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Abstract— Audience selection is a key problem in display
advertising systems in which we need to select a list of users who
are interested (i.e., most likely to buy) in an advertising campaign.
The users’ past feedback on this campaign can be leveraged to
construct such a list using collaborative filtering techniques such
as matrix factorization. However, the user-campaign interaction
is typically extremely sparse, hence the conventional matrix
factorization does not perform well. Moreover, simply combining
the users feedback from all campaigns does not address this since
it dilutes the focus on target campaign in consideration. To resolve
these issues, we propose a novel focused matrix factorization
model (FMF) which learns users’ preferences towards the specific
campaign products, while also exploiting the information about
related products. We exploit the product taxonomy to discover
related campaigns, and design models to discriminate between
the users’ interest towards campaign products and non-campaign
products. We develop a parallel multi-core implementation of
the FMF model and evaluate its performance over a real-world
advertising dataset spanning more than a million products. Our
experiments demonstrate the benefits of using our models over
existing approaches.

I. INTRODUCTION

From its meager beginnings in the 1990’s, online display
advertising has grown into a $10 billion dollar industry in
20111. Today, an increasing number of advertisers launch
conversion-oriented ad campaigns where the goal is to display
ads to those users who are most likely to show interest and
respond positively to the campaigns (e.g., in terms of product
purchases). Hence, the problem for the advertising network is
to select such a list of users. This problem is typically referred
to as “audience selection” or “audience retrieval” [5], [18].

Traditionally, advertisers have selected audiences using gen-
eral demographic attributes such as gender, location and age.
However, lately, the trend has been to avoid making such
vague generalizations, and instead customizing the campaign
audience using the set of users that have responded positively
to the campaign in the past (as identified by the advertiser).
This type of information is reminiscent of the user response
matrix in the recommender systems [3], [14], [15], [17]
settings. Here, the input data is matrix in which the rows of this
matrix represent users, the columns are products, and matrix
cells indicate whether a user has purchased a given product.
The only difference being that now we need to recommend
users for a given campaign product(s), instead of the other
way around. For instance, for a target ad campaign from an

1According to emarketer.com, including video advertising.

electronics seller that seeks to advertise a set of electronic
items from that seller, we want to recommend users who, given
their past product purchases, are likely to buy electronic items
like cameras, cell phones, etc.

The state of the art techniques in recommender systems
such as matrix factorization [14], [17] and other approaches
could be used to solve the audience retrieval task. However,
as we show in our experimental analysis, they perform poorly
– this is because the data set (user-product response matrix)
in our application consists of real product purchases and is
very sparse (on average, one in a million advertisement leads
to a product purchase). The problem is even more pronounced
for campaigns that are new or small in size in terms of the
number of products spanned. One approach to deal with the
sparsity challenge is by borrowing information from other
ongoing as well as historical advertising campaigns. The key
intuition is that by exploiting other campaigns, we can enrich
the user-product response matrix, thus leading to better matrix
factorization and better audience retrieval in turn. Note that in
the extreme case, this would mean considering the complete
user-product response matrix using all the present and past
campaigns to perform audience retrieval for the given target
campaign. However, as shown later in the paper, this does
not perform very well since it treats each campaign equally
and loses focus on the target campaign in consideration (since
the optimization minimizes error over all the campaigns, rather
than just this campaign). In other words, it is important to keep
focus while borrowing information from other campaigns, thus
motivating the focused matrix factorization approach proposed
in the paper.

There are several challenges that need to be addressed
in building such a framework. First, the information should
be borrowed from those campaigns which are similar to the
target campaign while ignoring those which are not. Second,
the campaign similarity and dis-similarity must themselves
be learned using the sparse response matrices. Third, the
information transfer needs to be adaptive, i.e., when the target
campaign is new and does not have enough response values of
its own, it should borrow more information from others (i.e.,
cold start). But as the campaign gets older and accrues more
data, it should gradually decrease the information transfer and
maintain its specificity. Fourth, the approach must scale to
millions of users and products as is the case with real world
advertising campaigns.
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Our Approach
In this paper we propose a novel focused matrix factorization
technique, FMF model, which learns users’ preferences to-
wards the specific campaign products while also exploiting the
information about related campaigns/products. More specifi-
cally, our FMF model advances the existing audience retrieval
systems in the following way. We discriminate between the
users’ preferences in the target campaign, which we call focus
preferences, and the non-focus preferences. By this, akin to the
transfer learning approaches [19], we allow for focusing on the
target campaign, while also drawing from the data available
in other campaigns. In particular, we learn two different sets
of user preferences/factors as well as their importance towards
predicting the user response to the given campaign. Simulta-
neously, we estimate the similarity/dis-similarity between the
target campaign and other campaigns using the user-product
response matrix to facilitate the information transfer. Also, we
show how a taxonomy over the products can be integrated
with our approach to aid in this task.

We develop an efficient parallel multi-core implementation
of our FMF model and evaluate its performance over a real-
world shopping dataset spanning more than a million users and
products. Such implementation requires different processing
threads to share the model parameters with both parameter
reads and updates going to shared values. This leads to bot-
tlenecks with some of the model parameters that are updated
more frequently. To resolve this issue we provide an update
caching scheme that batches the changes of individual threads
to avoid conflicts. Our experiments demonstrate the significant
benefits of using our FMF models over existing approaches.

Contributions
In summary, the contributions of this paper are as following:

• we introduce the Focused Matrix Factorization model
where we discriminate between the user interests in the
target campaign and other campaigns, while using all the
available information.

• we show how FMF can be applied to the audience
selection problem in display advertising.

• we have provided a parallelized implementation for multi-
core machines that caches the updates of the model
parameters to avoid bottlenecks and speeds up the eval-
uation by orders of magnitude.

• we provide an experimental evaluation over a real-world
dataset showing the merits of the proposed approach.

We note here that although we present FMF model in the
context of audience selection, the approach is general and is
applicable to all the recommendation scenarios. For example,
FMF can be used to train models for movie recommendation
for specific users or specific genres and so on.

Outline: The rest of the paper is organized as follows. First we
formally describe the audience selection problem in Section II.
Next, we describe our focused collaborative filtering model in
Section III. We illustrate the algorithms to train the model in
Section IV. We conclude with experiments in Section VI.

II. PROBLEM FORMULATION

We start by providing a brief overview of audience selection
in display advertising. Subsequently, we formulate it as a
collaborative filtering problem.

A. Audience Selection

Display advertising constitutes graphical ads and media that
are displayed alongside the main content of the web page. As
with traditional advertising, the advertisers’ intent is to reach
users that might be interested in their products. In particular,
the performance oriented advertisers are interested to target
users that are most likely to convert, i.e, make a purchase
corresponding to the advertisement. To this end the advertiser
launches a campaign with the advertising network promoting
its products. The advertising network now needs to select the
set of users as desired by the advertiser. This task of retrieving
relevant users by the advertising network is referred to as
audience selection. For instance, an electronics company may
launch a campaign with the network, targeting users who buy
portable media players. A commonly used approach by the
advertising networks is to select users who have previously
converted on media players and related electronics goods.

B. Matrix Factorization for Audience Selection

As described before, each campaign consists of a set of
items (products) that are being advertised as part of the
campaign. For each item the advertising network maintains
the set of customers that have bought it. In other words,
we have a sparse (partially populated) response matrix for
campaign c, say Xc, where Xc(i, j) = 1 if user i has
purchased item j. Given a item p, the audience selection
problem requires us to select the set of users that are most
likely going to purchase p. One such approach is using matrix
factorization [3], [16], [17], [21]. By factorizing this response
matrix, we project each user and item into a lower dimensional
space (such lower dimensional projections are called latent
factors) which essentially clusters similar users and items
together; subsequently we measure the affinity between a user
and an unpurchased item as the dot product between the
corresponding factors and finally select the top-k users with
the highest affinity for each item. We explain how to learn the
user and item factors given the historical purchases data.

The input to the audience selection system is the user-item
response matrix Xc (size m× n, m users and n items in the
campaign c). The goal of the system is to predict, for each
product p, a ranked list of users in the matrix. We assume that
each user u can be represented by a latent factor vU

u which is a
vector of size 1×K (K is commonly referred to as the number
of factors in the model, typically much smaller than m and
n). Similarly, each item i can be represented by a latent factor
vI
i (also, a vector of size 1×K). User u’s affinity/interest in

item i is assumed to follow this model:

x̂ui = 〈vU
u ,v

I
i 〉

Here, xui is the affinity of user u to item i, 〈vu,vi〉 represents
the dot product of the corresponding user and item factors. The
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Fig. 1: Illustrating the different approaches considered in this paper. X1 is the user-item matrix for the target campaign. X2 · · ·XJ are
the user-item matrices for the non-target campaigns. In the Matrix Factorization (MF) approach, we just factorize the target campaign to
get the user and item factors. In this case we do not utilize any non-target campaigns data. In the GMF approach, we poll together data
from all campaigns, to get the global user-item matrix XG. We then factorize this matrix to get the user and item factors, V U

G and V G
I ,

respectively. In the last approach, Focused Matrix Factorization (FMF), each user has two two factors, a target campaign factor V S and
non-target campaign factors V N . The target campaign user-item matrix, X1, is factorized using user factors V S and item factors V I1 .
Each non-target campaign user-item matrix Xj is also factorized using user factors fj(V S , V N ) , and item factors V Ij . The user factors
fj(V

S , V N ) for non-target campaign j combines the V S which is shared with the target-campaign and V N which is not shared with the
target campaign. The combination function fj() depends on the campaign j such that the more similar it is to the target campaign, the more
pronounced the role of V S int this combination and as such information is transfered into the target campaign. In the text, we will discuss
three different models, each of which utilizes different form of the function fj().

learning problem here is to determine the best values for vU
u

and vI
i (for all users u and all items i) based on the given

rating matrix Y , these parameters are usually denoted by Θ.
A widely used approach to learning Θ is Bayesian personal-

ized ranking (BPR) proposed by Rendle et al. [20]. In BPR, the
goal is to discriminate between items bought by the user and
items that were not bought. In other words, we need to learn
a ranking function Ri for each item i that ranks i’s interesting
users higher than the non-interesting users. In other words, if
user u1 has purchased item i and user u2 has not purchased
the item, we must have Ri(u1) > Ri(u2). For this, we need
to have: xu1i > xu2i. Based on the above arguments, our
likelihood function p(Ri|Θ) is given by:

p(Ri|Θ) =
∏
i∈I

∏
u1∈Li

∏
u2 /∈Li

σ(xu1i − xu2i)

Here, Li is the list of users who have purchased item i.
Following Rendle et al. [20], we have approximated the non-
smooth, non-differentiable expression xu1i > xu2i using the
logistic sigmoid function σ(xu1i−xu2i), where σ(z) = 1

1+e−z .
We use a Gaussian prior N(0, σ) over all the factors in Θ and

compute the MAP ((maximum aposteriori) estimate of Θ. The
posterior over Θ (which needs to be maximized) is given by:

p(Θ|Ri) = p(Θ)p(Ri|Θ)

= p(Θ)
∏
i∈I

∏
u1∈Li

∏
u2 /∈Li

σ(xu1i − xu2i)

We need to maximize the above posterior function, (or its log-
posterior), shown below.

log p(Θ|Ri) =
∑
i

∑
u1∈Li

∑
u2 /∈Li

lnσ(xu1i − xu2i)− λ||Θ||2

The first summation term corresponds to the log-likelihood,
i.e., log p(Ri|Θ) whereas the second term corresponds to the
log of the Gaussian-prior, i.e., log p(Θ). Here, λ is a constant,
proportional to 1

σ2 . ||Θ||2 is given by the following expression:

||Θ||2 =
∑
u

||vU
u ||2 +

∑
i

||vI
i ||2

The second term is commonly called as the regularization
term, and is used to prevent overfitting by keeping the learned
factors vU

u and vI
i sparse.
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1) Stochastic Gradient Descent (SGD): SGD is typically
used to optimize objective functions that can be written
as sums of (differentiable) functions, e.g., in the objective
function above, we have one function per training data point
(i, u1, u2). The standard gradient descent method is an iter-
ative algorithm: Suppose that we want to maximize a given
objective function. In each iteration, we compute the gradient
of the function and update the arguments in the direction
of the gradient. However, computing the overall gradient
requires computing the derivative for each function in the
summation and is quite expensive when we have a large
training dataset. In SGD, we approximate the derivative by
computing it only at a single (randomly chosen) term in the
summation and update the arguments in this direction. Despite
this approximation, SGD has been shown to work very well
in practice [9], [7], [8], often outperforming other methods
including the standard gradient descent. In the above example,
a given training data point (i, u1, u2) defines a term in the
summation. The derivatives with respect to the vI

i , v
U
u!

and
vU
u2

variables are shown below. Denote ci,u1,u2 to be equal to
(1− σ(xu1i − xu2i)).

∂L(U, V )

∂vI
i

= ci,u1,u2
(vU

u1
− vU

u2
)− λvI

i

∂L(U, V )

∂vu1

= ci,u1,u2
vI
i − λvU

u1

∂L(U, V )

∂vu2

= −ci,u1,u2
vI
i − λvU

u2

Now, we use the above derivatives to update the appropriate
factors. Note that since we have a maximization problem, we
need to move in the same direction as the derivative. The
corresponding update equations are shown below:

vI
i = vI

i(1− ελ)− εci,u1,u2
(vU

u1
− vU

u2
)

vU
u1

= vU
u1

(1− ελ)− εci,u1,u2
vI
i

vU
u2

= vU
u2

(1− ελ) + εci,u1,u2
vI
i

Here, ε is the learning rate which is set to a small value. The
regularization term λ is usually chosen via cross-validation.
An exhaustive search is performed over the choices of λ and
the best model is picked accordingly. The overall algorithm
proceeds as follows. A training data point (u, i, j) is sampled
uniformly at random. The gradients are computed at this
particular data point and the variables are modified according
to the update rules shown below. An epoch is roughly defined
as a complete pass over the data set (i.e., over all the non-zero
entries in the rating matrix). By deriving the factors for users
and items from solving the above optimization problem, we
can perform audience selection for campaign c. In particular,
for each product j in campaign c, we compute the dot product
(〈vUu , vIi 〉) for every user and recommend the ones with the
highest values. We refer to this approach in the rest of the
paper by Matrix Factorization (MF).

While the MF approach works well when the campaign
has a rich response matrix, it is known to struggle in the
presence of sparsity. This is particularly apparent in our case
because (a) most tail campaigns are small in terms of the

number of items and have a “narrow” response matrix, (b) and
for new campaigns where we do not have enough historical
purchase data (i.e., cold-start problem). One possible approach
to mitigating these issues is to borrow information from other
campaigns. We describe this in the next section.

III. FOCUSED MATRIX FACTORIZATION MODEL

By bringing in other campaigns, we can enrich the user-
product interaction matrix and find better insights into user
preferences. For instance, if a user often buys items from
campaigns on computer/gaming accessories, then her buying
pattern can be leveraged for performing audience selection for
related campaigns on cell phones, music players etc.

GMF: Global Matrix Factorization
A simple way to borrow information is by combining the
response matrix of all campaigns. In other words, we construct
global matrix XG which includes user-product data from all
campaigns. The global response matrix is dense and can be
factorized under the BPR framework (as described before) to
derive the item and user factors, V GU and V GI , respictively.
Then, given any target campaign, these factors can be used
to perform audience selection. We refer to this approach by
Global Matrix Factorization (GMF). Note that in this approach,
we learn one set of user factors in this approach, irrespective
of the target campaign, unlike the MF approach, where we
learn user factors for each target campaign separately.

While GMF resolves the sparsity issue, it has other draw-
backs. Since we are factorizing the global matrix, the derived
user factors represent the global user preferences, e.g., user
buys electronics often. Such global preferences give us insights
into the general buying pattern of the user, but they do not
capture the campaign-specific user preferences accurately. This
is especially true for the small campaigns which are likely
to be overwhelmed by large campaigns in the global matrix.
(Note that the whole idea of borrowing information is to
help the small campaigns.) Hence, we propose our focused
collaborative filtering models which allow us to appropriately
borrow relevant information from other campaigns while still
retaining focus on the target campaign.

A. Focused Matrix Factorization Models (FMF)

We present three focused collaborative filtering models
FMF1, FMF2 and FMF3 with varying degrees of sharing
between campaigns. Subsequently, we present details about
how to incorporate a taxonomy over the products into our
FMF framework.

FMF1

Let T denote the items in the target campaign for which we
want to perform audience selection. Let N denote the items
in the campaigns that are not part of the target (i.e., non-target
campaigns, T ∪ N = I). This includes the campaigns which
are currently running as well as old campaigns which were
run in the past. The key idea behind FMF1 is that instead of
learning one set of user preferences (i.e., factors) like GMF,
we allow each user to have two sets of preferences: one set
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for the target campaign (focus preferences) and the other for
the non-target campaigns (non-focus preferences). We define
this formally next.

Let v1
u and v2

u denote the factors for user u for the target
and non-target campaigns respectively. To allow information
transfer between the target and non-target campaigns, we
constrain these factors in the following manner: v1

u = vSu +vTu
and v2

u = vSu + vNu . Here vSu captures the information that
can be shared between the target and non-target campaigns,
vTu captures the residual specific to the target items and vNu
for the non-target items. Then, the affinity xui between user
u and item i in the FMF1 model is written as:

xui =

{
〈vSu + vTu , v

I
i 〉 if i ∈ T

〈vSu + vNu , v
I
i 〉 if i ∈ N

Our FMF1 model is stringent in terms of model variables but
still general enough to capture both MF and GMF models that
were proposed before. For instance, if the target and non-
target items are completely independent and do not share any
information, then vSu can be set to 0 and only vTu will be
used to compute user affinity for the target items (i.e., the MF
model). On the other hand, if the target and non-target items
are completely alike, then the residual vectors vTu and vNu can
be set ot 0 and the shared vector, vSu , is used for the affinity
computation (i.e., the GMF model).

Without loss of generality, we can simplify the FMF1 model
by setting vTu to 0. Effectively, the shared factors in the new
model, say v′Su , can be thought of as vSu +vTu and the residual
vector v′Nu as vNu − vTu . Doing this not only reduces the
number of factors that need to be estimated, but also makes
the model mathematically identifiable (by breaking symmetry
between the targeted and the non-targeted campaigns) and
hence interpretable. Thus, our final FMF1 model is:

xui =

{
〈vSu , vIi 〉 if i ∈ T
〈vSu + vNu , v

I
i 〉 if i ∈ N

Thus in FMF1, we have fj(V S , V N ) = vSu + vNu .

FMF2

While FMF1 captures the sharing between the target campaign
and the non-target campaigns (through vSu ), it borrows identi-
cal amounts of information from all the non-target campaigns.
This will “confuse” the model if the non-target campaigns are
different and represent a diverse set of items. For instance,
a target campaign on “electronic” items must borrow more
from a non-target campaign on “computers” than the one on
“furniture”.

Essentially, we need to take into account the similarity
between the target and non-target campaigns while sharing
information. To allow this, we introduce an αj variable for
every non-target campaign j from which we want to borrow(let
Nj be the set of items in the non-target campaign j) to control
the degree of sharing. Note that we also need to learn the α
values from the data. A large positive value for αj would
indicate a large correlation between the target and the jth

non-target campaign, a small value indicates the absence of

interaction, and a negative value suggests anti-correlation. The
model FMF2 is shown below:

xui =

{
〈vSu , vIi 〉 if i ∈ T
〈αjvSu + vNu , v

I
i 〉 if i ∈ Nj

Thus in FMF2, we have fj(V S , V N ) = αjv
S
u + vNu .

We pictorially illustrate this model using a plate-based graphi-
cal model [12] representation in Figure 2. In the user plate, we
have random variables vNu and vSu that denote the user factors.
In the item plate, we have random variables αj and vIi that
denotes the sharing factor and the item factor respectively. The
shaded variable xui corresponds to the observed entities in the
user-item matrix. The other random variables wIj correspond
to the taxonomy, which we discuss in Section III-B.

FMF3

The FMF2 model allows borrowing information differently
from different campaigns by keeping αj variables. We can
further generalize this model to not only have different αj but
also different vNj

u for each non-target campaign j. In other
words, each non-target campaign has its own residual vector to
capture its specificity. However, this results in too many user
factors (K factors per campaign, multiplied by the number
of non-target campaigns) and can be difficult to estimate in
practice. To avoid this, we set each v

Nj
u to be (1 − αj) · vNu

and hence, keep the number of user factors to be 2 · K as
before.

Essentially, for each campaign, target or non-target, the
effective user factor is a linear combination of vSu and vNu
with αj being the mixture coefficient. Since αj for the target
campaign is 1 (i.e., the campaign is completely correlated with
itself), we get the effective user factor for the target campaign
to be vSu . Thus, the FMF3 model looks like:

xui =

{
〈vSu , vIi 〉 if i ∈ T
〈αjvSu + (1− αj)vNu , vIi 〉 if i ∈ Nj

Thus in FMF3, we have fj(V S , V N ) = αjv
S
u +(1−αj)vNu .

Moreover, we restrict αj to be in the range [0, 1]. We picto-
rially illustrate the FMF model in relation to the MF and GMF
approaches in Figure 1.

We would like to point out here that while using additional
factors to model user preferences doubles the number of
parameters that we need to train, we use appropriate regular-
ization to keep them correlated – thereby the effective number
of parameters is much less. As we mention in Section VI-A.4,
we use cross-validation to select the best parameters for the
FMF models.

B. Leveraging Item Taxonomy

In this section, we show how a taxonomy over prod-
ucts/items can be integrated in the FMF framework. This
alleviates the sparsity issue and improves the performance of
our models (as shown in the experiments).

As described in Section I, sparsity is a prevalent issue
with ad campaigns. Tail campaigns contain very few items
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Fig. 2: Graphical model description of FMF2 model. Random vari-
ables in the user plate include user factors vNu and vSu . Random
variables in the item plate include item factor vIi and the taxonomy-
node factors wI (Section III-B). Note that αj is in the item plate
since the campaign index j is unique for a given item i.

and are therefore sparse as a result, while large campaigns
struggle with sparsity when they are new. Our FMF models
from Section III exploit information from other campaigns to
resolve this problem, but we can further boost the performance
of our models by leveraging an additional source of infor-
mation: taxonomy over the products, which are commonly
available [2], [13]. The taxonomy provides lineage for a
product in terms of the parent categories that it belongs to,
e.g., an Apple iPod is a portable media player, which itself is
an electronics item.

We incorporate taxonomy using a hierarchical additive
model [10], [11] over the item factors. In particular, we
introduce item factors wIj for all nodes in the taxonomy
(including the actual items, which are considered as leaves
of the taxonomy tree) and define the item factors using the
following equation:

vIi =

L∑
`=0

wIpl(i)

where pl(i) denotes the lth ancestor of item i. Now, every item
factor has a contribution from each of its ancestors. Note that
this allows us to derive factors for even those items which
may not have any purchases (and are hence not trained) by
using the estimate of their parent in the taxonomy. And as we
get more purchases for this item, the models allows the item
factor to get away from the parent if necessary.

IV. MODEL LEARNING AND INFERENCE

In this section, we describe algorithms for learning the FMF
models. Specifically, we illustrate the approach for the FMF2
model. As mentioned in Section III, we use the Bayesian
personalized ranking (BPR) objective function of Rendle et
al. [20]. We use the stochastic gradient descent optimization
algorithm [7] for training our models.

The output of our model needs to be a ranking function
Ri for each item i in the target campaign T that ranks the
users according to who is most likely going to purchase the

item. From the training data, if we know that user u1 has
bought item i and that another user u2 has not bought item
i, then we must have Ri(u1) > Ri(u2). The BPR objective
function essentially enforces this criterion for all items and
every pair of users within a given item. Before discussing the
objective function, we present some of the notations used. The
parameters that we need to learn are the user factors vSu , vNu ,
and αj for all campaigns and the item factor matrix vIi . We
denote the union of these parameters using Ψ. Also, denote
B(u1) to be the set of items that are bought by user u1. Also,
let T denote the set of items in the target campaign and let Nj
denote the set of items in the non-target campaign j. The log-
likelihood function F (vS , vN , vI , α) for this case (w/ BPR) is
given by:

F (ψ) =
∑
i∈I

∑
u1:

i∈B(u1)

∑
u2:

i/∈B(u2)

log σ(xu1i − xu2i)− λΨ||Ψ||2

We wish to treat the campaign items differently from the non-
target campaign items, i.e., we penalize the errors on the target
campaign much more than the non-target campaigns by using
weights A and B for respective terms in the summation.The
log-likelihood expression is now given by:

A
∑
i∈T

∑
u1:

i∈B(u1)

∑
u2:

i/∈B(u2)

[
log σ(〈vSu1

− vSu2
, vIi 〉)

−λ||vS ||2 − λ||vI ||2
]

+

B
∑
i/∈T

∑
u1:

i∈B(u1)

∑
u2:

i/∈B(u2)

[
log σ(〈αj(vSu1

− vSu2
) + vNu1

− vNu2
, vIi 〉)

−λS ||vS ||2 − λI ||vI ||2 − λN ||vN ||2 − λα||α||2
]

where λ’s denote the regularization constants. To use SGD,
we sample a term from the above summation, which we denote
using (i, u1, u2). Depending on whether the item is from
the target campaign (i.e., i ∈ T ) or from some non-target
campaign j (i.e., i ∈ Nj), we obtain two sets of gradients
which are shown in Figure 3.
Even though the objective function is highly non-convex,
stochastic gradient descent has been shown to work well [22],
[21], [20] with BPR on real datasets. To handle the local
minima, we use multiple initializations of our factor matrices
and select the best performing model via cross-validation.

Training model FMF3

The gradient rules for training FMF3 model is similar to the
ones shown in Figure 3 and we do not present it owing to
lack of space. However, for this model to be meaningful,
we enforce that all values of αj ∈ [0, 1] by using projected
gradient [6] over the αj . Essentially, whenever the gradient
rules force the value of αj to be less than 0 (more than 1),
we force it to be exactly 0 (1). This enables us to intuitively
interpret the αj parameter as determining the fraction of the
user’s local and global interests.
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ci,u1,u2
= 1− σ(〈vSu1

− vSu2
, vIi 〉)

∂F

∂vIi
= A(ci,u1,u2(vSu1

− vSu2
)− λvIi )

∂F

∂vSu1

= A(ci,u1,u2
vIi − λvSu1

)

∂F

∂vSu2

= A(−ci,u1,u2
vIi − λvSu2

)

(i) item i is in the target campaign (i.e., i ∈ T ).

c′i,u1,u2
= 1− σ(〈αj(vSu1

− vSu2
) + vNu1

− vNu2
, vIi 〉)

∂F

∂vIi
= B(c′i,u1,u2

(αj(v
S
u1
− vSu2

) + vNu1
− vNu2

)− λvIi )

∂F

∂vSu1

= B(αjc
′
i,u1,u2

vIi − λvSu1
)

∂F

∂vSu2

= B(−αjc′i,u1,u2
vIi − λvSu2

)

∂F

∂vNu1

= B(c′i,u1,u2
vIi − λNvNu1

)

∂F

∂vNu2

= B(−c′i,u1,u2
vIi − λNvNu2

)

∂F

∂αj
= Bc′i,u1,u2

〈vSu1
− vSu2

, vIi 〉

(i) item i is in the non-target campaign j (i.e., i ∈ Nj).
Fig. 3: Update rules for the FMF2 model.

GLOBAL STATE VARIABLES

Thread T1 Thread T2 Thread T3 Thread T4

Computing 
gradient Update step

Global variables are used 
to compute gradient

V S V N

if(αL
4 − αG

4 ) > τ

αG = αG + αL
4 − αG

4

αG V I

αG
1

αL
1 αL

2

αG
2 αG

3

αL
3 αL

4

αG
4

Fig. 4: Pictorial description of the multi-threaded implementation.
Note that the global variables are used to compute the gradients.
The global variable is updated whenever the difference exceeds the
threshold.

V. IMPLEMENTATION

We developed a multi-core implementation of our focused
collaborative models in C++. We used the BOOST [1] library
package for storing the factor matrices.

A. Parallelizing Training & Evaluation

Our multi-threaded approach is developed using locks. The
global state maintained by the SGD algorithm consists of the 3
factor matrices {vS , vN , vI} and the α vector. We introduce a
lock for each row in our factor matrices. In the SGD algorithm,
in each iteration of training, we execute 3 steps. In the first
step, we sample a 3-tuple (i, u1, u2). In the second step, we
read the appropriate user and item factors and compute the
gradients with respect to them. Before reading, we obtain
a read-lock over the factor and release it after reading. In
the third step, we update the factor matrices based on the
gradients. Before writing we obtain a write lock on the item
factor and subsequently release the lock once we update the
factor.

Each user and item factor matrix has a large number of rows
(over 500,000). Even with a fairly large number of threads,
the contention over such rows is fairly small. However, the α
vector is relatively small (equal to the number of campaigns,
as in FMF2 and FMF3 models). Therefore, there is much more
contention on this vector. As we show in Section VI, using
locks over such small vector can result in significant increase
in the processing time. To alleviate this problem, we propose
to use a novel caching technique which we illustrate below.

Caching:
We illustrate the caching technique for a scalar α value (this
can be easily generalized to vectors). In this technique, each
thread Ti maintains two values in its cache: αGi which is the
value with which the current thread started off, and αLi which
is the locally cached value. We maintain that the |α−αG| <=
τ where τ is a given tolerance threshold. In each iteration,
the threads read the value of αG from the global value by
obtaining a read lock. Whenever a thread needs to update the
value of α, it updates αLi using the update rules. Whenever
|αGi − αLi | exceeds τ , we reconcile the locally cached copy
with the global value in the following manner:

αG = αG + (αLi − αGi )

αLi = αGi = αG

We pictorially illustrate the caching in Figure 4. We use a
similar technique for caching the α vector for FMF2. We also
parallelize evaluation similarly. Each thread takes a subset of
items in the target campaign and ranks the users within each
item independently. Note that we only need to read the factor
matrices in this case.

VI. EXPERIMENTAL EVALUATION

In this section, we present the results of our experimental
evaluation. We compare our proposed FMF techniques with the
alternative approaches MF and GMF. We start with a description
of the data set and the evaluation metric.

A. Experimental Setup

1) Dataset: To evaluate our proposed models, we use the
log of previous advertising campaigns obtained from a major
advertising network. The dataset contains information about
the items corresponding to various advertising campaigns and
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an anonymized list of users who actually responded to the
campaign by making a purchase of the campaign item. In
addition, we have a taxonomy over the various items in the
campaigns. For our experiments we sample a fraction of
campaigns from this dataset. In this sample, we have about
50,000 users and around a million items in the taxonomy.
The taxonomy itself is 3 levels deep, with around 1500 nodes
at lowest level, 270 at the middle level and 23 top level
categories. As described in Section II, a campaign is a set of
related items. We have a total of 23 campaigns in our dataset.
For each of the campaigns, we do the following: we select it
as a target campaign and put the remaining set of campaigns
as the additional non-target campaigns. Each campaign is
characterized by the number of items that is targeted by it,
number of purchases that are present, how homogeneous the
items are and how much it is related to other campaigns. We do
not report the campaign identifiers due to anonymity reasons,
we denote them using C1, C2 and so on.
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Fig. 5: Figure shows the improvement in performance over all
campaigns using our proposed FMF model over the baseline matrix
factorization approach.

To construct the user-item data matrix necessary for collabo-
rative filtering, we select all the purchases made by the users in
the above set of campaigns and sort them by their timestamps.
For each item we select a random timestamp and select all
the data prior to this timestamp into the training dataset. The
rest of the data is used for evaluation. The last T transactions
in the training dataset are used for cross-validation and first
T transactions in the test dataset are used for prediction and
reporting the error estimates. In all experiments, we use T = 1.

2) Comparison Systems: We compare our proposed models
FMF1, FMF2 and FMF3 against the following methods.

1) MF: Here, we use the MF approach described in Sec-
tion III as a baseline.

2) GMF: We also compare against the global matrix factor-
ization (Section III).

3) GMF(t), MF(t): In addition, we use the above models
along with the taxonomy extension (proposed in Sec-
tion III-B).

3) Metrics: We use the area under the ROC curve (AUC)
to compare our model with the above systems. AUC is a com-

monly used metric for testing the quality of rank orderings. It
gives the probability with which a random positive example is
ranked higher than a negative example in the ordering (i.e., a
pure random ordering achieves an AUC of 0.5). Suppose the
list of users to rank (for a given item) is U and our ground
truth (i.e., the set of users that actually bought the item) is
B. Also suppose r(u) is the numerical rank of the user u
according to our model (from 1 . . . n). Then, the formula to
compute AUC is given by:

1

|B||U \B|
∑

u∈B,v∈U\B

1(r(u) < r(v))

Here, 1 is the indicator function that is 1 if the condition
is satisfied and 0 otherwise. An alternative metric could be to
measure precision/recall at a certain rank in the list. However,
different campaigns may have different requirements in terms
of precision and recall. Hence, selecting a rank at which
to evaluate precision such that it would be suitable for all
campaigns is not possible. Instead, we use AUC since it
combines the prediction performance over all ranks into a
single number.

4) Cross-validation/Parameter sweep: For each of the ex-
periments that we illustrate below, we executed a parameter
sweep over our MapReduce cluster. The parameters we sweep
over included λU , λI , λN and K, the number of factors. In
addition, since our objective function is non-convex, for each
setting of the parameter we evaluated 4 different initializations
and picked the best initialization for each configuration, in
terms of performance on the validation dataset. Finally, we
chose the AUC over the test set for a given number of factors
to report in our experiments.

B. Experimental Results

1) Improvement Over the Baselines: In the first experiment,
we compare the GMF, MF and FMF2 techniques for different
campaigns. For each campaign, we learn all the above models
and evaluate the accuracy of prediction over the campaign
items using the AUC metric. We report the average AUC
across all the campaigns in our data set in Figure 5. As shown
in the figure, the AUC for FMF2 is higher than the AUC values
for the MF model. Next, we examine the performance of the
FMF models over the individual campaigns. We drill down
across four different campaigns C1, C2, C3 and C4 which
are chosen such that they representative of all the campaigns
in the dataset. We show the results for the above campaigns in
Figure 6 (i-iv). We make the following observations: First, for
campaigns C1, C3 and C4, the improvement of FMF over the
MF model is substantial (over 7% for campaign C1), however
the improvement for campaign C2 is less than 2%, which is
not statistically significant. We attribute this to the fact that
the number of purchases in C2 is high, and subsequently, the
response matrix is not as sparse as those for other campaigns.
Hence, the additional benefit of FMF is not as pronounced.

Second, we note that between the GMF and MF methods,
there is no clear winner. In Figure 7, we plot the best AUC
values across all factor sizes for each campaign. As shown in
the figure, in campaign C2, MF outperforms GMF, whereas
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Fig. 6: Improvement over baseline: In parts (i-iv) we show the performance of the MF and FMF models over campaigns C1, C2, C3 and C4

respectively. As shown here, FMF models consistently outperform the baseline models.

in the other campaigns, GMF outperforms MF. This occurs
because the number of purchases in C2 is high and that C2

is a large campaign which helps MF. This figure demonstrates
that blind sharing of information as performed by GMF does
not always help, as in the case of campaigns C2.

 0.6
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 0.85

 0.9

C1 C2 C3 C4

A
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MF FMF GMF

Fig. 7: We summarize the best performing model (across factor sizes)
for each case. Note that between GMF and MF, there is no clear
winner, i.e., in campaign C2, MF outperforms GMF

Note that our FMF2 model performs fairly well for every
campaign, since it can adapt in terms of how the information

 0.84
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Fig. 8: We show the improvement obtained by all the models using
the taxonomy, and the improvement of the FMF(t) models over the
GMF(t) and MF(t) baselines.

from non-target campaigns is borrowed, the extent of infor-
mation that needs to be borrowed, etc. We further dissect the
performance behavior of FMF models in detail in Section VI-
B.2.

Improvement Using Taxonomy
Next, we compare the FMF(t) model (i.e., the FMF model
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augmented with information about the taxonomy) against the
taxonomy-aware MF(t) and GMF(t) models. As before, we
execute a parameter sweep and determine the best AUC values
for each of the models, for different values of the number of
factors. We show the results in Figure 8 for campaign C2. As
shown in the figure, all models benefit from using information
about the product taxonomy, just as expected. However, the
FMF(t) model still outperforms the GMF(t) and MF(t) models.
Also, it is worth noting that MF draws the largest benefit
from the taxonomy – this can be explained based on the
fact that MF factorizes the target campaign matrix only and
hence, is affected by sparsity the most. The taxonomy-based
smoothing of item factors alleviates this issue, thus leading to
large improvement in MF.

2) Understanding Focused Matrix Factorization: In this
section we conduct a thorough analysis to investigate the
performance behavior of the FMF models. We aim to identify
key characteristics that affect the FMF models.

Comparison of the different FMF Models
We start by comparing the FMF1, FMF2, FMF3 models with
each other. For each of the four campaigns we train the FMF1,
FMF2 and FMF3 models. We show the AUCs metrics, as
before, over the test dataset in Figure 9 (i-iv). As shown
in the figure, the models FMF1 and FMF2 perform much
better than FMF3. We reason this is because FMF3 is much
more constrained than the other two models (as αj values are
constrained to be between 0 and 1). However, with FMF2,
the αj values are unconstrained leading to greater freedom of
learning. Indeed, in our analysis we observed some αj values
were positive and others negative, reinforcing our belief that
some campaigns may be negatively correlated. For brevity, we
focus on FMF2 in the remaining experiments in this section.

Effect of Campaign Size
In this experiment, we understand the performance of FMF2
model as a function of the target campaign size, i.e., the
number of items in the target campaign. We select 8 different
campaigns with varying sizes (ranging from a few hundreds
to many thousands of items). We show the AUCs achieved
by the FMF2 model in Figure 9(i). The x-axis denote the
campaign index in increasing order of campaign size. Note
that the performance of FMF2 is robust and largely unaffected
by the campaigns size.

Effect of Intra-Campaign relationship (Campaign
Homogeneity)
In this experiment, we explore the performance of FMF2
models as a function of the homogeneity (user purchase pattern
similar across all products) of the target campaign. To test this,
we create a set of hypothetical target campaign C ′(p) from an
existing campaign C for different values of p. The campaign
C ′(p) is constructed in the following way: with probability p,
we select an item from C and with probability 1−p, we select
a random item from the complete collection of items. The size
of C ′(p) is kept the same as C. In the experiment, we used
p = { 0, 0.34, 0.60, 1}. We train the FMF2 model over these
campaigns for four different values of K (number of factors),
and plot the AUCs in Figure 9(ii). As shown in the figure,

the AUC scores increase as we increase the homogeneity of
the campaign. This is expected since information transfer to
a campaign is much easier (through αj) if the campaign is
much more coherent and homogeneous.

Effect of Inter-Campaign Relationship (Information
Transfer)
Next, we illustrate the effect of inter-campaign relationship
for information transfer in the FMF2 model. Intuitively, we
expect that as we increase the positive correlation between
the target and the non-target campaigns, we should see more
information transfer and improved AUC values. We ran a
controlled experiment to verify this as follows: We picked a
fairly homogeneous campaign X (e.g., electronics) and split it
randomly into two parts X1 and X2. Then we picked another
campaign Y and constructed two configurations using X1, X2

and Y as follows. In both configurations, called config 1 and
config 2, X1 is made the target campaign, while X2 is the non-
target campaign in config 1 and Y is the non-target campaign
in config 2. We ignore the rest of the campaigns from the
data for this experiment. After running the FMF2 model with
these configurations, we plot their AUCs in Figure 9 (iii). As
shown in the figure, config 1 has much higher AUC than config
2 since it has X2 as the non-target campaign which is highly
similar to X1. In other words, our FMF2 model successfully
manages to transfer the information from the X2 campaign to
achieve better performance.

3) Efficiency: As described in Section V, we develop
a multicore implementation of the training and evaluation
algorithms. To deal with lock contention over frequently
accessed matrix entries, we use our caching techniques. In this
experiment, we demonstrate the trade-offs that is obtained by
using the caching technique. Recall that we update the global
variable only if we exceed a specified threshold value. When
this threshold is set to 0, there is complete synchronization. As
the threshold is increased, the synchronization with the global
copy is performed less often, resulting in faster runtime but
less accuracy. In other words, caching allows us to trade-off
accuracy for efficiency.

For the FMF2 model, we measure the time taken per epoch
of training with caching enabled and without caching. The
results are shown in Figure 9(iv). We make two observations
here: First, we obtain substantial improvement using caching.
For instance, the run-time is cut to almost half by enabling
caching. Second, even with a reasonably large value of thresh-
old = 0.001, we did not observe any significant loss in the
accuracy of the model.

RELATED WORK

Recommender Systems
Classical approaches in collaborative filtering are based
on item-item/user-user similarity, these are nearest-neighbor
methods where the response for a user-item pair is predicted
based on a local neighborhood mean [26], [24]. However,
modern methods based on matrix factorization have shown
to be very successful and outperform nearest neighbor meth-
ods [23]. In this paper we showed how matrix factorization
can be used for audience selection in display advertising.
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Fig. 9: Study of FMF models: In part(i-iv), we study the relationship between the various FMF models that we propose. Essentially, we see
that FMF1 and FMF2 models outperform FMF3.

Transfer Learning
The idea of using focused collaborative filtering draws inspi-
ration from transfer learning / multi-task learning. Zhang et
al. [27], however our work differs from these work since we
only care about increasing the performance of the focused task
rather than learning the task structure between all tasks as in
[27], which reduces the number of correlation parameters to
be learned from a quadratic number of parameters between
all tasks to just a linear number of parameters between the
focused task and all other tasks. Another related area is collec-
tive matrix factorization [25] which shares structure between
multiple matrix factorization tasks, however, our focus here is
on efficient way of training the resulting model.

Audience Selection in Display Advertising Display adver-
tising is increasingly becoming more and more performance
oriented where the goal is to identify and target customers
most suited to the advertising campaigns. Existing work on
this topic focuses on building models to characterize user
interests based on their past activities, e.g., search queries,
pages browsed [18], [5]. The advertising network can track
and construct user history to build these models for targeting
purposes. In contrast, our work does not require user online
activities to be given, instead we mine the past purchase
records to bring together similar users and advertisers. To
the best of our knowledge, this is the first work to apply
matrix factorization approach to display targeting. Also, it is
possible to directly extend this work for the case where user

history is given. For instance, similar to [4], we can derive user
factors by regressing on the user features, and thus combine
the purchase history as well as past online activities of the
user.

CONCLUSIONS

Display advertising has grown into a multi-billion dollar
industry in recent years. To this end, there has been extensive
work on behavioral targeting and user personalization to solve
the key problem of audience selection for ad campaigns. Much
of the previous work use users’ search logs, browsing history
and other features for targeting ads to user. In this paper,
we propose to use information from previous campaigns,
which contains information about a user’s actual purchases
and is hence feature rich. We propose a novel focused matrix
factorization model, in which we develop techniques to borrow
information from related campaigns while ignoring informa-
tion from unrelated campaigns. As shown in our extensive
empirical study, the FMF model consistently outperforms the
traditional matrix factorization techniques over all kinds of
campaigns. In addition, in our experimental study, we charac-
terized the conditions under which we can obtain significant
improvements from our approach.
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