NHK STRL at TRECVID 2010: Semantic Indexing and
Surveillance Event Detection

Yoshihiko Kawai Masaki Takahashi ™

Mabhito Fujii ' Masahide Naemura

Shin’ichi Sato

fScience and Technical Research Laboratories, NHK, 1-10-11 Kinuta, Setagaya-ku, Tokyo, Japan
'The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa, Japan
$National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

1 Introduction

NHK Science and Technical Research Laboratories (NHK
STRL) participated in two tasks at TRECVID 2010: se-
mantic indexing (full submission) and surveillance event
detection.

For the semantic indexing task, we used a method
based on the bag-of-features approach [1, 2]. This ap-
proach has been shown to be effective in general object
recognition and in past work at TRECVID [3]. The
proposed method aims to improve detection accuracy
by combining gradient features in the local region with
global features such as texture and color distribution.
At TRECVID 2010, the length of video datasets and the
number of target concepts increased significantly com-
pared to the previous year, and reducing computational
cost became an important issue. We use random forests
[4] instead of the support vector machine (SVM) widely
used in existing techniques as a classification algorithm
to reduce the computational time needed for training and
detection.

For the surveillance event detection task, we targeted
“Pointing,” “CellToEar,” and “ObjectPut” events. Our
proposed system identifies these events based on the bag-
of-features approach. We used a fixed-dimensional fea-
ture descriptor that was extracted from a key-point tra-
jectory as a feature. A feature weight was calculated for
reducing the interference of noise trajectories in the back-
ground regions. Our system achieved a relatively strong
performance with these small human behaviors.

This paper is organized as follows. In section 2, we
describe the proposed method for the semantic indexing
task in detail and present experimental results. In section
3, we describe the proposed method for the surveillance
event detection task in detail and present the results of
its evaluation. We conclude the paper in section 4.

2 Semantic indexing task
The proposed system for semantic indexing is shown in

Figure 1. The basic configuration of the system is about
the same as the NHK system used at TRECVID 2009,

but enhancements have been made to the number of
keyframes for each shot, types of global features, and
classification algorithm.

First, the system extracts keyframes from each shot. It
extracts a total of three frames, one each from the begin-
ning, middle, and end of a shot, and uses these frames as
representative pictures of the shot. It then calculates lo-
cal features and global features from extracted keyframes
and creates feature vectors by concatenating these fea-
tures. For local features, the system first calculates key-
points and feature descriptors from each keyframe using
two algorithms, namely, SIFT [6] and SURF [7]. Then,
for the output of each algorithm, it obtains visual words
by clustering the extracted features and computes feature
vectors based on the frequency of appearance of visual
words. Here, we use a weighting technique [8] that takes
the distance between a keypoint and visual words into
account. For global features, we use color moment, Haar
wavelet texture, and local binary pattern [9] for each grid
region. Finally, we use the random forests method to
classify the feature vectors, and we determine whether
the target concepts are included in the shot. The ran-
dom forest classifier is trained beforehand for each con-
cept. The following describes each process in detail.

2.1 Local feature

The proposed method uses SIFT [6] and SURF [7] to
calculate local features. We expect that combining two
different algorithms ensures that important points of in-
terest will be detected and the features of an object to
be captured accurately. The method calculates feature
vectors for each grid region, as shown in Figure 2, so
that positional information within the frame image can
be taken into consideration. For the number of divisions
of the grid, we decided on 2 x 2 and 1 x 3 after reviewing
the experimental results of previous work [10].

To create feature vectors, we use a method that con-
siders the distance between a feature descriptor at a de-
tected keypoint and a visual word. This differs from
the conventional method, which allocates a detected key-

Local feature
G - - - - - - -- - |
| Weighted)
SIFT
—T 7 feature vector _‘»
| |
N SURF L, Weighted ‘
5 : feature vector T’
— [%2]
| R
§ | Glovalfeawe _ ______________ .| 8
g | | g |
E —> Color moment ! g
E‘ ! I @
X _L Haar wavelet ‘
I texture I
! I
| -
|l Local binary l
| pattern |
L o o L L L L L L L L L - a

Figure 1: Overview of semantic indexing.

keyframe

TN

RN
AN VL

(V11,V12,V13,V14, V21,V22,V23)

Figure 2: Calculation of local feature vector

point to one visual word, and is based on the idea that
one keypoint can belong to a number of visual words.
When there are K visual words, we calculate a K-
dimensional feature vector T' = (t1,...,lg,...,tx). We
calculate each vector element ¢, by using the following
equation [8]:

N oMo
tp = Z Z y—_lszm(pj, k), (1)

i=1 j=1

where M; denotes the total number of keypoints at which
the ith closest visual word is vy, and sim(p;,vx) denotes
the degree of similarity between keypoint p; and the vi-
sual word vg. N is a constant that denotes the depth of
distance considered, where IV is set to 4 for the proposed
method, in a similar manner to a previous study [8].

2.2 Global feature
Our method uses three kinds of global feature.

2.2.1 Color moment

The color moment feature represents the color distri-
bution in an image. We convert the input image into

the HSV color space and L*a*b* color space and calcu-
late the average pixel value p., the standard deviation
o, and the cube root of skew s. for each component c
(c € {h,s,v,l,a,b}). We divide the image into a 5 x 5
grid, calculate p., 0., and s, for each grid region, then
link them to form a feature vector.

2.2.2 Haar wavelet texture

The Haar wavelet reflects texture in an image. We di-
vide the input image into a 3 x 3 grid and apply two-
dimensional Haar wavelet transforms in three stages to
each grid region. We then calculate the variance of lu-
minance values for each subband region and link them
together to obtain a feature vector.

2.2.3 Local binary pattern

A local binary pattern (LBP) [9] denotes the density
magnitude pattern of pixels surrounding the target pixel.
The equation of the LBP Lp g that is calculated from P
pixels around the circumference of a circle of radius R is:

LP,R(‘rv y) =
Yoo 0pr(Tpyp) if Upr(z,y)<2 2)
P+1 otherwise ’

where dp g is a function that returns 1 if the luminance
value of the surrounding pixels (z + xp,y + yp) is greater
than that of the target pixel (z,y), or 0 if it is smaller.
Here, z, = RCOS% and y, = Rsin 2%. The Upr
denotes the total number of times that 0 and 1 change

in the dp r sequence, which is given by:

Up,r(%,y) = |6p,r(x P, yp)|
P—1
+ Y 165, R(2p, Yp) — 5P R(Tp1, Ypa)]. (3)
p=1
To achieve scale invariance, we calculate the frequency
histogram of Lpr(0 < Lpr < P + 1) for three combi-
nations of (P, R) = (8,1), (16,2), (24,3) and link them
together to obtain a feature vector.

2.3 Random forests method
The random forests method [4] is used to determine
whether an input keyframe has a specific concept. Ran-
dom forests is a kind of ensemble learning, and it gives
highly accurate classifications by using a combination of
decision trees (CART) [11]. Some researchers assert that
random forests is superior to methods such as bagging
or boosting in certain cases. In addition, random forests
can complete the learning process in a short time even
for high-dimension feature vectors by searching for the
best feature for the branching node in a subset of vector
elements.

The random forests algorithm works well when the
training data for two classes (including and not-including

Table 1: Settings of each run.

Run [System ID [Training type [# of trees

1 NHKSTRL1 A 500
2 NHKSTRL2 A 200
3 | NHKSTRL3 A 100

Table 2: Mean infAP of each run.
Run [mean InfAP

1 0.0349
2 0.0344
3 0.0338

the concept) are roughly the same in number, but the
classification error is rather unbalanced when one class
is much larger than the other. The conventional method
attempts to resolve the problem by applying a higher
weight to the smaller class [4]. However, the bootstrap
samples generated by the conventional method contain
few data with high weights and many data with low
weights, and this situation could cause over-training.
Thus, we propose a new sampling method for creating
the bootstrap samples; it ensures that each class is se-
lected with equal probability. The data is selected with
replacement and is not weighted. If the number of boot-
strap samples is small relative to the amount of training
data, various data are also selected from the minority
class, making it possible to generate a classifier with high
generalization capability.

2.4 Experiments
2.4.1 Settings

Three settings were used in the experiments, as shown
in Table 1. The training type was type A (only IACC
training data were used) in all runs, and the number of
decision trees built in random forests was changed for
each run. The results of collaborative annotation were
used as label data for training purposes.

2.4.2 Experimental results

The evaluation results for each run are summarized in
Table 2. The mean inferred average precision (infAP)
of Run 1 was 0.0349, the highest precision of all three
runs. Run 2 had the next highest precision and Run
3 the lowest. The difference in precision among these
three runs was slight, indicating that varying the number
of decision trees did not lead to a significant change in
precision.

Precision results for each concept in Run 1 are listed
in Table 3. The concept with the highest precision was
“115 Swimming” (infAP score of 0.329). This level of
precision was much higher than those of other partici-
pants. We believe that features we used such as texture
and color were very effective. The infAP scores for the
other concepts were around 0.05. To achieve even higher

Table 3: Results of semantic indexing (Run 1).

| Concept | infAP
4 | Airplane_Flying 0.030
6 | Animal 0.014
7 | Asian_People 0.002
13 | Bicycling 0.003
15 | Boat_Ship 0.022
19 | Bus 0.002
22 | Car_Racing 0.003
27 | Cheering 0.020
28 | Cityscape 0.050
29 | Classroom 0.002
38 | Dancing 0.046
39 | Dark-skinned_People 0.043
41 | Demonstration_Or_Protest 0.031
44 | Doorway 0.023
49 | Explosion_Fire 0.008
52 | Female-Human-Face-Closeup | 0.050
53 | Flowers 0.021
58 | Ground_Vehicles 0.063
59 | Hand 0.012
81 | Mountain 0.073
84 | Nighttime 0.045
86 | Old_People 0.008
100 | Running 0.024
105 | Singing 0.014
107 | Sitting_Down 0.003
115 | Swimming 0.329
117 | Telephones 0.003
120 | Throwing 0.000
126 | Vehicle 0.056
127 | Walking 0.048
Average 0.0349

Table 4: Processing time required for training (Run 1).

Processing | Processing time (hh:mm)
Feature calculation 14:21
Random forest training 24:58
Total 39:19

precision, it will be necessary to combine image features
with audio features. It may also be possible to improve
precision by using semantically high level features, for
example, ones taken from the results of facial detection.

The proposed method builds a classifier using the ran-
dom forests method, which is known for its low compu-
tational cost. This made the use of a special computer
unnecessary and made the time from computing features
to building a classifier relatively short. The processing
time required for training in Run 1 is listed in Table 4.
The computer used in the experiment had an Intel Xeon
3.4-GHz CPU and 4-GB memory. The time required to
compute the feature vectors was 14 hours and 21 min-
utes, while the time required for training 130 kinds of
classifiers corresponding to each concept was 24 hours
and 58 minutes. The training time of a random forest

classifier for one concept was 12 minutes on average. To-
tal processing time was 39 hours and 19 minutes. A
preliminary experiment using the SVM method revealed
that it took 20 hours on average to train a classifier for
one concept. The proposed method therefore greatly re-
duced processing time. Computational complexity is an
important element in the processing of large amounts of
video data. We believe it would be useful to investigate
methods that take into account not just precision but
also computational cost.

3 Surveillance event detection

The importance of human motion recognition technology
has recently been increasing [13]. The rapid spread of
surveillance cameras has increased the demand for tech-
nology that can automatically identify human behaviors.

Motion recognition techniques can be widely applied to
many services, such as motion-based video searches and
man-machine interfaces. This year, we targeted “Point-
ing,” “CellToEar,” and “ObjectPut” events with a focus
on general versatility.

Key-point trajectories around a human region contain
temporal information on the human’s motion [14], so we
used key-point trajectories as the feature for detecting
events.

However, the time-length of a key-point trajectory is
not fixed because each trajectory has a different duration.
This means the bag-of-features approach cannot be used
because it uses a fixed-length feature vector. A method
that extracts fixed-dimensional features from a key-point
trajectory has recently been proposed [15]. Our system
extracts fixed-dimensional features that are related to the
trajectory’s direction and the speed in addition to using
the method. The appearance feature is also extracted on
the trajectory as a fixed 128-dimensional SURF descrip-
tor [7]. Therefore, the proposed feature contains both
motion and appearance information.

Feature weight is used in the bag-of-features approach
to reduce the interference of noise feature descriptors in
the background region. A descriptor is weighted based
on the tf-idf approach [16], which is often used in the
field of natural language processing. This feature weight
technique has improved the performance of our system.

Our algorithm is described in detail in the following
sections.

3.1 Overview
Our system consists of three steps, which are shown in
Figure 3. Step 1 is key-point detection and tracking.
The system detects foreground regions based on statisti-
cal background subtraction, and only the key-points on
the foreground are extracted. These are then tracked by
the Lucas-Kanade method.

Step 2 is feature extraction. The system extracts fixed-
dimensional motion feature descriptors from a key-point
trajectory. The SURF descriptor is also extracted at the

Step 1 Step 2 Step 3
Key-point detection
s &tracking N
,-——- Feature extraction -—=y , Classification "
Background f ‘= I !
. 1 [i
subtraction i . g ! i Bag of i
H Trajectory 1 H H
H Gt [Features H
[IR (it weighy) [
Video 1 1 H H o I Event
- H : T—— 1
I Key-points ! Descriptor [l mug I
detection 1 X H] i
I ! —— SVM !
H ! 1 classifier !
[[i
<<<<<<< i
Key-points |\) y i
tracking
S ——. 4

Figure 3: Overview of surveillance event detection.

Figure 4: Extracted foreground regions by using statis-
tical background subtraction.

end point of a trajectory. Both descriptors are integrated
into a fixed 380-dimensional descriptor.

Step 3 is classification. The bag-of-features approach
and an SVM classifier [17] are used in the system to de-
tect events. Feature weights are calculated based on the
tf-idf method when a cluster histogram is created. We
explain the processes in each step in the following sub-
sections.

3.2 Key-point detection and tracking
3.2.1 Background subtraction

All the surveillance video used in this task was shot by
fixed camera, so the background subtraction is suitable
for detecting human regions. However, at some level in
the sequence the luminance changes, which renders the
static background image unsuitable for robust human re-
gion detection. Thus, we update the background image
dynamically by calculating the mean value of brightness
and its amplitude for every pixel. The system robustly
extracts only moving regions, such as humans and their
baggage, as shown in Figure 4.

3.2.2 Key-point tracking

A standard Kanade-Lucas-Tomasi (KLT) tracker [18] is
used to track key points on the input video. The KLT
tracker is an algorithm that selects and keeps track of

Figure 5: Key-point detection and tracking.

feature points that are optimal for tracking. It is widely
used in visual feature tracking.

In the proposed system, the Harris operator is used for
detecting feature points in the input image. Next, feature
points in the background regions are removed by refer-
encing the mask image that was created in the above-
mentioned background subtraction processing. Then,
only feature points in the foreground regions are de-
tected.

The detected key-points are tracked by calculating the
optical flow based on the Lucas-Kanade method. The
key-points are tracked until the feature point disappears,
as shown in Figure 5.

3.3 Feature extraction
3.3.1 Trajectory feature

Key-point trajectories convey critical temporal informa-
tion on human behaviors. However, the feature is un-
suitable for direct use in the bag-of-features approach be-
cause the trajectories have variable time-lengths. There-
fore, each trajectory should be transformed into a fixed-
length descriptor that attempts to capture the key char-
acteristics of each motion. For this purpose, we used a
method inspired by Mezaris, et al. [15].

To extract motion information at different time-scales,
we used a hierarchic smoothing filter for each raw tra-
jectory datum. A Haar low-pass filter was used for the
smoothing. Families of trajectories were generated by
applying the filter in incremental steps.

The node points in a trajectory are calculated by fol-
lowing equation. Let P, , be a set of node points in the
u-th trajectory, py, , be the set of its x-coordinate, and
t, and to be the frame number of appeared and disap-
peared key-points. The ¢ means the smoothing level of a
trajectory under the maximum number @, and the level 0
(¢ = 0) means a non-filtered raw trajectory. Several lev-
els of trajectories are created by increasing the number
q. The y-axis elements of the trajectory are calculated
similarly.

PUJI = [piq’pz q] (4)
Pl = LG T e T Pl ()

291
Pyl = ZP“ ' (6)

The hlstogram of motion directions at the granular-
ity level 0 is defined as a histogram of 27/6 bins: [0, 0),
[60,20),...,]2r — 0,27). The value of each bin depicts the
number of elementary motions [p{t, p¥t] in the trajec-
tory, normalized by division with the overall number of
such elementary motions that belong to the examined
trajectory. a(P,.q,0) is defined as the vector of all bin
values for a given P, , and a constant 6.

Finally, different time-scale key-point trajectories can
be represented as a fixed-length vector A, as depicted
in Equation (7), where R is the number of granularity
levels.

a= (P D) (P D) (Pron D)
o(PurT) o (PurT) o (Pras])
o(Pasge) 0 (P) v (Prco)

(7)

The above-mentioned feature is related to the tra-
jectory’s direction. The feature vector related to the
speed (horizontal and vertical) is calculated in the same
way. These histograms were normalized with the maxi-
mum and minimum lengths of the motion vector in each
smoothing level’s trajectory.

Figure 6 shows the concept of the feature vector cre-
ation from a trajectory. The line in the upper figure
denotes a sample of a raw key-point trajectory (P..o).
The dash line denotes a one-time Haar filtered trajectory
(P,,1) while the dotted line denotes a two-time Haar fil-
tered trajectory (P 2).

The histogram is created by counting the directions of
motion vectors that are in the bins for each smoothing
level’s trajectory. The range of bins has several gran-
ularity levels, increasing the granularity level from 1 to
R.

Finally, these histograms are combined into one. We
used the numbers @ = 3 and R = 3 in this system,
making the dimension of a histogram 84 (4 bins x 3 levels
+ 8 x 3 + 16 x 3). We also used histograms of both
horizontal and vertical speeds, so the total dimension of
a trajectory feature descriptor is 252 (84 x 3).

3.3.2 SUREF feature

The above-mentioned histogram is a descriptor of the
motion of a key-point. The system also extracts the ap-
pearance feature by calculating the SURF descriptor at
the end point of the tracking [7]. The SURF is the 128-
dimensional fixed-length descriptor that contains gradi-
ent information as the SIFT descriptor [6]. Figure 7
shows the track-ended key-point trajectories in a frame.

Figure 6: Concept of histogram creation of trajectory
feature.

Figure 7: Key-point trajectory.

The system combines the 252-dimensional trajectory
feature histogram with the 128-dimensional SURF de-
scriptor, meaning that in total it uses a 380-dimensional
motion-appearance feature.

3.4 Classification

An event is classified based on the bag-of-features ap-
proach. A certain section of video sequence is treated as
the bag, and a 380-dimensional motion-appearance fea-
ture descriptor in the sequence is treated as the feature.

Each feature is labeled as the nearest cluster by refer-
ring to a code book. We made the code book beforehand
based on the k-means method using a large amount of
feature descriptor samples. The final feature vector as
an input for the SVM classifier is represented as a clus-
ter histogram by counting the feature descriptors that
were labeled for each cluster.

When the cluster histogram is made, the system as-
signs a weight to each feature descriptor. The tf-idf ap-
proach is used to determine these weights.

The weight is calculated by multiplying a tf value by
an idf value, as depicted in Equation (8). The idf value
means the inverse sequence frequency, so the weight of
a feature in a usual sequence decreases, as depicted in
Equation (9). Note that N is the number of total se-
quences and n, is the number of the sequence that in-
cludes cluster x.

The tf value means a feature frequency in a specified
sequence, so the weight of a major feature in a sequence
increases, as depicted in Equations (10) and (11). Note
that oc.q is the number of cluster times in sequence d

and W is the set of features in sequence d.

Therefore, the system reduces the importance of the
noise trajectory features that were constantly extracted
around the background regions in the regular no-event se-
quences. In addition, it emphasizes the importance of the
human motion trajectory features that were extracted in
the event sequences.

FeatureWeight,q = tfeq X idfy (8)
idf; = log ﬁ 9)
Ny
e
£yq = —Pfad (10)

\/ Diew ptfy

Ptfea = 0.5+ 0.5 x —cwd

S —— (11)
maX;ew 0Ciq

An event classifier is created by training with the clus-
ter histograms of each event. The SVM-supervised ma-
chine learning method [17] is used for training the clas-
sifier.

In the test phase, the system classified the events every
frame by evaluating a cluster histogram that was made
with trajectory features in a certain period of time.

3.5 Results
3.5.1 Parameters

We trained the system based on the following settings.
We set the time-length of a sequence to one second (one
sequence=25 frames). The length was determined by ref-
erencing the average duration of three target events.

We set the numbers @ = 3 and R = 3 as the smoothing
and granularity levels for the parameters of the trajectory
feature descriptor.

The SVM classifier was trained with cluster histograms
that were made based on five days of sample trajectory
features from the development dataset (LGW2007-1101,
1106, 1107, 1108, and 1112). The classifier recognizes
“no event” as well as our three target events. Four clas-
sifiers were created for four cameras (except Cam4). The
number of cluster k was set to 1,000.

The decision score for each event is determined based
on a detected frequency in the duration of the detected
event. If the decision score is beyond a specific threshold,
the system considers the event to already have occurred.

3.5.2 Results and discussion

The results of our system are depicted in Table 5. The re-
sult of the “ObjectPut” event was better than the others,
probably due to the directional and temporal simplicity
of the motion. The downward motion vector is likely to
appear in this event and the variation of the time-length
is not as large as that in the other events. This result
was also better than our result last year because of the

Table 5: Results for detecting events

Event #Ref | #Sys | #Cor | Act. | Min.

Det | DCR | DCR
ObjectPut | 621 | 1061 39 | 1.113 | 1.002
Pointing 1063 | 3495 54 | 1.239 | 1.003
CellToEar | 194 52 1 1.008 | 1.000

many key-point trajectories used as features that were
suitable for detecting small motions.

The system often identified the “Pointing” event incor-
rectly, probably because that event has significant direc-
tion variations. For example, someone may point in the
left direction and another may point in the right direc-
tion, etc. The accuracy might be improved by training
the system to differentiate between “left pointing” and
“right pointing.”

Only one “CellToEar” event was correctly detected by
the system. This event was difficult to detect because
the motion was too small to extract sufficient trajectory
lengths and there were not as many event samples in the
development dataset as the other two events. The perfor-
mance might be improved by training the classifier with
more “CellToEar” event samples (ten days of samples
from the development dataset should be sufficient).

4 Conclusion

We submitted methods for the semantic indexing task
and the surveillance event detection task at TRECVID
2010.

The method proposed for the semantic indexing task
used both gradient features in the local region around
feature points and global features such as texture and
color distribution. It also used a low-computational-cost
method (random forests) as the classification algorithm.
It obtained a mean infAP score of 0.0349 in the evalua-
tion experiments. In future research, we plan to examine
the use of audio features in addition to image features to
improve precision even further and to study techniques
that have both high precision and low computational
cost.

For the surveillance event detection task, we devel-
oped a system of automatically detecting specific events
(“Pointing,” “CellToEar,” and “ObjectPut”) in video se-
quences shot by fixed cameras installed in an airport.
Our system extracts fixed-dimensional features from a
key-point trajectory and identifies the events based on
the bag-of-features approach. The feature weights of
the trajectory feature descriptors were calculated and
used in the event classification. The system could ro-
bustly detect small motions, especially in the “Object-
Put” event. We plan to apply this framework to other
human motion recognition systems, such as man-machine
interfaces, that manage small motions.

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

J. Sivic and A. Zisserman, “Video google: a text re-
trieval approach to object matching in videos,” In Proc.
ICCV’03, 2003.

G. Csurka, C. Bray, C. Dance and L. Fan, “Visual cat-
egorization with bags of keypoints,” in Proc. ECCV
Workshop on Statistical Learning in Computer Vision,
pp-59-74, 2004.

“TREC Video Retrieval Evaluation Notebook Pa-
pers and Slides,” http://www-nlpir.nist.gov/projects/
tvpubs/tv.pubs.org.html

L. Breiman, “Random forests,”
vol.45, pp.5—32, 2001.

M. Takahashi, Y. Kawai, M. Fujii,
N. Babaguchi and S. Satoh, “NHK STRL at

TRECVID 2009: surveillance event detection and
high-level feature extraction,” TRECVID 2009 work-

shop, 2009. http://www-nlpir.nist.gov/projects/tvpubs/
tv9.papers/nhkstrl.pdf

D.G. Lowe, “Object recognition from local scale-
invariant features,” In Proc. ICCV’99. vol.2. pp.1150-
1157, 1999.

H. Bay, A. Ess, T. Tuytelaars and L.V. Gool, “SURF:
speeded up robust features,” Computer Vision and Im-
age Understanding, vol.110, no.3, pp.346-359, 2008.

Y .-G. Jiang, C.-W. Hgo and J. Yang, “Towards opti-
mal bag-of-features for object categorization and seman-
tic video retrieval,” In Proc. ACM CIVR’07, 2007.

T. Ojala M. Pietikaninen and T. Maenpaa, “Multireso-
lution gray-scale and rotation invariant texture classifi-
cation with local binary patterns,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol.24, no.7, pp.971—
987, 2002.

S.-F. Chang, J. He, Y.-G. Jiang, E.E. Khoury, C.-
W. Ngo, A. Yanagawa and E. Zavesky, “Columbia
University/VIREO-City /IRIT TRECVID2008 high-
level feature extraction and interactive video search,” In
Proc. TRECVID 2008 Workshop, 2008.

L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone,
“Classification and regression trees,” Wadsworth and
Brooks, 1984.

E. Yilmaz and J.A. Aslam,“Estimating average preci-
sion with incomplete and imperfect judgments,” In Proc.
ACM CIKM’06, 2006.

J.C. Niebles and L. Fei-Fei, “A hierarchical model of
shape and appearance for human action classification,”
In Proc. IEEE CVPR’07, pp.1-8, 2007.

P. Matikainen, M. Hebert and R. Sukthankar, “2009 Tra-
jectons: action recognition through the motion analysis
of tracked features,” In Proc. ICCV Workshop on Video-
Oriented Object and Event Classification, 2009.

V. Mezaris, A. Dimou and I. Kompatsiaris, “Local in-
variant feature tracks for high-level video feature extrac-
tion,” In Proc. WIAMIS’10, 2010.

T. Kurita and T. Chikayama, “Classification precision
of several candidates using multi-class support vector
machine in generic object recognition,” Technical report
of IEICE, Multimedia and virtual environment vol.108,
n0.328, pp.251-258, 2008 [in Japanese].

B. Scholkopf, J.C. Platt, J.Shawe-Taylor, A.J. Smola and
R.C. Williamson, “Estimating the support of a high-
dimensional distribution,” Neural Computation, vol.13,
pp-1443-1471, 2001.

J. Shi and C. Tomasi, “Good features to track,” In Proc.
IEEE CVPR’94, pp.593-600. 1994.

Machine Learning,

M. Shibata,

