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ABSTRACT

Let A and B be two sequences of length M and N respectively, where without loss of generality
N ≥ M, and let D be the length of a shortest edit script between them. A parameter related to D is
the number of deletions in such a script, P = D/2 − (N −M)/2. We present an algorithm for
finding a shortest edit distance of A and B whose worst case running time is O(NP) and whose
expected running time is O(N + PD). The algorithm is simple and is very efficient whenever A is
similar to a subsequence of B. It is nearly twice as fast as the O(ND) algorithm of Myers [9], and
much more efficient when A and B differ substantially in length.

1. Introduction

Let A and B be two sequences of length M and N respectively, where without loss of generality
N ≥ M, and let D be the length of a shortest edit script between them. The parameter D is also
known as the simple Levenshtein distance between the sequences [6]. The number of deletions
and insertions in such a shortest script are also well defined quantities. In particular, P, the
number of deletions in a shortest edit script is always equal to D/2 − (N −M)/2.

The problem of determining a shortest edit script (SES) or a longest common subsequence
(LCS) between two sequences of symbols has been studied extensively [2, 4, 5, 7, 9, 11, 14, 16].
The classic dynamic programming algorithm, invented by Wagner and Fischer [16] and others
[12, 15], has O(MN) worst-case running time. Masek and Paterson [7] improved this algorithm
by using the ‘‘Four-Russians’’ technique [1] to reduce the worst-case running time to
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O(MN log logN/ log N) and O(MN/ log N) for arbitrary and finite alphabet sets respectively. In
terms of the input parameters M and N this bound has not been improved upon, but several recent
designs have complexities that depend on output parameters such as D and P. For example, Hunt
and Szymanski [5] presented an algorithm whose running time is O(R log M), where R is the total
number of ordered pairs of positions at which the two sequences match. Later, Myers [9],
Ukkonen [14], and Nakatsu, et al. [11] gave algorithms with worst-case time complexity O(ND),
which are efficient when A and B are similar. Such algorithms have been used in file comparison
programs [8] and for economically updating the video screen by a text editing program [10]. This
represents an improvement since P = D/2 − ∆/2, where ∆ = N −M, and in practice our algorithm
is always twice as fast as the O(ND) algorithms. Its superiority is even more pronounced when
the problem is highly asymmetric, i.e., ∆ >> 0.

Our algorithm is best explained by casting the longest common subsequence problem as a
shortest paths problem on a grid-like graph called an edit graph (e.g., see [9]). The algorithm
improves upon Myers’s algorithm [9] by exploring fewer of the vertices in the edit graph. It does
so by using a path-compression technique that has been used as a heuristic for shortest paths prob-
lems [13]. This technique was also used by Hadlock [2] to give an O(NP) sequence comparison
algorithm, however, Hadlock used a version of Dijkstra’s algorithm and thus the expected running
time of his algorithm is also O(NP), whereas the expected running time of our algorithm is
O(N + PD). Our fusion of a notion of compressed distances and Myers’s greedy approach give
an O(NP) algorithm that is very simple and thus very efficient in practice. The algorithm’s
dependence on P implies that it is particularly efficient when A is similar to a subsequence of the
longer sequence B. In fact, the algorithm is O(N) when A is a subsequence of B. By using
Hirschberg’s divide-and-conquer technique [3, 9], the algorithm can be modified to deliver a shor-
test edit script using only linear space.

2. Preliminaries

Let A = a 1 a 2 a 3 ...a M and B = b 1 b 2 b 3 ...b N, N ≥ M, be two strings of length M and N respec-
tively. A sequence C = c 1 c 2 c 3 ...c L is called a subsequence of A if C can be derived from A by
deleting some characters of A. C is called a common subsequence of A and B if C is a subse-
quence of both A and B. C is called the longest common subsequence of A and B if the length of C
is the maximum among all common subsequences of A and B. An edit script that edits sequence
A into B is a list of delete/insert instructions where a delete instruction specifies which character
of A to delete and an insert instruction specifies which character of B to insert. A
shortest edit script is an edit script whose length is minimum among all possible edit scripts that
edit A into B. For example, if A = ’a c b d e a c b e d’ and B = ’a c e b d a b b a b e d’, then a long-
est common subsequence is ’a c b d a b e d’, and a shortest edit script is ‘‘insert b 3, delete a 5,
delete a 7, insert b 7, insert b 8, insert b 9,’’ where a i denotes the i-th character of A and b i denotes
the i-th character of B. The problem of finding a longest common subsequence (LCS) and of
finding a shortest edit script (SES) are dual problems as reflected in the equality D + 2L = M + N
(e.g., see [9]).

The edit graph for sequences A and B is a directed graph with a vertex at each grid point (x,
y), 0 ≤ x ≤ M and 0 ≤ y ≤ N. Each vertex has a horizontal and a vertical edge to its right and
lower neighbor if they exist. There is also a diagonal edge from (x , y) to (x +1, y +1) if a x +1 =



b y +1. The edit graph is constructed so that a path from source (0, 0) to sink (M , N) corresponds
to an edit script that converts A into B: a horizontal edge corresponds to an insertion, a vertical
edge corresponds to a deletion, and a diagonal edge represents a common symbol. By assigning
cost 1 to the horizontal and vertical edges, and 0 to diagonal edges, the cost of a path equals the
number of vertical and horizontal edges in it. Thus the problem of finding an SES/LCS is
equivalent to finding a shortest source-to-sink path in the edit graph. Figure 1 shows the edit
graph for A = ’a c b d e a c b e d’ and B = ’a c e b d a b b a b e d’. A shortest path is highlighted
and shows that D = 6 and P = 2.

Let diagonal k of the edit graph be those vertices (x , y) for which y −x = k. With this
definition diagonals are numbered from −M to N, diagonal 0 contains the source, and diagonal ∆ =
N −M contains the sink. The algorithm of Myers [9] examines vertices between diagonal −D and
D, shown as the D −band in Figure 2. Our algorithm only examines vertices in the smaller region
between diagonals −P and ∆ +P, shown as the P −band in Figure 2. This is possible because any
path passing outside the P −band must have more than P vertical edges. To wit, if it passes
through a vertex on a diagonal below −P, then it must traverse greater than P vertical edges to
reach the source, and if it passes through a vertex on a diagonal above ∆ +P, then it must traverse
greater than P vertical edges to reach the sink.

Let the edit distance to (x , y), denoted D(x , y), be the cost of the shortest path from the
source to (x , y) on diagonal k = y −x. Suppose that such a path contains v vertical and h horizon-
tal edges. Then the number of nondiagonal edges is v +h = D(x , y) and the path must end on
diagonal h −v = k. Thus the number of vertical edges in a shortest path to (x , y), V(x , y), is well-
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Figure 1: Edit graph for A = ’a c b d e a c b e d’ and B = ’a c e b d a b b a b e d’.
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Figure 2: D-band and P-band of an edit graph.

defined: it is equal to (D(x , y) − k)/2. Similarly, the number of horizontal edges, H(x , y), is
equal to ( D(x , y) + k)/2. Let the compressed distance to (x , y), P(x , y), be defined as follows.

P(x , y) =

�
�
�V(x , y) + (k − ∆)

V(x , y)

if (x , y) is above diagonal ∆
if (x , y) is below diagonal ∆

The definition of compressed distance is the vertical distance V(x , y) plus a lower bound on the
number of vertical edges that must be in a path that continues from (x , y) to the sink vertex. This
bound is zero below diagonal ∆ and is k − ∆ above it since at least k − ∆ vertical edges must be
traversed to return to diagonal ∆. Figure 3 depicts all D-values not greater than D = 6 and P-
values not greater than P = 2 for the sequences of Figure 1.

Like Myers’s algorithm [9], our algorithm centers on computing a set of furthest vertices in
order of distance until the sink is reached. The furthest d-point in diagonal k is the vertex on diag-
onal k with D-value d that has the greatest y(x) coordinate. Let the y-coordinate of this point be
denoted by fd(k , d) = max { y : D(y −k , y) = d }. The set of furthest d-points is FD(d) =
{ (y −k , y) : y = fd(k , d) and −d ≤ k ≤ d } (e.g., see [9]). The set FD(d) is the frontier of ver-
tices whose edit distance is d. In Figure 3, the furthest points are underlined. Our algorithm uses
compressed distance, for which we make the analogous definitions: FP(p) = { (y −k , y) :
y = fp(k , p) and −p ≤ k ≤ p + ∆ }, where fp(k , p) = max { y : P(y −k , y) = p }.

3. The O(NP) Algorithm

Our algorithm computes the set FP(p) from the set FP(p −1) until (M , N) ∈ FP(p) whereupon P
and D = ∆ +2P are known. We first give an operational description of the algorithm and then
formalize it in a recurrence that is rigorously proved. Let q k be the furthest (p −1)-point in diago-
nal k (i.e., the point (y −k , y), such that y = fp(k , p −1)), and let g k denote the furthest p-point in
diagonal k. Assume that FP(p −1) = { q − (p −1) , q − (p −2) , ..., q ∆ + (p −1) } has already been found.
The algorithm first computes g −p, g − (p −1), . . . , g ∆ −1 in this order. Vertex g k is found from
g k −1 and q k +1 as follows. Let a be the vertex immediately to the right of g k −1 and b be the ver-
tex immediately below q k +1 (see Figure 4). Both these vertices are on diagonal k. From the
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Figure 3: An example of P-values (a) and D-values (b).

vertex with greatest y-coordinate, we follow diagonal edges until a vertex is reached that has no
outgoing diagonal edge or that is on the lower boundary of the edit graph. This vertex is g k as
proved in Lemma 1. The algorithm then computes g ∆ +p, g ∆ + (p −1), . . . , g ∆ +1, this time using
q k −1 and g k +1 to compute g k in the same fashion. Finally, g ∆ is computed from g ∆ −1 and g ∆ +1.

The procedure for computing FP(p −1) from FP(p) is formalized in Lemma 1 which gives
a recurrence expression for fp(k , p) in terms of the y-coordinates of previously computed furthest
points. Let snake(k , y) denote the y-coordinate of the furthest point on diagonal k that can be
reached from (y −k , y) by traversing diagonal edges. Formally snake(k , y) = max { z :
a y +1 −k

. . . a z −k = b y +1
. . . b z }, and informally snake models the process of following diago-

nal edges above. The correctness of the recurrence depends on a proper treatment of the boundary
cases: p = 0, k = −p, and k = ∆ +p. These are handled cleanly by defining fp(k , p) to be −1
whenever p < 0 or k ∈/ [ −p, ∆ +p].
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Figure 4: Generating FP(p) from FP(p −1).



Lemma 1:

fp(k , p) =

�
�
�
�
�snake(k ,max( fp(k −1,p −1) +1, fp(k +1,p))

snake(k ,max( fp(k −1,p) +1, fp(k +1,p))

snake(k ,max( fp(k −1,p) +1, fp(k +1,p −1))

if k ∈ [ ∆ +1, ∆ +p ]

if k = ∆
if k ∈ [ −p, ∆ −1 ]

Proof: We give the proof only for the first case, k < ∆; the proof for other cases is similar.
Let g be the furthest p-point in diagonal k −1, and let q be the furthest (p −1)-point in diagonal
k +1. Let a be the vertex immediately to g’s right, let b be the vertex immediately below q, and d
be the furthest vertex reached from the further of a and b along diagonal edges. The y-coordinate
of a is fp(k −1,p) +1, that of b is fp(k +1,p −1), and that of d is given by the first case of the
recurrence of the Lemma. Figure 5 shows the two possible cases where a is above b (i.e.,
fp(k +1, p) +1 ≤ fp(k , p −1)), and b is above a. Again we focus just on the case shown in Figure
5(a); the treatment of the other case is similar. The P-value of d must be p because there is a path
to d with compressed distance p (i.e., the one passing through q and b), and if there were a shorter
path, then the vertex c shown in Figure 5(a) would have P-value less than p −1 contradicting the
choice of q. It remains to show that d is the furthest such point. A distance p path to a further
point cannot pass through d for otherwise it would contradict the choice of d. But then it must
pass through a vertex of distance p on diagonal k −1 below g or a vertex of distance p −1 on diag-
onal k below q, contradicting the choices of g and q, respectively. Thus such a path does not exist
and d is the furthest p-point in diagonal k. �

The simple sequence comparison algorithm in Figure 6 is obtained directly from Lemma 1.
The outer repeat loop is executed exactly P +1 times. In the p-th pass of the this loop, the upper
for loop generates the points in FP(p) on diagonals below ∆. Note that by overwriting the
FP(p −1) points as it does so, only a single M +N +1 element array fp is required for working
storage. The lower for loop generates the points in FP(p) above diagonal ∆, and the next

kk-1 k+1

q

cd

a
g

b
g

(a) (b)
kk-1 k+1

d

q

b

a

Figure 5: The two cases of Lemma 1.



statement generates the furthest point on ∆. An examination of the recurrence reveals that the
points visited in the upper for loop are strictly increasing in their y-coordinate and the points
visited in the lower for loop are strictly decreasing in their x-coordinate. Thus, the total time spent
for one pass of the outer repeat loop is O(N). So, the worst case running time of the algorithm is
O(NP). To obtain the expected running time of the algorithm we observe that during a pass the
total number of points visited in a particular diagonal is the number of diagonal edges traversed
plus one (the frontier point). Let the total number of matched edges traversed be R P. Then, the
total number of points visited is O(R p + PD), because at most D +1 diagonals are covered in the
computation. By an analysis as in [9], we can show that the expected number of traversed
matched edges is O(N + PD). The expected time complexity of the algorithm is therefore
O(N + PD).

4. Implementation

We implemented our algorithm and compared it to Myers’s O(ND) algorithm [9]. Table 1 shows
the test results for 100 randomly generated strings. Table 1 shows average values over 100 trials
on randomly generated strings over an alphabet of size 16. The fifth column of the table shows
the number of comparisons (the same as the number of points visited in the edit graph) that were
made during the computation for our O(NP) algorithm. The sixth column shows the number of
comparisons made during the computation of the O(ND) algorithm [9]. The last two columns
show running times on a VAX 8650 under 4.3bsd UNIX. As can be seen in the table, the speedup
is quite large when A and B differ in length but are quite similar. When A is approximately a
subsequence of B, our algorithm runs in linear time.
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Algorithm Compare
Begin

fp[−(M+1)..(N+1)] := −1;
p := −1;
Repeat

Begin
p := p + 1;
For k := −p to ∆−1 do

fp[k] := snake( k, max (fp[k−1] + 1, fp[k+1]) );
For k := ∆ + p downto ∆ + 1 by −1 do

fp[k] := snake( k, max (fp[k−1] + 1, fp[k+1]) );
fp[∆] := snake( ∆, max (fp[∆−1] + 1, fp[∆+1]) );

End
Until fp[∆] = N;
Write "The edit distance is: " ∆+2p;

End

Function snake( k, y: int) : int
Begin

x := y − k;
While x < M and y < N and A[x+1] = B[y+1] do

Begin
x := x + 1; y := y + 1;

End
snake := y;

End
Figure 6: Algorithm Compare.
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