
42nd United States of America Mathematical Olympiad

Day I, II 12:30 PM – 5 PM EDT

April 30 - May 1, 2013

USAMO 1. First Solution: Assume that ωB and ωC intersect again at another point S (other than
P ). (The degenerate case of ωB and ωC being tangent at P can be dealt similarly.) Because
BPSR and CPSQ are cyclic, we have ∠RSP = 180◦−∠PBR and ∠PSQ = 180◦−∠QCP .
Hence, we obtain

∠QSR = 360◦−∠RSP −∠PSQ = ∠PBR+∠QCP = ∠CBA+∠ACB = 180◦−∠BAC;

from which it follows that ARSQ is cyclic; that is, ωA, ωB, ωC meet at S. (This is Miquel’s
theorem.)

Because BPSY is inscribed in ωB, ∠XY S = ∠PY S = ∠PBS. Because ARXS is in-
scribed in ωA, ∠SXY = ∠SXA = ∠SRA. Because BPSR is inscribed in ωB, ∠SRA =
∠SPB. Thus, we have ∠SXY = ∠SRA = ∠SPB. In triangles SY X and SBP , we have
∠XY S = ∠PBS and ∠SXY = ∠SPB. Therefore, triangles SY X and SBP are similar
to each other, and, in particular,

Y X

BP
=

SX

SP
.

Similar, we can show that triangles SXZ and SPC are similar to each other and that

SX

SP
=

XZ

PC
.

Combining the last two equations yields the desired result.
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This problem and solution were suggested by Zuming Feng.

Second Solution: Assume that ωB and ωC intersect again at another point S (other
than P ). (The degenerate case of ωB and ωC being tangent at P can be dealt with
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similarly.) Because BPSR and CPSQ are cyclic, we have ∠RSP = 180◦ − ∠PBR and
∠PSQ = 180◦ − ∠QCP . Hence, we obtain

∠QSR = 360◦−∠RSP −∠PSQ = ∠PBR+∠QCP = ∠CBA+∠ACB = 180◦−∠BAC;

from which it follows that ARSQ is cyclic; that is, ωA, ωB, ωC meet at S. (This is Miquel’s
theorem.)

Because BPSY is inscribed in ωB, ∠XY S = ∠PY S = ∠PBS. Because ARXS is in-
scribed in ωA, ∠SXY = ∠SXA = ∠SRA. Because BPSR is inscribed in ωB, ∠SRA =
∠SPB. Thus, we have ∠SXY = ∠SRA = ∠SPB. In triangles SY X and SBP , we have
∠XY S = ∠PBS and ∠SXY = ∠SPB. Therefore, triangles SY X and SBP are similar
to each other, and, in particular,

Y X

BP
=

SX

SP
.

Similar, we can show that triangles SXZ and SPC are similar to each other and that

SX

SP
=

XZ

PC
.

Combining the last two equations yields the desired result.

A

B C

P

Q
R

X

Y

Z

S

We consider the configuration shown in the above diagram. (We can adjust the proof
below easily for other configurations. In particular, our proof is carried with directed
angles modulo 180◦.)

Line RY intersects ωA again at TY (other than R). Because BPY R is cyclic, ∠TY Y X =
∠TY Y P = ∠RBP = ∠ABP . Because ARXTY is cyclic, ∠XTY Y = ∠XAR = ∠PAB.
Hence triangles TY Y X and ABP are similar to each other. In particular,

∠Y XTY = ∠BPA and
Y X

BP
=

XTY

PA
. (1)

Likewise, if line QZ intersect ωA again at TZ (other than R), we can show that triangles
TZZX and ACP are similar to each other and that

∠TZXZ = ∠APC and
XTZ

PA
=

XZ

PC
. (2)
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In the light of the second equations (on lengths proportions) in (1) and (2), it suffices to
show that TZ = TY . On the other hand, the first equations (on angles) in (1) and (2)
imply that X,TY , TZ lie on a line. But this line can only intersect ωA twice with X being
one of them. Hence we must have TY = TZ , completing our proof.

Comment: The result remains to be true if segment AP is replaced by line AP . The
current statement is given to simplify the configuration issue. Also, a very common mistake
in attempts following the second solution is assuming line RY and QZ meet at a point on
ωA.

This solution was suggested by Zuming Feng.

USAMO 2. First Solution. We will show that an = 1
3
(2n+1 + (−1)n). This would be sufficient, since

then we would have

an−1 + an = 1
3
(2n + (−1)n−1) + 1

3
(2n+1 + (−1)n) = 1

3
(2n + 2 · 2n) = 2n.

We will need the fact that for all positive integers n

bn/2c∑
k=0

(
n− k

k

)
2k = 1

3
(2n+1 + (−1)n).

This may be established by strong induction. To begin, the cases n = 1 and n = 2 are
quickly verified. Now suppose that n ≥ 3 is odd, say n = 2m + 1. We find that

m∑
k=0

(
2m + 1− k

k

)
2k = 1 +

m∑
k=1

(
2m− k

k

)
2k +

m∑
k=1

(
2m− k

k − 1

)
2k

=
m∑
k=0

(
2m− k

k

)
2k + 2

m−1∑
k=0

(
2m− 1− k

k

)
2k

= 1
3
(22m+1 + 1) + 2

3
(22m − 1)

= 1
3
(22m+2 − 1),

using the induction hypothesis for n = 2m and n = 2m− 1. For even n the computation
is similar, so we omit the steps. This proves the claim.

We now determine the number of ways to advance around the circle twice, organizing our
count according to the points visited both times around the circle. It is straight-forward to
check that no two such points may be adjacent, and that there are exactly two sequences
of moves leading from any such point to the next. (These sequences involve only moves
of length two except possibly at the endpoints.) Hence given k ≥ 1 points around the
circle, no two adjacent and not including point A, there would appear to be 2k ways to
traverse the circle twice without repeating a move. However, half of these options lead to
repeating the same route twice, giving 2k−1 ways in actuality. There are

(
n−k
k

)
ways to

select k nonadjacent points on the circle not including A (add an extra point behind each
of k chosen points), for a total contribution of

bn/2c∑
k=1

(
n− k

k

)
2k−1 =

1

2

[
−1 +

bn/2c∑
k=0

(
n− k

k

)
2k

]
= 1

6
(2n+1 + (−1)n)− 1

2
.
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On the other hand, if the k ≥ 1 nonadjacent points do include point A then there are(
n−k−1
k−1

)
ways to choose them around the circle. (Select A but not the next point, then add

an extra point after each of k − 1 selected points.) But now there are actually 2k ways to
circle twice, since we can choose either move at A and the subsequent points, then select
the other options the second time around. Hence the contribution in this case is

bn/2c∑
k=1

(
n− k − 1

k − 1

)
2k = 2

b(n−2)/2c∑
k=0

(
n− 2− k

k

)
2k = 2

3
(2n−1 + (−1)n).

Finally, if n is odd then there is one additional way to circle in which no point is visited
twice by using only steps of length two, giving a contribution of 1

2
(1− (−1)n). Therefore

the total number of paths is

1
6
(2n+1 + (−1)n)− 1

2
+ 2

3
(2n−1 + (−1)n) + 1

2
(1− (−1)n),

which simplifies to 1
3
(2n+1 + (−1)n), as desired.

This problem and solution were suggested by Sam Vandervelde.

Second Solution: We give a bijective proof of the identity

an = an−1 + 2an−2,

which immediately implies that an + an−1 = 2(an−1 + an−2). Since trivially a0 = a1 = 1
(or alternatively a1 = 1, a2 = 3), the desired identity will then follow by induction on n.

To construct the bijection, it is convenient to introduce some alternate representations
for the sequences we are counting. Label the points P0, . . . , Pn−1 in order, and define
Pi+n = Pi. One can then represent the sequences to be counted by listing the sequence of
vertices Pi0Pi1 . . . Pim visited by the marker, with the conventions that i0 = 0, im = 2n,
and ij+1 − ij ∈ {1, 2} for j = 0, . . . ,m − 1. One can represent such sequences of vertices
in turn by 2× (n + 1) matrices A by setting

Aij =

{
1 Pni+j is visited

0 Pni+j is not visited
(i = 0, 1; j = 0, . . . , n).

Such a matrix A corresponds to a valid sequence if and only if A00 = A1n = 1 (so the
sequence of steps starts and ends at P0), A0n = An0 (so the sequence of steps is well-defined
at Pn), and there are no submatrices of any of the forms(

0 0
)
,

(
0
0

)
,

(
1 1
1 1

)
(to exclude steps of length greater than 2, duplication of a length 2 step, and duplication
of a length 1 step). For example, the valid sequences for n = 3 are represented by the
matrices(

1 0 1 0
0 1 0 1

)
,

(
1 0 1 0
0 1 1 1

)
,

(
1 1 0 1
1 0 1 1

)
,

(
1 1 1 0
0 1 0 1

)
,

(
1 0 1 1
1 1 0 1

)
.
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Let Sn be the set of valid 2×(n+1) matrices. The correspondence Sn−2tSn−2tSn−1 ∼= Sn

can then be described by replacing the right end of the matrix in the following fashion,
where · · · represents any row of length n− 2.(

· · · 1
· · · 1

) (
· · · 1 1 1
· · · 1 0 1

)
,

(
· · · 1 0 1
· · · 1 1 1

)
(
· · · 0
· · · 1

) (
· · · 0 1 0
· · · 1 0 1

)
,

(
· · · 0 1 0
· · · 1 1 1

)
(
· · · 0 1
· · · 1 1

) (
0 1 1
1 0 1

)
(
· · · 1 1
· · · 0 1

) (
1 0 1
0 1 1

)
(
· · · 1 0
· · · 1 1

) (
1 1 0
1 0 1

)
(
· · · 1 0
· · · 0 1

) (
1 1 0
0 1 1

)
From this description, it is easy to see that passing from one side to the other preserves
the boundary condition and the excluded submatrix conditions (because every submatrix
whose entries are not all shown remains unchanged). We thus have the claimed bijection.

This solution was suggested by Kiran Kedlaya.

Third Solution: This solution uses some of the same notation as the second solution.

We first solve a related but simpler counting problem. Let Sn be the set of sequences of
steps of lengths 1 or 2 of total length n. For each sequence s ∈ Sn, let b(s) be the number
of steps of length 2 in s and define fn =

∑
s∈Sn

2b(s). It is clear that f0 = f1 = 1. For
n ≥ 2, we also have

fn = fn−1 + 2fn−2

by counting sequences of length n according to whether they end in a step of length 1 or
2. Thus

fn + fn−1 = 2(fn−1 + fn−2),

from which it follows by induction on n that fn + fn−1 = 2n for n ≥ 1. By induction on
n, we also have

fn =
2n + (−1)n

3
.

We now write an in terms of fn. Label the points of the circle as in the previous solution.
We may separate sequences of moves into three types.

1. Sequences that visit Pn but not Pn−1. Such a sequence starts with some s ∈ Sn−2
followed by a step of length 2. The number of complements for s (i.e., the number of
ways to complete it to a full sequence) can be seen to be 2b(s) as follows. If we decide
in order whether to skip each of Pn+1, . . . , P2n, then the choice for Pn+i is uniquely
forced if A0(i−1) = 1 and unrestricted if A0(i−1) = 0. In the notation of the previous
solution, we may see this by noting that(

A0(i−1) A0i

A1(i−1) A1i

)
∈
{(

1 1
0 1

)
,

(
1 1
1 0

)
,

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)}
.
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(This logic does not apply to P2n: we have A0(n−1) = 0 but must take A1(2n) = 1.)
We thus get fn−2 sequences of this type.

2. Sequences that visit Pn−1 but not Pn. Such a sequence starts with some s ∈ Sn−1
followed by a step of length 2. There are fn−1 sequences of this type.

3. Sequences that visit both Pn−1 and Pn. Such a sequence starts with some s ∈ Sn−1
followed by a step of length 1. Here the count is complicated by the constraint that
we must skip P2n−1, so the final step of length 2 does not create an option. Therefore,
s contributes 2b(s)−1 complements if b(s) > 0. The only case where b(s) = 0 is when
s consists of only steps of length 1, in which case we get 1 complement if n is even
and 0 complements if n is odd.

Putting this together, we get

an = fn−2 + fn−1 +
1

2
(fn−1 + (−1)n)

=
2n−2 + (−1)n−2

3
+

2n−1 + (−1)n−1

3
+

2n−1 + (−1)n−1

6
+

(−1)n

2

=
2n + (−1)n

3

and so an−1 + an = 2n as desired.

Remark. The sequence an is known as the Jacobsthal sequence and has many other
combinatorial interpretations. See sequence A001045 in the Online Encyclopedia of Integer
Sequences: http://oeis.org.

This solution was suggested by Kiran Kedlaya.

USAMO 3. For n = 1 the answer is clearly 1, since there is only one configuration other than the
initial one, and that configuration takes 1 step to get to. From now on we will consider
n ≥ 2.

Note that there are 3n possible operations in total, since we can select 3n lines to perform
an operation on (n lines parallel to each side of the triangle.) Performing an operation twice
on the same line is equivalent to doing nothing. Hence, we will describe any combination
of operations as a triple of n-tuples ((a1, a2, . . . , an), (b1, b2, . . . , bn), (c1, c2, . . . , cn)), where
each element ai, bi, ci is either 0 or 1 (0 means no operation, 1 means the opposite), each
tuple of the triple denotes operating on a line parallel to one of the sides, and the indices,
i.e. 1, 2, . . . , n, denote the number of marks in the row of operation. Let A denote the set
of all such 3n-tuples. Hence |A| = 23n.

Let B denote the set of all admissible configurations. Let N =
n(n + 1)

2
. We will describe

each element of B by an N -tuple (z1, z2, . . . , zN), where each element is either 0 or 1 (0
means black, 1 means white). (Which element refers to which position is not important.)

For each element a ∈ A, let b = f(a) be the element of B that is the result of applying
the operations in a. Then f(a + a′) = f(a) + f(a′) for all a, a′ ∈ A, where addition is
considered in modulo 2. Let K be the set of all a ∈ A such that f(a) is the all-black
configuration. The following eight elements are easily seen to be in K.
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• ((0, 0, . . . , 0), (0, 0, . . . , 0), (0, 0, . . . , 0)) = id

• ((0, 0, . . . , 0), (1, 1, . . . , 1), (1, 1, . . . , 1)) = x

• ((1, 1, . . . , 1), (1, 1, . . . , 1), (0, 0, . . . , 0)) = y

• ((1, 1, . . . , 1), (0, 0, . . . , 0), (1, 1, . . . , 1)) = x + y

• ((0, 1, 0, 1, . . . ), (0, 1, 0, 1, . . . ), (0, 1, 0, 1, . . . )) = z

• ((0, 1, 0, 1, . . . ), (1, 0, 1, 0, . . . ), (1, 0, 1, 0, . . . )) = x + z

• ((1, 0, 1, 0, . . . ), (1, 0, 1, 0, . . . ), (0, 1, 0, 1, . . . )) = y + z

• ((1, 0, 1, 0, . . . ), (0, 1, 0, 1, . . . ), (1, 0, 1, 0, . . . )) = x + y + z

We will show that they are the only elements of K.

Suppose L = ((a1, a2, . . . , an), (b1, b2, . . . , bn), (c1, c2, . . . , cn)) is in K. Then ai + bj + ck = 0
whenever i + j + k = 2n + 1 (why this is is left as an exercise for the reader.) By
adding x and/or y if necessary, we will assume that bn = cn = 0. Since a2 + bn−1 + cn =
a2 + bn + cn−1 = 0, we have that bn−1 = cn−1. There are two cases:

(a) bn−1 = cn−1 = 0. Then from a3 + bn−2 + cn = a3 + bn−1 + cn−1 = a3 + bn + cn−2, we
have that bn−2 = cn−2 = 0. Continuing in this manner (considering equalities with
a4, a5, . . .), we find that all the bi’s and ci’s are 0, from which we deduce that L = id.

(b) bn−1 = cn−1 = 1. Then from a3 + bn−2 + cn = a3 + bn−1 + cn−1 = a3 + bn + cn−2, we
have that bn−2 = cn−2 = 0. Continuing in this manner (considering equalities with
a4, a5, . . .), we find that (b1, b2, . . . , bn) = (c1, c2, . . . , cn) = (. . . , 1, 0, 1, 0), from which
we deduce that either L = z or L = x + z.

Hence L is one of the eight elements listed above. It follows that the 23n elements of A
form 23n−3 sets, each set corresponding to an element of B. For each element a ∈ A, let
x1 be the number of a1, a3, . . . that are 1, and let x2 be the number of a2, a4, . . . that are
1. Define y1, y2, z1, and z2 similarly with the bi’s and ci’s. We want to find the element in
the set containing a that has the smallest value of T = x1 + x2 + y1 + y2 + z1 + z2. The
maximum of this value over all the sets is the desired answer.

We observe that an element a ∈ A has the minimal value of T in its set if and only if it
satisfies the following inequalities:

(a) x1 + x2 + y1 + y2 ≤ n

(b) x1 + x2 + z1 + z2 ≤ n

(c) y1 + y2 + z1 + z2 ≤ n

(d) x2 + y2 + z2 ≤
⌊

3bn/2c
2

⌋
= V

(e) x1 + y1 + z2 ≤
⌊

2dn/2e+ bn/2c
2

⌋
= W

(f) x2 + y1 + z1 ≤
⌊

2dn/2e+ bn/2c
2

⌋
= W
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(g) x1 + y2 + z1 ≤
⌊

2dn/2e+ bn/2c
2

⌋
= W

We wish to find the maximal value of T that an element satisfying all these inequalities

can have. Adding the last four inequalities and dividing by 4, we obtain T ≤
⌊
V + 3W

2

⌋
.

We consider four cases:

(a) n = 4k. V = W = 3k, and so T ≤ 6k. We can choose x1 = x2 = y1 = y2 = z1 = z2 =
k to attain the bound.

(b) n = 4k + 1. V = 3k and W = 3k + 1, and so T ≤ 6k + 1. We can choose
x1 = x2 = y1 = y2 = z2 = k and z1 = k + 1 to attain the bound.

(c) n = 4k + 2. V = 3k + 1 and W = 3k + 1, and so T ≤ 6k + 2. We can choose
x1 = x2 = y1 = y2 = k and z1 = z2 = k + 1 to attain the bound.

(d) n = 4k + 3. V = 3k + 1 and W = 3k + 2, and so T ≤ 6k + 3. We can choose
x1 = x2 = y2 = k and y1 = z1 = z2 = k + 1 to attain the bound.

This concludes our proof.

This problem and solution were suggested by Warut Suksompong.

USAMO 4. First Solution: Let a, b, c be nonnegative real numbers such that x = 1 + a2, y = 1 + b2

and z = 1+c2. We may assume that c ≤ a, b, so that the condition of the problem becomes

(1 + c2)(1 + (1 + a2)(1 + b2)) = (a + b + c)2.

The Cauchy-Schwarz inequality yields

(a + b + c)2 ≤ (1 + (a + b)2)(c2 + 1).

Combined with the previous relation, this shows that

(1 + a2)(1 + b2) ≤ (a + b)2,

which can also be written (ab− 1)2 ≤ 0. Hence ab = 1 and the Cauchy-Schwarz inequality
must be an equality, that is, c(a+ b) = 1. Conversely, if ab = 1 and c(a+ b) = 1, then the
relation in the statement of the problem holds, since c = 1

a+b
< 1

b
= a and similarly c < b.

Thus the solutions of the problem are

x = 1 + a2, y = 1 +
1

a2
, z = 1 +

(
a

a2 + 1

)2

for some a > 0, as well as permutations of this. (Note that we can actually assume a ≥ 1
by switching x and y if necessary.)

This problem and solution were suggested by Titu Andreescu.
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Second Solution: We maintain the notations in the first solution and again consider the
equation

(a + b + c)2 = 1 + c2 + (1 + a2)(1 + b2)(1 + c2).

Expanding both sides of the equation yields

a2 + b2 + c2 + 2ab + 2bc + 2ca = 1 + c2 + 1 + a2 + b2 + c2 + a2b2 + b2c2 + c2a2 + a2b2c2

or
a2b2c2 + a2b2 + b2c2 + c2a2 − 2ab− 2bc− 2ca + c2 + 2 = 2(ab + bc + ca).

Setting (u, v, w) = (ab, bc, ca), we can write the above equation as

uvw + u2 + v2 + w2 − 2u− 2v − 2w +
vw

u
+ 2 = 2(u + v + w).

which is the equality case of the sum of the following three special cases of the AM-GM
inequality:

uvw +
vw

u
≥ 2vw, v2 + w2 + 2vw + 1 = 2(v + w) ≥ 0, u2 + 1 ≥ 2u.

Hence we must have the equality cases these AM-GM inequalities; that is, ab = u = 1 and
a(b + c) = v + w = 1. We can then complete our solution as we did in the first solution.

This solution was suggested by Zuming Feng.

USAMO 5. For a given positive integer k, write 10km − n = 2r5st, where gcd(t, 10) = 1. For large
enough values of k the number of times 2 and 5 divide the left-hand side is at most the
number of times they divide n, hence by choosing k large we can make t arbitrarily large.
Choose k so that t is larger than either m or n.

Since t is relatively prime to 10 there is a smallest exponent b for which t | (10b − 1).
Thus b is the number of digits in the repeating portion of the decimal expansion for 1

t
.

More precisely, if we write tc = (10b − 1), then the repeating block is the b-digit decimal
representation of c, obtained by prepending extra initial zeros to c as necessary. Since t
is larger than m or n, the decimal expansions of m

t
and n

t
will consist of repeated b-digit

representations of cm and cn, respectively. Rewriting the identity in the first line as

10k
(m
t

)
= 2r5s +

n

t
,

we see that the decimal expansion of n
t

is obtained from that of m
t

by shifting the decimal
to the right k places and removing the integer part. Thus the b-digit representations of
cm and cn are cyclic shifts of one another. In particular, they have the same number of
occurrences of each nonzero digit. (Because they may have different numbers of leading
zeros as b-digit numbers, the number of zeros in their decimal expansions may differ.)

This problem and solution were suggested by Richard Stong.

USAMO 6. We consider the left-hand side configuration shown below. Let OB and ωB (OC and ωC)
denote the circumcenter and circumcircle of triangle ABP (ACP ) respectively. Line ST ,
with S on ωB and T on ωC , is one of the common tangent lines of the two circumcircles.
Point X lies on segment ST . Point Y lies on the other common tangent line.
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A

B

C
P

OB

OC

S

T

X

Y

M OB

OC

A

B C
P

M

We will start with the following simple and well known geometry facts.

Let M be the intersection of segments XY and OBOC . By symmetry, M is the midpoint
of both segments AP and XY , and line OBOC is the perpendicular bisector of segments
XY and AP . By the power-of-a-point theorem,

XS2 = XA ·XP = XT 2 and X is the midpoint of segment ST . (3)

Triangles ABC and AOBOC are similar to each other, which is the so called Salmon
theorem. Indeed, ∠ABC = ∠MOBA = ∠OCOBA, because each angle is equal to half of

the angular size of arc
︷︷
AP of ωB. Likewise, ∠OBOCA = ∠C. In particular, we have

AB

AOB

=
BC

OBOC

=
CA

OCA
(4)

Set AB = c, BC = a, and CA = b. We will establish the following key fact in two
approaches.

1−
(
PA

XY

)2

=
BC2

(AB + AC)2
=

a2

(b + c)2
. (5)

With this fact, the given condition in the problem becomes

PB · PC

AB · AC
=

a2

(b + c)2
or PB · PC =

a2bc

(b + c)2
. (6)

There are precisely two points P1 and P2 (on segment BC) satisfying (6): AP1 is the
bisector of ∠BAC and P2 is the reflection of P1 across the midpoint of segment BC.
Indeed, by the angle-bisector theorem, P2C = P1B = ac

b+c
and P2B = P1C = ab

b+c
, from

which (6) follows.

In order to settle the question, it remains to show that we can’t have more than two points
satisfying (6). We just write (6) as

a2bc

(b + c)2
= PB · PC = PB · (a− PB).
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This a quadratic equation in PB, which can have at most two solutions.

Solution 1. Rays OBX and OCT meet in W . Because of (3) and OBS ‖ OCT , triangles
OBSX and WTX are congruent to each other. Hence OBX = XW and triangles OBXOC

and WXOC have the same area. Note that XM and XT are altitudes in triangles OBXOC

and WXOC respectively. Hence

XY ·OBOC

4
=

XM ·OBOC

2
=

XT ·OCW

2
=

ST · (OCT + TW )

4
=

ST · (OCT + OBS)

4
.

By (4), we can write the above equation as

XY

ST
=

OCT + OBS

OBOC

=
OCA + OBA

OBOC

=
AB + AC

BC
or

XY 2

ST 2
=

(b + c)2

a2
. (7)

Note that OBSTOC is a right trapezoid. Let U be the foot of the perpendicular from OC

on OBS. We have

ST 2 = UO2
C = OBO

2
C −OSU

2 = OBO
2
C − (OBS −OCT )2 = OBO

2
C − (OBA−OCA)2.

By (4), we can write the above equation as

ST 2 =
OBO

2
C

BC2
(BC2−(BA−CA)2) =

OBO
2
C

BC2
(a2−(b−c)2) =

OBO
2
C

BC2
(a+b−c)(a−b+c). (8)

Multiplying (7) and (8) together gives

XY 2 =
OBO

2
C

BC2
· (a + b− c)(a− b + c)(b + c)2

a2
. (9)

Let ha denote length of the altitude from A to side BC in triangle ABC. Then ha and
AM are corresponding parts in similar triangles ABC and AOBOC , and so

OBO
2
C

BC2
=

AM2

h2
a

=
AM2

4h2
a

. (10)

Multiplying (9) and (10) together gives

XY 2 =
AP 2

4h2
a

· (a + b− c)(a− b + c)(b + c)2

a2

By Heron’s formula, we have

AP 2

XY 2
=

4h2
aa

2

(a + b− c)(a− b + c)(b + c)2
=

(a + b + c)(b + c− a)

(b + c)2
=

(b + c)2 − a2

(b + c)2
= 1− a2

(b + c)2
,

from which (5) follows.
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Solution 2. By the power-of-a-point theorem, we have XA ·XP = XS2. Therefore,

1−
(
PA

XY

)2

=
XY 2 − PA2

XY 2
=

(XY + PA)(XY − PA)

XY 2
=

4XA ·XP

XY 2
=

4XS2

XY 2

ST 2

XY 2
.

(11)
Let S1 and T1 be the feet of the perpendiculars from S and T to line OBOC . It is easy to
see that right triangles OBSS1, OCTT1, OSOCU are similar to each other. Note also that
XM is the midline of right trapezoid S1STT1 (because of (3)). Therefore, we have

ST

OBOC

=
UOC

OBOC

=
S1S

OBS
=

T1T

OCT
=

S1S + T1T

OBS + OCT
=

2XM

OBS + OCT
=

XY

OBS + OCT
,

or, by (4),
ST

XY
=

OBOC

OBS + OCT
=

OBOC

OBA + OCA
=

BC

BA + CA
=

a

b + c
. (12)

It is clear that (5) follows from (11) and (12).

This problem and Solution 1 were suggested by Titu Andreescu and Cosmin Pohoata.
Solution 2 was suggested by Zuming Feng.
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