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XXX - NOTE July 2011: Although this draft in still in a very premature stage, I have now
corrected some of the most glaring errors that were present in the previous Dec 2007 revision, and
added proofs for a couple of cases that were previously unclear. Still, caveat lector!, many proofs
might be incorrect or otherwise deficient. Also, I don’t remember even myself, by which specific
insight I derived certain of the formulas I give here.

For up-to-date developments on this subject, please check http://oeis.org/wiki/Catalan bijections

XXX – TO DO: graphical illustration of general vs binary tree connection (important!), equiva-
lence of destructive and constructive versions of recursive operations (!ENIPS = ENIPS, etc.),
construction of A089840, ”Atavism” (Proposition: Every element of A089840 occurs atavisti-
cally in ...), group structure and relationships with other groups (with Thompson’s V, superficial,
with Aut(T (2)) more direct, give necessary (and conjectured to be also sufficient) condition, ”psi”-
homomorphism, etc. References to bijections occurring in journals.

XXX – TO DO2: Clean, clean, clean up!

Abstract

In this paper we first adopt programming language Scheme (a dialect of Lisp) as a powerful and
concise way for umbiguously defining various automorphisms and arbitrarily complex bijections that
act on many combinatorial structures enumerated by Catalan numbers: planar binary trees, pla-
nar general trees, parenthesizations, polygon triangulations and non-crossing chord arrangements,
among others.

Then, after realizing that many of these bijections are in simple recursive relations to each
other, like e.g. preorder traversal, we set out a system of ”metaoperators” for recursively deriving
Catalan bijections from other such bijections.

Then realizing that in turn, many of these recursive derivations can be implemented as folds, an
important concept in Constructive Algorithmics, we apply some results from that field, and among
other of its useful applications, establish inverse operators for most of our recursive operators.

We start our survey of these bijections from elementary cases, and then play with some simple
methods to generate inductively infinite, countable subsets of them, which still are wide enough
to encompass the most obvious symmetry operations (reflections & rotations) one can imagine to
occur in the Catalan family. On the other hand we also strongly suspect that certain well-defined
bijections are outside of these sets.

We summarize the formulae of the long-established OEIS-sequences which we will meet when
counting the orbits and fixed points to which such automorphisms partition each subset of Catalan
structures of any finite size, and derive also formulae for two new such sequences, via the orbit-
counting (”Burnside’s”) lemma.

We also observe few specific properties these automorphisms may have, what are their implica-
tions and how various Catalan bijections are related to each other.
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1. Introduction

After Fibonacci sequence, Catalan numbers has probably the most celebrated recurrence in enu-
merative combinatorics:

C0 = 1, Cn+1 =
n∑

i=0

CiCn−i

giving the famous terms:
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ...

Because of the way the sequence is defined as a convolution of it itself, there are surprisingly
many combinatorial structures which it counts. Stanley gives 66 different interpretations in his
Enumerative Combinatorics, volume 2 [Stanley 1999], and several dozens more in the sequel [Stanley
2001–].

Moreover, in many cases there exists a natural isomorphism between two interpretations, which
is sometimes easy to find, and sometimes not at all.

In this paper we are concerned with the following interpretations.

(a) triangulations of a polygon with n+2 edges.

(c) and (d) rooted plane binary trees of n (internal) nodes.

(e) rooted plane general trees of n edges.

(L) Lukasiewicz-words of those general trees.
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(i) Dyck paths of 2n segments. These are also called ”Catalan Mountain Ranges”.

(n) noncrossing chord arrangements with n chords.

(qq) noncrossing partitions of n.

(rr) noncrossing Murasaki-diagrams of n stalks.

(P) parenthesizations of n opening (closing) parentheses.

The lowercase letters refer to the sections of exercise 19 in chapter 6 of [Stanley 1999], while
the uppercase letters L and P are used for those manifestations which are not explicitly present in
Stanley’s list. The table 1 shows each of these interpretations up to the size n=3.

n A014486(n) (i) (n) (e) (qq) (rr) (c/d) (a)

0. 0

1. 2

2. 10

3. 12

4. 42

5. 44

6. 50

7. 52

8. 56

Table 1: The interpretations (i), (n), (e), (qq), (rr), (c/d) and (a) for the sizes 0, 1, 2 and 3 of the
Catalan structures.

The natural isomorphism between the Dyck paths (i) and parenthesizations can be seen imme-
diately, as well as between parenthesizations and plane general trees (e). Lukasiewicz-word of a
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rooted plane tree is obtained by traversing it depth-first-wise from left to right, and writing down
the (out-)degree of each node, leaves (terminal nodes) producing zero.

Also the interpretation (n) hides parenthesizations, which can be easily seen, when one cuts
open the circular tables of noncrossing chord arrangements from the bottom, and deforms the circle
to an arc. (The starting and ending vertices of each chord correspond to a pair of balanced opening
and closing parentheses, see figure 1).

The interpretations (qq) and (rr) are related to each other in similar simple manner.
However, there are several natural isomorphisms between Dyck paths (i) and noncrossing

Murasaki-diagrams (rr). In this paper we will use the ”right-hand side slope mapping”, which
operates by drawing a vertical line above each right-hand side slope, and then connecting those
vertical lines that originate from the same height without any lower valleys between. This is
illustrated in the figure 2, and the reader can check that it is indeed used in the table 1.

Figure 1: “Right-hand side slope mapping” defines an isomorphism between the interpretations (i)
and (rr).

At the extreme right of the figure 1 we have interpretations (c/d) and (a). It is easy to see that
each binary tree naturally defines an unique polygon triangulation, as can be seen from the figure
3 where a binary tree has been drawn inside the corresponding polygon triangulation.

However, a natural isomorphism between (c/d) and (e) or (i) was not explicitly described until
1967 in [De Brujn and Morselt 1967]. Between (i) and (d) it takes the following form. Proceeding
from left to right, replace each upward slope / of the Dyck path with 1, and downward slope \
with 0. For example, from

we get

11100010

from which we build a binary tree in depth-first fashion from left to right, with 1’s in binary
expansion standing for internal (branching) nodes, and 0’s for leaves:

b

b b

b b b b

b b

1

1

1

0 0

0

1

0 0∗

Note that the last leaf of the binary tree is always implicit, marked here with 0∗.
We explain the details of the direct mapping between (d) and (e) in the next section where we

show how that isomorphism is implicitly present in the algorithm that converts Lisp/Scheme linked
list structures from their internal to external representation.
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With these isomorphisms at hand, we can fill the remaining gaps. E.g. we define an isomorphism
(a ↔ qq) as a composition of isomorphisms (a ↔ d), (d ↔ e), (e ↔ i), (i ↔ rr) and (rr ↔ qq).

These canonical isomorphisms define the correspondences used in the rest of this paper. E.g. if
we say that a particular Catalan automorphism rotates noncrossing partitions (qq) one step clock-
wise, it actually means that when the preimage and image of any binary tree (with respect to that
automorphism) are transformed through such a chain of isomorphisms to noncrossing partitions,
we will observe that in the interpretation (qq) the image is a clockwise rotation of the corresponding
preimage.

Table 2 illustrates how a Scheme implementation of the automorphism *A086429, although
working directly on binary trees (the interpretation (d) on the left), eventually effects the clock-
wise rotation of noncrossing partitions (the interpretation (qq) on the right) through the natural
bijections (d ↔ A063171), (A063171 ↔ i), (i ↔ rr) and (rr ↔ qq).

index of structure in A014486 (d) (A063171) (i) (rr) (qq)

29 [= A086429(39)] 1011001100

A086429(29) = 46 1101011000

A086429(46) = 38 1100101100

A086429(38) = 48 1101100100

A086429(48) = 39 1100110010

Table 2: The effects of *A086429 on the interpretations (d), (A063171), (i), (rr) and (qq).

There are several mathematical structures that can be naturally embedded into Catalan struc-
tures, e.g. binary strings which naturally map to that subset of binary trees, which have no
double-branches (we mark 0 when the binary tree branches to left, and 1 when it branches to the
right, or vice versa!), as well as various Motzkin-structures that can be embedded into Catalania
by various means. Some Catalan automorphisms keep such subsets of structures closed, so they
induce also an automorphism on those isomorphic structures. For example, it’s easy to construct
a Catalan automorphism that implements a permutation contained in binary reflected Gray Code,
or one that rotates the non-crossing Mozkin-chords that are embedded in some Catalan-structure
(automorphism *A085159 and *A085160). In some way such Catalan automorphisms can then be
viewed as extensions of those automorphisms.

What’s more important, because Catalan structures can be embedded into themselves, This
topic is further explored in section XXX, “Embeddability”.
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2. S-expressions

In many cases it would be nice to have a concise and unambiguous notation for symmetry and
other operations involving the structures presented in the previous chapter. Also, when examining
their orbit-profiles it’s useful to have some empirical data before trying to derive mathematical
conclusions. Naturally, such data can be obtained with computer, by programming the rotations,
reflections and other operations as procedures that act on data structures implementing various
manifestations presented in Chapter I. E.g., a simple-minded approach based on the object-oriented
programming (OOP) paradigm might devise a separate class for each such manifestation, with
certain inheritance between the classes, e.g. a class of binary trees might be a subclass of general
trees, and non-crossing handshakes and set-partitions might diverge from a common class of chord-
diagrams. The objects instantiating the said classes would then each hide its own set of private
elements, for whose manipulation specific methods would be needed.

Clearly this approach is far too baroque, when in the previous chapter I have already shown
that these various interpretations for Catalan numbers are just different manifestations of the one
and same combinatorial structure. This means that to effect, say a rotation of Euler’s polygon
divisions, it’s enough to define a certain operation on binary trees, as long as we have a commonly
agreed isomorphism from binary trees to polygon triangulations, for example the one presented in
the previous chapter.

So, instead of tailoring multiple custom data types, a single universal one should suffice.
It turns out that S-expressions, introduced by John McCarthy in his programming language

Lisp [McCarthy 1960] naturally fill the bill. Being originally just designed for the manipulation of
such data structures, Lisp contains a powerful set of primitives for their manipulation, which have
in turn been inherited by its dialect Scheme [Sussman and Steele 1975], and to a lesser extent also
by Prolog, and certain more recent functional programming languages derived from these.

In this paper we define an S-expression in two different ways. Both definitions are given in bnf.

Definition 1 (S-expression in its internal, “dotted” form.)

S-expression → SYMBOL | NUMBER | ( ) | PAIR
PAIR → (S-expression . PAIR) | (S-expression . ( ))

1

Definition 2 (S-expression in its external, “dotless” list form.)

S-expression → SYMBOL | NUMBER | (S-expression∗)

Here a trailing “∗” denotes zero or more occurrences. SYMBOL and NUMBER refer to symbolic
and numeric terminals. define, pair?, else and + are examples of the former, and 144, -1 and
2.71828 of the latter class. “( )” refers to a special terminal called either an empty list or NIL.

1 Note that our definition of the “dotted” S-expression differs from the standard definition used in Lisp and
Scheme:

S-expression → SYMBOL | NUMBER | ( ) | (S-expression . S-expression)

that it doesn’t allow other terminals than the empty list ( ) on the right side of a pair.
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The above definitions produce isomorphic structures. The isomorphism between the two variant
syntaxes is realized by the function f which maps from the “dotted pair” to “list” syntax as follows:

f(s) =





s if s is NUMBER, SYMBOL or ( )
( f(S-expression) ) if s is of the form (S-expression . ( ))
a list constructed by inserting
f(S-expression) to the front of
a list obtained with f(PAIR)

if s is of the form (S-expression . PAIR)

Example 3. The function f maps the internal, dotted S-expression “(( ) . (1 . (two . (2 . ( )))))” to
an external, dotless list “(( ) 1 two 2)” and likewise, the internal, dotted S-expression “(a . ((b . ( )) . ( )))”
to an external, dotless list “(a (b))”

If we consider a subset of S-expressions where the only allowed terminals are ( )’s (i.e. NIL’s),
we get the following definition:

Definition 4 (Nihilistic S-expression in its internal, “dotted” form.)

Nihilistic S-expression → ( ) | (Nihilistic S-expression . Nihilistic S-expression)

It is clear that this definition is isomorphic with rooted plane binary trees introduced in the previous
chapter, one of the most familiar interpretations (c/d) of Catalan numbers. When we apply the
above function f to this subset, the result is interpretation (P) (parenthesizations) surrounded by
an extra pair of “(“ and “)”. We dub this interpretation as (Px) (parenthesizations surrounded by
extra parentheses).

Example 5. The function f maps the internal, dotted “nihilistic” S-expressions to the interpreta-
tion (Px) as follows:

( ) → ( )
(( ) . ( )) → (( ))
(( ) . (( ) . ( ))) → (( ) ( ))
((( ) . ( )) . ( )) → ((( )))
etc.

When we discard the outermost parentheses from the produced parenthesizations, we see that the
above mapping hides a map (c/d → i):

(c/d) (i)
→

→

→

→

etc.

We leave it as an excercise to the reader to prove that the map (c/d → i) produced this way is the
inverse of the map (i → c/d) presented in the previous chapter.
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3. A very brief introduction to the programming language Scheme

All computations in Scheme2 are effected by evaluating function calls or so called special forms.
Specifically, a program written in Scheme is nothing more than a set of user-defined functions
invoking each other in addition to built-in functions and special-forms provided by the language.

The syntax of the Scheme is based on S-expressions defined in the previous section. Each
invocation of a function (or special form) with arity n is represented as a list of length n + 1,
where the first element of the list is the name of the called function (special form). For example,
a function invocation with three arguments, represented in mathematics usually as f(a, b, c)
is represented in Scheme as a list of four elements: (f a b c). Similarly, a nested invocation like
LCM(GCD(72, 15), 4) is represented by a nested list structure (S-expression): (LCM (GCD 72 15) 4).

Function calls are evaluated by evaluating first their arguments. Symbols and S-expressions
prefixed with a single quote (’) evaluate to themselves, i.e. are supplied literally to the invoked
function. Numeric arguments also evaluate to themselves, while unquoted symbols evaluate to the
value they are bound to, a concept explained later.

However, if any argument itself is a non-quoted S-expression, it is considered as an invocation
of another function (or special-form), and is evaluated before its value can be used in its place, as
an argument to an original function. Thus, if an S-expression is viewed as a rooted general plane
tree, its evaluation triggers a depth-first traversal down to its quoted branches and the symbolic
and numeric leaves.

Note that the special forms differ from real functions in that not all of their “arguments” are
evaluated at all the times.

The following list gives the built-in functions and special forms that are sufficient to implement
most of the Catalan automorphisms mentioned in this paper.

(cons Sexpr1 Sexpr2 )

Returns a new S-expression (Sexpr1 . Sexpr2 )

Remark. In the context of binary trees (c/d), cons creates a new binary tree from the left
hand side tree Sexpr1 and the right hand side tree Sexpr2 . In the context of general trees (e),
cons creates a general tree, by grafting tree Sexpr1 as a scion to the left of all the branches
of tree Sexpr2 . In the context of Dyck paths (i), cons creates a new Dyck path by inserting
to ...

Examples:
(cons ’a ’b) → (a . b)

(cons ’() ’(() . ()))

→ (() . (() . ())) [Result in internal, dotted-pair
format.]

→ (() ()) [Result in external format.]

(car Pair)

Pair should be of the form (Sexpr1 . Sexpr2 ). This function returns Pair ’s left-hand side,
i.e. Sexpr1 .

2Most of what is said here applies also to Lisp, with just minor changes in the names of some primitives and
functions. We might gloss over some details, as our purpose is just to describe a subset of the language sufficient for
implementing Catalan bijections.
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Examples:
(car ’(a b)) → a

(car ’((a b) c d)) → (a b)

(cdr Pair)

Pair should be of the form (Sexpr1 . Sexpr2 ). This function returns Pair ’s right-hand side,
i.e. Sexpr2 .

Examples:
(cdr ’(a b)) → (b)

(cdr ’((a b) c d)) → (c d)

(list Sexpr1 .. Sexprn)

Returns a list constructed from its arguments.

Examples:
(list) → ( ) [With no arguments gives an

empty list.]
(list ’(a b)) → ((a b)) [Unary form surrounds with

extra parentheses.]
(list ’a ’b) → (a b)

Remark. In the context of general trees (e), list constructs a new tree, by making all the
argument trees children of a new root. For example, if we have trees a, b and c (note that
tree b is an empty tree, corresponding to S-expression ( )):

b

b b

b

a
b

b
b

b

b b

c

then (list a b c) constructs a new tree whose root vertex has degree three (i.e. has three
child-trees):

b

b b

b

b b

b

b b

b

(list a b c)

In the context of general trees the unary form constructs a new general tree, by “planting”
the argument tree above the trunk of one edge:

b

b b

b

a
b

b

b b

b

(list a)
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In the context of Dyck paths (i), unary list rises its argument onto a ”pedestal”: ,

so we have (list ) = for example.

In the context of parenthesizations (P), an unary list surrounds its argument with extra
parentheses.

In the context of binary trees (c/d), (list d) creates a new binary tree, whose left hand side

tree will be d and the right hand side tree an empty leaf, so we have (list ) = for
example.

(null? Sexpr)

Returns #t (true) if its argument is an empty list ( ), otherwise #f (false).

Examples:
(null? ’(a)) → #f
(null? (list)) → #t

(pair? Sexpr)

Returns #t (true) if its argument is a cons cell, otherwise #f (false).

Examples:
(pair? ’(a)) → #t
(pair? (list)) → #f

(not Sexpr)

Returns #t (true) if its argument is #f (false), and for all other values returns #f (false).

Examples:
(not (pair? ’(a))) → #f
(not (pair? (list))) → #t

Note: As long we restrict our attention to Nihilistic S-expressions (as in the implementations of
various Catalan automorphisms in this paper), then

(null? Sexpr) is equivalent to (not (pair? Sexpr))

and

(pair? Sexpr) is equivalent to (not (null? Sexpr))

(if Sexpr1 Sexpr2 Sexpr3 )

Returns the value of Sexpr2 if Sexpr1 evaluates to a non-false value, otherwise evaluates
Sexpr3 and returns its value. Note that if always evaluates either Sexpr2 or Sexpr3 , but
never both.

Examples:
(if (null? (list)) (list ’it ’is ’empty) (list ’not ’empty)) → (it is empty)

(if (pair? (list)) (list ’it ’is ’a ’pair) (list ’not ’pair)) → (not pair)

(cond (TestExprA ExprA1 . . .ExprAn)
(TestExprB ExprB1 . . .ExprBn)
· · ·
(else ExprElse1 . . .ExprElsen)

)
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If TestExprA evaluates to a non-false value, executes expressions ExprA1 . . .ExprAn listed
after it, returning the value of the last one (ExprAn) as the value of whole cond-expression,
without evaluating any other expressions. Otherwise, checks whether TestExprB evaluates
to a non-false value, and if so, executes expressions ExprB1 . . .ExprBn listed after it, again
returning the value of the last one as the value of the whole cond-expression. If none of
the test-expressions evaluate to a non-false value before else-branch, then the expressions
ExprElse1 . . .ExprElsen are evaluated, with the value of the last one returned as the value of
the whole cond-expression.

Examples:
(cond ((null? (list)) (list ’it ’is ’empty))

(else (list ’it ’is ’not ’empty))

)

→ (it is empty)

Note:

(if Expr1 Expr2 Expr3 ) is equivalent to (cond (Expr1 Expr2 ) (else Expr3 ))

(define (funcname arg1 . . . argn)
expr1
· · ·
exprn

)

Defines a new function named funcname with formal arguments arg1 ... argn . When the
function funcname is invoked, the values of of the actual arguments will be bound to the
formal arguments, and each of the expressions expr1 . . . exprn will be executed in turn, with
the value of exprn being returned as the result of the function invocation.

Examples:
(define (ourlcm a b) (* a (/ b (gcd a b))))

[We define our version of
the LCM-function, using the
built-in functions “*” (multi-
plication), “/” (integer divi-
sion) and “gcd”.]

(ourlcm 12 15) → 60 [Works as expected.]

(let ((Sym1 InitExpr1 )
· · ·
(Symn InitExprn))
Expr1
· · ·
Exprn

)

Evaluates the expressions InitExpr1 . . . InitExprn in parallel, and binds the symbols Sym1

. . .Symn temporarily to the resulting values, then executes each of the expressions Expr1

. . .Exprn in turn, returning the value of the last one (Exprn) as the result of the whole let-
expression. Note that in Scheme let offers the standard way to define temporary variables
inside the functions definitions.
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(append Sexpr1 .. Sexprn)

Returns a list concatenated from its arguments.

Examples:
(append) → ( ) [With no arguments gives an

empty list.]
(append ’(a b) ’(c)) → (a b c)

(append ’() ’(a b) ’() ’(c d) ’()) → (a b c d) [Empty lists are silently ig-
nored.]

Remark. In the context of general trees (e), append creates a new general tree, by con-
necting them from their root vertices in the same left to right order. For example, if we have
trees a, b and c (note that tree b is an empty tree, corresponding to S-expression ( )):

b

b b

b

a
b

b
b

b

b b

c

then (append a b c) will just silently discard the argument b as it is empty, and identify (XXX
– Terminology? ) the roots of trees a and c with each other. We see that the degree of the
new tree is the sum of the degrees of the argument trees, in this case 2 + 0 + 1=3.

b

b b

b

b

b b

(append a b c)

In the context of Dyck paths (i), append just concatenates the structures given as its argu-

ments, so we have (append ) = for example.

Note: We can implement our own, a strictly 2-ary version of append with the following recursive
definition:

(define (append2 a b)

(cond ((null? a) b)

(else (cons (car a) (append2 (cdr a) b)))

)

)

4. Programming reflections & rotations of common interpretations with Scheme

With information I have given so far, it is now easy to define a couple of simple automorphisms
and other bijections. I will later give more formal definition for each, but for now, this gives the
reader some taste how the system works.
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For example, *A069770 is a bijection which simply swaps the left and right-hand sides of a
binary tree with each other:

(define (*A069770 s)

(if (null? s) s [If s is ( ), just return it back.]
(cons (cdr s) (car s)) [Otherwise, return a new S-

expr cell constructed from car
and cdr of the old cons cell,
but in exchanged order.]

)

)

Thus, for a binary tree shown earlier, *A069770 transforms it in the following manner:

b

b b

b b b b

b b

s
(car s) (cdr s)

→
b

b b

b b b b

b b

Now, what if we, instead of just swapping the left and right hand side of a binary tree, wanted
to get its mirror-image? This can be done by recursively swapping the children of all the nodes of
the tree, and bijection *A057163 does just that:

(define (*A057163 s)

(if (null? s) s [If s is ( ), just return it back.]
(cons (*A057163 (cdr s)) (*A057163 (car s))) [Otherwise, return a new S-

expr cell constructed from the
recursively reflected cdr and
car elements of the original
cell.]

)

)

Thus, *A057163 transforms our example binary tree in this way:

b

b b

b b b b

b b

→
b

b b

b b b b

b b

As there is a very direct isomorphism between binary trees and polygon triangulations (a), we
see that *A057163 also reflects the latter interpretation, thus we have (*A057163 ) = for
example, corresponding exactly to the binary trees shown above.

Now consider the following function definition:
(define (*A057509 s)

(if (null? s) s [If s is ( ), just return it back.]
(append (cdr s) (list (car s))) [Otherwise, return the tail of

the original list on whose end
the original head is concate-
nated to.]

)

)

So what this
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does? In the context of lists, it rotates the top-level structure of the list one element leftward, mov-
ing the original first element (”head of the list”) to be the last element of the new list. In the

context of general trees (e), we have (*A057509 ) = for example, and with Dyck paths (i),
Note that if the tree is ”planted”, i.e. of degree one, then it is not changed by *A057509, thus

(*A057509 ) = for example.
Now, let’s add a little recursive twist to above definition, to get bijection *A057508:
(define (*A057508 s)

(if (null? s) s [If s is ( ), just return it back.]
(append (*A057508 (cdr s)) (list (car s)))

)

)

What this function might do? It moves the head of the original list to the end position as
before. The difference is that now the tail of the original list is treated in the same way, recursively.
Now, the funny thing with recursive functions is, that they are much easier to grasp, if we already
know what they do, or at least if we can guess it (i.e. make a sensible induction hypothesis), So,
after telling that this reverses the top-level of the list, it is now easy to see that it indeed does that:
a list on the end of whose reversed tail portion the original first element is appended to, is clearly
the same thing as the whole list reversed!

So, we might as well have defined this as

(define (*A057508 s) (reverse s))

as that is precisely what the built-in function reverse does in Lisp and Scheme.
In the context of general trees (e), we have (*A057508 ) = for example, and with Dyck

paths (i), As with *A057509, if the tree is ”planted”, i.e. of degree one, then it is neither changed

by *A057508, thus (*A057508 ) = and equally, when the Dyck path is on a ”pedestal”, as it

is analogous case: (*A057508 ) = for example.
What if we want to deepreverse a general tree, that is, to reverse it on every level, not just the

immediate children of the root vertex? In that case we just add a recursion call also to car-branch,
and we get bijection *A057164:

(define (*A057164 s)

(if (null? s) s

(append (*A057164 (cdr s)) (list (*A057164 (car s))))

)

)

Now we have (*A057164 ) = and equally, in the context of Dyck paths:

(*A057164 ) = for example. So, what *A057164 does, is that it reflects the
general trees, Dyck paths and parenthesizations. Because of this, it is actually easier to define in
terms of balanced binary sequences, than in terms of S-expressions.

It also reflects the interpretation (n) (noncrossing handshakes) and we have (*A057164 ) =
and vice versa.

What if we wanted to rotate noncrossing handshakes, say one step counterclockwise? What
kind of function could do that? The answer is surprisingly simple:
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(define (*A057501 s)

(if (null? s) s

(append (car s) (list (cdr s)))

)

)

XXX - Needs a graphical explanation, at least! We see that the definition is exactly like that
of *A057509, except that call to append has now calls to car and cdr in another order, and indeed,
we can as well define bijection *A057501 as a composition of already defined bijections *A057509
and *A069770:

∗A057501 = ∗A057509 ◦ ∗A069770 (1)

We keep to the convention that in compositions the rightmost element acts first, i.e. that the above
definition is equivalent to

(define (*A057501 s) (*A057509 (*A069770 s)))

And we see that (*A057501 ) = for example, and furthermore (*A057501 ) = ,

(*A057501 ) = , (*A057501 ) = , (*A057501 ) = , (*A057501 ) = ,

(*A057501 ) = and (*A057501 ) = , after which we have come a full circle.
As the interpretations(n) and (e) are closely related, it is interesting to see what happens with

the corresponding general trees: Then (*A057501 ) = , (*A057501 ) = , (*A057501 ) = ,

(*A057501 ) = , (*A057501 ) = , (*A057501 ) = , (*A057501 ) = and

(*A057501 ) = , after which we have again come a full circle. We see that in the context of
general trees (e), the automorphism *A057501 keeps the tree intact (as a planar tree), but only
rotates the the position of the root, to the first vertex left of the current root.

How to rotate interpretation (a) (polygon triangulations) then? We add just one recursion call
(to the car-branch) into the definition of *A057501, and we get:

(define (*A057161 s)

(if (null? s) s

(append (*A057161 (car s)) (list (cdr s)))

)

)

And we see that (*A057161 ) = for example, i.e. *A057161 rotates polygon triangulations
counterclockwise.XXX - Needs a graphical explanation, at least!

5. Using destructive Scheme-primitives to implement Catalan bijections

Rationale. In the previous section we used a built-in Scheme-function append in most of the
examples. However, analyzing such definitions is often unwieldy, and also, defining inverse bijec-
tions for such non-involutive automorphisms as rotations *A057509, *A057501 and *A057161 is
not easy/expedient with by using append. Many bijections are actually easier to define using so
called destructive (or physical) list-operations. The fundamental primitives for doing this kind of
operations in Scheme are called set-car! and set-cdr!3 Their definitions are given below.

(set-car! Pair SexprNew)

3Known in Lisp as rplaca and rplacd.
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Modifies physically the left-hand side of Pair which should be of the form (Sexpr1 . Sexpr2 ),
and which after the modification is transformed to (SexprNew . Sexpr2 ). An error results if
the first argument is not a cons cell.

Examples:
(let ((ourpair (list ’a ’b))) [ourpair is bound to (a b)]

(set-car! ourpair ’c)

ourpair

)

→ (c a)

(set-cdr! Pair SexprNew)

Modifies physically the right-hand side of Pair which should be of the form (Sexpr1 . Sexpr2 ),
and which after the modification is transformed to (Sexpr1 . SexprNew). An error results if
the first argument is not a cons cell.

Examples:
(let ((ourpair (list ’a ’b))) [ourpair is bound to (a b)]

(set-cdr! ourpair ’(c))

ourpair

)

→ (a c)

Definition. We say that a Scheme implementation of Catalan automorphism is destructive if
it invokes either of the primitives set-car! or set-cdr! defined above, or any function which
invokes them explicitly or implicitly. If a Scheme implementation of a Catalan automorphism is
not destructive, then we say that it is constructive.

If we exclude set-car! and set-cdr! from the set of primitives listed above, we can only define
automorphisms and other functions that leave intact the physical structure of the S-expression(s)
given as their argument(s). Apart from the trivial identity automorphism, on some values of its
argument every Catalan automorphism must return an S-expression with different structure than
the argument has. Because by its very definition a Catalan automorphism is a bijection on the set
of structures of the same size it is impossible to implement this with a function containing only
invocations of the accessor-functions car and/or cdr, as then the result’s size (in cons cell nodes)
would be less than that of the argument. So to effect changes which return an S-expression of
the same size but of different structure, it must invoke the function cons, or some other functions
like append or list which calls cons implicitly. For this reason these are called constructive
implementations of Catalan automorphisms.

On the other hand, if an implementation of an automorphism invokes set-car! and/or
set-cdr! or any other function invoking them, it is called destructive. This is because such func-
tions make direct modifications to their argument’s physical structure, and thus destroy information
about their original structure. Traditionally, use of such destructive functions has been considered
somewhat dangerous, and thus Scheme has adopted the convention of suffixing the names of such
functions with an exclamation mark (!). For example, there is a function called append! which is
a destructive version of the function append described above. However, it turns out that in our
application the use of strictly destructive implementations of Catalan automorphisms (or functions
of suspected of being isomorphic) have certain merits, when they are subjected to mathematical
analysis. Namely, the bijectivity of such a function is much easier to prove, if we know that it
neither does ”lose” any existing cons cells, nor allocate any new ones with constructive operations.
More about this in the last section of this paper. For most of the automorphisms represented
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below we thus give both constructive and destructive definition. We follow the Scheme practice of
suffixing the names of the latter ones with ’ !’.

For example, here is a destructive version of automorphism *A069770 whose constructive version
was defined above. The comments given in brackets clarify the steps.

(define (*A069770! s)

(if (null? s) s [If s is ( ), then return it
back.]

(let ((org-car (car s))) [Otherwise, store its car-side
to org-car]

(set-car! s (cdr s)) [before it is ovewritten with
cdr-side of s.]

(set-cdr! s org-car) [Then ovewrite the cdr-side
with the original car-side of
s,]

s [and return the modified s as
the value of the whole func-
tion.]

)

)

)

Now the destructive implementation of automorphism *A057163 can be written simply as:

(define (*A057163! s)

(cond ((pair? s)

(*A069770! s)

(*A057163! (car s))

(*A057163! (cdr s))

)

)

s

)

(2)

that is, we apply automorphism *A069770 to every cons cell we encounter (i.e. swap their sides),
and recurse down to both car- and cdr-side of each node, continuing down each branch as long as
we encounter ( ).

6. Integer-Sequences Associated with Catalan bijections

We are interested about several sequences of integers that each Catalan automorphism naturally
produces. Some of these provide merely fingerprint information about a particular automorphism,
suitable for recording into such online databases as Neil J.A. Sloane’s OEIS (Online Encyclopedia
of Integer Sequences) [Sloane 1995–], while others may have intrinsic interest of their own.

First we define a few auxiliary functions that turn out useful in later definitions. As their names
we use the A-numbers with which they have been submitted to OEIS.

Definition 6 (A014137 and A014138) A014137 gives the partial sums of Catalan numbers
(A000108), starting the summing from A000108(0), yielding

1, 2, 4, 9, 23, 65, 197, 626, 2056, 6918, 23714, ...
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while A014138 starts the summing from A000108(1), yielding

1, 3, 8, 22, 64, 196, 625, 2055, 6917, 23713, ...

Note that if we organize all Catalan structures (of some interpretation) in a sequence ordered
by their size, so that we first have a single empty structure of size 0 at index 0, followed by a
single structure of size 1 at index 1, followed by two structures of size 2 at indices 2 and 3, followed
by five structures of size n=3, etc. with each subsequence containing C(n) structures of size n,
then [A014137(n-1)..A014138(n-1)] gives the inclusive limits for the structures of size n in such a
sequence. (For the convenience we can assume that A014137(-1) = A014138(-1) = 0.)

Definition 7 (A014486) This is a sequence which contains 0 at index 0 (corresponding to an
empty structure), and thereafter in each subrange [A014137(n-1)..A014138(n-1)] binary-coded
representations of all A000108(n) Dyck-paths/parenthesizations of size n sorted into lexicographic
order. We get a binary-coded representation from a Dyck-path/parenthesization by mapping each
upward-slope/left parenthesis to 1, and each downward-slope/right parenthesis to 0, and then
reading the resulting number as it were a binary number. This is illustrated in the table 3.

The sequence begins as

0, 2, 10, 12, 42, 44, 50, 52, 56, 170, 172, 178, 180, 184, 202, 204, 210, 212, 216, 226, 228, 232, 240, ...

n (i) A063171(n) A014486(n)

1. 10 in binary 2 in decimal

2. 1010 in binary 10 in decimal

3. 1100 in binary 12 in decimal

4. 101010 in binary 42 in decimal

5. 101100 in binary 44 in decimal

Table 3: Example showing how the first few terms of A014486 are formed.

Definition 8 (A080300) This sequence is the inverse function of A014486. For those n which do
not occur as values of A014486 it gives zero, otherwise n’s position in A014486. That is, we have
n = A080300(A014486(n)) for all n.

The sequence begins as:

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, ...
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Definition 9 (binexp→Sexp and Sexp→binexp) These functions convert between the terms
of A014486 (i.e. totally balanced binary sequences) and S-expressions. They are each other’s
inverses, i.e. we have s = binexp→Sexp(Sexp→binexp(s)) for all symbolless S-expressions s.

The Scheme-code for their implementation is given in the Appendix P.

Definition 10 (Signature permutation) The Signature Permutation spg(0), spg(1), spg(2), spg(3), ...
of automorphism g is a sequence spg(n), n = 0..∞ where

spg = A080300 ◦ Sexp→ binexp ◦ g ◦ binexp→ Sexp ◦ A014486

Remark. Here it is assumed that automorphism g has been specified as a function whose domain
and range are S-expressions, so we need the functions binexp→Sexp and Sexp→binexp to do a
round-trip from A014486-codes and back.

Definition 11 (Set S of signature permutations) In this paper the set of signature-permutations
of all possible Catalan automorphisms is called the set S. This set consists of all such permutations
of natural numbers where no cycle resides in more than one subrange [A014137(n)..A014138(n)].

Clearly this set of permutations is closed with respect to composition and taking inverses, the
former operation corresponding to the composition of two automorphisms and the latter with find-
ing the inverse of an automorphism. Furthermore, the OEIS sequence A001477 (The nonnegative
integers) works as the identity element of this permutation group. Thus everything regarding au-
tomorphisms could be in principle expressed as group operations of this group S, which itself is a
subgroup of S∞.

Remark. The set S is not enumerable, which can be seen with the help of standard diagonal
argument. However, it turns out that there are important subgroups of the set S that are enumer-
able.

Definition 12 (Cycle-Count Sequence) The Cycle-Count Sequence ccg(0), ccg(1), ccg(2), ccg(3), ...
of automorphism g is a sequence ccg(n), n = 0..∞ where ccg(n) gives the number of orbits into
which the set {Cn structures of size n} is partitioned under the action of g.

That is, ccg(n) is equal to number of cycles in the subrange [A014137(n-1)..A014138(n-1)] of
the signature permutation of g.

Conceptually, Cycle-Count sequence gives the number of Catalan structures of size n ”up to
automorphism” g.

Definition 13 (counts of fixed points sequence) The counts of fixed points sequence fcsg(0), fcsg(1), fcsg(2)
of automorphism g is a sequence fcsg(n), n = 0..∞ where

fcsg(n) = #{i ∈ [A014137(n− 1)..A014138(n− 1)] | spg(i) = i }

That is, fcsg(n) gives the number of structures in the set {Cn structures of size n} that are
fixed (stay same) under the action of g.

Conceptually, counts of fixed points sequence gives the number of Catalan structures of size n
that are “symmetric” with respect to automorphism g.
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Definition 14 (Max-Cycle Sequence) The Max-Cycle Sequence maxg(0), maxg(1), maxg(2), maxg(3), ...
of automorphism g is a sequence maxg(n), n = 0..∞ where maxg(n) gives the size of the a largest
orbit into which the set {Cn structures of size n} is partitioned under the action of g, that is,
the size of a largest cycle in the in the subrange [A014137(n-1)..A014138(n-1)] of the signature
permutation of g.

Definition 15 (LCM Sequence) The LCM Sequence lcmg(0), lcmg(1), lcmg(2), lcmg(3), ... of
automorphism g is a sequence lcmg(n), n = 0..∞ where lcmg(n) gives the least common multiple of
all orbit sizes into which the set {Cn structures of size n} is partitioned under the action of g, that
is, it is equal to the least common multiple of all cycle sizes present in the subrange [A014137(n-
1)..A014138(n-1)] of the signature permutation of g.

Remark. Of the above five sequence-types, only the signature-permutation offers a unique fin-
gerprint for each Catalan automorphism, while the other four, although they might not distinguish
two automorphisms from each other, at least give some hints about their possible relationships.
Especially with automorphisms that are involutions (that is, self-inverse), the counts of fixed points
sequence alone specifies each (such automorphism) up to all of its conjugations. Even if we have two
distinct, non-involutive automorphisms, we should have a strong suspicion that they are conjugates
of each other if their cycle-count, fix-point, max-cycle and lcm sequences appear to match term by
term.

6.1. Using ”Burnside’s Lemma” to compute Cycle-Count sequence.

Burnside’s lemma, sometimes also called Cauchy-Frobenius or just Orbit Counting lemma, states
that the number of orbits into which the set X is partitioned by group G (whose members act on
X’s elements) is equal to the average number of points fixed by the elements of G:

1

|G|

∑

g∈G

#{x ∈ X | g(x) = x}

In our case, the set X is the set of {Cn structures of size n} and the group G is a cyclic group
consisting of automorphism g and its successive powers g2, g3, g4, . . . When acting on any finite
sized set X, the group is in practice finite, as there exists an integer u such that gu(x) = x for all
x in the set of {Cn structures of size n} thus gu is equal to an identity element of group G, and all
higher powers of g can be taken as modulo u.

The integer sequence A078491 is defined as the least common multiple of all natural numbers
from 1 to nth Catalan number. It grows with a formidable rate:

1, 1, 2, 60, 360360, 219060189739591200, 1749342047920660916901891145781670987072592322134428432000, ...

Setting u = A078491(n) we can be sure that gu is an identity element (neutral permutation)
for any automorphism g acting on the set of size n. However, to use Burnside’s lemma in practice,
we need more down-to-earth bounds for u. Indeed, for each particular automorphism g, it is just
the sequence lcmg(n) which offers us the actual lower bound (???) of u when g acts on the set of
size n.

Applying Burnside’s lemma, the Cycle-Count sequence of automorphism g can be calculated
with the formula:

ccg(n) =
1

lcmg(n)

lcmg(n)∑

i=1

fcsgi(n) (3)
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which requires that we also know how to calculate fcsgi(n), i.e. the counts of fixed points
sequence for each power gi of automorphism g up to i = lcmg(n), and also have a method for
calculating the lcm-sequence lcmg(n), or some sequence b(n), for which it holds that

∀n, lcmg(n)|b(n)

(EDELLINEN KOHTA PAREMMIN!)
However, in many cases these sequences grow too fast that the calculation with Burnside’s

lemma would be any faster than the explicit counting of the orbits with a computer program,
unless the formula is amenable to further reduction.

7. Embeddability

Definition 16. We say that automorphism f embeds into automorphism g in scale n : m if there
is such an injection:

e : {Cn structures of size n} → {Cm structures of size m}

that for all elements s of the domain set, it holds that

e(f(s)) = g(e(s)). (4)

As e is an injection, it has a well-defined inverse, and the above identity can be also written as:

f = e−1 ◦ g ◦ e (5)

7.1. Examples of embeddability.

Definition 17. We say that automorphism g is Lukasiewicz-word permuting, if for all parenthe-
sizations s, the Lukasiewicz-word of g(s) is always a permutation of the Lukasiewicz-word of s
itself. More formally, automorphism g is Lukasiewicz-word permuting if its signature permutation
satisfies

A129593(spg(n)) = A129593(n) (6)

for all n >= 0.

Consider that subset of general trees whose Lukasiewicz-words contain only digits ’0’ and ’2’ in
some order. These trees are isomorphic with plane binary trees, although now occurring amongst
plane general trees whose internal binary tree representation contains twice as many vertices. Thus,
if g is Lukasiewicz-word permuting, then that subset is closed under the action of g, and g’s
restriction to that subset induces another automorphism f . Specifically, in that case, the following
holds

f = ∗A083927 ◦ g ◦ ∗A057123 (7)

Here *A057123 is used as an injection e of definition (5), and it specifically maps each binary tree
to a corresponding general tree of the same shape. *A083927 is its inverse.

Rephrasing this in more general terms, we obtain:

Lemma 1. For any Lukasiewicz-word permuting automorphism g there is an automorphism f
which embeds into automorphism g in scale n : 2n.
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Definition 18. We say that automorphism g preserves the initial nil if for all S-expressions s it
holds that

(g (cons ’( ) s)) = (cons ’( ) (f s)) (8)

where the function f is either the same or different automorphism than g. In other words, such
an automorphism preserves the second to left zero in the Lukasiewicz-word of an S-expression, if
present.

Definition 19. We say that automorphism g keeps planted trees as planted if for all parenthesiza-
tions s it holds that

(g (cons s ’( ))) = (cons (f s) ’( )) (9)

where the function f is either the same or different automorphism than g. In other words, such an
automorphism preserves the initial 1 in the Lukasiewicz-word of an S-expression, if present.

Definition 20. We say that automorphism g is horizontally telescoping if for all parenthesizations s
it holds that

(g (cons ’( ) s)) = (cons ’( ) (g s)) (10)

that is, the injection e required by the general definition of embeddability defined in (4) is now
defined as:

(define (e s) (cons ’( ) s)) (11)

We note that this is a special case of a weaker condition given in (8), realized when f = g,
In this case the injection e maps the parenthesizations of size n to the parenthesizations of

size n + 1 by simply concatenating empty parentheses to the front of the corresponding parenthe-
sization.

This is equivalent to saying that each sub-permutation of the length A000108(n) induced by
automorphism g’s action on the standard sequence of lexicographically ordered parenthesizations
(A014486) starts with the same cycle-structure as the previous sub-permutation. In this case we
can form yet another permutation of the natural numbers by conceptually taking the ”infiniteth”
of such sub-permutations and by ”normalizing” it to begin from 0 or 1.

Definition 21. We say that automorphism g is vertically telescoping if for all parenthesizations s
it holds that

(g (cons s ’( ))) = (cons (g s) ’( )) (12)

where the injection e required by the general definition of embeddability is now defined as:

(define (e s) (cons s ’( ))) (13)

That is, the injection e is equal to the unary variant of Scheme-function list, which maps
the parenthesizations of size n to the parenthesizations of size n + 1 by surrounding them with one
extra pair of parentheses.

We note that this is a special case of a weaker condition given in (9), realized when f = g,

Definition 22. The above two definitions are examples of self-embeddable automorphisms.
We say that automorphism g is self-embeddable if g embeds into itself in scale n : m, where n

ranges through all values in N, and m is a function of n, with m > n.
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Notes. The allusions ”horizontal” and ”vertical” should make sense when one thinks in the terms
of Dyck paths (Catalan Mountain Ranges), and also the plane general trees in the latter case.

If a horizontally telescoping automorphism is conjugated with automorphism *A057163 we
obtain a vertically telescoping automorphism, and vice versa. A Lukasiewicz-word permuting au-
tomorphism can also be a vertically telescoping automorphism, which implies that it must preserve
the initial 1 of the Lukasiewicz-word when present. (In other words, keeps planted trees as planted.)

It should be obvious that all self-embeddable automorphisms of the scale n : n+1 have genuinely
monotone (growing) cycle count sequences and monotone (but not necessarily genuinely) fix point
sequences from n ≥ 1 onward.

8. Recursion Schemata

We list several recursion schemes by which to construct new automorphisms from old ones.

Definition 23 (FORK: Apply at root, recurse into both branches.) In this recursion scheme,
the given automorphism is applied at the root node, and then the same process is repeated recur-
sively for both car- and cdr-branch of the S-expression.

In Scheme we can define the following higher order function that takes as it argument a
destructively defined function foo! and returns back a new function bar!, that also acts on S-
expressions:4

(define (!FORK foo!)

(letrec ((bar! (lambda (s)

(cond ((pair? s)

(foo! s)

(bar! (car s))

(bar! (cdr s))

)

)

s

)

))

bar!

)

)

(14)

Note that this function uses the variant letrec of let, which allows the definition of recursive
lambda-forms (anonymous functions). Calling this functional as (!FORK *A069770!) produces the
same destructive definition of automorphism *A057163! that was given at the end of section 4.

Definition 24 (KROF: Recurse into both branches, then apply at root.) In this recursion
scheme, the given automorphism is applied at the root node, but only after the same process has
first been repeated recursively for both car- and cdr-branch of the S-expression.

4In this paper the names of all higher order functions expecting a destructively implemented automorphism as
their function argument are prefixed with an exclamation mark (!).
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This is defined in Scheme as:

(define (!KROF foo!)

(letrec ((bar! (lambda (s)

(cond ((pair? s)

(bar! (car s))

(bar! (cdr s))

(foo! s)

)

)

s

)

))

bar!

)

)

(15)

Definition 25 (SPINE: Apply at root, then recurse into cdr branch.) In this recursion scheme,
the given automorphism is applied at the root node, and then the same process is repeated recur-
sively for the cdr-branch of the S-expression.

This is defined in Scheme as:

(define (!SPINE foo!)

(letrec ((bar! (lambda (s)

(cond ((pair? s)

(foo! s)

(bar! (cdr s))

)

)

s

)

))

bar!

)

)

(16)

Definition 26 (ENIPS: Recurse into cdr branch, then apply at root.) In this recursion scheme,
the given automorphism is applied at the root node, but only after the same process has first been
repeated recursively for the cdr-branch of the S-expression.
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This is defined in Scheme as:

(define (!ENIPS foo!)

(letrec ((bar! (lambda (s)

(cond ((pair? s)

(bar! (cdr s))

(foo! s)

)

)

s

)

))

bar!

)

)

(17)

Definition 27 (RIBS: Apply at car branch, then recurse into cdr branch.) In this recur-
sion scheme, the given automorphism is applied at the car branch, and then the same process is
repeated recursively for the cdr-branch of the S-expression.

This is defined in Scheme as:

(define (!RIBS foo!)

(letrec ((bar! (lambda (s)

(cond ((pair? s)

(foo! (car s))

(bar! (cdr s))

)

)

s

)

))

bar!

)

)

(18)

Alternatively, RIBS could defined using the built-in Scheme primitive (for-each f ! l), which
applies a destructive function f ! to each top-level element of the list l.

(define (!RIBS foo!)

(letrec ((bar! (lambda (s)

(for-each foo! s)

)

))

bar!

)

)

(19)

Definition 28 (DEEPEN: Apply at root, then recurse into each car branch.) In this re-
cursion scheme, the given automorphism is applied at the root node, and then the same process is
repeated recursively for each car-branch of the S-expression.
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This is defined in Scheme as:

(define (!DEEPEN foo!)

(letrec ((bar! (lambda (s)

(cond ((pair? s)

(foo! s)

(for-each bar! s)

)

)

s

)

))

bar!

)

)

(20)

Definition 29 (NEPEED: Recurse into each car branch, then apply at root.) In this re-
cursion scheme, the given automorphism is applied at the root node, but only after the same process
has first been repeated recursively for each car-branch of the S-expression.

This is defined in Scheme as:

(define (!NEPEED foo!)

(letrec ((bar! (lambda (s)

(cond ((pair? s)

(for-each bar! s)

(foo! s)

)

)

s

)

))

bar!

)

)

(21)

Note that DEEPEN and NEPEED convert certain shallow automorphisms to the corresponding deep
variants.

Proposition 1. Whenever any of the above recursion schemes is applied to a destructively defined
automorphism, the resulting function is also a destructively defined automorphism.

Proof. Because no constructive functions are involved, we can be sure that the resulting function
does not map any S-expression to a larger structure. Thus, to show the bijectivity we just need to
demonstrate that any derivative function defined with these recursion schemas has an inverse.

Indeed, the following four identities hold:

(!FORK f)−1 = (!KROF f−1) (22)

(!SPINE f)−1 = (!ENIPS f−1) (23)
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(!RIBS f)−1 = (!RIBS f−1) (24)

(!DEEPEN f)−1 = (!NEPEED f−1) (25)

We prove only the first case, i.e. that bar ≡ (!FORK g) and rab ≡ (!KROF g−1) are inverses
of each other. Obviosly this is true when we limit our attention to the set consisting only of the
empty list ( ), which provides a base case for the inductive proof. For larger S-expressions bar ◦ rab
is equivalent to

(bar(car side) . bar(cdr side)) ◦ g ◦ g−1 ◦ (rab(car side) . rab(cdr side)) (26)

In the middle g ◦ g−1 cancels out, and assuming the induction hypothesis is true, i.e. that
bar(rab(s)) = s for all smaller S-expressions s, it can be seen that the above produces an identity
function for all larger S-expressions as well.

The cases involving other recursion schemes are proved similarly.

9. Implementing Recursion Schemata as Folds, Implications of Folds

Most recursion schemes listed in the previous section, can be implemented as folds, the concept
described for example in [Hutton 1999] or [Gibbons 2005]:

Definition 30. Function fold : F× T× S→ T for lists is defined as

fold(m, c, s) =

{
c if s = ( )
m(x, fold(m, c, y)) if s = cons(x, y)

(27)
where c ∈ T, the set F denotes the set of functions

m : S× T→ T,

S is the set of S-expression’s and T is the range set for both m and fold built upon it.
Similarly, function foldubt : F× T× S→ T for unlabeled binary trees is defined as

foldubt(m, c, s) =





c if s =

m(foldubt(m, c, a), foldubt(m, c, b)) if s =

(28)

Remark. In the context of this paper, where unlabeled binary trees are implemented in the form
of Nihilistic S-expression’s, and where we restrict our attention to such lists which can be also
realized as Nihilistic S-expression’s, foldubt can always be implemented in terms of fold, provided
its argument function f can recursively refer to the function being defined with fold.

We give three important properties of folds.

Lemma 2. When is a function a fold? [Gibbons, Hutton and Altenkirch 2001] If function F
satisfies the implication

F (s) = F (t)⇒ F (cons(a, s)) = F (cons(a, t)) (29)

then function F can be implemented as fold for lists.
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If function F satisfies the implication

F (a) = F (b) ∧ F (s) = F (t)⇒ F (cons(a, s)) = F (cons(b, t)) (30)

then function F can be implemented as foldubt for unlabeled binary trees.

Remark. It should be noted that any function satisfying condition (30) satisfies also condi-
tion (29).

Lemma 3. Universal Property. ([Bird 1989], [Meertens 1983] or [Hutton 1999]). For any such
function implementable as fold or foldubt there is a unique solution for function m in (27) and
in (28) and the associated constant c. [XXX – CHECK!]

Lemma 4. Fusion Property. ([Bird 1989], [Meertens 1983], [Malcolm 1990], [Hutton 1999]). This
can be stated as an implication

h(w(x, y)) = m(x, h(y))⇒ h ◦ fold(w, c, s) = fold(m, h(c), s) (31)

giving the condition which an arbitrary function h and functions m and w must satisfy that the
composition of h and fold(w, c, s) could be implemented as a fold of function m.

In Scheme, fold(m, c, s) is implemented with the function (fold-right m c s). The higher
order functions implementing the recursion schemes KROF, ENIPS, RIBS, DEEPEN and NEPEED for
constructively implemented automorphisms are implemented in the following way as folds in Scheme:

(define (KROF g)
(letrec ((h (lambda (s) (fold-right (lambda (x y) (g (cons (h x) y))) ’() s)))) h))

(32)

(define (ENIPS g) (lambda (s) (fold-right (lambda (x y) (g (cons x y))) ’() s)))

(33)

(define (RIBS g) (lambda (s) (fold-right (lambda (x y) (cons (g x) y)) ’() s)))

(34)

(define (DEEPEN g)
(letrec ((h (lambda (s) (fold-right (lambda (x y) (cons (h x) y)) ’() (g s))))) h))

(35)

(define (NEPEED g)
(letrec ((h (lambda (s) (g (fold-right (lambda (x y) (cons (h x) y)) ’() s))))) h))

(36)
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9.1. Implications of properties of fold

Lemma 5. All Catalan automorphisms can be realized as folds, i.e. are catamorphisms.
Proof. Follows from the injectivity of automorphisms and from lemma 2.

Lemma 6. Except for RIBS, all the above mentioned recursion schemes have well-defined inverse
operations.

Proof. The inverse operations for each of (ENIPS f), (SPINE f), (KROF f), (FORK f), (NEPEED f)
and (DEEPEN f) can be realized as: (here fcar and fcdr are shorthands for functions
(lambda (s) (cons (f (car s)) (cdr s))) and (lambda (s) (cons (car s) (f (cdr s))))

respectively).
(ENIPS−1 f) = f ◦ f−1

cdr (37)

(SPINE−1 f) = f−1
cdr ◦ f (38)

(KROF−1 f) = f ◦ f−1
car ◦ f−1

cdr (39)

(FORK−1 f) = f−1
car ◦ f−1

cdr ◦ f (40)

(NEPEED−1 f) = f ◦RIBS(f−1) (41)

(DEEPEN−1 f) = RIBS(f−1) ◦ f (42)

It is easily seen and proven by induction that by applying the corresponding recursion scheme
to these forms recovers the original automorphism f . Lemma 3 quarantees that these are indeed
unique solutions.

Remark. The six recursion schemes SPINE, ENIPS, FORK, KROF , DEEPEN and NEPEED
are thus bijective operations on the set of all Catalan automorphisms. However, in general they do
not satisfy the group homomorphism condition, except in some special cases.

Lemma 7. Using the notation introduced above, we can define RIBS in terms of SPINE or
ENIPS:

(RIBS f) = (SPINE fcar) = (ENIPS fcar) (43)

Lemma 8. KROF is a composition of NEPEED and ENIPS:

(KROF f) = (NEPEED (ENIPS f)) (44)

Proof. This is easiest to prove formally by considering the inverses of these operations. We have:

(ENIPS−1 (NEPEED−1 f)) = (ENIPS−1 (f ◦RIBS(f−1)))

= f ◦RIBS(f−1) ◦ (f ◦RIBS(f−1))−1
cdr

= f ◦RIBS(f−1) ◦RIBS(f)cdr ◦ f−1
cdr

= f ◦ f−1
car ◦ f−1

cdr

= (KROF−1 f)

(45)
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Lemma 9. FORK is a composition of DEEPEN and SPINE:

(FORK f) = (DEEPEN (SPINE f)) (46)

Proof. The proof is similar to the one given for lemma 8.

Lemma 10. If we take an automorphism f and ENIPS -transform of another automorphism g,
and consider their composition as an ENIPS -transform of some automorphism h:

f ◦ (ENIPS g) = (ENIPS h) (47)

then
h = f ◦ g ◦ f−1

cdr (48)

Proof. This can be also proved by considering the inverses. We have:

(ENIPS−1 (f ◦ (ENIPS g))) = (f ◦ (ENIPS g)) ◦ (f ◦ (ENIPS g))−1
cdr

= f ◦ (ENIPS g) ◦ (ENIPS g)−1
cdr ◦ f−1

cdr

= f ◦ g ◦ f−1
cdr

= h

(49)

Corollary. If automorphisms f and g are non-recursive Catalan automorphisms (i.e. f, g ∈ A089840),
then so is also automorphism h.

Lemma 11. If we take an automorphism f and KROF -transform of another automorphism g,
and consider their composition as a KROF -transform of some automorphism h:

f ◦ (KROF g) = (KROF h) (50)

then
h = f ◦ g ◦ f−1

car ◦ f−1
cdr (51)

Proof. The proof is similar to the one given for lemma 10. Corollary. If automorphisms f and g
are non-recursive Catalan automorphisms (i.e. f, g ∈ A089840), then so is also automorphism h.

Lemma 12. If we have g = (ENIPS f), we obtain an automorphism gcdr as

gcdr = (ENIPS fcdr) (52)

Proof. We substitute f for g and f−1 for f in the formula (48), as gcdr = f−1 ◦ (ENIPS f).

Definition 31. We say that a Catalan automorphism f is X-invariant or preserves X if for all s,

X(f(s)) = X(s) (53)

Here X is a function whose domain is the same set of Catalan structures as on which automor-
phism f itself has been defined.
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Remark. It is immediately seen that the identity automorphism *A001477 preserves all func-
tions X defined on Catalan structures, and that the inverses and any composition of X-invariant
automorphisms are also X-invariant.

Lemma 13. If function X can be implemented as a fold, i.e. satisfies (30) and automorphism f is
X-invariant, then f ’s recursive derivations (FORK f), (KROF f), (SPINE f), (ENIPS f), (RIBS f),
(DEEPEN f) and (NEPEED f) are X-invariant as well.

Proof. We prove this first for the case (ENIPS f). By defining w as (define (w x y) (f (cons x y)))

we see that

X(w(x, y)) = X(f(cons(x, y))) { By w’s definition }
= X(cons(x, y)) { f itself X-preserving }
= fold(k, v, cons(x, y)) { X is a fold, v = (X ( )), k unique }
= k(x, fold(k, v, y)) { Expanding by one recursion step }
= k(x, X(y)) { And then substituting X back }

(54)

By substituting X for h, ( ) for c, w for w and k for m in (31), we see that the left side of the
implication is satisfied, thus we are left with the right side of its implication, that is

X ◦ fold(w, c, s) = fold(k, (X ( )), s)
= X(s)

(55)

that is, if g = (ENIPS f), then
X(g(s)) = X(s) (56)

which completes the proof that (ENIPS f) is also X-preserving, if automorphism f itself is.
Corollary. If f and (ENIPS f) are X-invariant, then so is (SPINE f), because the inverse of

the latter form, (ENIPS f−1) is X-invariant as well, because f−1 is also X-invariant.

Examples.

Definition 32. Function length in Lisp and Scheme returns the top-level length of the list, or,
in the context of general trees (e), returns the degree of the root node, i.e. the first number of the
associated Lukasiewicz-word. The associated OEIS-sequence is A057515.

Because length can be implemented as fold, like

(define (length s) (fold-right (lambda (elem sum) (F (length elem) sum)) 0 s))

(57)
where F has been defined as

(define (F elemlen prevlensum) (+ 1 prevlensum)) (58)

it follows that if automorphism f preserves the top-level length of the list, then all the above
mentioned recursive derivations of automorphism f also preserve the same property.

Definition 33. Matula-Goebel encoding is a bijection between unlabeled, non-oriented rooted gen-
eral trees and natural numbers, discovered independently by [Matula 1968] and [Goebel 1980].
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Definition 34. Matula-Goebel signature for unlabeled rooted plane general trees (e) assigns a
unique natural number to each equivalence class of non-oriented rooted general trees that underlies
each oriented tree. The associated OEIS-sequence is A127301, which can be computed as fold:

(define (*A127301 s) (fold-right (lambda (t m) (* (A000040 (*A127301 t)) m)) 1 s))

(59)

Definition 35. We say that automorphism g preserves non-oriented form of rooted general trees,
if its signature permutation satisfies

A127301(spg(n)) = A127301(n) (60)

for all n >= 0.

Remark. Because A127301 can be computed as fold, it follows that if automorphism f pre-
serves the Matula-Goebel signature of a general tree (i.e., its nonoriented form), then all the above
mentioned recursive derivations of automorphism f also preserve the same property.

Furthermore, we have the following implication:

Proposition 2.

A127301(spg(n)) = A127301(n) for all n >= 0
→

A129593(spg(n)) = A129593(n) for all n >= 0.
(61)

i.e. condition (60) implies condition (6).
Proof. It should be clear that preserving of the non-oriented form of a rooted plane (general)

tree induces only such permutations on the corresponding Lukasiewicz-word, that although the
degrees of each child-vertex might be permuted amongst themselves, they still always stay under
their respective parent. Moreover, this in turn implies that each vertex stays at the same distance
(or ”level”) from the root as it was.

Remark. The reverse condition is not true, see automorphism *A072797 for a counter-example.

Definition 36. Matula-Goebel signature for unlabeled rooted plane binary trees (c/d) assigns a
unique natural number to each equivalence class of non-oriented rooted binary trees that underlies
each plane binary tree. XXX —- Wording... When we discard the orientation of a plane tree. etc.

Because Matula-Goebel signature for binary trees can be computed with right fold, as

(define (*A127302 s) (fold-right (lambda (t m) (* (A000040 (*A127302 t)) (A000040 m))) 1 s))

(62)
it follows that if automorphism f preserves the Matula-Goebel signature of a binary tree (i.e.,
its nonoriented form), then all the above mentioned recursive derivations of automorphism f also
preserve the same property.

Remark. As *A127302 = *A127301 ◦ *A057123, and also the latter has been defined as a fold:

(define (*A057123 s) (fold-right (lambda (x y) (list (*A057123 x) y)) ’() s))

(63)
it implies that *A127302 can also be defined as a fold.
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Remark. There are examples of functions whose invariancy is preserved by certain recursive
derivations, although they might not be computable (XXX — ???) as folds, because they do not
satisfy condition (29). Two examples follow.

If a Catalan automorphism f preserves the characteristic function of A072795 (or more precisely,
its signature-permutation does), i.e. if

χA072795(f(s)) = χA072795(s) (64)

holds for all s, then the property (8) holds for that automorphism. Incidentally, this can be defined
also as a fold:

(define (*char A072795 s) (fold-right (lambda (x y) (if (null? x) 1 0)) 0 s))

(65)
although, because the function does not satisfy the condition (30), it cannot be computed as a fold
for binary trees. 5

If a Catalan automorphism f preserves the characteristic function of A057548, i.e. if

χA057548(f(s)) = χA057548(s) (66)

holds for all s, then the property (9) holds for that automorphism. Note that this function satisfies
neither condition (29) nor (30).

Proposition 3. If any non-identity automorphism f satisfies the condition (8), that is, if it
preserves χA072795, that is, satisfies the condition (64), then the recursive derivations (FORK f),
(KROF f), (SPINE f) or (ENIPS f) satisfy the stronger condition (10) only if

(f (cons ’( ) s)) = (cons ’( ) s). (67)

Proof. Let’s consider case g = (SPINE f) first:

(define (g s)

(cond ((null? s) s)

(else

(let ((t (f s)))

(cons (car t) (g (cdr t)))

)

)

)

)

(68)

Now, if the condition (8) holds, that is, (f (cons ’( ) s)) = (cons ’( ) (h s)) for some
h (it could be equal or different to f), then we know that

(g (cons ’( ) s)) = (cons ’( ) (g (h s))) (69)

thus if f satisfies the condition (8) then its SPINE-derivative g will also satisfy the condition (8),
but not the stronger condition (10), unless h is the identity (for example, when f = ∗A089854 ,
∗A072797 , ∗A089855 , ∗A089856 or ∗A089857 , i.e. A089840[7]–A089840[11]). However, in that
case f itself cannot satisfy condition (10) unless it is also identity.

5This is true only if we require χA072795 to be strictly two-valued function, returning always either 0 or 1. However,
if we create instead a variant function which returns a third distinct value just for ( ), then there’s no problem.
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Then, if we consider the case g = (FORK f):

(define (g s)

(cond ((null? s) s)

(else

(let ((t (f s)))

(cons (g (car t)) (g (cdr t)))

)

)

)

)

(70)

the conclusion is exactly same, as (g ( )) = ( ).
For cases g = (ENIPS f) and g = (KROF f) it is enough to refer (23) and (22) and to note

that if any f satisfies the condition (8), then its inverse f−1 will also satisfy it.

Proposition 4. If automorphism f satisfies the condition (9), that is, if it preserves χA057548, that
is, satisfies the condition (66), then (FORK f), (KROF f), (DEEPEN f) and (NEPEED f)
satisfy the stronger condition (12) only if

(f (cons s ’( ))) = (cons s ’( )). (71)

Proof. Let’s consider case g = (FORK f) first:

(define (g s)

(cond ((null? s) s)

(else

(let ((t (f s)))

(cons (g (car t)) (g (cdr t)))

)

)

)

)

(72)

Now, if the condition (9) holds for f , that is, (f (cons s ’( ))) = (cons (h s) ’( )) for
some h (it could be equal or different to f), then we know that

(g (cons s ’( ))) = (cons (g (h s)) ’( )) (73)

thus if f satisfies the condition (9) then its SPINE-derivative g will also satisfy the condition (9),
but not the stronger condition (12), unless h is the identity (for example, when f = ∗A072796 ,
∗A089850 , ∗A089851 , ∗A089852 or ∗A089853 , i.e. A089840[2]–A089840[6]). However, in that
case f itself cannot satisfy condition (12) unless it is also identity.6

Then, if we write the case g = (DEEPEN f) in slightly different form, highlighting the

6These results have improved a lot since December 31 2007 revision of this paper when I made almost a diamet-
rically opposite claims!
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recursion to car-branch:

(define (g s)

(cond ((null? s) s)

(else

(let ((t (f s)))

(cons (g (car t)) (map g (cdr t)))

)

)

)

)

(74)

the conclusion is same as for FORK, as (map g ( )) = ( ).
For cases g = (KROF f) and g = (NEPEED f) it is enough to refer (22) and (25) and to

note that if any f satisfies the condition (9), then its inverse f−1 will also satisfy it.

Remark. Either one of the conditions (10) and (12) imply self-embedding in scale n : n + 1, and
that in turn implies that the cycle-count sequence of a bijection is genuinely monotone. Thus we
see for example that all cycle-count sequences of Catalan bijections in range 2–11 in tables A122201
and A122202 are genuinely monotone.

Proposition 5. All automorphisms obtained with RIBS are horizontally telescoping, that is, they
satisfy the property defined in (10), regardless of the properties of the automorphism to which RIBS

is applied to.

Proof. Obvious. All automorphisms fix ( ).

Remark. Alternatively, we can consider this as a special case of SPINE, as g = (SPINE fcar)
(see (43)):

(define (g s)

(cond ((null? s) s)

(else (cons (f (car t)) (g (cdr t))))

)

)

(75)

In other words, if automorphism f satisfies the condition (9), that is, if it preserves χA057548,
then (SPINE f) and (ENIPS f) satisfy the condition (10).

Again, either one of the conditions (10) and (12) imply self-embedding in scale n : n + 1, and
that in turn implies that the cycle-count sequence of a bijection is genuinely monotone. Thus we
see for example that all cycle-count sequences of Catalan bijections in range 2–11 in tables A122203
and A122204 are genuinely monotone. (Ones in range 2–6 by proposition 4, and ones in range 7–11
by this remark.)

Proposition 6. If automorphism f has a sequence Ff as its counts of fixed points sequence then
automorphism g ≡ (RIBS f) has as its counts of fixed points sequence

Fg = INV ERT (RIGHT (Ff )).
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Here the operator RIGHT increases the indices of the sequence Ff by one (from zero to one-based
sequence), and the operation INVERT is the one which Cameron calls the operator A in [Cameron
1985] and which appears with the name INVERT in [Bernstein and Sloane 1995]. It can be defined
as the correspondence between two power series:

1 +

∞∑

n=1

bnxn =
1

1 −
∑∞

n=1 anxn

in which case sequence b = INVERT(a). One interpretation is that bn is the number of or-
dered arrangements of items of total weight n that can be formed if we have ai types of items
of weight i, i ≥ 1.

Proof. We see that automorphism g fixes precisely those S-expressions whose “car ribs” are
fixed by automorphism f . Thus in this case bn gives the number of S-expressions of n nodes that
are fixed by automorphism g and ai gives all the S-expressions of i − 1 nodes that are fixed by
automorphism f . Because in the “cdr spine” of the whole S-expression there is one extra node for
each car-branch, the resulting numbers match. [DRAW A PICTURE!]

Proposition 7. If automorphism g is a Lukasiewicz-word permuting, and automorphism f is the
one that naturally embeds into it in scale n : 2n as explained in lemma 1, then (FORK f) embeds
in the same manner to (DEEPEN g).

Proof. Follows from the properties of FORK and DEEPEN transforms.

10. Non-recursive bijections of binary trees and their recursive derivations

11. Catalan bijections in detail

11.1. automorphism *A069770

Fixed points counted by: AERATED(A000108).
Cycles counted by: A007595.
Max. cycle lengths given by: LEFT (A046698).
LCM’s of cycle lengths given by: LEFT (A046698).
Lukasiewicz-word permuting: No.
Telescoping: No.
Recursive compositions: *A069770 = (FORK *A129604) = (KROF *A129604)

= (ENIPS *A089859) = (SPINE *A089863).

Constructive definition:
(define (*A069770 s)

(if (null? s) s

(cons (cdr s) (car s))))

Destructive definition:

(define (*A069770! s)

(if (pair? s)

(let ((org-car (car s)))

(set-car! s (cdr s))

(set-cdr! s org-car))))

7

7 Here AERATED(Axxxxxx) is used to indicate the OEIS-sequence Axxxxxx interpolated with zeros, and
LEFT (Axxxxxx) (or RIGHT (Axxxxxx)) means the sequence Axxxxxx shifted left (or respectively, right) by one.
Especially, LEFT (A046698) = 1,1,2,2,2,2,2,... is used to indicate the sequences of maximum cycle lengths and
LCM’s of cycle lengths for involutions, and LEFT (A019590) = 1,1,0,0,0,0,0,... for the fixed point count sequences of
those automorphisms that fix no structures which are larger than the trivial null and one-node structures.
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This involution, which is the simplest Catalan automorphism after the identity automorphism,
swaps the left and right-hand subtree of a binary tree. How it will partition the appropriate Catalan
structures of size n=3 into three disjoint cycles is shown below:
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Figure 2: How automorphism *A069770 acts on binary trees of 3 internal nodes, and on the
corresponding Eulerian polygon triangulations.

This automorphism fixes only binary trees whose left and right-hand subtree are identical
(one extra, connecting node is located at the root), thus the number of fixed points in sub-
range [A014137(n-1)..A014138(n-1)] is given by the Catalan numbers interpolated with zeros:

fcsA069770(n) =





0 if n is even ,

C(n−1
2 ) if n is odd .

(76)

yielding
1, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, ...

As with all involutions, the cycle-counts are obtained simply by taking the mean of Catalan
numbers and the number of fixed points:

ccA069770(n) =





C(n)
2 if n is even ,

C(n)+C(n−1
2

)

2 if n is odd .

(77)

yielding
1, 1, 1, 3, 7, 22, 66, 217, 715, 2438, 8398, 29414, 104006, 371516, 1337220, ...

This is the sequence A007595 in OEIS. Other manifestations/meanings given to it include Number
of necklaces of 2 colors with 2n beads and n-1 black ones [Meeussen, 2002] and Number of even
permutations avoiding 132.

Proposition 8. The following two identities hold:

(FORK (∗A069770 ◦ g)) = (FORK ∗A069770 ) ◦ (FORK g) (78)
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(KROF (g ◦ ∗A069770 )) = (KROF g) ◦ (KROF ∗A069770 ) (79)

Proof. We prove (79) by considering the inverse of KROF -operation. We let X stand for the
right side of (79), and so we have:

(KROF−1 X) = (KROF g) ◦ (KROF ∗A069770 )
◦ ((KROF g) ◦ ∗A057163 ))−1

car

◦ ((KROF g) ◦ ∗A057163 ))−1
cdr

= (KROF g) ◦ ∗A057163 ◦ ∗A057163 car ◦ (KROF g)−1
car ◦ ∗A057163 cdr ◦ (KROF g)−1

cdr

= (KROF g) ◦ ∗A057163 ◦ ∗A057163 car ◦ ∗A057163 cdr ◦ (KROF g)−1
car ◦ (KROF g)−1

cdr

= (KROF g) ◦ ∗A069770 ◦ (KROF g)−1
car ◦ (KROF g)−1

cdr

= (KROF g) ◦ (KROF g)−1
cdr ◦ ∗A069770 ◦ (KROF g)−1

cdr

= (KROF g) ◦ (KROF g)−1
cdr ◦ (KROF g)−1

car ◦ ∗A069770
= g ◦ ∗A069770

(80)
The case (79) is proved similarly.

Proposition 9. The following two identities hold:

(FORK (∗A057163 ◦ g ◦ ∗A057163 )) = ∗A057163 ◦ (FORK g) ◦ ∗A057163 (81)

(KROF (∗A057163 ◦ g ◦ ∗A057163 )) = ∗A057163 ◦ (KROF g) ◦ ∗A057163 (82)

Proof. This is easily proved graphically.

11.2. Automorphism *A057163

Fixed points counted by: AERATED(A000108).
Cycles counted by: A007595.
Max. cycle lengths given by: LEFT (A046698).
LCM’s of cycle lengths given by: LEFT (A046698).
Lukasiewicz-word permuting: No.
Telescoping: No.
Recursive composition: *A057163 = (FORK *A069770).

Constructive definition:

(define (*A057163 s)

(cond ((not (pair? s)) s)

(else (cons (*A057163 (cdr s))

(*A057163 (car s)))

)

)

)

Destructive definition:

(define (*A057163! s)

(cond ((pair? s)

(*A069770! s)

(*A057163! (car s))

(*A057163! (cdr s))

)

)

s

)
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11.3. Automorphism *A057163

Fixed points counted by: AERATED(A000108).
Cycles counted by: A007595.
Max. cycle lengths given by: LEFT (A046698).
LCM’s of cycle lengths given by: LEFT (A046698).
Lukasiewicz-word permuting: No.
Telescoping: No.
Recursive compositions: *A057163 = (FORK *A69770)

Constructive variant:
(define (*a057163 s)

(cond ((null? s) s)

(else (cons (*a057163 (cdr s)) (*a057163 (car s))))))

Destructive variant:
(define (*a057163! s)

(cond ((pair? s) (swap! s) (*a057163! (car s)) (*a057163! (cdr

s)
Reflect binary trees and polygon triangulations.
This involution reflects the binary trees and polygon triangulations. It is obtained by applying

automorphism *A069770 recursively down to every branch of a binary tree, and it has the same
cycle-count, fixed point count, max. and LCM-sequences as the former. However, the fixed points
themselves generally are not the same, as this one fixes the symmetric binary trees, i.e. ones whose
left and right-hand sides are (usually) not identical, but instead mirror images of each other. How
this automorphism will partition the appropriate Catalan structures of size n=3 into three disjoint
cycles is shown below:

←→ ←→ ◦

11.4. Automorphism *A072796

Fixed points counted by: A073190.
Cycles counted by: A073191.
Max. cycle lengths given by: A046698.
LCM’s of cycle lengths given by: A046698.
Lukasiewicz-word permuting: No.
Telescoping: No.

Constructive variant:

(define (*a072796 s)

(cond ((null? s) s)

((not (pair? (cdr s))) s)

(else (cons (cadr s) (cons (car s) (cddr s))))))

Destructive variant:

(define (*a072796! s)

(cond ((null? s) s)

((not (pair? (cdr s))) s)

(else (swap! s) (robr! s) (swap! (cdr s)) s)))
Exchange the two leftmost branches of general trees if the degree of root larger than 1, otherwise

keep the tree intact.
This non-recursive automorphism exchanges the two leftmost branches of general trees if the

degree of tree’s root is > 1, otherwise it keeps the tree intact. Thus the fix point count sequence
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gives the number of general plane trees which are either empty (the case n = 0), or whose root
degree is either 1 (i.e. the planted trees) or the two leftmost subtrees (of the root node) are identical.
This can be computed as a sum of planted trees (the first term) and a convolution, where the left
hand side of product gives the number of trees that can occur as the two identical leftmost subtrees,
and the right hand side of the product gives the number of possibilities for the rest of tree.

A073190(n) = C(n− 1) +
n−2∑

i=0
2|(n−i)

C(
n− i− 2

2
) C(i) (83)

yielding
1, 1, 2, 3, 8, 20, 60, 181, 584, 1916, 6476, 22210, 77416, ...

Cycle counts follow as before:

A073191(n) =
C(n) + A073190(n)

2
. (84)

yielding
1, 1, 2, 4, 11, 31, 96, 305, 1007, 3389, 11636, 40498, 142714, ...

The automorphism *A072797 is obtained by conjugating *A072796 with *A057163, thus it has
exactly same fixed point and cycle count sequences. It has two interesting properties:

First, although it does not satisfy condition (60) it still satisfies condition (6), i.e. is Lukasiewicz-
permuting.

Also, it has at least two recursive derivations, namely

∗A069775 = ∗A057163 ◦ (SPINE ∗A057163 ◦ ∗A072797 ◦ ∗A057163 ) ◦ ∗A057163 (85)

and

∗A069776 = ∗A057163 ◦ (ENIPS ∗A057163 ◦ ∗A072797 ◦ ∗A057163 ) ◦ ∗A057163 (86)

that satisfy the same condition.
Furthermore, *A072797 induces it itself with the method described in (7), i.e.

∗A072797 = ∗A083927 ◦ ∗A072797 ◦ ∗A057123 (87)

and similarly, it seems that

∗A069775 = ∗A083927 ◦ ∗A069775 ◦ ∗A057123 (88)

and
∗A069776 = ∗A083927 ◦ ∗A069776 ◦ ∗A057123 (89)

XXX — The latter two remain to be proved.
From the proposition 7 then follows that (FORK ∗A072797 ), (i.e. automorphism *A082325,

which is the *A057163-conjugate of *A057511), embeds in the same manner into (DEEPEN ∗A072797 )
= *A122313.

XXX- Automorphism equations...
For what automorphisms f and g, (SPINE f◦g) = (SPINE f) ◦ (SPINE g) ? At least

when f is one of the automorphisms that leave the right subtree of binary trees intact. Any others?
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For what automorphisms f , f = ∗A083927◦f◦∗A057123 ? At least when f = ∗A001477 ,
*A072797, *A069775, *A069776.

For what automorphisms f , f2 = ∗A083929◦f3◦∗A083930 ? At least when f = ∗A001477 ,
*A057505, *A057506.

Prove all these.
Also these:

∗A057501 = ∗A083927◦∗A085159◦∗A057123

and
∗A057502 = ∗A083927◦∗A085160◦∗A057123

11.5. Automorphism *A057509/*A057510

Fixed points counted by: A034731.
Cycles counted by: A003239.
Max. cycle lengths given by: RIGHT (A028310).
LCM’s of cycle lengths given by: RIGHT (A003418).
Lukasiewicz-word permuting: Yes, the restriction to binary trees induces *A069770.
Telescoping: No.
Recursive compositions: *A057509 = (SPINE *A72796)

*A057510 = (ENIPS *A72796)
Compositions: *A057509 = *A57501 ◦ *A69770

*A057510 = *A69770 ◦ *A57502

Constructive variant for rotate
left using Lisp/Scheme built-in
function append:

(define (*a057509 s)

(cond ((null? s) s)

(else (append (cdr s) (list (car s))))))

Constructive, recursive variant
for rotate left:

(define (*a057509v2 s)

(cond ((null? s) s)

((null? (cdr s)) s)

(else (cons (car (cdr s)) (*a057509v2 (cons (car s) (cdr

Destructive variants, for both ro-
tate left and right, composed of
swap! and handshake rotates:

(define (*a057509! s)

(cond ((pair? s) (swap! s) (*a057501! s)))

s)

(define (*a057510! s)

(cond ((pair? s) (*a057502! s) (swap! s)))

s)
Shallow Rotate general trees and parenthesizations.
This automorphism rotates the top-level branches of general trees by one step. It fixes only the

trees whose toplevel subtrees are all identical, and thus the number of fixed points can be computed
as (one is subtracted from the divisor d of n, as for each subtree there is an extra node in the main
toplevel stem of the tree.)

fcsA057509(n) =





1 if n is zero ,

∑
d|n C(d− 1) otherwise .

(90)

yielding
1, 1, 2, 3, 7, 15, 46, 133, 436, 1433, 4878, 16797, 58837, 208013, 743034, ...
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This is the sequence A034731 in OEIS, originally submitted by Erich Friedman with the name
Dirichlet convolution of bn = 1 with Catalan numbers.

The cycle counts are given by A003239, number of rooted planar trees with n non-root nodes:
circularly cycling the subtrees at the root gives equivalent trees. This is computed as:

A003239(n) =
1

(2n)

∑

d|n

φ(n/d)

(
2d

d

)
(91)

yielding
1, 1, 2, 4, 10, 26, 80, 246, 810, 2704, 9252, 32066, 112720, 400024, ...

Another manifestation/meaning given to it include number of necklaces with 2n beads, n white
and n black, from which the above formula is easily seen to be derived from.

Still more manifestations mentioned are number of terms in polynomial expression for permanent
of generic circulant matrix of order n and number of equivalence classes of n-compositions of n under
cyclic rotation.

It should be easy to see that the least common multiples of cycle sizes for trees of size n is given
by a(n) = 1 when n = 0 and for n≥1 by a(n) = LCMn−1

i=1 i, thus yielding the right shifted version
of OEIS-sequence A003418: 1,1,1,2,6,12,60,60,420,840,2520,2520,27720,27720,360360,...
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11.6. Automorphism *A057508

Fixed points counted by: A073192.
Cycles counted by: A073193.
.
.
Lukasiewicz-word permuting: Yes, the restriction to binary trees induces *A069770.
Telescoping: No.
Recursive compositions: *A057508 = (ENIPS *A57509) = (SPINE *A57510)

Equivalent to Lisp/Scheme built-
in function reverse:

(define *a057508

reverse)

Constructive, recursive variant
using Lisp/Scheme built-in func-
tion append:

(define (*a057508v2 s)

(cond ((null? s) (list))

(else (append (*a057508v2 (cdr s)) (list (car s))))))

Constructive, deeply re-
cursive variant. [See ¡A
HREF=”http://www.research.att.com/cgi-
bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A033538”¿A033538¡/A¿]:

(define (*a057508v3 s)

(cond ((null? s) s)

((null? (cdr s)) s)

(else

(cons

(car (*a057508v3 (cdr s)))

(*a057508v3

(cons (car s) (*a057508v3 (cdr (*a057508v3 (cdr s))))))))))

Constructive, tail-recursive vari-
ant:

(define (*a057508v4 a)

(let loop ((a a) (b (list)))

(cond ((not (pair? a)) b)

(else (loop (cdr a) (cons (car a) b))))))

Two destructive variants:

(define (*a057508! s)

(cond ((pair? s) (*a057508! (cdr s)) (*a057509! s)))

s)

(define (*a057508v2! s)

(cond ((pair? s) (*a057510! s) (*a057508v2! (cdr s))))

s)
Shallow Reverse general trees and parenthesizations.
This automorphism reverses the top-level branches of general trees. Thus the fix point count

sequence gives the number of general plane trees which are palindromic in shallow sense, i.e. whose
k-th toplevel subtree from the left is equal with the k-th subtree from the right, for all their subtrees.
This can be computed as a convolution, where the right hand side of the product gives the number
of different kind of trees that can occur in the middle of toplevel list (when the number of toplevel
subtrees is odd), and the left hand side of product gives the number of possibilities that can occur
at the left and right hand sides of an S-expression so that it will be symmetric.

A073192(n) =
n∑

i=0
2|(n−i)

C(
n− i

2
) C̆(i− 1)

(92)

where C̆(n) = 1 if n = −1 and otherwise as C(n) (the nth Catalan number). This yields the
sequence

1, 1, 2, 3, 8, 18, 54, 155, 500, 1614, 5456, 18630, 64960, ...
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Cycle counts follow as before:

A073193(n) =
C(n) + A073192(n)

2
. (93)

yielding
1, 1, 2, 4, 11, 30, 93, 292, 965, 3238, 11126, 38708, 136486, ...

11.7. Automorphism *A057164

Fixed points counted by: A001405.
Cycles counted by: LEFT (A007123).
Max. cycle lengths given by: A046698.
LCM’s of cycle lengths given by: A046698.
Lukasiewicz-word permuting: Yes, the restriction to binary trees induces *A057163.
Telescoping: No.
Recursive compositions: *A057164 = (FORK *A57510) = (KROF *A57509) = (DEEP *A57508)

Constructive, recursive variant
using Lisp/Scheme built-in func-
tion append:

(define (*a057164 s)

(cond ((null? s) s)

((null? (cdr s)) (cons (*a057164 (car s)) (list)))

(else (append (*a057164 (cdr s)) (*a057164 (cons (car s)

Constructive, deeply recursive
variant:

(define (*a057164v2 s)

(cond ((null? s) s)

((null? (cdr s)) (list (*a057164v2 (car s))))

(else

(cons

(*a057164v2 (car (*a057164v2 (cdr s))))

(*a057164v2

(cons (car s) (*a057164v2 (cdr (*a057164v2 (cdr s))))))))))

Destructive variant:
(define (*a057164! s)

(cond ((pair? s) (*a057164! (car s)) (*a057164! (cdr s)) (*a057509!

s)
Deep Reverse general trees and parenthesizations.
The number of fixed points, i.e. the symmetric general trees and Dyck paths, is given by central

binomial coefficients

fcsA057164(n) =

(
n

⌊n/2⌋

)
(94)

1,1,2,3,6,10,20,35,70,126,252,462,924,1716,3432,6435,12870,... which is the sequence A001405 in
OEIS. For the proof, see e.g. [].

The cycle counts is computed as for all involutions ccA057164(n) = C(n)+fcsA057164(n)
2 , giving

1,1,2,4,10,26,76,232,750,2494,8524,29624,104468,... which is the sequence A007123 in OEIS. It has
been submitted with the name Number of connected unit interval graphs with n nodes; also bracelets
(turn over necklaces) with n black beads and n-1 white beads. This connection with binary bracelets
can be easily seen/proved by considering Raney’s lemma as explained by Graham, Knuth and
Patashnik.
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11.8. Automorphism *A057511/*A057512

Fixed points counted by: A057546.
Cycles counted by: A057513.
Max. cycle lengths given by: RIGHT (A000793).
LCM’s of cycle lengths given by: RIGHT (A003418).
Lukasiewicz-word permuting: Yes, the restriction to binary trees induces *A057163.
Telescoping: No.
Recursive compositions: *A057511 = (FORK *A72796) = (DEEP *A57509)

*A057512 = (KROF *A72796) = (DEEP *A57510)

Constructive, recursive variant
for deep rotate left:

(define (*a057511 s)

(cond ((null? s) s)

((null? (cdr s)) (list (*a057511 (car s))))

(else

(cons (*a057511 (car (cdr s)))

(*a057511 (cons (car s) (cdr (cdr s))))))))

Destructive, recursive vari-
ants for both, using exch2first
(A072796):

(define (*a057511! s)

(cond ((pair? s) (*a072796! s) (*a057511! (car s)) (*a057511!

s)

(define (*a057512! s)

(cond ((pair? s) (*a057512! (car s)) (*a057512! (cdr s)) (*a072796!

s)
Deep Rotate general trees and parenthesizations.
How automorphism *A057511/gma057512 will “deeprotate” a general tree of six edges is shown

below:

→֒ ↔ ↔ ↔ ↔ ↔ ←֓

↔ ↔ ↔ ↔ ↔ ←֓

Like with shallow rotates (automorphism *A057509 and *A057510), the least common multiples
of cycle sizes is given by the right shifted version of A003418: 1,1,1,2,6,12,60,60,420,840,2520,2520,27720,27720,360360,...
However, the size of maximum cycles for trees of size n≥1 is given by Landau’s function g(n−1), i.e.
yielding the OEIS-sequence A000793 shifted once right: 1,1,1,2,3,4,6,6,12,15,20,30,30,60,60,84,105,140,210,210,...
XXX - explain why: because a general tree can be always “partitioned” into any kind of subtree-
combination, and then we just take the largest of them (in Landau’s function sense).

To compute the fcsA057511 and ccA057511 we need a function that gives the number of n-edge
general plane trees fixed by k-fold application of the automorphism *A057511. This table has been
submitted as A079216 into OEIS:

A079216k,n :=

k \ n 0 1 2 3 4 5 6 7 8 9 10 11

1 1 1 2 3 5 6 10 11 18 21 34 35
2 1 1 2 5 11 26 66 161 420 1093 2916 7819
3 1 1 2 3 8 18 43 104 273 702 1870 4985
4 1 1 2 5 11 30 82 233 680 2033 6164 18923
5 1 1 2 3 5 6 15 36 108 301 814 2080
6 1 1 2 5 14 38 111 332 1029 3232 10374 33679
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This table can be computed by defining A079216(k, 0) = 1, and then computing for the larger
values of n with the following recurrence:

A079216(k, n) =
n∑

r=1
(r/ gcd(r,k))|n

∑

c1+...+cgcd(r,k)=n/(r/ gcd(r,k))

gcd(r,k)∏

i=1

A079216(lcm(r, k), ci − 1) (95)

The outer sum ranges over all the values r = 1..n the degree of the root node of an n-edge general
tree may obtain, with the additional condition that r/ gcd(r, k) (the cycle length) must divide n.
Here the inner sum is iterated over each composition of n/(r/ gcd(r, k)) into gcd(r, k) (i.e., the
number of cycles) parts, and the innermost product ranges over each of the composants. XXX
- Apply generatingfunctionology and other black magic here. E.g. if we take product over the
composants, then isn’t it related to INVERT-transform then?

Now the count of fixed points can be computed as

fcsA057511(n) =





1 if n is zero ,

∑
d|n A079216(n/d, d− 1) = A079216(1, n) otherwise .

(96)

yielding
1, 1, 2, 3, 5, 6, 10, 11, 18, 21, 34, 35, 68, 69, 137, 148, 316, 317, 759, 760, ...

This is the sequence A057546 in OEIS. Note that fcsA057511(p) = fcsA057511(p − 1) + 1 for all
primes p.

The cycle count sequence follows then as

ccA057511(n) =





1 if n is zero ,

1
A003418(n−1)

∑A003418(n−1)
i=1 A079216(i, n) otherwise .

(97)

yielding
1, 1, 2, 4, 9, 21, 56, 153, 451, 1357, 4212, 13308, 42898, 140276, 465324, ...

This is the sequence A057513 in OEIS. Note that we might as well write the formula in the form

ccA057511(n) =
1

n!

n!∑

i=1

A079216(i, n) (98)

for n≥1, as n! is always a multiple of A003418(n−1). XXX - this might or might not help to reduce
the formula to a more practical form. Explain also how it is derived!
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11.9. Automorphism *A069767/*A069768

Fixed points counted by: A036987.
Cycles counted by: A073431.
Max. cycle lengths given by: A011782.
LCM’s of cycle lengths given by: A011782.
Lukasiewicz-word permuting: No.
Telescoping: No.
Recursive compositions: *A069767 = (SPINE *A69770)

*A069768 = (ENIPS *A69770)

Destructive variants:

(define (*a069767! s)

(cond ((pair? s) (swap! s) (*a069767! (cdr s))))

s)

(define (*a069768! s)

(cond ((pair? s) (*a069768! (cdr s)) (swap! s)))

s)
Swap recursively the other side of binary tree.
How it will partition the fourteen binary trees of four internal nodes (and corresponding polygon

triangulations) into three disjoint cycles is shown below:

→֒ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ←֓

→֒ ↔ ↔ ↔ ←֓ ↔

Remark. Any Catalan automorphism f for which A127302(f(n)) = A127302(n) holds for all n,
keeps the nonoriented form of the underlying binary tree intact. This holds also for f = ∗A069767
and f = ∗A069768 . In each set of {Cn structures of size n}, i.e. Cn binary trees of n internal
(branching nodes), there is a subset of 2n−1 binary trees whose height (i.e. max depth) is equal to
their size. The above condition implies that this subset is closed with respect to any automorphism
that satisfies that condition.

Furthermore, automorphisms *A069767 and *A069768 act transitively on that subset, i.e. those
trees form a single cycle of their own, as can be seen below.

If we map that subset to a binary strings of length n− 1, let the root node stand for the least
significant bit, and the next-to-top node on those trees stand the most significant bit, and mark 0
when the next node upwards is at the right, and 1 when it is at left, we get the sequence of binary
words (in this case, of three bits) shown below on the top of the eight binary trees belonging to
that closed cycle. It is easy to see that these automorphisms induce the well-known binary wrap-
around (”odometer”) increment/decrement algorithm on the binary strings that are in bijective
correspondence with such binary trees.

Proposition 10. The following two identities hold:

∗A069767 = (KROF ∗A069768 ) (99)
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∗A069768 = (FORK ∗A069767 ) (100)

Proof. We prove (99) by considering the inverse of KROF -operation. We have:

(KROF−1 ∗A069767 ) = ∗A069767 ◦ ∗A069767−1
car ◦ ∗A069767−1

cdr

= (SPINE ∗A069770 ) ◦ ∗A069768 car ◦ ∗A069768 cdr

= (SPINE ∗A069770 )cdr ◦ ∗A069770 ◦ ∗A069768 car ◦ ∗A069768 cdr

= ∗A069767 cdr ◦ ∗A069768 cdr ◦ ∗A069770 ◦ ∗A069768 cdr{XXX − EXPLAIN !}
= ∗A069770 ◦ (ENIPS ∗A069770 )cdr

= (ENIPS ∗A069770 )
= ∗A069768

(101)
The case (100) follows from the identity (KROF f)−1 = (FORK f−1).

Proposition 11. The following two identities hold:

∗A069768 = (KROF ∗A069767 ) (102)

∗A069767 = (FORK ∗A069768 ) (103)

Proof. We prove (102) by considering the inverse of KROF -operation. We have:

(KROF−1 ∗A069768 ) = ∗A069768 ◦ ∗A069768−1
car ◦ ∗A069768−1

cdr

= (ENIPS ∗A069770 ) ◦ ∗A069767 car ◦ ∗A069767 cdr

= (ENIPS ∗A069770 ) ◦ ∗A069767 cdr ◦ ∗A069767 car

= ∗A069770 ◦ (ENIPS ∗A069770 )cdr ◦ ∗A069767 cdr ◦ ∗A069767 car

= ∗A069770 ◦ (ENIPS ∗A069770 )cdr ◦ (SPINE ∗A069770 )cdr ◦ ∗A069767 car

= ∗A069770 ◦ ∗A069767 car

= ∗A069770 ◦ (SPINE ∗A069770 )car

= (SPINE ∗A069770 )cdr ◦ ∗A069770
= ∗A069767

(104)
The case (103) follows from the identity (KROF f)−1 = (FORK f−1).

Digression 1. We have proved that ∗A069767 = (FORK2 ∗A069767 ) = (KROF 2 ∗A069767 )
and similarly ∗A069768 = (FORK2 ∗A069768 ) = (KROF 2 ∗A069768 ). A question remains: Are
there any other nonidentity Catalan automorphisms, for which a repeated application of FORK or
some other automorphism of Catalan automorphisms would produce a cycle of finite length? Does
the equation

(FORK2 g) = g (105)

have just two non-identity solutions?
One subset of cases which satisfy the condition (105) is when we have

(FORK g) = g−1 (106)

in which case, by applying FORK to both sides, we get

(FORK2 g) = (FORK g−1) = g (107)
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By inverting the both sides of (106) to get

(FORK g)−1 = g (108)

and then applying (22) at the left side, we get

(KROF g−1) = g (109)

Then by applying (39), we get
g−1 = g ◦ g−1

car ◦ g−1
cdr (110)

Inverting both sides, we get:
g = gcdr ◦ gcar ◦ g−1 (111)

and then multiplying from the right by g we obtain:

g2 = gcdr ◦ gcar (112)

which is equal to
g2 = gcar ◦ gcdr (113)

as the elements of the right hand side composition commute which each other.
It should be clear, that apart from the trivial identity bijection, and *A069767 and *A069768

themselves, all their higher powers satisfy this condition as well. For example, bijections *A073290–
*A073299. Thus, in the infnite cyclic group generated by *A069767 and its inverse *A069768, which
is isomorphic to the additive group of integers, (Z, +), both FORK and KROF satisfy the group
homomorphism condition, and specifically, they are automorphisms of that group, mapping each
element to its own inverse.

If we apply (40) directly to (105) we first get

(FORK g) = g−1
car ◦ g−1

cdr ◦ g (114)

and after the second application

g = (g−1
car ◦ g−1

cdr ◦ g)−1
car ◦ (g−1

car ◦ g−1
cdr ◦ g)−1

cdr ◦ (g−1
car ◦ g−1

cdr ◦ g) (115)

which after some massaging gets to

g = (g−1 ◦ gcar ◦ gcdr)car ◦ (g−1 ◦ gcar ◦ gcdr)cdr ◦ (g−1
car ◦ g−1

cdr ◦ g) (116)

and further to
g = g−1

car ◦ gcaar ◦ gcdar ◦ g−1
cdr ◦ gcadr ◦ gcddr ◦ g−1

car ◦ g−1
cdr ◦ g (117)

Then, multiplying from the right by g−1, and letting those elements that can commute past each
other to do so, in most appropriate fashion, we get

id = g−1
car ◦ g−1

cdr ◦ gcaar ◦ gcdar ◦ gcadr ◦ gcddr ◦ g−1
cdr ◦ g−1

car (118)

Multiplying from the both sides by gcar we get

g2
car = g−1

cdr ◦ gcaar ◦ gcdar ◦ gcadr ◦ gcddr ◦ g−1
cdr (119)

an then doing the same thing with gcdr (note that gcar and gcdr commute with each other):

g2
car ◦ g2

cdr = gcaar ◦ gcdar ◦ gcadr ◦ gcddr (120)
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As the left and right hand sides are acted independently upon, with nothing crossing from one
side to the other, this is equivalent that two different conditions are satisfied both at the same time:

g2
car = gcaar ◦ gcdar (121)

and
g2
cdr = gcadr ◦ gcddr (122)

that is, this is equivalent that the condition (113) is applied both to the left and right hand side of
the binary tree.

Are there any cases, where (121) and (122) would hold, but (113) itself would not hold?
Does the equation

(FORK3 g) = g (123)

admit non-identity solutions?

Fixed count and cycle count sequences. To compute the fcsA069767 and ccA069767 we need a
function that gives the number of rooted plane binary trees of size n and ”contracted height” k.

This table has been submitted as A073346 into OEIS:

A073346k,n :=

k \ n 0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0 1 . . .
1 0 0 2 0 2 2 0 0 . . .
2 0 0 0 4 4 8 12 12 . . .
3 0 0 0 0 8 16 40 80 . . .

This is a variant of table A073345, which was known to the Chinese mathematician Ming
An-Tu, who gave the following recurrence in the 1730s: (give it here) [Luo Jian-Jin, 1995].

The count of fixed points, the row 0 of the above table, is given by Fredholm-Rueppel sequence.
the sequence A036987 in OEIS. It is defined as a characteristic function of 2n− 1, giving the terms:

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, . . .

The cycle count sequence follows then as

ccA069767(n) =
1

2n−1

2n−1∑

i=1

A007814(i)∑

j=0

A073346(j, n)

= −1 +
1

2n−2

2n−1∑

i=1

A073346(A007814(i), n)

=
1

2n

n∑

i=0

2n−i A073346(i, n)

=

n∑

i=0

2−i A073346(i, n)

(124)

Here we use sequence A007814, Exponent of highest power of 2 dividing n, i.e. the binary carry
sequence,

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, . . .
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as a kind of “filter”, with which XXX ... are selected.
Because entries on the row k of table A073346 are always multiples of 2k, they can be divided

out, to form another table A074079, and the cycle count formula can be represented in terms of
that table.

ccA069767(n) =
n∑

i=0

A074079(i, n) (125)

The formula gives the terms

1, 1, 1, 2, 3, 6, 12, 28, 65, 160, 408, 1074, 2898, 7998, 22508, 64426, 187251, ...

This is the sequence A073431 in OEIS.
XXX - Lots of explaining here! Also the cc-sequence can be probably reduced further, by using

generatingfunctionological approach.

11.10. Automorphism *A057161/*A057162

Fixed points counted by: LEFT (A019590).
Cycles counted by: LEFT (LEFT (A001683)).
Max. cycle lengths given by: A057544.
LCM’s of cycle lengths given by: A057544.
Lukasiewicz-word permuting: No.
Telescoping: No.
Compositions: *A057161 = *A57508 ◦ *A69767 = *A69767 ◦ *A69769 = *A57163 ◦ *A57162

*A057162 = *A69768 ◦ *A57508 = *A69769 ◦ *A69768 = *A57163 ◦ *A57161

Constructive, tail-recursive vari-
ants:

(define (*a057161 a)

(let loop ((a a) (b (list)))

(cond ((not (pair? a)) b)

(else (loop (car a) (cons (cdr a) b))))))

(define (*a057162 a)

(let loop ((a a) (b (list)))

(cond ((not (pair? a)) b)

(else (loop (cdr a) (cons b (car a)))))))

Constructive, recursive variant
for A057161 using Lisp/Scheme
built-in function append:

(define (*a057161v2 s)

(cond ((null? s) s)

(else (append (*a057161v2 (car s)) (list (cdr s))))))

Destructive variants, composed
of other destructively imple-
mented gatomorphisms:

(define (*a057161! s)

(*a069769! s)

(*a069767! s)

s)

(define (*a057162! s)

(*a057508! s)

(*a069768! s)

s)
Rotate polygon triangulations.
The cycle count sequence is easiest to define in terms of A001683, Number of one-sided trian-

gulations of the disk, i.e. the triangulations of Eulerian polygons with n sides.

A001683(n) =
1

n
C(n− 2) +

1

2
c(

n

2
− 1) +

2

3
c(

n

3
− 1) (126)
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Figure 3: How automorphism *A057161/A057162 acts on binary trees of 3 internal nodes, and on
the corresponding Eulerian polygon triangulations.

after which we can simply define

ccA057161(n) = A001683(n + 2) (127)

because a binary tree of n internal nodes corresponds to a triangulation of a polygon of n + 2
vertices. This gives the terms

1, 1, 1, 1, 4, 6, 19, 49, 150, 442, 1424, 4522, 14924, . . .

Connections with other bijections. We are interested how *A057161 and *A057162 can be
represented as folds. Specifically, we want to solve the unique f from equation:

∗A057161 = (SPINE f) (128)

and unique g from equation:
∗A057162 = (ENIPS g) (129)

It is enough to solve only the other one, as then the other solution can be found via inverses.
We start from the definition

∗A057162 = ∗A069768 ◦ ∗A057508 (130)

hoping eventually to apply (31). As ∗A057508 = (ENIPS ∗A057509 ) and ∗A069768 = (ENIPS ∗A069770 )
and by (33) these translate as

(define (*A057508 s) (fold-right (lambda (x y) (*A057509 (cons x y))) ’() s))

(131)
and

(define (*A069768 s) (fold-right (lambda (x y) (*A069770 (cons x y))) ’() s))

(132)
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Then by plugging *A069768 as h and (lambda (x y) (*A057509 (cons x y))) as w into (31)
we get that ∗A057162 = fold(m, ( ), s) where m has been implicitly defined with a condition that

(m x (*A069768 y)) = (*A069768 (lambda (x y) (*A057509 (cons x y)))) (133)

Then m should be massaged to the form (lambda (x y) (g (cons x y))) and then g is our
searched for bijection. Thus, applying *A069767 to the y-argument at both sides, and transfer-
ring *A069768 inside the lambda, we obtain:

(define (m x y) (*A069768 (*A057509 (cons x (*A069767 y))))) (134)

Now, what happens above, is essentially that x is transferred to the leftmost tip of the binary
tree y. This can be also done by surrounding *A057509 with a more powerful operation than
*A069767/*A069768, i.e. in this case, we can conjugate with *A057163 instead:

(define (m x y) (*A057163 (*A057509 (cons (*A057163 x) (*A057163 y))))) (135)

(This works because *A057509 touches/traverses only along the top-level ”spine” of the list, so it
doesn’t care what changes has happened elsewhere, and as we are conjugating, those extra-changes
are eventually undone).

In other words, we are now performing *A057163-conjugated append, as:

(define (m x y) (*A057163 (append (*A057163 y) (list (*A057163 x))))) (136)

Thus, *A057162 can be defined as a following fold:

(define (*A057162 s) (fold-right m ’() s)) (137)

Bijection *A069773 (being *A057163-conjugate of *A057501) can be defined as:

(define (*A069773 s)

(cond ((null? s) s)

(else (*A057163 (append (*A057163 (cdr s)) (list (*A057163 (car s))))))

)

)

(138)
which proves that

∗A057162 = (ENIPS ∗A069773 ) (139)

and thus by inverses, we also get:

∗A057161 = (SPINE ∗A069774 ) (140)

Bijection *A057503 is known as Emeric Deutsch’s bijection ”Gamma” on Dyck paths, and it
can be defined as:

∗A057503 = (ENIPS ∗A057501 ) (141)

which definition of course can be opened, and represented as a fold:

(define (*A057503 s) (fold-right (lambda (x y) (append x (list y))) ’() s))

(142)
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We observe that bijections *A057162 and *A057503 are *A057164-conjugates of each other,
that is, we have:

∗A057162 = ∗A057164 ◦ ∗A057503 ◦ ∗A057164 (143)

or equally:
∗A057503 = ∗A057164 ◦ ∗A057162 ◦ ∗A057164 (144)

multiplying the both sides of the latter from the left with *A057164, leaves us with:

∗A057164 ◦ ∗A057503 = ∗A057162 ◦ ∗A057164 (145)

and it is easily seen both sides produce an identical result tree from any tree they are given as an
argument. (XXX – If one draws a few illustrations, that is!) It might help if we rewrite the right
side as:

∗A057164 ◦ ∗A057503 = ∗A069768 ◦ ∗A057508 ◦ ∗A057164 (146)

and because ∗A057508 ◦ ∗A057164 = ∗A057164 ◦ ∗A057508 = (RIBS ∗A057164 ) we get:

∗A057164 ◦ ∗A057503 = ∗A069768 ◦ (RIBS ∗A057164 ) (147)

11.11. Automorphism *A074679/*A074680

Fixed points counted by: LEFT (A019590).
Cycles counted by: LEFT (A001683).
Max. cycle lengths given by: A089410.
LCM’s of cycle lengths given by: A089410.
Lukasiewicz-word permuting: No.
Telescoping: No.
Compositions: *A074679 = *A57163 ◦ *A72796 ◦ *A69770 ◦ *A57163 ◦ *A72796 = *A69770

*A074680 = *A72796 ◦ *A57163 ◦ *A69770 ◦ *A72796 ◦ *A57163 = *A69770

Destructive variants using primi-
tives swap! and robl!/robr!:

(define (*a074679! s)

(cond ((pair? s) (cond ((pair? (cdr s)) (robl! s)) (else (swap!

s)

(define (*a074680! s)

(cond ((pair? s) (cond ((pair? (car s)) (robr! s)) (else (swap!

s)
Rotate binary tree, if possible, otherwise swap its sides.
How automorphism *A074679/A074680 will act transitively on the set of fourteen Catalan

structures of size 4, forming a single cycle, is shown below.

↔ ↔ ↔ ↔ ↔ ↔

l l

↔ ↔ ↔ ↔ ↔ ↔
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Figure 4: How automorphism *A074679/A074680 acts transitively on the set of fourteen binary
trees of 4 internal nodes, and on the corresponding Eulerian polygon triangulations.
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11.12. Automorphism *A057501/*A057502

Fixed points counted by: LEFT (A019590).
Cycles counted by: LEFT (A002995).
Max. cycle lengths given by: A057543.
.
Lukasiewicz-word permuting: No.
Telescoping: No.
Recursive compositions: *A057501 = (SPINE *A74680)

*A057502 = (ENIPS *A74679)
Compositions: *A057501 = *A57509 ◦ *A69770

*A057502 = *A69770 ◦ *A57510 = *A69888 ◦ *A82313

Constructive variant for A057501
using Lisp/Scheme built-in func-
tion append:

(define (*a057501 s)

(cond ((null? s) s)

(else (append (car s) (list (cdr s))))))

Destructive variants using primi-
tives swap! and robl!/robr!:

(define (*a057501! s)

(cond ((null? s))

((not (pair? (car s))) (swap! s))

(else (robr! s) (*a057501! (cdr s))))

s)

(define (*a057502! s)

(cond ((null? s))

((not (pair? (cdr s))) (swap! s))

(else (*a057502! (cdr s)) (robl! s)))

s)

Destructive variants using
gatomorphisms A074680 and
A074679:

(define (*a057501v2! s)

(cond ((pair? s) (*a074680! s) (*a057501v2! (cdr s))))

s)

(define (*a057502v2! s)

(cond ((pair? s) (*a057502v2! (cdr s)) (*a074679! s)))

s)
Rotate non-crossing chords (handshake) arrangements; Rotate root position of the general

trees.

Proposition 12. The following two identities hold:

∗A057501 = (SPINE ∗A074680 ) (148)

∗A057502 = (ENIPS ∗A074679 ) (149)

Proof. We prove (149) by substituting *A069770 for f , and *A072796 for g in lemma 10. Then

h = ∗A069770 ◦ ∗A072796 ◦ ∗A069770−1
cdr

= ∗A069770 ◦ ∗A072796 ◦ ∗A089850
= ∗A074679

(150)

The case (148) follows from the identity (ENIPS f)−1 = (SPINE f−1).
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Note. There is also a nice graphical proof for this.
The cycle counts are computed as

ccA057501(n) =
1

2n

∑

d|n

φ(
n

d
)

(
2d

d

)
−

C(n)

2
+ (if n is odd)

C(n−1
2 )

2 (151)

yielding
1, 1, 1, 2, 3, 6, 14, 34, 95, 280, 854, 2694, 8714, 28640, 95640, 323396, ...

which is the OEIS sequence A002995 shifted once left. Note that each cycle of automorphism *A057501
contains one or more cycles of automorphism *A057509, that is, the latter automorphism refines
the partitioning of the S-expressions effected by the former. Thus ccA057501(n) ≤ ccA057509(n) for
all n, which can also be seen from the above formula, whose first term is actually ccA057509(n),
i.e. A003239(n). Note that A002995(n + 1) = A003239(n) − A007595(n), when n is even and
≥ 2. Of the set of {Cn structures of size n}, all the C(n− 1) planted trees are fixed by automor-
phism *A057509

That the identity ∗A057501 = ∗A057509 ◦ ∗A069770 holds can be seen immediately by
comparing those definitions of *A057501 and *A057509 that use the function append.
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11.13. Automorphism *A057505/*A057506

Fixed points counted by: LEFT (A019590).
Cycles counted by: A057507.
Max. cycle lengths given by: A057545.
LCM’s of cycle lengths given by: A060114.
Lukasiewicz-word permuting: No.
Telescoping: No.
Recursive compositions: *A057505 = (KROF *A57501)

*A057506 = (FORK *A57502)
Compositions: *A057505 = *A57164 ◦ *A57163

*A057506 = *A57163 ◦ *A57164

Constructive, tail-recursive vari-
ants:

(define (*a057505 a)

(let loop ((a a) (b (list)))

(cond ((not (pair? a)) b)

(else (loop (car a) (cons (*a057505 (cdr a)) b))))))

(define (*a057506 a)

(let loop ((a a) (b (list)))

(cond ((not (pair? a)) b)

(else (loop (cdr a) (cons b (*a057506 (car a))))))))

Constructive, recursive variant
for *A057505 using Lisp/Scheme
built-in function append:

(define (*a057505v2 s)

(cond ((null? s) s)

(else (append (*a057505v2 (car s)) (list (*a057505v2 (cdr

The variant based on the trans-
formation explained in Don-
aghey’s paper:

(define (*a057505v3 s)

(with-input-from-string (list->string-strange s) read))

(define (list->string-strange s)

(string-append

"("

(with-output-to-string

(lambda ()

(let recurse ((s s))

(cond ((pair? s) (recurse (car s))

(write-string "(")

(recurse (cdr s))

(write-string ")"))))))

")"))

Destructive variants, built on
handshake rotates:

(define (*a057505! s)

(cond ((pair? s) (*a057505! (car s)) (*a057505! (cdr s)) (*a057501!

s)

(define (*a057506! s)

(cond ((pair? s) (*a057502! s) (*a057506! (car s)) (*a057506!

s)
Donaghey’s M.

A001405(n)
def
=

(
n

⌊n/2⌋

)
(152)

A001683(n)
def
=

1

n
C(n− 2) +

1

2
c(

n

2
− 1) +

2

3
c(

n

3
− 1) (153)
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A002995(n)
def
=

1

(2(n− 1))

∑

d|(n−1)

φ(
n− 1

d
)

(
2d

d

)

−
C(n− 1)

2
+ (if n is even)

C(n
2 − 1)

2

(154)

A003239(n)
def
=

1

(2n)

∑

d|n

φ(n/d)

(
2d

d

)
(155)

A007123(n)
def
=

C(n) +
(

n
⌊n/2⌋

)

2
(156)

A034731(n)
def
=

∑

d|n

C(d− 1) (157)

A073431(n)
def
=

1

2n−1

2n−1∑

i=1

A007814(i)∑

j=0

A073346(n, j)

def
= − 1 +

1

2n−2

2n−1∑

i=1

A073346(n, A007814(i))

def
=

1

2n

n∑

i=0

2n−i A073346(n, i)

def
=

∑

i=0..n

A074079(n, i)

(158)

12. Relations to other groups acting on other variants of binary trees

13. Open questions - XXX - vague ideas

• “Top-level” analysis of the automorphism group. For example, the whole group of automor-
phisms contains an alternating group (consisting only of automorphisms with even permu-
tations, e.g. automorphism *A089851, whose signature permutations contains only 3-cycles
and fixed points.) Lukasiewicz-word permuting automorphisms form a subgroup of their
own, and similarly initial-nil and other property reserving automorphisms. Automorphisms
that leave top-level cdr-spine intact (ones formed with e.g. RIBS-transformation)? Can we
say that the automorphisms that embed into Lukasiewicz-word permuting automorphisms in
scale n : 2n somehow form a subgroup? Yes, but of the whole group, not as a subgroup of
L-word permuting automorphisms. The self-embedding of binaryform trees induces a group
homomorphism from L-word preserving subgroup to whole automorphism group and still the
homomorphism has a non-trivial kernel, because from any automorphism g one can construct
a L-word preserving automorphism h where g embeds into, and this can be done in several
possible (uncountably many) ways. Note that this homomorphism has at least two fixed
points, the identity automorphism *A001477, and automorphism *A072797. XXX – Also
*A069775 and *A069776, to be proved.

It is easy to see that the subgroup of non-recursive automorphisms is not a normal subgroup.
However, the latter itself contains further subgroups, e.g. all form-preserving non-recursive
automorphisms of a single non-default clause with a particular tree shape of n leaves form a
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subgroup isomorphic with symmetry group Sn of n elements. Thus there are A000108(n −
1) subgroups isomorphic with Sn. (more?) Which of these subgroups are normal (with
respect to non-recursive group)? Which compositions are closed? Delve into non-recursive
automorphisms in more detail, in this same or separate paper.

• Automorphism group of Tamari-lattice (or actually, the corresponding rotation graphs) ?
automorphism *A057163 is always one of the generators.

• Groups formed by using more than one Catalan automorphism as generators. E.g. vari-
ous dihedral groups, composed of automorphism *A057161 and automorphism *A057163,
or automorphism *A057501 and automorphism *A057164, etc. “Artificial dihedral” groups,
like those composed of automorphism *A057511 and automorphism *A057164 or automor-
phism *A057509 and automorphism *A057508?

• Actions on Stern-Brocot tree (previous section), etc.?

• Actions on birds (lambda-calculus)? C.f. combinatorial ornithology. “Simple programs”. Use
Wolframesque plots.

• “Measures of chaoticity”? E.g. the sequences A081164 and A081166 for the automor-
phism *A057505. First differences of the max-cycle sequences? (if not monotone) Sort
the automorphisms according to the growth rate of their LCM-sequences. Involutions are
then “by definition” the least chaotic? Compare the fixpoint/cycle count ratios for these,
are there examples of diverging, “chaotic” behaviour? Again, chaoticity, can we define some-
thing like a “Lyapunov-exponent” for these? The underlying metric (whether a distance in
Tamari-lattice, position in A014486, or in the cycle of some yet-to-be-found-natural-transitive-
automorphism), will in any case favour some automorphisms over others. Develop a measure
of chaoticity (a function) about which something predictable can be said when two auto-
morphisms with known max-values or growth-rates of that function are composed. Then
prove that some automorphisms are not like the others. No, not at all. Like Meeussen’s
*A057117 and its bigger brother *A072088, maybe. (Compute the b-files for many signature-
permutations and their contractions and plot the graphs... E.g. compare the plot of A082364
with that of A038776. and A082363 with that of A070041 What do you see? Not much
difference. Well, compute further...) At least A072619’s graph seems to have something like
a seed for chaos...

• Analyze program time complexity (O(...) and all that) measures? Depends on the “funda-
mental substratum” upon which the act is done. E.g. automorphism *A057164 is quadratic
(XXX - at least sometimes?) when implemented as acting on S-expressions, while it is always
linear when implemented directly to act on A014486-codes.

• What is the most naturally defined automorphism that acts transitively on S-expressions of
all sizes? I.e. whose cycle-count sequence is A000012 (all-one sequence)?

• Find previously unknown manifestations of Catalania by searching through automatically
generated automorphisms with modestly (e.g. linearly) growing LCM-sequences? (or involu-
tions.) That is, find an automorphism of a structure before the structure itself!

• Nice visualizations of the global behaviour? E.g. using something like Tamari-lattice (or all
binary trees arranged in a spiral fashion, etc.), and then drawing each cycle on it with a dif-
ferent colour, or at slightly different height, if a kind of 3D-visualization is used. Visualization
which would highlight various instances self-embeddability?
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