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Abstract

Data cleaning is widely regarded as a critical piece of machine learning (ML) applications, as data errors
can corrupt models in ways that cause the application to operate incorrectly, unfairly, or dangerously.
Traditional data cleaning focuses on quality issues of a dataset in isolation of the application using the
data—Cleaning Before ML—which can be inefficient and, counterintuitively, degrade the application
further. While recent cleaning approaches take into account signals from the ML model, such as the model
accuracy, they are still local to a specific model, and do not take into account the entire application’s
semantics and user goals. What is needed is an end-to-end application-driven approach towards Cleaning
For ML, that can leverage signals throughout the entire ML application to optimize the cleaning for
application goals and to reduce manual cleaning efforts. This paper briefly reviews recent progress in
Cleaning For ML, presents our vision of a holistic cleaning framework, and outlines new challenges that
arise when data cleaning meets ML applications.

1 Introduction

Machine learning (ML) has gained widespread adoption in real-world problems that span business [1], manufac-
turing [2], healthcare [3], agriculture [4], and more. ML relies on - and is “programmed" by - training data. Thus,
the quality of the training data is a fundamental ingredient toward robust and accurate models, and ultimately
toward useful and reliable ML-based applications [5, 6, 7]. For this reason, data and ML engineers spend a
tremendous amount of time—80% or more of a data scientist’s time [8, 9, 10]—on wrangling and cleaning the
required datasets for their ML applications.

Traditional data cleaning seeks to directly address data quality issues in a specific dataset. Given a structured
dataset that potentially contains errors, it seeks to identify and/or repair those errors to derive a cleaned dataset
that can be shared with the rest of the organization, or used by subsequent queries and applications without
worry. Since cleaning occurs prior to, and often independent of the application, these techniques typically rely on
error models to detecting duplicates or outliers, external constraint information (e.g., functional dependencies or
integrity constraints), or human assessment and input (e.g., to recommend repairs or cleaning examples).

The separation of data cleaning and the application is not optimal. For one, it is hard for users to define, or
even assess, the correct integrity constraints for the application. It is also hard to anticipate the different ways that
the cleaned dataset will later be used. Further, improving a dataset could in fact degrade the application [11].
Thus, it is often unclear how a given cleaning intervention will affect the downstream application. For instance, is
setting an outlier value to the median the best choice for a visualization dashboard, and does it even matter?
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Table 2: Model accuracy on Flights and Census with combinations of cleaned/dirty × training/test data.

Although these are not new issues in data cleaning, ML applications exacerbate these issues and introduce
new and novel cleaning challenges. Table 2 reports an illustrative experiment where we train a classifier using
AutoSklearn [12] and report its accuracy on a separate test dataset. We manually created clean and dirty versions
of the FAA Flights delay [13] and U.S. Census [5] datasets, and split each dataset using 10-fold cross-validation
into training and test sets. We find that whether or not cleaning is beneficial heavily depends on the application.
For the Flights dataset, cleaned training data improves the model accuracy on both clean and dirty test data.
However, cleaning the Census training data actually degrades the model accuracy on dirty data. In fact, training
and testing on dirty data is as accurate as training and testing on clean data, yet requires no effort.

This experiment provides evidence that cleaning is not a local “one-and-done” process. In fact, the appro-
priate cleaning intervention is dependent on the type of error as well as the rest of the application, and
should be approached from this perspective. Consequently, all of the complexities inherent in modern ML
applications become complexities that affect how data is cleaned. In this paper, we argue that data cleaning needs
to take an end-to-end application-driven approach that integrates cleaning throughout the ML application.

1.1 Data Cleaning in ML Applications

Affinity Alerts

Churn PromotionIngest & 
Validate

Prepare Develop Deploy

User profiles
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Browsing

Figure 1: Typical workflow for ML applications

ML applications can be modeled as complex workflows
that span an entire organization’s data management, from
data ingest to publishing data products to end users. Con-
sider an e-commerce company that identifies users for pro-
motional discounts (Figure 1). The data management team
ingests user profile data from a third-party data source,
and combines it with internal customer purchasing and
browsing histories. The data is prepared by canonicaliz-
ing the user ids, extracting product information from the
browsed pages, and ensuring that the expected attributes
appear in each data record. Separate data science teams
develop two models: the first estimates the likelihood that a given user will leave the service (churn), and the
second estimates a user’s preference for different products (affinity). These models are used in the promotion
application to decide whether or not to show a promotion to an end-user (user in color), as well as the marketing
team’s internal dashboard and alert system that monitors the churn rate over time. Different teams (colored boxes)
manage different parts of the workflow, and different engineers may monitor intermediate data at different points
in the workflow (dashed lines and gray users).
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1.1.1 Cleaning within individual phases

The e-commerce application highlights the three prototypical phases in an ML application [14, 6]: the Prepare
phase focuses on data ingestion and preparation; the Develop phase focuses on ML model development, training,
and evaluation; and the Deploy phase uses the models in the production-ready application. Each high-level phase
involves complex, multi-step data transformations and processing, and the steps are stitched together in a large
workflow that often spans multiple teams within an organization. Each phase, as well as the ML application as a
whole, poses novel challenges for data cleaning.

The Prepare phase typically focuses on restructuring the input data so that they conform to the expected
“syntax” of the models. This can involve data extraction and wrangling from text documents [15], image resizing
and reshaping [16], attribute type and domain checks [17, 6], as well as simple constraints that any downstream
application will expect [18]. There has also been a large literature on cleaning approaches that seek to address
“semantic errors” [19, 20, 21, 22, 23, 24, 25, 26, 13]. However, most approaches do not take the subsequent
workflow into account, which the above experiment showed can lead to wasted effort or even worse application
outcomes.

The Develop phase focuses on model development, training, and evaluation. Although the ML community
has developed a multitude of robust model designs and training techniques [27], it is often better to directly
address errors and biases in the data [5]. Cleaning in this phase can leverage the ML models and validation data
to direct cleaning efforts to most improve model quality. In contrast to well-defined constraints that are available
during the Prepare phase, quality for ML models is more challenging to define. Using test accuracy alone is
susceptible to overfitting, and other factors such as model generalization must be taken into account but are hard
to quantify. Further, ML models are often trained on nonrelational data, such as images, natural language, and
unstructured documents, which require new types of cleaning interventions.

In the Deploy phase, trained models go into production to directly serve recommendations to end users,
or as part of data analytics that power e.g., dashboards or monitoring systems. Rather than make cleaning
decisions based on model quality, cleaning in this phase can leverage the ML application’s user-facing results to
better identify erroneous input data and save the effort of cleaning data that does not affect the output. However,
cleaning data is harder as it may not be clear what upstream dataset (and which records) to clean, how intermediate
transformations in the workflow might affect possible cleaning interventions, nor how to translate error signals
into actionable interventions. Further, external signals in this phase may override or contradict cleaning decisions
made earlier in the workflow.

1.1.2 Cleaning in ML Applications

Stepping back, the goal of data cleaning is ultimately to improve the ML application. This perspective presents
three main challenges. First, the notion of data quality is more varied and often unclear. Even in traditional data
cleaning, each phase has different goals: data preparation enforces syntactic constraints, model development
seeks to improve model quality, while deployment seeks to improve the ML application. Quality will often rely
on a user’s qualitative judgments based on application-level outputs. For instance, an analyst that examines a
dashboard is well positioned to spot anomalies in the visualizations. On the other hand, human judgments may
not always be trustworthy nor correct, and attention is a limited resource.

Second, data management, cleaning, and error detection is fragmented across different roles and different parts
of the workflow. For instance, a data management team may be responsible for data ingestion and preparation,
data scientists design and train models, ML engineers then productionize and publish models that can be deployed
by application developers. At the same time, the appropriate cleaning intervention (if any is even needed) depends
on the nature of the error and the model [28, 29, 30] (and application). Thus, domain expertise is localized,
visibility into the full workflow is limited, yet their cleaning decisions are conducted and felt globally.
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Third, ML data is both complex and dynamic. Relational, multimedia, and natural language data all require
different types of interventions. ML models are sensitive to population-level errors that can bias the model.
Further, different datasets play different roles throughout the workflow. Ingested data is preprocessed into training
data, which is distinct from test and inference data, and they are both distinct from data used for general analytics.
Finally, data constantly changes over time. For instance, inference data today may become test or training data
tomorrow. The population-level dataset statistics, data schemas, and types of errors can change over time.

Ultimately, data quality management in ML applications requires the ability to make informed cleaning
decisions at different parts of the ML application, for different types of data and errors, and for different purposes
as the data, models, and workflow evolves. This requires coordination across the workflow so that cleaning
decisions can account for downstream needs, while downstream steps can help inform upstream cleaning.

1.2 Looking Forward

To this end, we propose an end-to-end application-driven approach toward cleaning. Specifically, we envision a
holistic framework that connects involved stakeholders of the entire ML application’s workflow. This framework
manages the provenance of cleaning operations throughout the ML application. The provenance enables
stakeholders to provide signals, cleaning suggestions, and expertise at any part of the workflow. Then, this
feedback can be leveraged for cleaning in the rest of the workflow. The framework should also
• Make it possible to change/retract cleaning decisions of early phases based on feedback obtained in later stages

of the workflow;
• Expose an abstract view of cleaning operations so that feedback on data quality and prior cleaning operations

will be usable across all phases. Feedback on data quality will include business rules, human annotations, and
the application’s internal and intrinsic scores;

• Enable the extension and variation of the cleanliness definition in accordance with the use case at hand. It will
allow for diverse error types, the weighting of errors, and error types based on importance.

Paper Scope: There are two forms of data cleaning: repairing errors at the instance level (e.g., find and fix
erroneous records or values), and to fix population-level errors that can arise from distributional shift, biased
sampling, or record errors. This paper primarily focuses on the former notion, and we briefly discuss population-
level errors in Section 4.
In the rest of our paper, we first review the state-of-the-art in data cleaning (Section 2) and identify potential
building blocks of our vision. Then, we layout our holistic cleaning approach and its desired component in detail.
Finally, we shed light on how this vision would also address new challenges that arise in ML applications.

2 Data Cleaning and ML

This section introduces and distinguishes traditional data cleaning techniques from those designed for ML.
Specifically, cleaning before ML approaches perform data cleaning independently of the downstream ML
applications, whereas cleaning for ML approaches explicitly dependent on them.

2.1 Cleaning before ML

Traditional data cleaning was performed during data ingestion as part of an Extract-Transform-Load (ETL)
workflow. Administrators perform data wrangling [15, 31] and transformation [32] so that the data conforms
syntactically (e.g., the appropriate schema, data types) to the application requirements. They further specify
constraints (e.g., domain constraints, functional dependency, distribution) for all database instances. The database
system enforces these constraints and possibly repairs the database to address any violations.
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ML applications often combine a wide diversity of datasets, and it can be challenging for an administrator
to define constraints and repair logic manually. Thus, a number of data cleaning techniques use data-driven
approaches to help detect as well as repair datasets. The following are termed Cleaning Before ML techniques
because they are primarily applied to a training dataset before model development and training, although some
techniques may also be used to clean test data during model inference. These techniques make strong assumptions
about the impact of their repairs on the downstream model and application performance.

Non-learning Approaches. Data cleaning systems for error detection and/or error repair are non-learning if they
directly rely on user-provided rules or specifications (which we generically term cleaning signals). For instance,
pattern-based systems [33, 15] leverage user-specified regular expressions or patterns to identify syntactic text
errors, while rule-based systems [20, 34] rely on user-specified functional dependencies to identify values that
violate the constraints. Outlier detection systems [35, 36] are tuned to specific data distributions and thresholds to
identify outlier values. Finally, systems may leverage external data such as a knowledge base [19] to validate the
instances of a dataset. For instance, if the knowledge base contains address data, KATARA can leverage it to
identify mismappings between cities and ZIP codes of a given dataset.

In the context of ML applications, cleaning systems [17, 6] help developers validate that a training set
exhibits expected properties. For instance, Deequ [17] lets users declaratively write constraints, such as based on
uniqueness, completeness, and value distribution, and compiles them into “data unit-tests” that can be executed at
scale. Many production ML platforms [6, 37, 38] similarly validate that training data contains expected attributes
in its schema, and that data distributions have not drifted beyond a threshold.

Error repair is traditionally posed as a constraint satisfaction problem. Given a set of data constraints, identify
the minimum number of interventions so that there are no constraint violations in the dataset. Variations of
this minimality principle may include additional objectives (e.g., statistical distortion [39]), or allow a small
number of violations. The above approaches lean heavily on the user or administrator to provide accurate and
useful cleaning signals, which may not always be feasible. In addition, each approach is designed for a specific
type of error, and thus exhibits low recall in practice. ML applications may need to combine many cleaning
systems to address different types of errors, or to make use of different types of cleaning signals. We next see
how learning-based cleaning seeks to address some of these limitations.

Learning-based Approaches. Learning-based cleaning leverages ML to identify and repair errors. These fall
under two main directions. Ensembling approaches combine existing cleaning systems into an ensemble and use
learning to decide which to use. The alternative is to treat detection and repair as ML problems that respectively
predict whether a record is erroneous, and what the correct value for an erroneous attribute value should be.

• Error Detection: Metadata-Driven Error Detection [24] and Raha [25] are examples of the ensembling
approach, while ED2 [26], DataWig [40, 41], HoloDetect [22], and Picket [42]. The latter approaches model
each record or cell, along with any cleaning signals, as features used to classify it as erroneous or clean.
Naturally, learning-based approaches rely on pairs of erroneous and clean records as training examples, and
semi-supervised strategies avoid the need to manually provide examples.

For instance, ED2 [26] uses active learning to acquire clean/erroneous labels for records that the model is
uncertain about, while Raha [25] further clusters records by similarity and acquires labels on a per-cluster
basis. HoloDetect [22] uses data augmentation by learning observed error patterns and applying the patterns to
generate synthetic errors. Picket [42] does not rely on any external labels and instead uses self-supervision to
learn an error detection model that can be applied during training or testing.

• Error Repair: Repair systems such as Baran [13] and HoloClean [21] combine different types of cleaning
signals to more accurately repair errors. Baran [13] is an ensembling approach across a library of error repair
strategies, and uses active learning to train a model that predicts which repair strategy to use. The library of
strategies is extensible, and can include additional predictive models that propose fixes. Furthermore, it uses
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Table 3: Taxonomy of recent cleaning for ML systems.

System Intervention Type Semantics Signals Model Type
ActiveClean Manual record repair Model Model Gradient Convex

CPClean Manual value imputation Model Prediction Certainties Nearest Neighbor
BoostClean Cleaning program Blackbox Model Validation Any
AlphaClean Cleaning program Blackbox Custom Objective Any

AutoSklearn ML pipeline Blackbox Model Validation Any
Rain Record repairs Relational Workflow User Complaint Differentiable

transfer learning and label propagation to reduce the required amount of user labels. HoloClean [21] combines
integrity constraints, external data, and statistical profiles into a single factor graph model, and uses the model
to predict the appropriate value for identified errors.

Stepping Back. Traditional data cleaning systems are designed around specific types of cleaning signals, whereas
learning-based approaches use ensembles or models to combine a variety of signals and achieve higher recall.
Weakly semi-supervised techniques such as active learning, label propagation, data augmentation, and transfer
learning help reduce the degree of user involvement. However, these approaches clean a dataset in isolation. We
next describe cleaning systems designed specifically in the context of ML applications.

2.2 Data Cleaning for ML

Data cleaning fundamentally relies on external cleaning signals (constraints, patterns, examples, etc.) to detect and
repair data errors. In contrast to the explicitly user-specified signals described in the previous subsection, cleaning
for ML approaches leverage the downstream model or application to define cleaning signals that incorporate
higher-level semantics. This subsection describes five recent cleaning for ML systems developed in the data
management community. Our rationale for this selection is that these approaches consider the semantics of the ML
task and a subset of its emitted signals to deploy cleaning routines on the training dataset. Thus, we distinguish
them along four dimensions (Table 3): intervention type, semantics, signals, and model type. The intervention
type corresponds to whether the goal is to directly repair a dataset, or to generate a cleaning program that can be
applied to future datasets as well. The semantics describe whether the approach relies on the downstream model
or application semantics, or treats it as a black box. The signals categorize the type of cleaning signal(s) that are
used. The model type describes which group of ML models is supported by the corresponding approach.

ActiveClean. ActiveClean [43] is a data cleaning system for models with convex loss functions. It treats a model
trained on a dirty training set as a suboptimal point along the loss function over the (unknown) clean training set.
It then treats cleaning as a stochastic gradient descent (SGD) problem, where in each step, the system samples
and asks the user to clean records that are expected to shift the model along the steepest gradient. The use of
convex models allows the system to derive convergence guarantees. ActiveClean simply chooses which training
records to repair next, but relies on the user to perform the actual repair. Its cleaning signals combine the user’s
repairs and the model’s loss function. Finally, it relies on the model’s convexity to guarantee convergence.

CPClean. CPClean [44] incrementally cleans a training set until it is certain that no more repairs can possibly
change the model predictions. To do so, it proposes the concept of Certain Predictions (CP) for nearest neighbor
classifiers [44]. A test record is certainly predicted if all classifiers trained on all possible repairs of an incomplete
training set would yield the same prediction. CPClean develops an efficient counting query to compute the
number of possible models that support a specific classification of a given test point, and uses this to quantify the
impact of repairing a given error or missing value. Thus, given a validation set, CPClean seeks to only repair the
training records needed so that all validation records can be certainly predicted. CPClean uses the validation set
and the counting query as the primary cleaning signals, but relies on the user to perform the actual repairs. It is
specially designed for nearest neighbor models, and leverages their robustness to small training perturbations.

29



BoostClean and AlphaClean. BoostClean [45] treats cleaning as a boosting problem, and outputs a cleaning
program that can be applied to training or test records. It is specialized to conditional value errors, where an error
can be specified using a simple predicate. Given a predefined library of parameterized detection and cleaning
functions, it automatically selects a sequence of cleaning operations that will maximize the model’s accuracy on a
validation set (or the training set). In each step, BoostClean uses statistical boosting to choose a pair of detection
and cleaning functions and configures their parameters, and applies it to the training set to derive a new model.
BoostClean diverges from prior cleaning systems in that users do not need to manually repair records. Instead,
users simply specify appropriate detection and repair functions for the domain. BoostClean leverages the model’s
training or validation accuracy as the primary cleaning signal.

AlphaClean [46] is a similar system that generates a sequence of cleaning operations from a library of
parameterized cleaning frameworks, including existing systems such as dBoost [47] and HoloClean [21]. In
contrast to boosting, it uses parallelized tree search and learns pruning heuristics to reduce the search space. Since
AlphaClean uses a generic search procedure, the user is free to define their own objective function as the cleaning
signal (e.g., the model accuracy, the number of constraint violations, a combination of the two).

AutoSklearn. AutoSklearn [12] similarly uses the model validation accuracy as the primary cleaning signal to
generate an end-to-end ML pipeline. The pipeline includes preprocessing operations, hyperparameter selection,
and model training. To restrict the search space, the preprocessors are limited to value imputation based on mean,
median, or most-frequent values, and are either applied to the whole dataset or not at all (e.g., no conditional
repairs). Further, AutoSklearn focuses on repairs and does not perform error detection.

Rain. Rain [48] seeks to go beyond an individual model and considers the downstream workflow. It executes
relational workflows consisting of relational operators and inferences made by a differentiable model. For
instance, the query “count number of users that are likely to churn” uses a predicate that filters by predicted
churn, which is estimated by a linear regression model. The user can annotate errors (termed “complaints”) in
the outputs or intermediate results. For instance, the user may specify that the total price in January should be
40 instead of 100, or all values in the output are too low. Rain then ranks erroneous records (and their repairs)
in the training dataset based on how much it will resolve the complaints. To do so, Rain models the workflow
as a differentiable function over the model prediction probabilities. The function can leverage the influence
functions framework [49] to estimate the gradient of the query result with respect to epsilon changes to the
training dataset—the removal of a training record or the addition of a new (cleaned) record. Their experiments
show that a single annotation of an aggregate result can more effectively identify training errors than manually
labeling hundreds of model mispredictions. By supporting complaints over workflow outputs, it empowers users
to specify constraints within the context of the application’s downstream semantics.

Cleaning in the ML Community. The ML community has long studied methods to address or circumvent data
errors in learning. A common approach [36] uses a model to classify training records as erroneous—based
on model uncertainty, voting, clustering, etc—but is primarily limited to deleting records or repairing labels.
Although some errors provably require data cleaning [28], some errors can be good—training with noise is a form
of regularization [50], and is the basis of data augmentation methods [51]. Robust estimation methods re-weigh,
filter, and otherwise adapt the estimation procedure to be insensitive to outlier training data, including worst-case
outliers [52, 53]. For instance, models that perform local averaging such as weighted and interpolated nearest
neighbors are naturally robust to noisy training data [54]. Models may be certified as robust to adversarial test
errors [55, 56, 57]. The above techniques are susceptible to systematic errors. Although they can be explicitly
modeled [58], this requires considerable modeling expertise, and it may not be clear what errors are even present
to model. To this end, open source libraries such as Dabl [59], Dataprep [60], and Facets [7] combine visualization
and common detection methods to aid data preparation and cleaning.

Stepping Back. The database community has made significant contributions toward cleaning approaches that
can be deployed in the Develop and Deploy phases. State-of-the-art cleaning for ML systems [43, 45, 44, 46, 44]
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leverage application-specific signals to guide human cleaning or to choose cleaning operations. Some of them
are restricted to cleaning training data and cannot generalize to unseen data [43, 44]. Debugging systems, such
as Rain, consider the output of an entire workflow to trace-back training instances that lead to wrong results. A
recurrent problem is that each proposed solution only covers a specific aspect of cleaning, such as specific error
types, dataset components, or ML models. As a result, a successful attempt at cleaning a dataset for deployment
forces analysts and scientists to use multiple disconnected approaches.

3 Cleaning for ML Applications

The Introduction highlighted three major challenges toward data cleaning for ML applications. First, the definition
of data quality and what a data error even means is not only user-defined, but is also model- and application-
specific. This makes these definitions difficult to foresee and articulate during the model design and data ingestion
phase. Second, domain knowledge and expertise is fragmented across the different users—developers, ML experts,
IT staff, and end users—that each have limited visibility into the ML application’s workflow (or workflow for
short). Third, ML applications are complex, dynamic, and heterogeneous. They combine and process relational
and non-relational data streams whose properties may continuously change over time.

As a step toward tackling these challenges, this section describes a research agenda that extends data cleaning
to encompass the needs of ML applications. We first center the agenda around a high-level architecture, and then
highlight a number of promising research challenges in each of the architectural components.

3.1 Architecture

Affinity Alerts

Churn PromotionIngest & 
Validate

Prepare Develop Deploy

User profiles

Purchasing

Browsing

Signal Collector

Cleaning Optimizers

ProvenanceCleaning 
Library

Instrumenter

Interventions

Figure 2: Envisioned Holistic Cleaning Framework.

Data cleaning is fundamentally human-centered. Humans
design the ML application with specific goals in mind;
humans build, operate, and maintain each component of
the application’s workflow; and humans use the resulting
application to accomplish their tasks. Thus, it is crucial to
“bring cleaning to the user.” At any point in the workflow,
it should be easy to inspect the data that flows through,
and provide data quality signals that help to make error
detection and repair decisions.

We envision data cleaning as an instrumentation layer
that sits atop the entire application workflow (Figure 2).
Its purpose is to use elicit cleaning signals throughout the
workflow to decide which data to clean, how to improve
data quality, and where in the workflow to instrument which
cleaning operations. The dashed lines denote workflow
steps that serve as inspection points for users and provide
cleaning signals to the Signal Collector. The inspected data
can first be processed and transformed (e.g., by a script or query) before being rendered to the user (e.g., as a
table, interactive visualization). The key characteristic of any data interface is that it can be annotated with data
errors that the user sees, expected trends or data properties, or any other signal that can aid the cleaning system.
These signals are collected and routed to Cleaning Optimizers that make local or global cleaning decisions
about what cleaning operations to install or test. The Instrumenter then augments the workflow with cleaning
operations (red squares), and monitors their effectiveness over time. The monitoring signals serve as additional
feedback to improve the optimizers. The user input-optimize-clean loop is a classic approach toward user-centered
data cleaning [62]. The key distinction of the proposed design is that this loop permeates throughout the ML
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application. Data that is deeper in the workflow encodes increasingly more application semantics and qualitatively
changes the scope and type of cleaning signals that users can provide. For instance, signals collected during the
Develop phase can leverage model-specific statistics to quantify data quality, while signals in the Deploy phase,
such as data presented to the end user, encode utility toward the user’s task. This parallels visual analytics, which
transforms, filters, and summarizes data as visualizations to surface unanticipated trends and patterns that are not
visible, nor easily expressible, in the raw data.

3.2 Signal Collection

Cleaning signals are external information that initiate and inform data cleaning in the workflow. Existing cleaning
approaches assume a single cleaning signal is collected at a specific point in the workflow, and is coupled with
the cleaning algorithm (Section 2.2). In contrast, we envision a framework that can request and collect cleaning
signals from any point in the workflow at varying levels of applicaton abstractions.

3.2.1 Signal Types

In general, a cleaning signal is any information that can aid data cleaning. Signals can be provided by the users
(e.g., through a visualization), derived from the application (e.g., model accuracy), or programmatically generated
(e.g., an alert, or constraint violation). We initially propose to support the four types of signals—constraints, rules,
annotations, and objectives—commonly used in existing cleaning systems.

Integrity constraints [20], such as functional dependencies, denial constraints, can be specified for any input,
intermediate, or output dataset in the workflow. They can be used directly, or be used to trigger alert signals
when they detect violations. Similarly, ML-specific constraints may specify e.g., fairness [63], robustness, or
generalization properties. Constraints may be user-specified or automatically generated.

Rules include predicates to remove records or ETL transformations, and may trigger signals when they fail.
Manual annotations of a dataset specify erroneous records or values. For instance, a user may annotate that a
value should be 50 instead of 30, or provide a label for a training record. Annotations can also be automatically
computed in the workflow through application-specific scores, such as the model validation score [45, 12, 46],
prediction certainty [44], and gradient information [43]. Finally, the cleaning system can directly listen on the
actual application objective, such as classification accuracy.

3.2.2 Eliciting Signals

To elicit the various user and application-specific signals from the ML workflow, it must be possible for the
cleaning system to inspect workflow data. This leads to two main questions:

Where to elicit? When used as part of data debugging or engineering, there are natural points in the workflow
where users are accustomed to provide signals. These typically include data ingestion, before and after model
training, and the application output. However, there are likely other useful points to assess data quality to detect
potential errors, or to elicit signals to aid later cleaning. For instance, it is often difficult to coordinate across
organizations, thus collecting signals at steps that cross organizational boundaries may be prudent.

A major research question is what signals should be elicited during data cleaning. Once a user has reported
a data error (say, in the application output), where should additional signals be collected that can improve the
cleaning algorithms? For instance, the algorithm may generate candidate repairs and ask the user to label them; or
ask users to annotate other application outputs to choose between possible repairs; or ask for integrity constraints
to narrow a search space. This is also an opportunity to automatically collect signals (e.g., model accuracies)
without any user effort.
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What elicitation interfaces? Users should be able to use interfaces to interactively e.g., confirm or highlight
errors in the data [26, 25, 13], provide example records [13, 32], and specify constraints or rules [20]. Assuming
that workflow data is structured, an initial approach is to provide a library of general data presentation options,
such as automatic data visualization [64, 65], spreadsheet interfaces, or a scripting environment. Further, systems
can interactively explain error causes and how they are detected/corrected [66, 67, 68, 69, 70, 71]. Here, one
research opportunity is to design recommender systems that propose the best setup from a large number of
potential visualization methods based on previous user interaction and metadata. Collecting signals at these
various phases enables to clean training, test, and deployment data with the same cleaning goals in mind to avoid
distributional gaps.

3.3 Cleaning Optimizers

Signals represent the application or user’s expectations about data quality, and can be both used to initiate data
cleaning or improve cleaning quality. For instance, a user annotation may notice an output error, which triggers
the need to cleaning a training dataset; an integrity constraint on the training data helps prune the algorithm’s
search space since it is already enforced. The purpose of the cleaning optimizer is to combine different signals
and propose a pipeline of cleaning operations that detect and repair errors in a dataset, and where to apply them.
Each cleaning optimizer may be an existing signal-specific cleaning system (such as those in Section 2) or new
“holistic” optimizers that combine disparate signals. Each optimizer should specify the subset of the workflow
it can be responsible for (e.g., model training, data preparation, relational sub-workflows), the signal types it
requests, and crucially, the types of interventions it accounts for. We distinguish optimizers along two dimensions:
whether the optimizer is local to a phase or operator in the workflow, or takes a subset or whole workflow into
account; and whether the optimizer treats the workflow as a white or black box.

3.3.1 A “Holistic” Cleaning Optimizer

An open question is to what extent different signals throughout the workflow can be integrated to holistically clean
data in the workflow. The different signal types naturally express hard constraints, soft constraints, and objective
functions, thus may be amenable toward translating into a singular optimization problem. Prior works such as
HoloClean [21] and Baran [13] have shown how this is possible using factor graphs and ensembles for specific
combinations of signals. Many existing works focus on specific classes of data errors, signals, and workflows,
and a major challenge is how to support a wider range of signal types, interventions, different collection points,
and incorporating the workflow semantics.

3.3.2 Workflow-independent vs -dependent Optimizers

A workflow-independent optimizer is specific to a single workflow operator and does not use any workflow
semantics. Most existing systems that clean [21, 20], wrangle [15, 20, 33], or transform [32] a specific dataset are
workflow-independent. In contrast, a workflow-dependent optimizer cleans data at a given point in the workflow
by using signals (e.g., model accuracy, user annotations) from downstream and/or upstream. Although recent
cleaning systems incorporate downstream signals [45, 46, 44, 12], it is an open question how to integrate multiple
cleaning signals collected from different points in the workflow and optimize in a workflow-dependent manner.

3.3.3 White vs Black Box

Workflow-dependent optimizers combine workflow semantics and cleaning signals. For instance, if a user
specifies errors in the application output, and the system wishes to clean ingested data during the Prepare phase, it
needs to consider all of the workflow’s operator semantics to assess how different cleaning decisions would affect
the output. Optimizers can be either implemented as a white or black-box approach.
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In white-box approaches, the optimizer has access to signals of every single transformation in the ML
pipeline, and leverages well-defined workflow semantics (e.g., in relational workflows) to encode the pipeline
logic into constraints and/or an optimization objective. For instance, Rain encodes the SQL query as a relaxed
provenance polynomial, and can evaluate custom record-level interventions. A white-box-specific optimization
is to reduce the overhead of retraining by avoiding repetitive computation through partial retraining [72, 73] or
caching [74, 75].

In contrast, black-box approaches ignore intermediate results and simply reason about the workflow input
and output. They may translate cleaning signals into optimization constraints and objectives, and use generic
black-box optimization techniques such as meta-learning techniques or Bayesian optimization to search the
space of cleaning interventions. Existing meta-learning approaches that ensemble many cleaning algorithms
(e.g., Raha [25], Baran [13]) only encode dataset properties in their feature vector and ignore the semantics
of the application workflow. BOExplain [76] treats workflow cleaning as a blackbox hyperparameter search
problem. Ultimately, the key challenge is to define an effective but concise search space, and to create a workflow
representation that facilitates meta learning for ML-dependent cleaning.

White-box approaches can be more accurate and efficient, but do not readily support custom logic or user-
defined functions. On the other hand, black-box approaches can be applied to any ML workflow, but can be very
inefficient. A potential middle-ground is to approximate the workflow using heuristics, or making assumptions
about the workflow operator semantics. For instance, the system might approximate an operator using an ML
model [44], or symbolically execute the operator to derive a logical expression [77, 78]. Another interesting
direction is to trace back the error causes to the corresponding workflow components [66].

3.4 Scope Refinement

When there are many data sources, datasets, and annotations, a fundamentally challenging problem is knowing
which datasets are the candidates that may be responsible for the annotations. We call this the Scope of the
annotations. There are several promising directions for scope refinement.

One approach to identify the datasets to clean is to assess their potential impact on the error annotations,
either directly using sensitivity analysis [48], or using a framework akin to certain predictions [44]. Assuming
that the dataset to clean is known, one way to refine scope is to use feature [79] or instance selection [80] to
identify the most important columns and rows in the training data. ActiveClean and CPClean follow the instance
selection approach [43, 44]. A third direction is to narrow the scope to the provenance of the annotated data [48].
However, this can still be a large set of records. For instance, the end-user-facing output of the ML applications
trivially depends on all of the datasets (and a subset of their records).

Research opportunities in this field are to combine workflow-dependent optimization with scope refining
strategies. The optimizer could generate different cleaning pipelines for different scopes of the data. For example,
it could generate a set of cleaning operations based on functional dependencies for categorical data and use a
Gaussian outlier detection technique and use a “replace with median value” as the default cleaning operation for
numerical features. Some cleaning pipelines might be more general and cover a larger scope of the dataset leading
to unnecessary cleaning efforts but instrumenting individual pipelines, which are simpler, for specific subsets of
the dataset might introduce an unnecessary overhead. Automatically identifying the best scope refinement and the
best trade-off for a dataset at hand is an interesting research problem. Being able to distinguish different scopes
of a dataset also enables to prioritize cleaning efforts for the most significant scopes. Thus, one can decide to
instrument cleaning on dataset subsets that are small but significant to speed-up real-time model and configuration
testing in the Develop phase.
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3.5 Instrumenter

Once the cleaning optimizers have chosen promising interventions, they need to be instrumented into the workflow.
Although most systems support dynamic instrumentation, it alone is not sufficient, as the workflow and the
data properties may differ from the assumptions made during optimization, and can also change over time. In
real-world applications, data constantly changes over time [81, 34, 82]. The challenge is to identify when the
distribution shifted too much so that any of the installed cleaning rules do not apply anymore. Thus, it is crucial
to provide assessment and monitoring functionalities to aid the engineers to manage the data cleaning process.

One can investigate how to backtest or speculatively test interventions before installing them. Another
interesting direction is to define an algorithm that periodically or continuously assesses the effectiveness of
past cleaning interventions. Ultimately, the monitoring approach helps the data cleaning “team” to manage the
disparate cleaning signals collected throughout the workflow to understand which are reliable, are consistent with
each other, and which are used for a given intervention. A practical challenge here is to efficiently keep track of
instrumented cleaning operations and data changes. Existing approaches that ensemble cleaning operators have to
keep track of thousands of operators [25, 13] on each dataset. One could think of index-based solutions to scale
the trace-back requests for large datasets or develop models that learn and predict the relationships.

4 New Challenges of Cleaning for ML

The previous section outlined our vision of holistic and flexible data cleaning for ML applications, and research
opportunities related to the different components.

Data cleaning systems, including the proposed system in this paper, have historically been designed for
structured, e.g., relational, and persistent datasets. Within this scope, they have focused on record and value-level
errors, and data quality metrics are designed for these errors in mind, e.g., number of constraint violations,
outlier-ness of a value. However, there are a number of challenges that go beyond the scope of our proposed
vision. The type of input data used in ML workflows goes beyond structured data and can become less tangible
through entanglement of models.

The notion of data quality is also much broader in scope for ML applications, and includes population-level
errors, as well as social and cultural norms. This subsection describes these novel challenges and provides
pointers for further consideration.

Unstructured data. ML approaches are especially successful for unstructured data, such as images, sound,
and video. Traditional data management cleaning approaches and their cleaning operations focus on numeric,
categorical, and textual data [26, 25, 13, 21, 22]. The proliferation of generative models offers the potential to
similarly repair unstructured data by transforming e.g., images in semantically meaningful ways.

Model entanglement. This phenomenon arises when a model (or a component in general) compensates for errors
in an upstream model [11, 83]. In this setting, the models are entangled, and improving any model individually
will degrade the end-to-end performance. In general, hidden dependencies across different parts of the application
can severely complicate data cleaning, and necessitates the need to incorporate downstream signals and workflow
logic into the cleaning process. Identifying and disassociating entangled components is another important problem
to tackle.

Population-level Errors: This paper focused on record-level errors, however population-level errors also impact
ML applications today. These may be due to biased sampling, or systematic errors from data generating processes
or preprocessing logic, and manifest as biased models and biased predictions. In these contexts, even cleaning
all of the records in a dataset may not fully address the distributional biases. These errors can affect the ML
application in not just biased predictions—differences between training and test distributions, or distribution drift
over time can all introduce application-level issues.
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Although there is work in detecting distributional shifts in a dataset [84, 85], accounting for group-wise errors
(and interventions) the downstream implications is considerably more challenging than doing so for an individual
record due to interaction effects [86]. Furthermore, continuing the research on pre-processing techniques [63] to
avoid bias and inspecting pipelines for violating data patterns [87] is a promising direction to explore.

Social/cultural norms: Another new generation of errors are violations against social and cultural norms.
For instance, one should avoid training on text, image, sound, or video corpora that contain hate speech [7],
misinformation [88], or privacy violations [89, 90]. While some of these issues could be identified with lists of
forbidden words, many might not be initially obvious to a human. The problems might appear in the downstream
application in a more tangible form, which motivates to design algorithms that can trace the results back to
data. These re-emerging quality dimensions are also changing over time. A potential direction is to design
active-learning systems that support users to continuously define these norms.

Robustness Prediction: An increasingly important field in ML is safety [42]. Out-of-distribution [91] or
adversarial test records can cause the ML model to make wrong predictions. ML-driven cleaning has the potential
to help tackle these issues. Although individual value errors may be hard to detect, identifying erroneous records
with respect to the model or application may be possible.

Clever Hans. The ML pipeline is expected to work well (to generalize) on new unseen data—training data used
to update models, data used to make predictions, or any other data used in the application. Guiding the cleaning
efforts with signals, such as validation score or uncertainty, might mislead the cleaning efforts through spurious
correlations (Clever Hans phenomenon [92]). While in the Develop phase the cleaning might lead to higher
accuracy, because it used the spurious correlations, we might end up with lower performance because these
correlations are not prevalent. E.g., Lapuschkin et al. [92] found that their trained ML model used the source
tag horse_photo_archive.de to classify images as horses instead of actual horse characteristics, such as its tail or
its head. While the model performed very well on that dataset, it clearly missed the goal of capturing the visual
features of a horse. Cleaning that is guided by accuracy might aggravate this problem. To prevent Clever Hans
phenomena, it is not enough to have a feedback loop from the Deploy phase. A promising direction is to make
model explanation an integral part of data cleaning.
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