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Bayesian Modeling for 
Psychologists: An Applied 

Approach
Fred M. Feinberg and Richard Gonzalez

Bayesian methods offer new insight into standard sta-
tistical models and provide novel solutions to prob-
lems common in psychological research, such as 
missing data. Appeals for Bayesian methods are often 
made from a dogmatic, theory-based standpoint con-
cerning the philosophical underpinnings of statistical 
inference, the role of prior beliefs, claims about how 
one should update belief given new information, and 
foundational issues, such as the admissibility of a sta-
tistical decision. Although such a rhetorical approach 
is academically rigorous, it usually is not the kind of 
argument a practicing researcher wants to read about. 
Researchers care about analyzing their data in a rigor-
ous manner that leads to clear, defensible conclusions. 
In this chapter, we address the reader who wants to 
learn something about what all the Bayesian fuss is 
about and whether the Bayesian approach offers use-
ful tools to incorporate into one’s data analytic tool-
box. We hope this chapter prompts readers to learn 
more about what Bayesian statistical ideas have to 
offer in standard data analytic situations. Throughout 
the chapter, we highlight important details of the 
Bayesian approach; how it differs from the frequentist 
approach typically used in psychological research; and 
most important, where it offers advantages over the 
methods most commonly used by academic research-
ers in psychology and cognate disciplines.

Some Gentle Preliminaries

Practicing research psychologists wish to under-
stand and explain a variety of behaviors in humans 

and animals. Statistical methods and reasoning 
sharpen insight into experimental design and avoid 
the potential pitfalls of lay examination of data pat-
terns. Deserving special mention is a point often 
missed in substantively focused studies: The pur-
pose of statistical inference is to replace intuitions 
based on a mass of data with those achievable from 
examination of parameters. Except in nonparametric 
settings relatively rare in psychological and other 
social science research, understanding one’s data 
relies critically on choosing an appropriate statistical 
model and both estimating and examining the distri-
butions of its parameters. By this we mean the so-
called marginal distribution—that is, everything we 
can say about a parameter once our data have been 
accounted for.

Too often, researchers shoehorn their hypothe-
ses, which often concern individual-level behavior, 
into the straightjacket mandated by classical statisti-
cal methods. This approach typically requires large 
numbers of respondents for the central limit theo-
rem to kick in, presumes equal variances in analysis 
of variance (ANOVA) designs, makes various 
untested assumptions about (lack of) correlation in 
errors and variables, requires balanced designs, and 
so on. Each of these requirements is necessary 
because the commonly used classical statistical tests 
do not achieve “nice” forms when their assumptions 
are violated. Imagine instead a world in which 
researchers can simply collect a data set and let the 
chosen statistical model summarize everything of 
interest it contains; the only assumptions one makes 
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concern the underlying model generating the data 
and not aspects of the data set itself (e.g., balance, 
lack of error correlation, and so on); missing values 
do not mean throwing out a subject’s data entirely; 
individuals can differ in their parameters; and cova-
riates, like age and gender, can be used to describe 
how and why parameters differ across respondents.

Classical methods, such as nonparametric tests, 
can sometimes be used in the sorts of situations in 
which standard assumptions (like underlying nor-
mality) are known (or suspected) to be violated. But 
they typically come at a substantial cost in power: 
the ability to detect incorrect hypotheses. Bayesian 
statistical methods, however, provide a general 
framework that is adaptable to many different types 
of data, for the relatively modest—and steadily 
decreasing over time—price of additional computa-
tional effort. As we emphasize throughout this chap-
ter, Bayesian methods dramatically expand a 
researcher’s ability to work with real data sets and 
explain what they have to tell us. Bayesian methods 
do this by yielding marginal distributions for all 
parameters of interest, not merely summary mea-
sures like means and variances that are only asymp-
totically valid, and with many fewer presumptions 
about model forms and large-sample properties of 
estimators. It is for these reasons that we advocate 
their increased adoption by the psychological com-
munity. In this chapter, we take a first relatively 
nontechnical step in explaining how this might 
come about and what Bayesian methods might offer 
the practicing psychologist.

Many treatments of Bayesian statistics that have 
been written for (or by) psychologists have focused 
on the more philosophical issues. Some of these 
reviews have been made in the context of what is 
called the null hypothesis debate. Practicing research 
psychologists have become dissatisfied with conven-
tional hypothesis testing and the mental gymnastics 
that one must undertake in most 1st-year psychol-
ogy statistics courses to understand its underlying 
concepts. Examples include how one interprets the 
usual p value, as reflecting the probability of observ-
ing some sample statistic under the null hypothesis, 
or the classical interpretation of a confidence inter-
val as the frequency of intervals that contain the true 
population parameter value. It is in this context that 

Bayesian techniques are usually discussed as an 
alternative way of thinking about intervals, what a 
Bayesian calls credible intervals, and as a similarly 
different way to think about hypothesis testing, one 
that avoids many of the conceptual difficulties of the 
traditional p value. It has been argued that the 
Bayesian approach provides an alternative method-
ology and philosophical foundation for hypothesis 
testing (e.g., Jaynes, 1986).

A simple way of conceptualizing the distinction 
between the two approaches is about how one views 
uncertainty. A classical statistician views uncertainty 
as residing in the data one happens to observe: One 
needs to think about all the other observations that 
could have been made, under the hypothesized 
model, and base one’s statistical test on the resulting 
distribution, which often achieves a “nice” form 
(e.g., one that can be looked up in a table). An 
example of this kind of logic is seen in the Fisherian 
interpretation of the p value (the probability of pos-
sible results that are “more extreme” than the 
observed result) and in some standard tests like the 
Fisher exact test for contingency tables, which uses 
the hypergeometric distribution to compute the 
probability of all contingency tables that are “more 
extreme” than the one that was actually observed.

The Bayesian approach places uncertainty not in 
the observations but rather in one’s lack of knowl-
edge. For a Bayesian, the observed data are not 
uncertain—you observed what you observed. But 
uncertainty has to be addressed somewhere in the 
analysis. A Bayesian places the uncertainty in our 
lack of knowledge about parameters and operation-
alizes that lack of knowledge in terms of a (joint) 
probability distribution over all unknown quanti-
ties, that is, parameters. Before any data are 
observed, the Bayesian summarizes everything 
known about the model’s parameters in just such a 
distribution, called the prior distribution. This can 
include information from previously conducted 
studies, common-sense reasoning (e.g., gaining an 
inch in height will, all else equal, entail an upswing 
in weight), or even seemingly inviolable facts about 
parameters (e.g., variances cannot be negative). The 
prior distribution is then combined with (often 
called updated by) the likelihood, which is common 
from the usual frequentist analysis, to yield the 
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posterior distribution. As we will see, literally every-
thing researchers might wish to say about their 
data—estimation, testing, prediction, and so on—
can be extracted, in a natural and direct way, from 
this posterior. In a sense, it replaces the entire canon 
of specialized test procedures so laboriously mas-
tered in introductory statistics courses with one sim-
ple conceptual object.

In the next section, we refine and illustrate some 
of these issues, using elementary examples common 
to statistics texts of both the frequentist and Bayes-
ian varieties. We also provide references to some 
presently available software and a few comprehen-
sive, book-length treatments of Bayesian statistical 
methods. Throughout, we eschew formulas and 
other mainstays of rigor for a more user-oriented 
discussion, one especially geared to the practicing 
researcher in psychology.

The Nitty-Gritty of the Bayesian 
Approach

Estimating a Proportion
We begin with a relatively simple example, one 
common throughout statistical inference, in psy-
chology and elsewhere: estimating the proportion of 
times a particular event occurs. To provide a specific 
context, consider a dependent variable that codes  
whether a couple has divorced within their first  
20 years of marriage. The data set includes 10 couples,  
six of which were divorced within the 20-year win-
dow. Of course, any beginning student knows that 
this sample can be used to estimate the divorce rate: 
simply divide the number of divorces by the total 
number of couples, 6/10 = 0.6. But how do we know 
that is the best estimate of the true divorce rate in 
the population? How do we assess the uncertainty of 
this estimate?

To handle such questions within the classical 
framework, one reverts to the likelihood principle 
(i.e., “all the information in our sample is contained 
in the likelihood function”), makes an assumption 
about the independence of those 10 observations, 
and assumes the binomial model for the observed 
outcomes. To derive the usual maximum likelihood 
estimator for the proportion, we take the first deriv-
ative of the likelihood, set it to zero, and solve for 

any unknown parameters, of which in our present 
example there is only one. Some of the computa-
tions in maximum likelihood estimation are simpler 
if one works with the logarithm of the likelihood—
which, as a monotonic transformation, leaves the 
maximum intact—thus converting products to 
sums. In our exposition, we focus primarily on the 
likelihood itself because that is more convenient for 
Bayesian derivations, and point out when the log 
likelihood is used instead.

It is a common quip that the likelihood is the 
only thing about which both Bayesians and frequen-
tists agree, and it is true that the likelihood plays a 
critical role in both accounts of statistical inference. 
In simple language, the likelihood function tells us 
how likely the parameters are to take one set of val-
ues, compared with any other. It is not a probability 
itself (indeed, it can even be greater than 1) but a 
relative statement, so that the likelihood ratio, a 
common concept in hypothesis testing, is a simple 
way to assess the comparative degree of appropriate-
ness for any two given sets of parameters. In general, 
the likelihood is defined by

L Y f Y� �| | ,( ) = ( ) � (1)

where Y represents the observations, θ represents 
the unknown parameters, and f is some probability 
density function. It is necessary to assume a distri-
bution f, such as the binomial or normal (perhaps 
the two most common statistical models), to use 
maximum likelihood as the basis for parameter esti-
mation. So, even within this classical approach, an 
important distributional assumption is made at the 
outset to estimate parameters of interest (e.g., a sin-
gle population proportion in the binomial case, or 
the population mean and variance in the normal). It 
is therefore critical to conceptualize parameters as 
belonging to a specific model; it is the form of the 
model’s likelihood function that allows the parame-
ters to be estimated, regardless of whether the esti-
mation is classical or Bayesian in nature.

To return to our sample problem, the likelihood 
for binomial data is given by
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where π is the population proportion that is being 
estimated (in the binomial case, the unknown 
parameter θ is traditionally denoted as π). The num-
ber of trials (N) and the number of successes Y 
(which are the observations) are held fixed, and one 
searches for values of π that maximize the value of 
Equation 2. We say values because many likelihood 
functions can have multiple local maxima, only one 
of which is the true global maximum, that is, the 
single best choice of parameter(s). It is for this rea-
son that maximum likelihood is conceptualized in 
terms of a search for unknown parameter(s), which 
in practice is a serious limitation for the classical 
approach, because multivariate optimization can be 
exceptionally computationally intensive.

Although the likelihood of Equation 2 may look 
just like an elementary statement about the proba-
bility of observing a particular set of data, in actual-
ity, the inference is done in the other direction; that 
is, we infer parameter π given the data Y. In the clas-
sical estimation approach, the standard error of the 
parameter emerges by taking the expected value of 
the Hessian (the matrix of second derivatives) of the 
log likelihood. The logic justifying the use of the 
Hessian for this purpose involves imposing  
assumptions—most notably that the curvature of the 
log likelihood can be approximated by a multivariate 
Taylor series, up through its quadratic term. This is 
the underlying rationale for the typical approach 
taken by psychologists, computing a point estimate 
and constructing a confidence interval around that 
estimate. The classical approach focuses only on the 
maximum value of the likelihood (the point esti-
mate) and approximates uncertainty (via the Hes-
sian); all other details of parameter estimation are 
discarded in the classical approach. In this way, the 
classical statistician is forced to rely on a number of 
asymptotic (i.e., large sample) assumptions, without 
any practical way to verify them. It is only when 
these assumptions hold that the usual properties of 
estimators, like normality, can be shown to hold. 
When a problem comes along for which none of the 
typical distributions (z, t, F, chi-square, etc.) are 
provable asymptotic approximations, defensible 
inferences from the data become difficult, if not 
impossible. As we shall see, the Bayesian is not ham-
pered by this restriction because Bayesian analysis 

yields the actual distributions of any desired set of 
parameters (or functions of them) and rarely needs 
to call on the common distributions drilled into 
every beginning student of statistical inference.

The Bayesian approach also uses the likelihood 
(Equation 1 in general, or Equation 2 for our bino-
mial example) but differs in how it is used. 
Although the classical statistician maximizes the 
likelihood by choosing the best parameter values θ, 
the Bayesian instead converts the problem into a 
statement about the (posterior) distribution θ. To 
keep notation simple and not have to keep track of 
different density functions, we use so-called bracket 
notation, which has become the standard way to 
represent useful properties and rigorous derivations 
in Bayesian analysis. As mentioned earlier, a key 
Bayesian property is that the posterior distribution is 
proportional to the product of the likelihood and 
prior distribution; this will be denoted as

[ | ] [ | ][ ].� � �y y∝ � (3)

The prior distribution [θ]reflects what we know (or 
do not know) about the parameters θ before consult-
ing the data; the posterior distribution [θ|y] reflects 
what we know about the parameters θ after combin-
ing both the observed data and the information con-
tained in the prior. Bayesians jump freely between 
talking about probabilities and talking about distri-
butions when referring to priors and posteriors. We 
will also follow the convention of the field and speak 
only about proportionality (∝) because this is all 
that is required for standard Bayesian inference tech-
niques to be applied, a topic we return to later.

The change in reference turns out to be the key 
property of the Bayesian approach: Rather than 
work only with the likelihood [y|θ], as in the classi-
cal approach, Bayesians work with the posterior dis-
tribution [θ|y] (a quantity classical statisticians seek 
to make inferences about but that work in reverse 
direction with the likelihood). Under this approach, 
the posterior tells us literally everything we can 
know about the parameters θ once the data y are 
observed. The Bayesian merely has to explore the 
posterior and use it for inference. This is simple, at 
least in theory, but we need to explain what we 
mean by exploring the posterior.
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We must also stress that it is not the case that 
Bayesians have the extra step of imposing a prior 
distribution whereas classical statisticians do not. 
There is a sense in which, when viewed through 
Bayesian eyes, classical statistics presumes that all 
values of a parameter are equally likely, what is 
called a noninformative prior in the Bayesian context. 
A Bayesian with a noninformative prior works with 
the same functional information as a classical statis-
tician and has an analogous approach to such key 
issues as the interval constructed around a parame-
ter estimate. The reason is that, with a suitably cho-
sen noninformative prior, the Bayesian posterior is 
functionally the same as the classical likelihood. So, 
as long as the Bayesian acts on the posterior in the 
same way as the classical statistician (e.g., computes 
the maximum, also called the mode), then the two 
approaches yield identical results. Bayesians, how-
ever, provide a different, and some would say more 
nuanced, description of uncertainty and avoid some 
of the difficulties that plague classical analyses, such 
as problems with missing data and unbalanced 
designs in multilevel models.

The Bayesian framework also provides a language 
that is more natural to empirical researchers. For 
example, the Bayesian tradition does not promote 
the mind-twisting language of how to interpret a 
confidence interval (i.e., the percentage of such 
intervals that contain the true population value) 
and can more directly talk about an interval as rep-
resenting a 95% degree of confidence (credibility) 
for the value of the unknown parameter. In our 
experience, students first encountering statistics are 
put off by counterfactual notions concerning what 
might happen if similar data were collected many 
times under identical circumstances. Rather, they 
ask conceptually direct questions about what can 
be said using this data set, as it is. Bayesian infer-
ence refers to the data one has, not the data one 
might obtain were the world to replay itself 
multiple times.

Conjugate Priors
One way to simplify calculating and sampling from 
the posterior—the main practical challenges in  
most Bayesian analyses—is by careful selection of 
the prior distribution. There are well-known 

prior-likelihood pairs, as on the right-hand side of 
Equation 3, that yield posteriors with the same form 
as the prior (i.e., the prior and posterior fall into the 
same distributional family, differing only in their 
parameters). For example, for binomial data, a beta 
prior distribution (i.e., beta-binomial pair) leads to a 
beta posterior distribution. Such conjugate priors 
make the overall Bayesian analysis easier to work 
with, both in terms of derivation and computation 
(see Box & Tiao, 1973/1992). For example, the beta 
distribution has two parameters, α and β, in its 
“functional” portion (i.e., leaving out constants that 
allow it to integrate to 1), x α−1(1−x)β−1. Different val-
ues of α and β lead to different prior distributions 
over the unknown parameter π of the binomial dis-
tribution, making some values more likely than oth-
ers before recourse to the actual data. For instance, 
the parameter pair α = 1 and β = 1 produces a beta 
distribution that is uniform over [0,1], meaning that 
the prior presumes all values of the unknown bino-
mial parameter π are equally likely; α = 2 and β = 2 
makes values of π near one half somewhat more 
likely; and α = 101 and β = 201 makes values of π 
near one third quite a bit more likely (all these state-
ments can be verified by simply graphing 
xα−1(1−x)β−1 for the values in question). One then 
conducts an empirical study and observes Y suc-
cesses out of N trials, such as in the example of six 
divorces in 10 couples (equivalently, six divorces 
and four nondivorces). The posterior distribution, 
when using a conjugate prior (i.e., the prior is beta 
and the likelihood is binomial), will also be a beta 
distribution, but the posterior parameters character-
izing the posterior distribution are α + Y and β + 
N − Y, respectively. In other words, the posterior 
beta distribution has parameters that consist of both 
the prior parameter and the data (e.g., the first 
parameter of the posterior distribution is the sum of 
the prior parameter α and the observed number of 
divorces Y, and the second parameter is the sum of 
the prior parameter β and the number of nondi-
vorces, N − Y). So, for our ongoing example, a uni-
form prior over the [0,1] interval (all proportions 
are equally likely), leads to a posterior that is a beta 
distribution with parameters 7 and 5 (i.e., α = β = 1, 
Y = 6, N = 10). For reasons that can now be clearly 
seen, this process is often referred to as updating the 
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prior, using the data to obtain the posterior from 
which all Bayesian inference follows.

The mode (i.e., the most likely value, where the 
density function reaches its largest value) of the beta 
distribution is (α − 1)/(α + β − 2). So, the mode of 
the posterior for our ongoing divorce example using 
a uniform prior distribution is six tenths (i.e., the 
posterior has parameters α = 7 and β = 5, so the 
mode is six tenths), the same value as the maximum 
likelihood estimator. Other summary measures of 
the posterior distribution are also possible. The 
mean of a beta distribution is α/(α + β), so a Bayes-
ian could take the estimate of the proportion to be 
7/12 = 0.58, rather than the classically derived maxi-
mum likelihood estimate of 6/10 = 0.60 (see Figure 
24.1). As the sample size gets larger, the impact of 
the particular choice of the prior becomes less influ-
ential. If we had 600 couples divorce out of 1,000, 
then the posterior mean would be 601/1002 = 
0.5998, which is very close to the maximum likeli-
hood estimate of 0.60. The mode remains .6 for the 
uniform prior distribution.

We note that the classical and Bayesian estimates 
for the proportion coincide when the Bayesian uses 

a beta prior distribution with parameters α and β 
both very close to zero (note that α and β must be 
positive to give rise to a nondegenerate distribution; 
a so-called improper prior results if one literally sets 
both to zero because the functional part of the beta 
density, x−1(1−x)−1, does not have a finite integral 
over [0, 1]). Such an improper prior corresponds to 
a noninformative prior over the logit scale—that is, 
every value of the logit transform of π, or log[π/(1 − π)], 
is equally likely—which can be used to provide a 
Bayesian justification for using logistic regression in 
the case of data that follow a binomial distribution.

The prior distribution has other effects on the 
analysis as well. For example, the prior can define 
the feasible search space while exploring the poste-
rior distribution. Many statistical models impose 
restrictions on possible parameter values, such as 
that variances cannot be negative, which would 
seem to be an inviolable property that need not be 
specified, or even checked. Under classical estima-
tion routines, however, negative variances can and 
do occur, especially in the case of mixture models, 
as users of programs that estimate such models soon 
discover. The prior distribution can address these 
issues by defining the effective feasible region for the 
unknown variance to be nonnegative (i.e., forcing 
the prior distribution to have mass only over non-
negative values). A recent example of using the prior 
to limit the search space of a parameter is the new 
Bayesian feature in the structural equation modeling 
program SPSS Amos. The user can specify priors 
that include, for instance, probability mass over the 
nonnegative real numbers, thus allowing one to 
place boundary conditions on the value of variances.

The Whole Distribution and Nothing But 
the Whole Distribution
The previous subsection sells the Bayesian approach 
short. Comparing the Bayesian posterior mean to 
the parameter that emerges from the classical maxi-
mum likelihood framework is playing to the 
strength of the classical approach, which provides 
the estimate of the mean, and with a little more 
work and a few additional assumptions, a symmetric 
standard error (based again on asymptotic assump-
tions) emerges. The Bayesian approach has much 
more to offer, however. Instead of providing a point 

Figure 24.1.  An example of six divorces out of 
10 couples. The solid vertical line is the Bayesian 
estimate for the unknown proportion given a uniform 
prior (dotted horizontal line) and posterior distribution 
(thick solid curve). The theoretical posterior distribu-
tion is a beta; the thick solid curve is the estimated pos-
terior distribution from MCMC sampling. The dashed 
vertical line is the maximum likelihood estimate (0.6).
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estimate and a standard error for a given parameter, 
the Bayesian approach provides its entire posterior 
distribution. This is available in the form of a sample 
drawn from the posterior, from which any quantity 
of interest can be computed. In some (all too rare) 
instances, as in the case of conjugate priors, closed-
form solutions are possible, and so the entire poste-
rior distribution takes a known form, and sample 
draws from the posterior are not needed. But, even 
when the posterior does not take such a known 
form—and this is the case in the vast majority of 
real-world applications—the researcher can, using 
the posterior, easily compute not only the mean but 
also the median, the mode, or any quantile one 
would like (such as the lower or upper 2.5%), even 
the entire shape of the distribution. Knowledge of 
the posterior distribution allows one to construct 
intervals for parameters of interest without making 
specific, potentially unfounded, assumptions, like 
symmetry (too often assumed, particularly so for 
bounded and skewed quantities like variances). 
Indeed, if the posterior distribution is asymmetric, 
one can easily construct an interval that accurately 
reflects this asymmetry.

Furthermore, when the unknown parameter θ is 
a vector, the posterior distribution becomes multidi-
mensional. The classical approach to a parameter 
vector θ is to work with point estimates for each 
parameter separately, calculate a covariance matrix 
across parameters (via the Hessian), and rely on 
asymptotic results to make inferences. The Bayesian 
tackles the entire multivariate posterior distribution 
head on, however, by taking large samples from it 
directly. A few decades ago this was rather difficult 
to do for real-world data sets and models. Modern 
computers, along with some sampling techniques 
that emerged from statistical mechanics problems in 
physics (e.g., Gibbs sampling, simulated annealing), 
have revolutionized how an analyst can explore a 
posterior distribution. As mentioned, the solution 
turns out to be sampling: One takes a sample as large 
as one needs from the posterior distribution and uses 
that sample for inference and model comparison.

It is important to distinguish the Bayesian 
approach to sampling from the posterior from well-
known resampling procedures, such as the bootstrap 
or the jacknife. The Bayesian approach produces 

samples of the unknown parameters, whereas other 
approaches to estimation or inference that make use 
of sampling involve sampling either the observations 
themselves or quantities from a model fitting proce-
dure. For example, to bootstrap slopes in a regres-
sion equation, one can either create bootstrap 
samples of the original data set and compute regres-
sion parameters on each of those bootstrap samples 
(in which case there are as many regressions as 
bootstrap samples), or one can take bootstrap sam-
ples of the residuals after having fit a regression 
model to the original data (in which case only one 
regression is estimated). In neither case is the sam-
pling done from the joint posterior distribution for 
all unknown model quantities, the cornerstone of 
Bayesian estimation.

Once the multivariate distribution of the parame-
ter vector θ is in hand, one can use it in creative 
ways to solve some difficult problems. As men-
tioned, one can compute the mean or median of the 
posterior distribution. More interesting, one can 
compute functions of the unknown parameters. For 
example, one common test used in mediation analy-
sis is the product of two unknown parameters: the 
slope of the predictor to the mediator and the slope 
of the mediator to the dependent variable (where 
the latter slope is computed in the context of a 
regression that also includes the predictor). The 
prospect of a well-behaved statistical test on the 
product of two regression slopes is nearly hopeless 
using frequentist techniques because it cannot be 
guaranteed to have a standard distribution. But the 
Bayesian perspective provides a well-behaved and 
reasonable solution. The analyst simply multiplies 
the samples of the two regression slopes (i.e., multi-
plies draws from the posterior distributions for both 
quantities) and instantly has a new posterior distri-
bution for the product. One can then work with that 
posterior distribution in the usual way, such as com-
pute the mean or median, or the 2.5% and 97.5% 
quantiles, to construct an interval that can be used 
to test the hypothesis that the population product is 
zero. One works with the posterior distribution 
directly without having to assume symmetry in the 
sampling distribution (as the classical approach 
requires, which is suspect in any case because the 
distribution of a product of random variables is not, 
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in general, symmetric). Yuan and MacKinnon 
(2009) in fact provided an introductory account of 
how to implement this idea for testing mediation in 
normally distributed data.

It is relatively straightforward to extend this 
Bayesian approach to mediation to more compli-
cated situations, such as when the mediator or the 
outcome (or both) involves binary data. In this set-
ting, it is necessary to use a generalized linear 
model, such as logistic regression, for mediation, 
and the inference within the classical approach for 
products of parameters across two such general 
regressions becomes even more difficult. The Bayes-
ian approach can easily handle mediation models in 
cases in which predictor, mediator, and outcome are 
on different scales (such as normally distributed, 
binary, ordinal, count, or survival data), and it can 
even be extended into new territories that have not 
been fully explored within the classical framework 
(such as a mixture model for mediation in which the 
analysis partitions the sample into different sub-
groups exhibiting different mediation patterns). So 
long as we can sample from the posterior, we can 
construct any interval or test of interest with little 
additional effort.

Another example that is relatively simple within 
the Bayesian approach is the statistical test for a ran-
dom effect term. Many multilevel modeling pro-
grams provide a classical test for the variance for a 
random effect term against the null value of 0. 
Unfortunately, the classical test does not apply when 
testing a parameter at its boundary (i.e., variances 
are bounded below by 0). So, testing the variance 
against a null of 0 corresponds to a test that techni-
cally does not exist and erroneously produces signif-
icant results in all but very small samples. Thus, 
most tests for the variance of the random effect term 
that appear in popular programs are, if not overtly 
incorrect, potentially misleading. Some attempts 
have been made to address this issue using frequen-
tist methods, but a Bayesian approach handles this 
problem directly, by yielding the posterior distribu-
tion of the variance term under a prior that is prop-
erly defined over the feasible range of the variance  
(a common one being a noninformative prior for the 
log of the variance). Bayesian testing procedures can 
compare measures of model fit for a model with a 

random effect to one without it, akin to the classical 
likelihood ratio test but valid for testing any set of 
candidate models against one another, not merely 
parametrically related (i.e., nested) ones.

Data, Parameters, and Missingness
The shorthand notation of θ to denote the 
unknown parameters masks the strength of the 
Bayesian approach. Any and all unknown quantities 
can be incorporated into the vector θ. For instance, 
missing data can be construed as unknown parame-
ters and included in θ. The Bayesian practice of 
estimating the joint distribution enables one to 
properly capture the effect of missing data on the 
parameters of interest, such as a mean or regression 
slope; the overall uncertainty resulting from all 
unknown quantities are jointly modeled. Other 
unknowns that can enter the vector θ include terms 
representing random effects and those representing 
proportions or latent class indicators in mixture 
models. For each of these features of the Bayesian 
approach, the entire posterior distribution for all 
unknowns is estimated: We have not only the point 
estimate for the missing data but also their poste-
rior distribution, and all other parameters are 
adjusted for the uncertainty because of the entire 
pattern of missingness. By comparison, the options 
built into frequentist statistical programs common 
in psychological analyses—casewise or listwise 
deletion, or the downright dangerous option to 
replace missing data by means—appear almost 
primitive.

Although this chapter lacks space for a full expli-
cation of these ideas, one of the major conceptual 
and computational advantages of the Bayesian 
approach is its recognition of just two kinds of 
quantities: Those you know (data) and those you do 
not know (parameters). Gone are the tedious dis-
tinctions between data types, latent variables, limited– 
censored–truncated, dependent versus independent, 
missing points or covariates, and the entire menag-
erie of specialized techniques one must master to 
deal with them. A Bayesian can simply treat any-
thing not observed as a parameter in the model and, 
in a rigorous and natural way, numerically integrate 
over it. So, missing data includes not only literal 
morsels of unavailable information but also other 
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unobservables such as latent variables or mixing 
parameters in a mixture model. Using a technique 
called data augmentation that fills in any missing val-
ues (which are treated as parameters) on each pass 
of the numerical simulator, dramatic simplifications 
in programming the likelihood are possible. As 
stated, a full description is well beyond the frame of 
this chapter. In our view, the ability of Bayesian 
analysis to seamlessly handle missing data is among 
its most powerful practical advantages, once 
researchers properly conceptualize the notion of 
missingness. We refer the interested reader to the 
classic texts by Little and Rubin (2002) and Gelman, 
Carlin, Stern, and Rubin (2004).

Techniques for Sampling From the 
Posterior Distribution
The idea of sampling from the posterior, and using 
the sample to compute summary measures such as 
expected value (means) and the distribution of 
parameters θ, is the modern contribution of the 
Bayesian framework. Bayesian computations were 
extremely difficult before this development of dedi-
cated simulation techniques.

The key innovation in the Bayesian toolbox is the 
general technique of Markov chain Monte Carlo 
(MCMC) methods. The basic idea is to sample each 
unknown parameter in turn (including those that 
reflect missing data), sequentially cycling through 
each unknown many times, always conditional on 
the latest draws for all the others. Under fairly gen-
eral conditions (which are both technical and satis-
fied in the vast majority of actual research settings), 
theorems show that the sampling will reach a sta-
tionary distribution for the parameters of interest. 
One of the complexities of Bayesian analysis is that 
one can only rarely sample from the desired poste-
rior distribution immediately because this would 
require knowing approximately where it is largest. 
Instead, one can choose a start point at random, let 
the simulation go, and, usually within several thou-
sand iterations, a stationary distribution is reached, 
after which everything produced by the simulator 
can be used for testing, inference, and forecasting.

Several diagnostic tests are available to identify 
when such a stationary distribution has been 
reached. Within the Bayesian framework, the 

stationary distributions are reached by sampling 
from the so-called conditional densities (i.e., prob-
ability densities for one or a set of parameters given 
specific values for all the others), but the researcher 
is interested in—and obtains—samples from the 
entire joint distribution for all unknown quantities 
(parameters). Samples from the stationary distribu-
tion then serve to estimate parameters and the 
uncertainty in each as well as assess model fit. The 
availability of the joint distribution allows for tests 
that are sometimes difficult, or practically impossi-
ble, within the standard framework. For example, if 
one wants to test the distribution of a product of 
two unknown parameters (a situation that arises in 
testing mediation models), it is straightforward to 
have the product distribution merely by multiply-
ing the samples of the two unknown distributions 
(Yuan & MacKinnon, 2009). Additionally, it is triv-
ial for the researcher to place a priori constraints 
on parameters, for example, specifying that the 
covariance matrix for random effects be diagonal or 
that specific parameters are uncorrelated. This can 
be done via the prior or within the sampling 
scheme, simply by setting any parameter or func-
tion of them to a specific value, like zero, and sam-
pling for all the others conditional on the 
constraints. The analogous procedure in a frequen-
tist analysis can be fantastically difficult, as such 
constraints can wreck asymptotic normality. But 
this poses no problems for Bayesians, who need not 
bother about asymptotics and presumptions of 
standard distributional forms.

Different methods lie within the MCMC family 
of algorithms, the dominant ones being Gibbs sam-
pling and Metropolis-Hastings sampling. Loosely 
put, the former is used when conditional densities 
take “nice” forms (known distributions relatively 
easy to sample from), the latter when they do not. 
(For a good review of these methods, see Tanner 
1996.) Bayesian algorithm design is complex and 
technical, so we cannot provide anything close to a 
complete description of the subject here. We can, 
however, readily convey the flavor of what is 
involved in a nontechnical way. The primary goal of 
Bayesian analysis is generating a sample from the 
posterior distribution. This means that the probabil-
ity that a point (i.e., a set of parameter values) is in 
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the sample is proportional to the height of the poste-
rior distribution at that point. Or, more usefully, the 
ratio of the probability of any two points being in 
the sample is the ratio of the posteriors at those 
points. This is very close to the foundational insight 
of the dominant algorithm, Metropolis-Hastings, 
used in Bayesian analysis: If one is at a point that has 
already been accepted into the sample, one jumps to 
another point on the basis of whether its posterior is 
higher or lower. If it is higher, one jumps; if not, one 
jumps with probability related to the ratio of the 
posteriors. (There are some technicalities involving 
how one generates potential jumps as well, but this 
would take us far afield.)

This simple algorithm can, in principle, be used 
to navigate high-dimensional parameter spaces, that 
is, to estimate statistical models with dozens or even 
hundreds of parameters. In practice, there are many 
techniques used to make it efficient, like jumping 
along one dimension at a time, taking small steps 
(which make jumping more likely), and using spe-
cial schemes to choose where to jump. If one can 
calculate closed-form expressions for particular den-
sities (describing where to jump), it is possible to 
prove that one always jumps, eliminating a poten-
tially long series of staying put.

When a large number, usually several tens of 
thousands, of such jumps have been made, one has 
that many drawn parameter values that can be used 
for inference. Unfortunately, these draws are often 
highly autocorrelated. In simple language, this 
means they do not jump around the distribution 
randomly, but rather move across it slowly, because 
where you jump to depends on where you jump 
from. In practice, one solves this problem via thin-
ning, that is, by discarding all but every 10th, 20th, 
or 50th draw (the proportion is chosen by the 
researcher, using various assessment tools). Even 
with thinning, the researcher will typically have 
many thousands of points to use for inference, and 
this is nearly always sufficient to trace out a close 
approximation to the true marginal distribution of 
any subset of parameters of interest, even for miss-
ing values (which, as explained, are treated as 
parameters). And, if one does not have enough 
draws, it is simple to keep taking more, until 
one does.

Evaluating the Convergence of the 
Sampling Process
MCMC methods pose several practical questions 
that need to be addressed when analyzing data. 
What starting values should be used to initiate the 
sampling? How long should the cycle be (i.e., how 
long the burn-in period should be)? How much 
thinning should be done? Which algorithms will be 
efficient in terms of run time?

Rather than provide full answers to all these 
implementation issues, we will focus on one key 
aspect of the sampling process: the traceplot. This 
plot focuses on a single parameter and plots its 
drawn value against the iteration number. In the 
previously introduced case of the binomial propor-
tion (of six divorces out of 10 couples), we use 
MCMC sampling to generate say 10,000 samples 
from a beta posterior (which arises from the conju-
gate beta prior and a binomial likelihood). Each of 
these samples represents a draw from the distribu-
tion. They can be plotted against iteration number 
and one can inspect whether there are systematic 
deviations or other obvious patterns. One looks for 
general stability in the traceplot, that is, for little evi-
dence of systematic deviation (e.g., several hundred 
samples near π = 1, then several hundred near π = 0, 
both of which are endpoint values, indicating 
extreme deviations from a stable, interior solution). 
Figure 24.2 represents a well-behaved traceplot 
resulting from sampling from the posterior beta for 
our example of six divorces out of 10 couples. The 
sample was thinned by retaining only every 10th 
observation, hence 1,000 iterations are plotted out 
of 10,000 draws.

A more interesting example than estimating a 
simple proportion is using Bayesian methods to esti-
mate the latent growth curve (we consider a real and 
more complex implementation of this at length at 
the conclusion of this chapter). This sort of model 
allows for two types of heterogeneity, for both slope 
and intercept (and higher order terms, too, given a 
sufficient number of time points per individual). 
Each subject is therefore allowed his or her own 
slope and intercept, but the regressions are esti-
mated simultaneously both for efficiency and for 
proper modeling of the error term. The latent 
growth model can be estimated either in a multilevel 
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model using random terms for the slope and inter-
cept (time points are nested within subject) or in a 
structural equations model using latent variables for 
slope and intercept (raw data are the indicators, 
paths are fixed to correspond to the unit vector for 
the intercept and the linear contrast for the slope). 
To illustrate, we borrowed a data set from one of our 
collaborators, involving four time points. We esti-
mated a latent intercept and latent slope using the 
Bayesian estimation routine in Amos. The posterior 
distribution and the traceplot appear in Figure 24.3. 
We used the default in Amos of 500 iterations to 
burn-in, then estimated 200,000 samples, thinning 
by keeping every fourth, and resulting in 50,000 
samples (the choice of thinning proportion is left to 
the researcher on the basis of the autocorrelation of 
the samples from the posterior; diagnostics appear 
in many programs to aid in this choice). The 

estimate of the linear latent variable is 1.286 (this is 
the posterior mean); the 95% (credible) interval is 
(1.214, 1.356). The maximum likelihood estimate 
for this sample is 1.285 with a standard error of 
0.036 (the estimate corresponds to the fixed effect 
term for the slope in the multilevel model). We do 
not present the complete output for the other 
parameters, such as the intercept and the random 
effect variances and covariances, but similar densi-
ties and traceplots are produced for every other 
parameter.

Model Comparison: Bayes Factors and 
Deviance Information Criterion
Among the many conceptual and pragmatic difficul-
ties of the classical approach is model comparison. 
In some sense, determining which model best fits 
given data is among the key problems in all of 

Figure 24.2.  An example of a traceplot following the posterior density in Figure 24.1. The samples were thinned 
by 10. This example did not have a burn-in period because the sampling was done directly from the posterior beta 
with parameters 7 and 5, per the conjugate prior.
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scientific inference. Although there are a number of 
specialized approaches to making this determination 
in classical statistics, they hold primarily for nested 
models. By contrast, Bayesian inference provides a 
general procedure for comparing any set of candi-
date models in terms of how well they are supported 
by the data: the Bayes factor.

Given two models, the Bayes factor quantifies 
how much more strongly the data favors one model 
over the other. Its calculation depends on one’s abil-
ity to determine the so-called marginal likelihood 
for a model, which can be challenging in practical 

applications. Philosophically, the procedure is akin 
to the standard likelihood-ratio (LR) test in classical 
statistics, although the LR test depends on maximiz-
ing both model likelihoods, whereas the Bayes factor 
averages them over all parameters (via integrating 
over the prior distribution). Although it is not obvi-
ous, this one change pays great benefits: Not only 
can the Bayes factor compare any two candidate 
models but it also penalizes overparameterized mod-
els for needless complexity, unlike classical meth-
ods, which must attempt do so via various post hoc, 
synthetic measures such as the Akaike information 

Figure 24.3.  Example of a latent growth curve model. Results for the mean of the latent variable representing the 
linear term. The posterior density plot appears in panel (a); the traceplot appears in panel (b).
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criterion and the Bayesian information criterion, 
none of which is overtly preferred on theoretical 
grounds.

Because marginal likelihoods and Bayes factors 
can be difficult to calculate, Bayesian statisticians 
have sought other comparison metrics that are easily 
computed from standard simulation output (i.e., the 
draws themselves). Among the most promising of 
these is the deviance information criterion (DIC). 
DIC sums two terms, the first assessing model lack-
of-fit and the second assessing model complexity 
(i.e., effective number of parameters). Large values 
of DIC therefore indicate high lack of fit, high com-
plexity, or both, and are therefore a less desirable 
model. DIC is known to be valid only when the log-
likelihood is itself approximately multivariate nor-
mal, and thus must be used with caution, although 
it is built into many Bayesian statistical programs, 
simplifying model comparison considerably.

Making Predictions
It is often argued, with some justification, that real-
world users of statistics have little use for parame-
ters in and of themselves. What real users care about 
is using a statistical model to run what-if analyses, 
that is, to make predictions. Predictions can address 
what will happen for those units (e.g., experimental 
subjects, longitudinal survey respondents, and so 
on) already in the data or new units, the likelihood 
of attrition or missingness, or even the future values 
of parameters themselves (e.g., Are the animals 
becoming less sensitive to stimuli over time?). In the 
classical, frequentist approach, this is done via pre-
diction intervals, at least in the standard regression 
or general linear models framework. But this, again, 
is highly dependent on asymptotic normality (or 
other such distributional assumptions), which may 
not hold for a particular data set. A secondary issue 
is that predictions are often made from a frequentist 
model using point estimates for its parameters, even 
though those parameters may have a complex, and 
relatively loose (i.e., high variance), joint distribu-
tion of their own.

Once again, the Bayesian approach supplies a 
complete and conceptually appealing solution to 
prediction: A prediction is, like everything else, sim-
ply a distribution, one that we can calculate from 

the posterior (not including the new observation 
about which we are trying to make predictions), and 
all available data. In simple terms, we integrate over 
the posterior of the parameters in the model. In 
symbols,

P Y Y P Y P Y dnew new| | | .( ) = ( ) ( )∫ � � � � (4)

This tells us that, if we wish to know the distribu-
tion for a new observation, Ynew, we must consider all 
the data we already have, Y. And the way to incorpo-
rate this existing data is via the posterior probability 
of the parameters of the model, P(θ|Y). We simply 
average this (i.e., integrate) over the entire parame-
ter space, θ. Once we have this posterior predictive 
distribution, P(Ynew|Y), we can use it like any other 
distribution, to calculate means, modes, variance, 
quartiles, or more exotic functions. There is no 
guarantee that this predictive distribution will look 
like any of the standard distributions of elementary 
statistics. In fact, when this happens, it indicates 
that the prediction problem would have been diffi-
cult or impossible using frequentist tools alone. A 
simple lesson arising from this example is that the 
posterior distribution for the parameters, P(θ|Y), is a 
powerful object that can be used to readily obtain a 
great deal more information of use in practical sta-
tistical settings, especially so in forecasting.

Learning More About the Bayesian 
Approach
Many excellent textbooks provide detailed informa-
tion about Bayesian inference. One of the classics is 
Box and Tiao (1973/1992), as much a research 
monograph as a textbook, which has made impor-
tant contributions to several Bayesian problems. It 
provided much detail and explanation in deriving 
theoretical results in a Bayesian framework, 
although it did not cover modern MCMC-based 
approaches to Bayesian computation. Similarly, an 
early paper by Edwards, Lindman, and Savage 
(1963) made a strong case for use of Bayesian infer-
ence in psychological research.

Contemporary approaches to Bayesian estimation 
rely heavily on MCMC algorithms that sample the 
joint distribution of parameters. Such Monte Carlo 
techniques have been adapted to many novel model 
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and data types, and there are excellent textbooks on 
the details of various Bayesian algorithms (e.g., Rob-
ert & Casella, 2004; Tanner, 1996) as well as gen-
eral introductions (e.g., Congdon, 2003; Gelman  
et al., 2004; Gill, 2002).

Software
Although software to implement and conduct Bayes-
ian analyses has come about only relatively recently, 
many choices are presently available. We recognize 
that software (and associated textbook) recommen-
dations are always a moving target, so we restrict 
the discussion to current capabilities, with the 
caveat that these will certainly deepen over time. 
Among the most general frameworks is the Win-
BUGS package (http://www.mrc-bsu.cam.ac.uk/
bugs). A recent textbook teaches not only the pro-
gram but also Bayesian statistics at an accessible 
level (Ntzoufras, 2009) and supplements two espe-
cially accessible, dedicated texts by Congdon (2003, 
2007). The textbook by Gelman and Hill (2007) 
introduces Bayesian thinking and implementation of 
WinBUGS through the open-source statistics pack-
age R (http://www.r-project.org). Several SAS inter-
faces are available to work with WinBUGS (e.g., 
Smith & Richardson, 2007; Zhang, McArdle, 
Wang, & Hamagami, 2008), the multilevel program 
MLwiN has an interface to WinBUGS. A Microsoft 
Excel add-in, BugsXLA provides an interface to 
WinBUGS (http://www.axrf86.dsl.pipex.com/), and 
the structural equation modeling program Amos has 
introduced its own internal Bayesian estimation 
algorithm.

In addition, several books are tied to the statis-
tical package R. These include Rossi, Allenby, and 
McCulloch (2005), which offers a specialized R 
package and several applications to marketing; the 
comprehensive regression textbook by Gelman 
and Hill (2007), which has several worked exam-
ples in R and also shows how to interface R with 
the dedicated Bayesian package WinBUGS; the 
introductory book by Gill (2002), which provides 
both R and WinBUGS code for standard statistical 
models; and the elementary book by Albert 
(2007), which does an exceptional job introducing 
theory and basic R code to implement Bayesian 
methods.

A welcome recent development is the inclusion 
of Bayesian tools in SAS, a venerable analysis plat-
form for psychologists. By electing to include a 
“BAYES” statement, one can conduct Bayesian infer-
ence for a wide variety of standard specifications, 
most notably for generalized linear models, along 
with various common convergence diagnostics, like 
the Gelman-Rubin and Geweke. The recent addition 
of the MCMC procedure allows user-specified likeli-
hoods and priors, with parameters that can enter the 
model in a linear or nonlinear functional manner. 
This addition literally opens the door for psycholo-
gists who wish to “go Bayesian,” by allowing them 
to work within a software environment with which 
they are already comfortable.

Two Richer Examples Illustrating 
the Usefulness of the Bayesian 
Approach

In this section we discuss two examples that we use 
to explore, at a deeper level, the concepts presented 
earlier in this chapter. The first is a general discus-
sion of a canonical problem throughout the social 
sciences, and the second shows how a Bayesian 
approach can allow researchers to estimate a fairly 
complex model, for a real research problem, using 
modern-day software tools.

Multilevel Models: A Bayesian Take  
on a Classic Problem
We illustrate how Bayesian ideas can come into play 
when understanding multilevel or random effect 
models. Many areas of psychology have seen some 
form of multilevel or random effect (we will use the 
terms interchangeably) model come to the forefront 
in the past decade. Developmental psychologists use 
multilevel models to account for individual differ-
ences in growth-curve trajectories. Clinical psychol-
ogists use latent factors to model individual 
differences in scale response. Cognitive neuroscien-
tists using functional magnetic resonance imaging in 
their research invoke a two-level model to account 
for both the intraindividual time course of the 
blood-oxygen-level dependence response and inter-
individual differences in parameters. These random 
effect and multilevel ideas are not new, having been 
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developed actively since the 1940s, if not earlier. 
They appear in many of the early experimental 
design textbooks in chapters with such titles as 
“Random and Nested Effects” (e.g., Winer, 1971). 
An important special case of this framework is the 
well-known repeated measures analysis of variance, 
in which observations are nested within subject, 
each subject is assigned a parameter, and data are 
not treated as independent observations. The corre-
lated structure of the repeated measures is modeled 
through random effect terms.

Among the major limitations of the early devel-
opments in random effect and multilevel modeling 
was that the problem was tractable (in closed form) 
only for balanced designs—that is, an equal number 
of subjects across conditions were needed to derive 
formulas—and for either linear or general linear 
models. The major advance in the past 20 years has 
been the development of specialized algorithms to 
handle the general problem of multilevel and ran-
dom effect models for a rich variety of model and 
data types. The new algorithms can work with 
unequal number of subjects (e.g., not all classrooms 
have to contain the same number of pupils), missing 
data, and so-called latent variable formulations (e.g., 
random utility models) and can accommodate both 
predictors of the random effect terms and the use of 
the random effect terms to predict other parameters 
in the model.

An important issue in working with multilevel 
and random effect models is that to compute esti-
mates and standard errors, it is necessary to average 
over the random effect terms. That is, to estimate 
parameters in the classic statistical framework, it is 
necessary to compute the likelihood of the data at 
each value of the hypothesis, weight the likelihood 
by a function of the value of the hypothesis, and 
sum the products over all possible hypotheses. Typi-
cal data sets involve multiple independent observa-
tions, so the overall likelihood is taken as the 
product of each observation’s individual likelihood. 
The multiplication of likelihoods (one for each 
observation) is justified because of the indepen-
dence assumption, just as we multiply the probabil-
ity of independent coin tosses to compute the joint 
probability of outcomes over multiple independent 
coin tosses. In symbols, we denote the product over 

multiple observations and use an integral to denote 
the average over the random effect term

f y u g u dui
i
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where the product is taken over observations i, with 
likelihood f(yi|u) for a single observation, and distri-
bution g(u) over random effect u. This is a standard 
way to write the likelihood in the classical approach. 
One can then use well-known, specialized maxi-
mum likelihood techniques to estimate parameters 
and their standard errors directly from this likeli-
hood (e.g., McCulloch & Searle, 2001), under suit-
able asymptotic assumptions.

The basic point we want to communicate is that 
the use of random effects involves some fairly com-
plicated mathematical operations that do not lend 
themselves to easy descriptions. Expression 5 com-
municates the notion that there is a kind of averag-
ing over the likelihood, where the likelihoods are 
weighted by the distribution g(u) of the random 
effects. Expression 5 presents some difficult compu-
tational challenges, too. It is necessary to use spe-
cialized numerical algorithms to maximize this kind 
of likelihood, which contains an integral, and com-
pute terms necessary in the classical framework, 
such as standard errors of the parameter estimates. 
There are several ways of performing a maximiza-
tion over such an average, including quadrature 
methods and Laplace transforms, each with its pros 
and cons (e.g., McCulloch & Searle, 2001).

We use Expression 5 to make a simple point 
about the relation between Bayesian and classical 
methods. Expression 5 highlights a difficulty that 
has plagued statisticians for decades, spurring a cot-
tage industry of ingenious computational tech-
niques, all to more efficiently compute multilevel 
and random effect model parameters. Although fre-
quentist statisticians have made great strides in sur-
mounting the challenges that Expression 5 presents, 
it nonetheless entails a nasty integral, one that 
makes it impossible to write general, closed-form 
solutions, such as with unequal sample sizes or 
errors that are not normally distributed.

Bayesians looking at Expression 5 immediately 
spot a connection to a concept highly tractable 
within their framework. Expression 5 is proportional 
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to the posterior distribution (e.g., Rossi & Allenby, 
2003):

p u y f y u g u du
i

i| | .( ) ( ) ( )∏∫∝ � (6)

Although the classical statistician looks at the right-
hand side of Equation 6 and frets about developing 
numerical procedures to maximize over a thorny 
integral, the Bayesian statistician instantly knows 
how to work with it, via well-established techniques 
for sampling from posterior distributions, such as 
MCMC. In addition, a set of useful tools for select-
ing a model, handling missing data, and assessing 
predictions comes along with the approach. There 
are a few drawbacks to the Bayesian approach. 
These include, for instance, having to write special-
ized code for specific problems (except for the sim-
plest problems, one gives up the canned, 
off-the-shelf statistical package concept), work with 
new concepts that emerge from algorithms that use 
stochastic simulation, and choose a prior distribu-
tion. We do not view these as deal-breakers for 
using the Bayesian approach, as such issues also 
arise in a classical setting. For example, in a fre-
quentist analysis, one assumes an underlying distri-
bution and makes simplifying assumptions, such as 
equality of variances, to make a problem tractable; 
in a Bayesian setting, one selects a prior distribu-
tion. There are parallels in both cases, and in math-
ematical models one never completely gets away 
from assumptions. The key issue concerns which 
assumptions are more reasonable to make, which 
assumptions become irrelevant because of robust-
ness issues, and which model makes difficult prob-
lems tractable.

We like this multilevel modeling example 
because it illustrates that there is a connection 
between the classical and Bayesian approaches in the 
case of random effect and multilevel models. The 
approaches turn out to be very similar: The classical 
statistician chooses to work with the right-hand side 
of Equation 6 and tackles the nasty integral directly, 
whereas the Bayesian chooses to work with the left-
hand side, samples the posterior distribution to esti-
mate parameters, and uses the posterior distribution 
to assess parametric uncertainty. They both work 
with the same idea; they just approach it using 

different methods, which we view as one of the 
major lessons of this chapter.

Research Example
To illustrate the power of Bayesian analysis, we 
present an example from recent work. We choose 
this example not only because it involves a data 
type—intent, measured on an ordinal scale— 
common in psychological research but also because 
all data and programs for analysis are freely avail-
able. The website http://cumulativetimedintent.com 
contains illustrative data in several formats, along 
with Bayesian and classical code in WinBUGS, 
MLwiN, and SAS, so the reader can verify directly 
what each approach, and program, offers in an 
applied context.

At the heart of the project was a need to better 
predict what people would purchase on the basis of 
their stated intentions. Studies relating intentions 
to behavior have been conducted for many years. 
The study we examine here (van Ittersum &  
Feinberg, 2010) introduced a new technique for 
eliciting individuals’ intentions, by asking them to 
state their intent at multiple time periods on a 
probability scale. For example, “What is the likeli-
hood (on an imposed 0%, 10%, 20%, . . . , 90%, 
100% scale) you will have purchased this item 6 
(and 12, 18, 24) months from now”? Each respon-
dent’s data looks like an increasing sequence of 
stated, scaled probabilities, over time. That is, can 
we merely ask people when they might purchase 
something and relate it, statistically, to whether 
and when they actually do?

In essence, this is a random effect model, but one 
not handled out of the box by classical estimation 
software. It is, however, especially amenable to 
Bayesian treatment. Of note for psychologists is that 
we can posit that each individual has some growth 
curve, which is taken to be linear in time (and per-
haps other predictor variables as well). The key is 
how to relate these individual-level, latent growth 
curves to (a) the observable (stated probability on 
an ordinal scale), (b) covariates, and (c) one 
another. It turns out that each of these is natural in 
the Hierarchical Bayes approach, which is nothing 
more than a (nonlinear) hierarchical model, esti-
mated using Bayesian techniques.
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Suppose that the latent adoption propensity for 
subject i at time t is given by a simple linear 
expression,

Propensity tit i= +� �0 1 . � (7)

This specifies how the propensity changes over time 
for an individual but not how it varies across indi-
viduals. This is accomplished via a heterogeneity, or 
multilevel, model,

�1i i iz u= +� � (8)

u Ni u~ ( , ).0 � � (9)

This models slopes (β1i) as a function of individual-
level covariates (zi) and coefficients (Δ). So-called 
unobserved heterogeneity, represented by ui, is pre-
sumed normal, its degree measured by Ωu. So far, 
this is exactly in keeping with standard practice in 
hierarchical linear models (HLM) and would in 
fact be equivalent to the standard formulation—
which is amenable to frequentist analysis—except 
that we do not observe the propensity directly, but 
something related to it, with measurement error. 
Specifically, propensity, on an unbounded scale, 
must be functionally related to adoption probabil-
ity on the unit scale. We choose a probit transform 
because of its conjugacy properties for Bayesian 
analysis:

�it itPropensity= �( ).� (10)

Because this resulting probability (πit) is continu-
ous, but our observable stated intent lies on a dis-
crete scale, one more model stage is required. Given 
probability πit, we can employ an especially parsimo-
nious transformation, the rank-ordered binomial, to 
map from continuous latent, to discrete (1, . . . , K) 
observed, probabilities, which in this example has 
K = 11 (and values 0%, 10%, . . . , 100%):

p Y k
K

k
kit it

k
it

K k( ) ( ) , ,= =
−
−









 − =− −1

1
1 11� � …,, .K � (11)

Conjoining all model stages yields the following 
hierarchical Bayes formulation:

Level I : ( ) ( )p Y k
K

kit it
k

it
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−
−
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Whereas early Bayesian analyses would have 
required tedious specialized derivations and labori-
ous programming, models like this one can be 
accommodated in dedicated software, with pro-
grams written in statistical language directly. Here, 
for illustration, we use MLwiN as a Bayesian compu-
tation platform (all code is posted at http://cumula 
tivetimedintent.com). Coupled with noninformative 
priors, the resulting output includes samples from 
the posterior density for all model parameters. Auto-
matically generated diagnostics help determine 
model convergence and provide plots of all marginal 
distributions, which do not have to be normal. For-
mal hypothesis testing proceeds off these density 
plots, without any distribution assumptions.

For example, we may wish to make inferences 
about parameters in both the Level II (heterogene-
ity, or dealing with the distribution of individual-
level parameters) and Level I (dealing with 
individuals’ parameters, or latent growth curves) 
models. Actual MLwiN output for this model, using 
real data, includes the following, which the program 
provides written in full statistical notation:

probit(πit) = −1.907(0.026)CONS + β1i t

β1i = 0.733(0.056) + u1i

[u1i] ∼ N(0,Ωu): Ωu = [0.508(0.068)]

PRIOR SPECIFICATIONS

P(β0) ∝ 1

P(β1) ∝ 1

p Gamma
1

0 001 0 001
1

2�u









 ~ ( . , . ).

 

All parts of the model are immediately recognizable 
as well as the estimated values of both the Level I 
and Level II parameters, with standard errors in 
parentheses. These are not merely point estimates in 
the usual sense, but the result of having taken 
100,000 draws from the entire posterior distribu-
tion. The program automatically obtains the mar-
ginal distribution for each parameter of interest, 
and uses it to calculate the parameter’s mean and 
variance, with the critical distinction that the 
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variance is not merely an approximation from the 
Hessian (as in frequentist analyses) but rather comes 
from the entire marginal distribution directly. 
The program also shows that it uses noninformative 
priors for the regression parameters (β0 and β1), 
and a mildly informative (i.e., very high variance) 
inverse gamma prior, a popular choice, for the 
variance (�u1

2 ).
We might interpret the model as follows. Each 

individual has a latent propensity to purchase (πit), 
and the probit transform of that probability is linear 
in Time, with an intercept of −1.907 (SE = 0.026), 
and a coefficient (β1i) with a mean of 0.733 

(SE = 0.056). However, there is some degree of vari-
ation in the value of this coefficient across respon-
dents. The mean across respondents, as we have 
seen, is 0.733, but the variance is estimated to be 
0.508 (standard error: 0.068). We would also wish 
to check that the traceplot for each of these parame-
ters looked reasonable, meaning like a sequence of 
independent draws, with no patterns obvious to the 
eye. These appear in Figure 24.4, also as generated 
automatically in MLwiN, for the last 10,000 draws 
for each parameter (we have also included a kernel 
density for the variance and, as would be expected, 
it is not symmetric). Because we can access all these 

Figure 24.4.  Traceplots for three parameters from a latent purchase intent model, with a kernel density for the 
variance, generated in MLwiN.
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draws, and indeed have them for each of the respon-
dent’s individual slope coefficients (β1i), we can cal-
culate latent growth curves for each, error bars 
around them, and in fact any function of their 
parameters, all by operating on the posterior draws 
directly.

Although this model would not be impossible to 
estimate using classical techniques—indeed, one 
can program it using PROC NLMIXED in SAS, with 
some patience, by writing out the model likelihood 
directly—the Bayesian approach allows all parame-
ters of interest to be calculated to any desired degree 
of accuracy. Moreover, we obtain a distribution for 
each of these parameters, and an arbitrarily large 
number of draws from each one. In practical terms, 
this means that the analyst is freed from making any 
assumptions about the asymptotic behavior of 
parameters and can perform on-the-fly postestima-
tion tests on complex functions of the problem’s 
parameters. This is completely beyond what fre-
quentist techniques can offer, yet it is natural and 
straightforward using Bayesian estimation.

Conclusion

Some readers will get the sense that our views about 
Bayesian statistics are not entirely mainstream. Par-
tisans will undoubtedly feel we did not portray their 
vantage point with sufficient detail. The classical 
statistician may take issue with superficial attention 
to the problem of defining one’s prior. “Ambiguity 
over selecting a prior distribution is the Achilles’ 
heel of the Bayesian approach,” a classically inclined 
researcher may say. Bayesians may be incensed that 
we lump their elegant, comprehensive formalism 
with the classical approach by saying they both act 
the same when the Bayesian assumes a noninforma-
tive prior. “But you miss the important differences 
between how we interpret the results,” will be 
shouted from the Bayesian rooftops. Let us be the 
first to acknowledge that some of the subtle details 
have been omitted. But that was completely inten-
tional. We want to bring more researchers to the 
discussion, expose more people to the underpin-
nings of both classical and Bayesian approaches, and 
show researchers some new tools. We believe (and 
we have a pretty sharp prior on that belief) that the 

best way to accomplish this is by outlining the  
similarities of the approaches and the advantages 
each offers.

We hope this chapter has been a readable and 
accessible introduction to the basic notions of 
Bayesian statistics and that it provides a straight-
forward way to formulate some of the tools that 
the Bayesian tradition offers. In these relatively 
few pages we cannot cover all the ins and outs of 
conducting different types of Bayesian analyses—
there are books that do that. If the reader’s inter-
est is piqued sufficiently to seek out some of the 
reference books and explore some of the software 
we mention, then this chapter has been 
successful.

Some areas of psychology have already started 
to apply modern Bayesian methods. For example, 
new models in item response theory have used 
Bayesian ideas to estimate multivariate, multilevel, 
second-order, item-response theory models (e.g., 
Duncan & MacEachern, 2008; Fox & Glas, 2001; 
Sheng & Wikle, 2008). We hope these and other 
examples will provide the inspiration to seek new 
ways to test your research ideas and that Bayesian 
methods provide some useful tools to carry out 
those tests.
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