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1 Preliminaries

We denote a Markov decision process as a tuple (X, A, P, ), where
e X is the (finite) state-space;
e A is the (finite) action-space;
e P represents the transition probabilities;
e 7 represents the reward function.

We denote elements of X' as x and y and elements of A as a and b. We admit
the general situation where the reward is defined over triplets (x, a,y), i.e., r is
a function

rXxAxX —1R

assigning a reward r(z,a,y) everytime a transition from x to y occurs due to
action a. We admit r to be a bounded, deterministic function.
The value of a state x is defined, for a sequence of controls {A4;}, as

J(@,{A}) =E | Y A R(Xp, A) | Xo ==
t=0

The optimal value function is defined, for each z € X as

V*(z) = max J(z, {A:})

and verifies

V(@) =max » | Pa(w,y)[r(z,a,y) +7V"(y)].
yeX

From here we define the optimal Q-function, Q* as

Q*(z,a) = Y Pa(w,y) [r(z,a,9) + 7V ()]

yeXx



The optimal @-function is a fixed point of a contraction operator H, defined
for a generic function ¢: X x A — R as

(Hq)(z,a) Z Pa(z,y)[r(z a,y)+'yrl§1£i<q(y7b)].
yeX

This operator is a contraction in the sup-norm, i.e.,

Hg1 — Heoll, <7l — g2l - (1)
To see this, we write

|Hq1 — Hgal|, =

= max ; Pa(z,y)[r(z,a,9) + ymaxqi(y, b) —r(z,a,y) + ymax g (y, b)] | =
Yy

= maxy Z Po(z y)[maqu(y b) — meaxqg(y,b)] <
yeX

=maxy Y Pa(z,y) ’maxm(y b) — max g (y, b)| <
yeX

=maxy Y Pa(e,y) max|i(2,0) ~ ga(2, )| =
yeX

= maX’Y Z Pa(z,y) [la1 — a2l

yeX

=7 ||Q1 - q2||oo

The @-learning algorithm determines the optimal Q-function using point
samples. Let m be some random policy such that

A =a| Xy =12]>0

for all state-action pairs (z,a). Let {x;} be a sequence of states obtained follow-
ing policy 7, {a;} the sequence of corresponding actions and {r;} the sequence
of obtained rewards. Then, given any initial estimate @)y, @-learning uses the
following update rule:

Qur1(we, ar) = Qulwe, ar) + aul@y, ae) [re + ymax Qe(weg1,b) — Qelxe, ar)],

where the step-sizes a;(z,a) verify 0 < ay(x,a) < 1. This means that, at the
(t + 1)** update, only the component (zy,a;) is updated.!
This leads to the following result.

IThere are variations of Q-learning that use a single transition tuple (z, a,y,r) to perform
updates in multiple states to speed up convergence, as seen for example in [2].



Theorem 1. Given a finite MDP (X, A,P,r), the Q-learning algorithm, given
by the update rule

Qir1(e,ar) = Qi(xt, ar) + (x4, ar) [Tt + ’bene%i( Qi(ri41,b) — Qt(xt»at)]v (2)
converges w.p.1 to the optimal Q-function as long as

Zat(x,a) =00 Zaf(x,a) < 00 (3)

for all (z,a) € X x A.

Notice that, since 0 < az(z,a) < 1, (3) requires that all state-action pairs
be visited infinitely often.

To establish Theorem 1 we need an auxiliary result from stochastic approx-
imation, that we promptly present.

Theorem 2. The random process {A;} taking values in R™ and defined as
Apr (@) = (1= (@) As () + (@) Fy ()
converges to zero w.p.1 under the following assumptions:
e 0<a; <1, ai(z) =00 and >, a?(z) < oo;
o [|E[F () | Felllyw < vl Adlly, withy <1;
o var [Fi(z) | Fi] < C(1+ ||A]l3), for C > 0.
Proof See [1]. a
We are now in position to prove Theorem 1.

Proof of Theorem 1 We start by rewriting (2) as
Qt+1($t7 at) = (1 - Oét(l‘t, at))Qt(ﬂUu at) + o (4, at) [Tt + 7%16%‘)‘( Qt($t+17 b)]

Subtracting from both sides the quantity Q*(z¢, a;) and letting

Ai(z,a) = Qi(z,a) — Q% (x,a)
yields

Ap(z,a) = (1 — ag(@e, ar)) Ar(we, ar))+
+ ez, a)[re + ymax Qy (zi1,0) — Q" (s, ar)].

If we write

Ft(x7 a) = r(;ma,X(x, a)) + ’)/Iéleaj(Qt(% b) - Q*(;ma),



where X (z,a) is a random sample state obtained from the Markov chain (X, P,),
we have

E [Ft(xva‘) | ft} = Z Pa(xay) [T(xvavy) +7%%Qt(yvb) - Q*(ZL',(L)] =
yeX

= (HQ,)(x) ~ @"(x,a).
Using the fact that Q* = HQ*,
E [Fy(r.a) | 7] = (HQ,)(x.a) — (HQ")(z.a).
It is now immediate from (1) that
IE [Fu(,a) | Flllae <71Q: — Qe =7 1¢ll
Finally,

var [Fi(x) | Ft] =

=5 [ (1000 X .0) 4 71 QulnD) — @' 010) — (HQ 2 0) + @' (0,) | =

— 5 [ (10 X2.0) + s Qi) — (HQ) w.0)) | -

— var {r(m,a,X(x,a)) oy max Qu(y,b) | ]—'t]
which, due to the fact that r is bounded, clearly verifies

var [F,(x) | Fi] < C(1+ | Adfy)

for some constant C.
Then, by Theorem 2, A; converges to zero w.p.1, i.e., (Q; converges to Q*
w.p.1. O
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