Conjugate Gradient Method

e direct and indirect methods

e positive definite linear systems

e Krylov sequence

e spectral analysis of Krylov sequence

e preconditioning

EE364b, Stanford University

Three classes of methods for linear equations

methods to solve linear system Az =0, A € R"*"

e dense direct (factor-solve methods)

— runtime depends only on size; independent of data, structure, or
sparsity
— work well for n up to a few thousand

e sparse direct (factor-solve methods)

— runtime depends on size, sparsity pattern; (almost) independent of
data

— can work well for n up to 10 or 10 (or more)

— requires good heuristic for ordering

EE364b, Stanford University

e indirect (iterative methods)

— runtime depends on data, size, sparsity, required accuracy
— requires tuning, preconditioning, . . .
— good choice in many cases; only choice for n = 10° or larger

EE364b, Stanford University

Symmetric positive definite linear systems

SPD system of equations

Ax = b, A e R™", A=AT+0

examples

e Newton/interior-point search direction: V?¢(z)Ax = —V¢(x)
e least-squares normal equations: (AT A)x = ATb

e regularized least-squares: (ATA + ul)x = ATb

e minimization of convex quadratic function (1/2)z’ Az — blx

e solving (discretized) elliptic PDE (e.g., Poisson equation)

EE364b, Stanford University

e analysis of resistor circuit: Gv =1

— v is node voltage (vector), i is (given) source current
— (G is circuit conductance matrix

Q.. — total conductance incident on node ¢ =
“7 1 —(conductance between nodes i and j) i # j

EE364b, Stanford University

CG overview

e proposed by Hestenes and Stiefel in 1952 (as direct method)
e solves SPD system Ax = b

— in theory (i.e., exact arithmetic) in n iterations
— each iteration requires a few inner products in R", and one
matrix-vector multiply z — Az

e for A dense, matrix-vector multiply z — Az costs n?, so total cost is
n3, same as direct methods

e get advantage over dense if matrix-vector multiply is cheaper than n?
e with roundoff error, CG can work poorly (or not at all)

e but for some A (and b), can get good approximate solution in < n
iterations

EE364b, Stanford University

Solution and error
o v = A1} is solution
e * minimizes (convex function) f(z) = (1/2)z! Ax — bz
o Vf(xr)=Ax —bis gradient of f
e with f* = f(z*), we have

flx)—f* = (1/2)z" Az —b'x — (1/2)x*! Az* + b’ 2*
= (1/2)(z —2")" Az — z7)
= (1/2)]lz — "%
i.e., f(x) — f* is half of squared A-norm of error x — x*

EE364b, Stanford University

e a relative measure (comparing x to 0):

f@) = f e -2}
O

T =

(fraction of maximum possible reduction in f, compared to x = 0)

EE364b, Stanford University

Residual

e = b— Ax is called the residual at z

o r=-Vf(z) = A" -z

e in terms of r, we have

fl@)=f = (1/2)(z —2")" Az — 27)

= (1/2)[Ir%-
e a commonly used measure of relative accuracy: n = ||r||/||0||

o 7 < k(A)n? (n is easily computable from z; 7 is not)

EE364b, Stanford University

Krylov subspace

(a.k.a. controllability subspace)

K. = span{b, Ab,..., A¥"1b}
= {p(A)b | p polynomial, degp < k}

we define the Krylov sequence V), x(?)_ ... as
®) = argmin f(z) = argmin ||z — z*||4

xeK xeK

the CG algorithm (among others) generates the Krylov sequence

EE364b, Stanford University

Properties of Krylov sequence
o f(x**tD) < f(z®)) (but ||r|| can increase)
o (M) = p* (i.e., x* € K, even when IC,, # R")
o %) = p.(A)b, where py, is a polynomial with degpy < k
e less obvious: there is a two-term recurrence
2D = 2 4 qpr®) 4 By (2 — (=)

for some ay, Bx (basis of CG algorithm)

EE364b, Stanford University

10

Cayley-Hamilton theorem

characteristic polynomial of A:
x(s) =det(s] —A) =s"+ 15" '+ +ay
by Caley-Hamilton theorem
X(A) = A"+ A" P+ o, L =0
and so
A = —(1/a,) A" — (aq /o)A 2 — o — (a1 /)]

in particular, we see that z* = A~1b € K,

EE364b, Stanford University

11

Spectral analysis of Krylov sequence

o A=QAQ", Q orthogonal, A = diag(\,...,\,)
o define y = Q'xz, b= Q7T y* = Q' z*
e in terms of y, we have

fl@)=fy) = (1/2)2" QAQ z —bv"QQ" =
= (1/2)y"Ay—b'y

— Z ((1/2))‘1':%;2 — Biyz’)

1=1

so yr =bi/Ni, [*=—(1/2) 37 b2/ N

EE364b, Stanford University

12

Krylov sequence in terms of y

y") = argmin f(y),
yey

K = span{b, Ab, ..., A" 1p}

yﬁ’” = pi(Xa)bi, degpr < k

n

pr = argmin
degp<k

EE364b, Stanford University

ST ((1/2)2m(N)? = p(A)

13

f(a:(k>) _

EE364b, Stanford University

min
deg q<k, q(0)=1

min
deg q<k, q(0)=1

—1)?

—1)°

(1/2) ngq@ ?

- _2Q(>\i)2
1/2)) B

1=1

14

_ mindeg q<k, q(0)=1 2?21 %2)%(]()\1')2
L PIHRETIPY

min (max q()\i)2>

deg q<k, q(0)=1 \:=1,...,n

IA

e if there is a polynomial ¢ of degree k, with ¢(0) = 1, that is small on
the spectrum of A, then f(ac(’“)) — f* is small

e if eigenvalues are clustered in k groups, then y*) is a good approximate
solution

e if solution x* is approximately a linear combination of £ eigenvectors of
A, then y(*) is a good approximate solution

EE364b, Stanford University 15

A bound on convergence rate

e taking g as Chebyshev polynomial of degree k, that is small on interval
P\mina Amax], We get

<(\/E_1

k
W) 3 R = Amax/ Amin

e convergence can be much faster than this, if spectrum of A is spread
but clustered

EE364b, Stanford University 16

Small example

A € R™7, spectrum shown as filled circles: py, pa, p3, pa, and p7 shown

2 T T T T

EE364b, Stanford University

17

EE364b, Stanford University

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Convergence

18

Nk

EE364b, Stanford University

Residual convergence

19

Larger example

e solve Gv = i, resistor network with 10° nodes

e average node degree 10; around 10° nonzeros in G
e random topology with one grounded node

e nonzero branch conductances uniform on [0, 1]

e external current ¢ uniform on [0, 1]

e sparse Cholesky factorization of GG requires too much memory

EE364b, Stanford University

20

Nk

EE364b, Stanford University

10

10

10

-2

10
107

10

10

Residual convergence

10

20

30

40

50

60

21

CG algorithm
(follows C. T. Kelley)

r:=0, r:=b pg:=|r|
fork=1,..., Nmax

quit if \/pr—1 < €[|b]|

if k=1thenp:=r;elsep:=r+ (pr_1/pr_2)p

w = Ap

Q= Pk—1/pTw
=+ ap
ri=r—aw

pr = Ir|®

EE364b, Stanford University

22

Efficient matrix-vector multiply

e sparse A

e structured (e.g., sparse) plus low rank

e products of easy-to-multiply matrices

e fast transforms (FFT, wavelet, . . .)

e inverses of lower/upper triangular (by forward/backward substitution)

e fast Gauss transform, for A;; = exp(—|jv; — v;||?/c?) (via multipole)

EE364b, Stanford University

23

Shifting

e suppose we have guess T of solution x*
e we can solve Az = b — Az using CG, then get z* =1+ 2
e in this case z*) = 4 2®) = argmin f(z)
a;E:%—I—ICk
(Z 4+ Kk is called shifted Krylov subspace)

e same as initializing CG alg with x := 2, r := b — Ax

e good for ‘warm start’, i.e., solving Ax = b sEarting from a gooq initial~
guess (e.g., the solution of another system Ax = b, with A ~ A, b~ b)

EE364b, Stanford University 24

Preconditioned conjugate gradient algorithm

e idea: apply CG after linear change of coordinates x = Ty, detT" # 0
o use CG to solve T ATy = T7b; then set z* = T~ 1y*
o T or M =TT" is called preconditioner

e in naive implementation, each iteration requires multiplies by 7" and 7"
(and A); also need to compute z* = T~ 1¢* at end

e can re-arrange computation so each iteration requires one multiply by
M (and A), and no final solve z* = T~ 1y*

e called preconditioned conjugate gradient (PCG) algorithm

EE364b, Stanford University 25

Choice of preconditioner

e if spectrum of TT AT (which is the same as the spectrum of M A) is
clustered, PCG converges fast

e extreme case: M = A~1

e trade-off between enhanced convergence, and extra cost of
multiplication by M at each step

e goal is to find M that is cheap to multiply, and approximate inverse of
A (or at least has a more clustered spectrum than A)

EE364b, Stanford University 26

Some generic preconditioners

e diagonal: M = diag(1/A11,...,1/A,,)

o ir)comAplete/approximate Cholesky factorization: use M = A=t where
A = LL" is an approximation of A with cheap Cholesky factorization

— compute Cholesky factorization of fl A=LILT
— at each iteration, compute Mz = L1717 via forward /backward
substitution

e examples

- 1{1 is central k-wide band of A
— L obtained by sparse Cholesky factorization of A, ignoring small
elements in A, or refusing to create excessive fill-in

EE364b, Stanford University

27

Preconditioned conjugate gradient

(with preconditioner M ~ A~! (hopefully))

r:=0, r:=b—Axg, z:=Mr, p:=2z p =1z

fork=1,..., Npax
quit if \/pr < €|[bf]2 or |7l < €][b]]2

w = Ap
o = Pk
. pr
=T+ ap
ri=1r—ouw
2= Mr
T
PE+1 =~ T
e Pk+1
pi=z+ on P

EE364b, Stanford University

28

Larger example

residual convergence with and without diagonal preconditioning

4
10 w w x x x

Nk
=

—4

10

-6

10

EE364b, Stanford University 29

CG summary

e in theory (with exact arithmetic) converges to solution in n steps

— the bad news: due to numerical round-off errors, can take more than

n steps (or fail to converge)
— the good news: with luck (i.e., good spectrum of A), can get good
approximate solution in < n steps

e each step requires z — Az multiplication

— can exploit a variety of structure in A
— in many cases, never form or store the matrix A

e compared to direct (factor-solve) methods, CG is less reliable, data
dependent; often requires good (problem-dependent) preconditioner

e but, when it works, can solve extremely large systems

EE364b, Stanford University

30

