gaussian conditional pdf for X | Y to obtain a joint pdf. Finally we apply

Bayes rule to the joint pdf to find q(y |x). Of course for some p’s (e.g. those with discontinuities, or

discrete distributions), p̃/ϕ̃ is not square-integrable, so this method won’t work.
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variance of X will result in doubling the variance in the Y | X distribution. Also, if

Var(Y | X) ≤ Var(X)/3, then if X starts being drawn from a distribution concen-

trated on two points, we expect the “error” in Y and the corresponding damping of

response to completely disappear. The same 1 bps transmission rate is maintained

with the error-free transmission of the two-point distribution as with the 3:1 Gaussian

signal/noise ratio.

IV. Dynamic optimization with information-flow constraints:

frequency domain

Suppose we observe a random vector Y and use it to inform ourselves about a

random vector X that is jointly normally distributed with Y , i.e.
[

X

Y

]

∼ N

(

0,

[

Σxx Σxy

Σ′

xy Σyy

])

. (7)

The entropy of a multivariate N(µ, Ω) of dimension n is

−
n

2
(log(2π) + 1) −

1

2
log |Ω| . (8)

Therefore the reduction in entropy of X from observing Y (or vice versa) is

−1

2
log
∣

∣I − Σ−1

yy Σ′

xyΣ
−1

xx Σxy

∣

∣ (9)

If Y and X are finite subsequences drawn from jointly stationary stochastic processes,

then the Σ matrices appearing in (9) are Toeplitz forms and can be approximately

diagonalized by Fourier transform matrices. If we do so, we can see that as the length

of the two vectors gets longer, the information flow they represent converges to a rate

per observation of

−
1

2π

∫ π

−π

log

(

1 −
|Sxy(ω)2|

Sx(ω)Sy(ω)

)

dω , (10)

where Sx and Sy are spectral densities for the Y and X processes and Sxy is their

cross-spectral density.

This formula extends directly to continuous time, where it becomes (the only dif-

ference is the limits of integration)

−
1

2π

∫

∞

−∞

log

(

1 −
|Sxy(ω)|2

Sx(ω)Sy(ω)

)

dω . (11)

From (11) we can see one important point. In continuous time, the coherence of

the X and Y processes must drop toward zero, at least on average, as |ω| → ∞.

Otherwise the integral would not converge. This means that the power, or amount

of variation, in the noise must grow large relative to that in the “signal” as we go to

higher and higher frequency variation. Thus any action taken in response to the finite
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information-flow-rate observations on X must be insensitive to the highest-frequency

oscillations in X, meaning Y cannot respond sharply and quickly to X. Also, Y must

itself show noisy idiosyncratic high-frequency randomness.

To see the implications of these principles, consider the simplest possible quadratic

control problem: choosing Y to track X with loss E(Y − X)2. Rather than the

conventional constraints that Y is subject to adjustment costs or that Y is based on

observation of X contaminated with exogenously specified noise, we assume instead

that Y is chosen on the basis of an optimally coded transmission of data about X

through a finite-capacity information channel.

If Y could be chosen on the basis of observations of future as well as past X, it would

be easy to use frequency-domain methods to solve the optimal tracking problem. For

the more realistic situation where Yt can depend only on {Xs, s ≤ t}, I have not been

able find analytic formulas, but it is not too difficult to obtain example solutions

using numerical methods. Formally, we solve the problem

min
b,c

E
[

(Yt − Xt)
2
]

(12)

subject to

Xt =
n
∑

s=0

asεt−s , Yt =
n
∑

s=0

bsεt−s +
n
∑

s=0

csνt−s , (13)

−1

2

∫ π

−π

log

(

1 −
|ãb̃|2

|ã|2(|b̃|2 + |c̃|2)

)

dω

= −1

2

∫ π

−π

log

(

1 −
1

1 + |c̃|2/|b̃|2

)

dω < C ,

(14)

where the ε and ν processes are both i.i.d. N(0, 1) stochastic processes. Note that

the left-hand side of (14) is just new notation for (11).

The solution for the case where a is a simple linearly declining sequence of weights,

with n = 31, is displayed in Figure 1. Note that, as expected, b is smoother than a,

with the smoothing distorting the match between a and b especially strongly near 0.

In effect, the smoothing creates a delay in the reaction of Y to X. Also note that c is

sharply peaked near zero, implying that high frequency variation in Y is dominated

by noise. As indicated in the caption to the figure, in notation we use in all figures,

this configuration represents data transfer at the rate .641 “bpt”, which stands for

“bits per time unit”. If we though of the time unit as monthly (not unreasonable

with 31 lags), implementation of this level of tracking would require less than one

bit per month of information flow, a very modest requirement. This is possible in
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Figure 1. C = .641 bpt, R2 = .856, linear a

this example because X, the variable being tracked, is modeled as highly serially

correlated, so even a crude updating each month can track it fairly well.

If we allow an increased information flow, the tracking quickly becomes almost

perfect, as in Figure 2.

If we instead tighten further the information constraint, as in Figure 3. we find the

systematic part of Y smoother and more damped, and the noise in Y more serially

correlated. Note that the absolute amount of high-frequency noise has gone down

between Figures 1 and 3. This is because the capacity constraint relates only to

the signal-noise ratio, |b̃/c̃|. When the information constraint becomes very tight, Y

becomes nearly constant.

When the signal has less serial correlation, it has higher information content, so

that a level of capacity that sufficed for quite good tracking in the examples we have

examined above delivers much less accuracy. For example, if a(s) = (.6t − .5 · .8t) ·

(1 − t/32), s = 0, . . . , 31, then with a capacity of .71, close to that for Figure 1, we

obtain Figure 4. Here the unconditional R2 of Y and X is only .443, in contrast to

the .856 achieved with a slightly lower information flow rate in the Figure 1 case. In

fact the unconditional R2 here is lower than that obtained in the Figure 3 case with

a much lower information flow rate.

One final example for this section shows that the tendency of information con-

straints to induce delay is not confined to cases where a is discontinuous at 0. Here
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Figure 2. C = 3.56 bpt, R2 = .992, linear a
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Figure 3. C = .111 bpt, R2 = .577, linear a
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Figure 4. C = .711 bpt, R2 = .443, rational whipsaw a

we set a(s) = sin(π(s + 1)/32) · (1 − s/32), s = 0, . . . , 31 and capacity at .269. We

emerge with an unconditional R2 of .697, and, as can be seen from Figure 5, a distinct

delay in the response of Y to X, as well as the expected damping.

From this set of examples we can confirm the idea that solutions to tracking prob-

lems with information-processing constraints mimic signal-extraction problems. But

the information-processing approach makes the nature of the “noise” endogenous. We

don’t need to import the physicist’s idea of i.i.d. experimental error or query our-

selves about intuitively nebulous sources of exogenous noise in our view of economic

data. Instead, the nature of the time series being tracked, together with the available

information capacity, delivers a model for the noise.

If we take the tracking problems of this section as schematic representations of the

way agents react to aggregate market signals, it may seem that the rates of information

flow in the examples that show significant amounts of smoothing are implausibly low.

A one bpt rate of information flow corresponds to making one yes-no decision per

time period in reaction to the information flow. If the time unit is a month, it is clear

that ordinary people’s information-processing capacity is vastly higher than this. To

justify information flow about major macroeconomic aggregate variables at this low

rate, we must assume, as seems to be realistic, that most people devote nearly all

of their information-processing capacity to types of information other than the time

paths of macroeconomic variables. While it does seem realistic to suppose that people
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Figure 5. C = .269, R2 = .697, oscillatory a

ordinarily pay only slight attention to aggregate economic time series, though, there

is obviously plenty of room for them to shift more attention to these series’ behavior

when it becomes important to do so. A theory that treated capacity devoted to

connecting aggregate data to economic behavior as exogenously fixed would be easier

to produce, but it seems likely that treating this “economic capacity” as endogenous

will be necessary to arrive at a realistic theory.

It would be interesting to consider a collection of tracking problems with a single

capacity constraint. The amount of capacity allocated to each problem will then de-

pend on its weight in the objective function and on the returns to capacity. Difficult

tracking problems may get less capacity if they are difficult because of low marginal

returns to additional capacity. With the same objective function and the same capac-

ity limit, capacity allocations will change as the serial correlation and variance scales

of the variables to be tracked change.

We can go some way toward these objectives by using the recursive formulation of

the next section.

V. Linear-quadratic control with a capacity constraint and

multivariate state

This section is technically dense. Readers may wish to read first (or only) the

subsequent discussion of examples that apply this section’s methods to economic
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models. The single-state version of the permanent income problem discussed at the

beginning of the next section brings out some of the main ideas with much simpler

mathematics.

We consider a standard linear-quadratic control problem with imperfectly observed

state, with the requirement that the observations on the state involve information

transfer at a rate less than some given rate C. It is thus part of the optimization

problem to choose the character of the observation error.

The problem is

max
C,S

E

[

∞
∑

t=0

βt(−S ′

tASt − C ′

tBCt)

]

(15)

subject to

St = G0 + G1St−1 + G2Ct−1 + εt (16)

St | It ∼ Dt (17)

St−1 | It−1 ∼ Dt−1 (18)

and to the requirement that the rate of information flow at t implicit in the specifi-

cation of Dt−1 and Dt be less than C. Here St is the state at t, Ct is the control at

t, and It is the information available at t. We are maintaining a convention (and an

implicit assumption) that variables dated t are “known” at t, so that Ct and St are

measurable with respect to the It information set.

Once the current period information has been received, the problem becomes a

standard LQ control problem with measurement error, and we can apply certainty-

equivalence. That is, if the (linear) decision rule that solves the deterministic version

of the problem (that with Var(ε) = 0) is

Ct = H0 + H1St , (19)

then the optimal decision rule for the problem with measurement error is

Ct = H0 + H1Ŝt , (20)

where Ŝt = E[St | It].

Let us now assume that both Dt and Dt−1 are normal. Later we will return to

consider to what extent we can deduce these properties of the signal-processing error

from the structure of the problem. With Dt = N(Ŝt, Σt) for each t, we will examine

the situation where Σt is constant, verifying along the way that such a limiting case

exists. If we let Ω = Var(εt), then we can see from (16) that

Var(St | It−1) = Ψ = G′

1ΣG1 + Ω . (21)
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The information flow constraint can then be expressed as

− log |Σ| + log |Ψ| < 2κ , (22)

where κ is channel capacity. In the case of a one-dimensional state, this constraint

completes the characterization of the problem. When the state is multidimensional,

however, (22) leaves open the possibility that Ψ − Σ might not be positive semi-

definite. This in effect implies that information flow can be kept low by “forgetting”

some existing information, trading this off for increased precision about other dimen-

sions of the state vector. Since transmission of information cannot produce this result,

we need to add as a separate constraint

Ψ � Σ , (23)

where “�” is interpreted as implying that the difference of left and right-hand sides

is positive semi-definite.

We use the notation

V (St) = −S ′

tθ2St + θ1St + θ0 (24)

to denote the value function for the problem without capacity constraints and define

V̂ (Ŝt) = E
[

∞
∑

s=0

βt(−S ′

tASt − C ′

tBCt)
∣

∣

∣
It

]

, (25)

where the expectation is formed under the assumption that current and future C’s

are all being chosen subject to the capacity constraint on information flow.

Of course, since the information capacity constraint can’t help in the optimization,

we know that EtV (St) > V̂ (Ŝt). (Here and henceforth we will use Et[·] as shorthand

for E[· | It].) It turns out to be handy to characterize the optimization problem as

being that of choosing Σ to minimize EtV (St) − V̂ (Ŝt), in other words as that of

choosing the structure of our uncertainty about the state so as to bring expected

utility from the current date onward as close as possible to the expected value of the

unconstrained value function. We begin by writing

EtV (St) − V̂ (Ŝt) =

− tr
(

(A + H ′

1BH1)Σ
)

+ βEt

[

V (S∗

t+1) − V (St+1) + V (St+1) − V̂ (Ŝt+1)
]

, (26)

where S∗

t+1 = G0 + (G1 + G2H1)St + εt is the value of St+1 that would emerge if Ct

were chosen optimally without uncertainty at t about the value of St. We use St+1

to refer to the value of the state at t + 1 when Ct is chosen subject to the capacity

constraint, i.e. to satisfy (20). Then we write

S̃t+1 = S∗

t+1 − St+1 = G2H1(St − Ŝt) . (27)
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Because of the LQ structure of the problem, the left-hand side of (26) will be a

constant, determined entirely by variances, not the current estimate of the state.

(Again, we’ll verify this at the end.) Let this constant be M . Then we can write

(1 − β)M = − tr
(

(A + H ′

1BH1)Σ
)

+ βEt

[

−1

2
(S̃ ′

t+1θ2S̃t+1 + 2S̃ ′

t+1θ2St+1)
]

. (28)

Using (27) and (16), we can then write the whole expression in terms of known

matrices and Σ:

(1 − β)M =

− tr
(

(

A + H ′

1BH1 + 1

2
β(H ′

1G
′

2θ2G2H1 + H ′

1G
′

2θ2G1 + G′

1θ2G2H1)
)

Σ
)

= − tr(WΣ) . (29)

Our optimization problem then takes the form

max
Σ

{tr(WΣ)} (30)

subject to

− log |Σ| + log(G1ΣG′

1 + Ω) ≤ 2κ (31)

Σ � G1ΣG′

1 + Ω . (32)

The information-theoretic constraints (31) and (32) have taken us out of the con-

venient linear-quadratic realm, but they are in some respects well-behaved. In par-

ticular, each defines a convex subset of Σ-space. To see that (31) defines a convex set

of Σ’s, observe that the second derivative of the left-hand side with respect to ~Σ is7

Σ−1 ⊗ Σ−1 − (Σ + G−1

1

′

ΩG−1

1 )−1 ⊗ (Σ + G−1

1

′

ΩG−1

1 )−1 , (33)

where ⊗ is the Kronecker product. Obviously Σ−1 � (Σ+G−1

1

′

ΩG−1

1 )−1, and the fact

that for any square matrices X and Y , X � Y ⇒ X ⊗ X � Y ⊗ Y then delivers the

desired result. And that (32) defines a convex set of Σ’s follows from its linearity in

Σ and from the fact that A � 0 and B � 0 imply A + B � 0.

Since our problem is therefore one with a linear objective function and convex

constraint sets, it will have a uniquely defined maximized objective and we can char-

acterize its solutions as maximizing the Lagrangian for certain values of the Lagrange

multipliers on the constraints. One approach to solving this problem that I have

found to work is to reparameterize in terms of the Choleski factor Φ of Λ∗ = Ψ − Σ,

where Φ′Φ = Λ∗ and Φ is upper triangular. This imposes the positive definiteness of

Ψ − Σ, as required by (32), automatically. One can then maximize the Lagrangian

7We use the notation ~Σ to denote Σ stacked up, column by column, int a single vector. In deriving

(33) and elsewhere we are using the identities
−−−→
ABC = (C ′ ⊗ A) ~B and (d/dΣ) log |Σ| = Σ−1 .
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with λ fixed. Note that the mapping from Λ∗ to Σ, which must be evaluated in order

to evaluate the objective function, is determined from the solution to

G1ΣG′

1 + Ω = Σ + Λ∗ . (34)

This is in the form of a standard discrete Lyapunov equation that can be solved,8 e.g.,

with Matlab’s dlyap.m program, or (if the equation is multiplied through by G−1

1 )

by lyap.m.9

Once we have found the optimal Σ, we then find the corresponding Var(ξt) = Λ

from the usual formula for the variance of a Gaussian distribution updated based on

a linear observation:

Σ = Ψ − Ψ(Ψ + Λ)−1Ψ . (35)

Equation (35) can be solved for Λ−1, yielding

Λ−1 = Σ−1 − Ψ−1 . (36)

Note that Λ−1, like Λ∗, is likely to be near singular. When this occurs, it means that

it is efficient to observe only a certain linear combination (or combinations) of the

state variables rather than the whole state vector. Measurement error on the other

linear combinations is effectively infinite.

With the problem solved, we can form a dynamic system that characterizes the

evolution of the vector [St, Ŝt, Ct] as it is driven by the underlying structural shocks

8If G1 has a unit eigenvalue or pairs of eigenvalues that are reciprocals of each other, this equation

can’t be solved for Σ. This means for example that in the permanent income examples below, the

algorithm fails if the exogenous income process has a unit root. This does not mean the problem

is unsolvable, or even especially difficult in principle. But further cleverness will be required to

produce a parameterization that works automatically in these cases. Also, some values for the Λ∗

matrix may imply that there is no corresponding Σ � 0. Numerical routines that search over Φ of

course must take this into account, but this will not create important difficulties so long as |Σ| > 0

at the solution. Also, finding a feasible starting value for Λ∗ may be a problem. If Ω is nonsingular,

the solution to Λ∗ = G1ΣG′

1
+ Ω − Σ is always p.s.d. if Σ is taken small enough.

9These routines are part of an extra-cost Matlab toolbox. A slower but slightly more general

program called lyapcs.m is available on my web site. lyap.m quits without producing output under

certain conditions in which there is a solution, but it is not unique. lyapcs.m attempts to provide

a solution in these conditions. Because G1 generally has both stable and unstable eigenvalues,

doubling algorithms do not avoid the need for an eigenvalue decomposition of G1 in this problem

and thus lose their main advantage over the Schur-decomposition-based methods in the programs

cited here.
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εt and the information-processing-induced measurement error ξt. The equations are

St = G0 + G1St−1 + G2Ct−1 + εt (16)

Ŝt = (I − ΣΛ−1)(G1 + G2H1)Ŝt−1 + ΣΛ−1(St + ξt) (37)

Ct = H0 + H1Ŝt . (20)

This system can then of course be used to generate impulse responses in the usual

way.

To justify the assumptions we have made along the way, it must turn out that the

system formed by (16), (37) and (20) is consistent with stationarity of the [St, Ŝt, Ct]

process. With stationary disturbance terms, we need, therefore, that the matrix





I 0 0

−ΣΛ−1 I 0

0 −H1 I





−1 



G1 0 G2

0 (I − ΣΛ−1)(G1 + G2H1) 0

0 0 0



 (38)

has all its roots less than one in absolute value.

It can be shown that the eigenvalues of this matrix are those of the two smaller

matrices G3 = G1+G2H1 and ΣΨ−1G1. The first of these, G3, is the matrix character-

izing the dynamics of the state in the model with no information capacity constraint.

It will therefore have all its eigenvalues less than one in absolute value whenever the

problem with no capacity constraint has a stable solution. The second of the two

matrices seems likely also always to have all its values less than one in absolute value,

whenever we can solve for Ψ and Σ, and I have yet to encounter an example where it

has eigenvalues larger than one, but proving this seems to be challenging.

If κ is set too low, it is possible that the intersection of the sets of Σ’s defined by

(22) and (23), with Ψ defined by (21), is empty, in which case no stationary solution

satisfying the capacity constraint is possible. This makes intuitive sense. In most

rational expectations problems G1 has at least some unstable roots, so that if C were

never changed, S would blow up exponentially. Specification of too small a κ may in

effect prevent C from moving enough, or accurately enough, to prevent this explosive

behavior. But there is always a solution if κ is large enough.

VI. A Rational Inattention Version of Permanent Income Theory

We consider a standard linear-quadratic (LQ) permanent income example, in which

an agent maximizes

E

[

∞
∑

t=0

βt(Ct − .5C2

t )

]

(39)
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subject to

Wt = R · (Wt−1 − Ct−1) + Yt , (40)

where as usual we interpret W as wealth, C as consumption, Y as labor or endowment

income, and R as the gross interest rate. We will suppose that the agent devotes

limited capacity to observing Y and W , so that Ct is always being chosen as if Y

and W up to the current date are known only up to some pattern of random error.

We will use the idea of a finite Shannon capacity for the agent to derive the form of

the pattern of random error and the effects of it on the way C and W respond to

Y . This problem fits precisely into the framework of the general LQ control problem

with capacity constraint that we considered in the previous section.

To begin with the simplest possible case, suppose Yt is i.i.d. with mean Ȳ and

βR = 1. Then Wt by itself can serve as state variable. This model fits in to the general

framework of the previous section, but it is much simpler to solve because of the one-

dimensional state. Aspects of the problem that require numerical optimization in the

multivariate case here can be solved analytically.

The optimal decision rule for the deterministic problem is simply

Ct = (1 − β)Wt + βȲ . (41)

Optimal policy with finite capacity will therefore have the form

Ct = (1 − β)Ŵt + βȲ . (42)

To fit this problem to the notation of the previous section, we would make the nota-

tional correspondences St ∼ Wt, Ct ∼ Ct − 110, G0 ∼ Ȳ + R, G1 ∼ R, and G2 ∼ −R.

Rather than simply invoke the more general framework, we proceed here to work

out this example analytically, as this may aid understanding. With a quadratic loss

function, minimization of losses subject to an information-flow constraint implies that

the conditional distribution of Wt given information at t will be N(Ŵt, σ
2
t ).

11 Then

the budget constraint (40) implies that

Et[Wt+1] = Ŵt (43)

Vart[Wt+1] = R2σ2

t + ω2 , (44)

where ω2 is the variance of Yt. To keep things linear, we assume now that the

distribution of Yt is Gaussian. With a finite capacity κ per time unit, then, the

10The general model has no linear term in the objective function, so we have to recenter C at

its satiation level of 1 in order to match the general setup’s notation. This entails adjusting the

constant term G0 in the budget constraint also.
11This follows because the entropy of a pdf with a given variance σ2

t
is maximized when the pdf

is Gaussian.
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optimizing agent will choose a signal that reduces the conditional standard deviation

of Wt+1 by

κ = 1

2

(

log(R2σ2

t + ω2) − log(σ2

t+1)
)

. (45)

This equation has a steady state at

σ̄2 =
ω2

e2κ − R2
. (46)

In steady state the agent behaves as if observing a noisy measurement W ∗

t+1 =

Wt+1 + ξt+1, with ξt+1 independent of all previous random disturbances to the system

and with

Var(ξt+1) =
σ̄2(R2σ̄2 + ω2)

(R2 − 1)σ̄2 + ω2
. (47)

We compute (47) by setting the conditional variance of Wt+1 given W ∗

t+1 and infor-

mation at t to be σ̄2.

In some respects this model reproduces results of standard permanent income the-

ory for this special case. Consumption and estimated wealth are random walks, in

the sense that E[Ct+s | {Cv, v ≤ t}] = Ct and E[Ŵt+s | {Ŵv, v ≤ t}] = Ŵt. However

consumption is not a martingale, meaning that it is not true that EtCt+s = Ct, where

Et is expectation conditional on all information available at t. That is, variables

other than C’s own past, and wealth and income variables in particular, may help

predict future values of C.

To get a full solution for the system in terms of the exogenous process Y and

the information-processing error ξ, we can assemble the budget constraint (40), the

decision rule (42), and the regression formula describing how Ŵ is revised based on

noisy observation:

Ŵt = Ŵt−1 + θ(Wt + ξt − Ŵt−1) = (1 − θ)Ŵt−1 + θWt + θξt . (48)

These form the system of difference equations




1 0 0

−θ 1 0

0 −1 + β 1









Wt

Ŵt

Ct



 =





R 0 −R

0 1 − θ 0

0 0 0









Wt−1

Ŵt−1

Ct−1



+





1 0

0 1

0 0





[

Yt − Ȳ

ξt

]

. (49)

The classic permanent income theory literature characterizes the distributed lag

relationship between C and Y , emphasizing that C should respond only slightly to

temporary changes in Y , which are the only kind that occur in this model with no

serial correlation. In fact, in this model without information constraints

Ct = (1 − β)

(

W0 +
t
∑

s=1

(Ys − Ȳ )

)

+ βȲ . (50)
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Figure 6. Responses of C in the Permanent Income Model with Seri-

ally Uncorrelated Y

This implies of course that the impulse response of C to Y shocks is flat, with an

immediate upward jump that then persists indefinitely. When we solve the system

(49), we get instead a response to Y that is “rounded off”, with a steady rise to a flat

asymptote that is above the response for the case without capacity constraint. The

delay is of course because of the need to separate signal from noise, and the fact that

the asymptote is above that for the standard case reflects the fact that an income

shock, initially undetected, accumulates interest for a while before consumption re-

sponds fully. The information-processing error is much less serially correlated than

the part of C that responds to Y . The two impulse responses — to Yt − Ȳ and to ξt

— are shown in Figure 6. The figure assumes a discount factor of .95 and a regression

coefficient θ of Ŵt on the observed Wt + ξt of .5. This in turn implies that channel

capacity is −1

2
log2(1 − θ2) = .21 .

The noticeable smoothing and delay of response to income shock in this example

seems to rest on assuming a very low bit rate of information transmission. While

this rate is clearly well below the total information processing capacity of human

beings, it may not be unreasonable as the rate assigned to processing economic data,

particularly aggregate economic data, when there are many competing demands on

capacity.

For example, we can consider what happens when the income process contains sev-

eral components. We will suppose that it has two components with high innovation



RATIONAL INATTENTION 21

variance and modest serial correlation, and another that has much lower innova-

tion variance and stronger serial correlation. We might think of the latter as an

“aggregate” component of the income of an individual whose personal fortunes are

dependent, month to month, much more on local and idiosyncratic uncertainties than

on aggregate economic fluctuations.

The setup here will be exactly as in the previous example, except for the specifica-

tion of the exogenous Y process. Here we assume

Yt = Ȳ + Xt + Zt + εY t (51)

Xt = .97Xt−1 + εXt (52)

Zt = .9Zt−1 + εZt , (53)

with

Var





εY t

εXt

εZt



 =





.01 0 0

0 .0001 0

0 0 .003



 . (54)

So the X component of income is to be thought of as the stable, slow-moving “aggre-

gate”. This model again falls in to our general framework, but this time cannot be

solved by hand. Figure 7 shows the responses to the three true component income

shocks and the three error shocks, with channel capacity .72 bpt, four times that

in Figure 6. Each of the responses to true components is accompanied by a hori-

zontal line showing the level of the flat optimal response in the absence of capacity

constraints. The response to Z, the large-variance serially correlated component, is

similar in shape to the response to the single shock in the single-state example. The

response to the serially uncorrelated component is essentially undamped, while the

response to the low-shock-variance, near-unit-root component is extremely damped,

with the response rising steadily throughout the 20 periods plotted.

If we triple channel capacity, to about 2.1 bpt, we get the responses shown in Figure

8. Here the response to the X component shock has almost the same form as the

response to the single i.i.d. shock in the one-state example, but total channel capacity

is ten times greater. In these multi-state examples the optimal use of channel capac-

ity is to track closely the more unpredictable components of labor income, allocating

proportionately much more observation error to the slower-moving “aggregate” com-

ponent. Of course in reality people have many more than three economic time series

to monitor and much more to keep track of than just the economic side of their lives.

Thus it is not unreasonable to model them as reacting to macroeconomic data as if

it reached them through a low-capacity channel.
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Figure 7

VII. Implications for macroeconomic time series behavior

While the examples worked out above are far from constituting a general equilib-

rium theory based on these ideas, they suggest likely qualitative behavior of such a

full equilibrium model. This way of thinking can provide a basis for critical thinking

about the results of other approaches before it has been developed to the point of

providing a fully worked out alternative.

As I noted in a previous paper (1998), it is apparent from nearly any VAR study

and from the bivariate investigations of Keating (1997) that most cross-variable re-

lationships among macroeconomic time series are smooth and delayed, as would be

predicted by an information-constraint approach. It is possible (as is also shown in

the 1998 paper) to reproduce this behavior with conventional DSGE models by in-

troducing adjustment cost mechanisms pervasively, for both prices and quantities.

The required adjustment costs are large, however, and the dynamics of the model

starts to depend mainly on these mechanisms, which are hard to interpret in terms

of microeconomic common sense.
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Furthermore, if one looks at the diagonal of the matrices of impulse response graphs

that emerge from VAR studies, one finds impulse responses that are strongly discon-

tinuous at zero.12 The adjustment cost models of macroeconomic theory generally

imply that variables subject to adjustment costs should respond smoothly to ev-

ery source of disturbance. To explain the quick estimated responses to own shocks

requires introducing disturbances to the adjustment mechanism itself. While it is

possible to build a DSGE model containing such disturbances (as shown in the 1998

paper), the distance from microeconomic intuition in the resulting construction is

uncomfortably great.

As we have seen in our examples above, information-capacity limits can account

simultaneously for smooth response to other variables, real or nominal, and for an

idiosyncratically random component of variation, arising from the same source as the

smoothness in the response to other variables.

12Matrices of impulse response graphs of various sizes can be found, e.g., in Leeper, Sims, and

Zha (1996).
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The theory does suggest, though, that the randomness in an individual’s response to

market signals should be truly idiosyncratic, arising from his own internal information-

processing constraint. It might be thought, then, that it should vanish, or at least

shrink drastically, when aggregated across individuals, so that the responses to own-

shocks in VAR’s could not come from this source. Recall, though, how the idiosyn-

cratic information-processing randomness arises. It arises from coding inaccuracy,

the need to approximate fine-grained information with cruder approximations. Peo-

ple share a need to code macroeconomic data efficiently, and they pay for this service.

To a considerable extent, people’s needs for coding are similar, so they rely on com-

mon sources of coded information. The result is that a considerable part of the erratic

response arising from information capacity constraints is common across individuals.

To make this point concrete, consider one of the most pervasive coding services, the

daily newspaper, and how it presents macroeconomic data. Many newspapers report

the Federal Funds Rate to 3 significant figures every day, at a predictable location in

the back of the business section. The vast majority of newspaper readers do not look

at this number every day, and of those that do look at the page containing the number,

the vast majority make no adjustment in their behavior in reaction to the number.

On the other hand, if the New York Times ran as a three-column, front page headline

“FED UNEXPECTEDLY RAISES FEDERAL FUNDS RATE 1.5%”, many readers

of the newspaper would be likely to act on the news. The coding of the time series

behavior of the Federal Funds rate into different type sizes at different locations in the

newspaper according to its importance is part of the overall information-processing

service that a newspaper performs for its readers and that readers (and advertisers)

pay for. But, just as with the coding of a Gaussian random variable into a finite

set of 0-1 switches introduces a coding error, the newspaper’s information processing

can influence the erratic component of behavioral response to data. If everyone were

tracking and reacting to the Federal Funds rate hour by hour, it would not matter

whether the newspaper put it on page one in one inch type, on the front page below

the fold, on the first business page, or simply in the usual daily table with no mention

in a text story. But in fact the treatment that newspapers (and TV) give this news

affects the way people react to it, creating a common component to the idiosyncratic

error generated by information-processing. Newspapers are far from the only example

of such a phenomenon. Information spreads among people through conversation and

imitation, for example, and these channels are themselves subject to coding error that

is common across people.

Of course not all of the stochastic component of behavior induced by information-

processing is common, and this does imply limitations on the theory as applied to

aggregate data. The tight relation between the degree of smoothing in the systematic
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component of behavior and the nature and size of the stochastic component that

comes out of the examples we have discussed in sections IV and VI will not translate

reliably to aggregate data. In particular, we might expect, because of the effects of

averaging across agents, that smoothing effects will be stronger relative to the size of

idiosyncratic error components than a “representative agent” theory would suggest.

VIII. Comparison to rational expectations theories

Versions of rational expectations that postulate a common information set for all

agents at all times imply quick, error-free reactions of all prices and all kinds of

agent behavior to every kind of new information and therefore contrast strongly with

the implications of rational inattention theory — and with the data. Versions that

postulate differing information sets, e.g. between policy-makers and the public or

between workers and firms, if they postulate that the difference is in the form of a

pure delay in arrival of information, are equally in conflict with rational inattention

theory. Delay alone, without smoothing and idiosyncratic error, has no effect on the

rate of information flow.

Rational expectations theory based on signal-extraction, like that in Lucas (1973)

is much closer to rational inattention theory. Since filtering a behavioral time series

Yt through a one-sided linear filter does not change its information content, in track-

ing problems like those in section IV the behavior of rationally inattentive agents will

always be as if they faced exogenously given noise of the same form as the endogenous

noise derived from information-processing constraints. Since rational inattention im-

plies restrictions on the relation between noise and systematic component, we could

in principle test for it vs. more general forms of signal-extraction effects, though the

problems with aggregation and “indexation” mentioned above imply that this will be

difficult.

More importantly, the three types of theory (information-delay RE, signal-extraction

RE, and rational inattention) have different implications for how we extrapolate from

observed history in projecting the effects of changes in policy that change the dy-

namic properties of the economy. Information-delay RE suggests that agents act on

optimally formed forecasts of the future. It implies that functions relating behavior

to optimally-formed forecasts of the future, as generated from the true aggregated

model, should remain stable as the dynamic properties of the economy change. Nei-

ther signal-extraction RE nor rational inattention theory shares this prediction. Both

of these theories postulate the existence of constraints on agents’ behavior that makes

them act on forecasts that are worse than those that could be constructed from exact

knowledge of all the data in the aggregated model.
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Signal-extraction rational expectations takes the nature of the noise as exogenously

given. It leads, therefore, to the prediction that scaling up the variance of the signal

leads to a higher correlation of the signal with agents’ behavior, as Lucas (1973)

pointed out. Rational inattention theory predicts that agents will behave as if facing

noise whose nature changes systematically as the dynamic properties of the economy

change. If a fixed amount of capacity is allocated to monitoring the aggregate price

level, for example, the amount of noise will rise with the variability of the price level, so

that the accuracy of agents’ estimates of the inflation rate will not improve, in terms

of R2, as the variance of inflation increases. On the other hand if, as seems more

likely, increased variation in inflation is associated with increased marginal returns to

estimating it accurately, capacity may be reallocated from other forms of information-

monitoring to allow increased accuracy of inflation-monitoring. In this case, the

rational-inattention theory provides an explanation for why economic efficiency might

deteriorate in the presence of highly variable inflation. It also provides a qualitative

explanation for phenomena like the tendency of inflation-indexation clauses in labor

contracts to become more prevalent when inflation is variable, but then to disappear

again when inflation stabilizes.13

IX. Work ahead

To proceed to general equilibrium models incorporating capacity constraints will

require attacking some interesting issues. Most important, how do market mecha-

nisms operate in coordinating behavior of finite-capacity agents? There seems to be

no technical barrier to working out models of such markets, but there are impor-

tant questions about how to formulate them. It seems likely that purely competitive

exchange markets relating such agents would make actual sales smoother than they

would be without capacity constraints and at the same time might lead to more

volatile prices than otherwise. But results may depend on whether we think of agent

as setting prices in response to quantities or vice versa. With price-setting sellers,

the smoothed response of buyers to price changes due to information-processing con-

straints creates a source of temporary market power. On the other hand, buyers

might seek out sellers whose price time series are easier to monitor. Observations like

these may eventually lead to more convincing general equilibrium stories about the

origins and consequences of price and wage stickiness than we now have, but there is

obviously a long way to go.

The models we have considered postulate a limit on information processing ca-

pacity, but no limit on agents’ abilities to behave optimally given the constraints on

capacity. We have split behavior into two levels, an outside-of-time optimization level,

13Find reference.



RATIONAL INATTENTION 27

in which optimal rules are derived, conditional on the limitations of real-time data

processing but assuming no limits on computational capacity in solving the optimiza-

tion problem, and the real-time reaction level itself, in which we recognize limits on

computational capacity. While this may be a reasonable approximation, it is obvi-

ously subject to criticism — there is not in fact any “phase” of our lives during which

we optimize behavior without constraints of time or computational capacity. There

is previous work in the game theory literature (Abreu and Rubinstein, 1988) that

works with the notion of agents as “finite automata”. This approach also splits the

people it models into an unboundedly rational optimizing level and a computationally

constrained level, but it postulates a very different dividing line between levels.

Of course this is only the tip of the iceberg of ways this theory is still incomplete.

X. Conclusion

It seems presumptuous to have a section titled “Conclusion” in a paper like this

that consists mostly of thinly supported speculation. This paper has improved on

the even vaguer speculations in Sims (1998) by showing that a capacity constraint

can substitute for adjustment costs in a dynamic optimization problem. In several

respects the resulting setup seems more realistic than adjustment cost frameworks,

and there are interesting differences in its implications. It is probably worthwhile to

work on this a little further.

Appendix A. Solution methods

References

Abreu, D., and A. Rubinstein (1988): “The Structure of Nash Equilibrium in

Repeated Games with Finite Automata,” Econometrica, 56(6), 1259–1281.

Bénabou, R., and J. Tirole (2001): “Self-Knowledge and Self-Regulation: An

Economic Approach,” Discussion paper, Princeton University.

Evans, G. W., and S. Honkapohja (2001): Learning and Expectations in Macroe-

conomics. Princeton University Press, Princeton, NJ.

Giannoni, M. P. (1999): “Does Model Uncertainty Justify Caution? Robust Op-

timal Monetary Policy in a Forward-Looking Model,” discussion paper, Princeton

University.

Gray, R. M., and D. L. Neuhoff (2000): “Quantization,” in Information Theory:

50 Years of Discovery, ed. by S. Verd/’u, pp. 281–339. IEEE Press, Piscataway, NJ,

All articles reprinted from IEEE Transactions on Information Theory 4, October

1998.



RATIONAL INATTENTION 28

Gul, F., and W. Pesendorfer (2001): “An Economic Theory of Self Control,”

Econometrica.

Hansen, L. P., and T. J. Sargent (2001): “Robust Control and Model Uncer-

tainty,” American Economic Review, 91(2), 60–66.

Keating, J. W. (1997): “Is Sticky Price Adjustment Important for Output Fluctu-

ations?,” Discussion paper, University of Kansas, University of Kansas.

Laibson, D. (1997): “Golden Eggs and Hyperbolic Discounting,” Quarterly Journal

of Economics, 112, 443–478.

Leeper, E. M., C. A. Sims, and T. Zha (1996): “What Does Monetary Policy

Do?,” Brookings Papers on Economic Activity, (2).

Lucas, Robert E., J. (1973): “Some International Evidence on Output-Inflation

Tradeoffs,” American Economic Review, 63(3), 326–334.

Onatski, A., and J. H. Stock (1999): “Robust Monetary Policy Under Model

Uncertainty in a Small Model of the U.S. Economy,” manuscript, Harvard Univer-

sity.

Sargent, T. J. (1993): Bounded Rationality in Economics. Oxford University Press,

Oxford.

Schervish, M. J. (1995): Theory of Statistics, Springer Series in Statistics. Springer,

New York.

Sims, C. A. (1998): “Stickiness,” Carnegie-rochester Conference Series On Public

Policy, 49(1), 317–356.

Department of Economics, Princeton University

E-mail address: sims@princeton.edu


