

Review of Dark Matter Searches with Noble Liquid Detectors and Recent Results from XMASS

Hiroyuki Sekiya ICRR & Kavli-IPMU, University of Tokyo for the XMASS collaboration Feb. 7 2014 Kavli IPMU Seminar

Contents

- Principle of direct detection – Direction insensitive searches
- Detection technologies with liquid noble gasses = noble liquids
	- Review of double phase detectors
	- Review of single phase detectors
		- XMASS
		- Liquid Xe TPC
- Future noble liquid detectors

Total 61 pages

Principle of WIMP Direct Detection

• Particle physics × Astrophysics (cross section) (flux)

$$
R = \sigma_{\chi-N} \times n \langle v \rangle
$$

= $\sigma_{\chi-N} \times \rho \int \vec{v} f(\vec{v}) d\vec{v}$

 $\overline{\sigma_{\chi-\mathrm{N}}}$: WIMP-nucleus cross section

WIMP density

 $f(\vec{v})$: WIMP velocity distribution

Both the WIMP cross section and flux must be studied, but…

Astrophysics -The model-

Astrophysics -Recent N-body simulations-

• Velocity distribution

Indications of deviations from Maxwell distribution, particularly at high velocities.

→Impact on Light WIMPs Direction sensitive search

JCAP 02(2010) 030

Halo density profile in the galactic plane

IPMU ACP seminar 7/2/2014

Recent Halo models

- Tidal streams
	- C. Savage, K. Freese, P. Gondolo, Phys. Rev. D74,043531 (2006).
	- A. Natarajan, C. Savage, K. Freese, Phys. Rev. D84,103005 (2011).
	- C.W. Purcell, A.R. Zentner, M.Y. Wang, JCAP 08, 027(2012).
- Debris flow
	- M. Kuhlen, M. Lisanti, D.N. Spergel, Phys. Rev. D86, 063505 (2012).
- Extra galactic components
	- K. Freese, P. Gondolo, L. Stodolsky, Phys. Rev. D64,123502 (2001).
	- A.N. Baushev, Astrophys. J. 771, 117 (2013).
- Dark disk
	- T. Bruch et al., Astrophys. J. 696, 920 (2009).
- etc.....
	- P. Belli et al. Phys. Rev. D66, 043503 (2002).
	- A.M. Green, JCAP 10, 034 (2010).PRD 74 043531(2006)

Particle physics after LHC

- SUSY $\tilde{\chi}_{0}^{1}$ is still attractive, but it goes far...
	- Nucleon scattering cross section, $\sigma_{\chi\text{-}n}$, is now down to $\sim 10^{-48}$ cm²

WIMP-Nucleus elastic scattering

- Recoil energy
 $E_R = \frac{M_N M_{\chi}^2}{\left(M_N + M_{\chi}\right)^2} v^2 (1 \cos \eta)$ η : scattering angle in CM
- Cross section

$$
\sigma_{\chi-\mathrm{N}}\ =\ 4G_\mathrm{F}^2 \left(\frac{M_\chi M_N}{M_\chi+M_N}\right)^2 (C_\mathrm{N}^\mathrm{SI}+C_\mathrm{N}^\mathrm{SD})
$$

 $C_{\rm N}^{\rm SD} \propto \left(a_{\rm p}\left\langle S_{\rm p}\right\rangle_{N}+a_{\rm n}\left\langle S_{\rm n}\right\rangle_{N}\right)^{2}\frac{J+1}{J}$ $C_N^{SI} \propto A^2 \sigma_{\chi \text{-}n}$ χ χ . χ \widetilde{q} **In this talk I will focus** H, h Z **on only SI (but I love Fluorine!)** \boldsymbol{q} a \boldsymbol{a}

Digression:¹⁹F

$$
\sigma_{\chi-N} = 4G_F^2 \mu_{\chi-N}^2 C_N \qquad \mu_{\chi-N} = \frac{M_{\chi} M_N}{M_{\chi} + M_N}
$$
 Reduced mass
\nEnhancement factor
\n
$$
C_N = C_N^{SD} + C_N^{SI} \qquad (C_N^{SI} \propto A^2) \qquad \leq S_p >_N \text{ nucleon spin}
$$
\n
$$
C_N^{SD} \propto \left(a_p \left\langle S_p \right\rangle_N + a_n \left\langle S_n \right\rangle_N\right)^2 \frac{J+1}{J} \qquad \leq S_n >_N \qquad \text{in the nucleus}
$$
\n
$$
a_p a_n \qquad : \chi\text{-nucleon coupling}
$$

19F can play a unique role in

 setting limits on ap& aⁿ Materials used so far;

> Solid: LiF/NaF Liquid: \textsf{CF}_3 l, $\textsf{C}_4\textsf{F}_{10}$ Gas: CF_4

Expected detection rate

• Integrated over the velocity distribution (SI)

For different Nuclei

For different WIMP mass

• Ton scale experiments are necessary.

H. Sekiya 10 • Heavy nuclei and Light WIMPs are easier for experimentalists IPMU ACP seminar 7/2/2014

Direct Search Experimental Challenge

As we have seen

- WIMP nuclear recoil signal is:
	- Low rate (<1 events/ton/year)
	- Low energy (<10keV, actual visible energy is even lower)
	- Expected exponential spectrum is similar to many background signals
- Detection technique must be:
	- Extremely low background
	- Low threshold
	- Large mass
- It's better to be
	- Position sensitive to allow fiducialization
	- Discriminating between WIMPs/n and γ/β
	- **Directional**

Technologies in 2003

Technologies in 2013

IPMU ACP seminar 7/2/2014

Direct searches on Earth

Baudis SUSY2013

IPMU ACP seminar 7/2/2014

Current Status

• SI WIMP-nucleon cross section limits as of Nov 2013

- $-$ The best is LUX, reaches 10⁻⁴⁶ cm².
- Top 3 limits are all from double-phase Xe detectors

Noble liquid detector

• scintillation detector / ionization detector

Why are noble liquids good for WIMP searches?

- Large mass/scalability especially Ar ←cost
- Large mass number especially Xe \rightarrow Passive BG rejection: self shielding by fiducialization **Noble gas interaction process**
- Large light yields→low threshold
- Purification→low BG
- Both scintillation and ionization signals are detectable.
- Excitation/ionization ratio provides electron/nuclear recoil separation

→Active BG rejection

How to use noble liquids

3 concepts has been considered.

- Single-phase (liquid)
	- Just as scintillators
	- TPC to measure ionization directly
- double-phase (liquid+gas)
	- TPC same as single-phase, but this is easier.

How to use noble solids (R&D@ UCLA, Fermilab,…)

- Single-phase (solid)
	- Just as scintillators
	- TPC to measure ionization directly
- double-phase (solid+gas)
	- TPC same as single-phase,
		- but this is easier.

H. Sekiya 18

Xenon phase diagram

Single-phase scintillator

- This concept has been realized recently
	- Also sensitive to ionization, in a sense, through the recombination process
	- Singlet/triplet ratio differs between nuclear/electron recoil events

←possibility of PSD

Single-phase TPC

- The original concept, but has not been realized yet.
	- By applying an electric field, electrons produced by ionization can be collected. These can be observed via charge amplification or proportional scintillation with a strong electric field.

double-phase TPC • Realized first. Now well-established with several successful implementations

– Same as single phase TPC, but if electrons are extracted from liquid phase to gas phase, charge amplification / proportional scintillation become easier with a strong electric field

Liquid Xe/Ar TPCs

Based on N.J.T. Smith ICRC2013 L. Baudis SUSY2013

Darkside @LNGS

350kg total 118kg FV 122 2'' PMTs Data taking will continue until 2015

161kg total 50kg FV 242 1'' PMTs Data taking on-going

125kg total 25kg FV 143 1'' PMTs 37 3'' PMTs **Started** data taking

850kg total 100kg FV 28 3'' PMTs **Commissioning** Will start taking data in 2014 data taking

50kg total 33kg FV ³⁹Ar (depleted) 38 3'' PMTs **Started**

IPMU ACP seminar 7/2/2014

Example events in double-phase detectors

• 1.5keV gamma in LUX

D. McKinsey, R. Gaitskell Oct30 2013

• 9keV recoil in XENON100

Electron/nuclear recoil separation power

• XENON100's performance

- ER calibration: ⁶⁰Co and ²³²Th, NR Calibration: AmBe
- 99.75% ER rejection for 50% efficiency loss on NRs

N. Priel SUSY2013

DM search results

• LUX 85 days • XENON100 225 days

- Expected background of 1 +/- 0.2 events
- 2 events observed
- Compatible with the background hypothesis

N. Priel SUSY2013

Liquid Xe/Ar scintillators

XMASS-1@Kamioka miniCLEAN@SNOLab DEAP3600@SNOLab

835kg total 100kg FV 642 2'' PMTs Refurbished Restarted data taking

500kg total 180kg FV LNe for solar neutrino Under construction Will start taking data in 2014

3.6 ton total 1 ton FV 255 8'' PMTs Under construction Will start data taking in 2014

XMASS

Where?

- Located underground Mozumi zinc mine at 2700 m.w.e. depth.
- 2km horizontal acces cars

$LAB-C$

Xe Circulation system

LXe tank

Distillation

Tower

Water tank

B MORIMATSU

LXe tank for Distillation

 $\mathbb{P}(1/2, 2)$

Emergency LN

Gas Xe tank for emergency collection

Gas Xe compressor for emergency collection

XMASS Projects

Multipurpose low BG experiment with single phase (liquid) Xe

- Xenon MASSive detector for Solar neutrino (pp/ ⁷Be)
- Xenon neutrino MASS detector (double beta decay)
- Xenon detector for Weakly Interacting MASSive Particles(DM)

dark matters, neutrinos

Y. Suzuki, hep-ph/0008296

 $n_{\text{cutrin}_{\text{OS}}}$

axions

24t (10t fiducial) The ultimate XMASS Ø 2.5m

 $136Xe^{0v^2}$

アニュートリン

ら0v2B も可能

 $2v2\beta$

IPMU ACP seminar 7/2/2014

XMASS-1

• 835kg LXe detector for Dark Matter search

XMASS must be extremely clean

- 10m x ϕ 10m water shield for external BG
- Made of pure materials
	- Development of low BG PMTs
- Xe purification technologies
	- Distillation system

Photo coverage 62.4%

XMASS PMT HISTORY Radiopure PMT

HAMAMATSU

• A radiopure PMT Base has also been developed

Astoparticle Physics 31, (2009) 290

Xe Distillation System

- Commercial "pure Xe" contains ~0.1ppm Kr
	- ⁸⁵K / K = 1.2 × 10⁻¹¹ τ =10.8 year, Q_β = 687keV
	- 5 order reduction was essential .

We established Xe purifiaction using distillation

→XENON

- 1 ton LXe = 170 m³ gas Xe Process speed: 4.7kg/hr \rightarrow 10 days
- Confirmed Kr < 2.7ppt by API-MS

NIM A 716 (2013) 78

Detector Response Top PMT

manipulator

• Highest LXe scintillation yields: 14.7p.e./keVee • Lowest threshold: 4hits→0.3keVee

 -1.4 cm r.m.s. ω z = 0 -1.0 cm r.m.s. ω z = ± 20 cm

ំ0
ទី១

(extremely tiny) Calibration sources

IPMU ACP seminar 7/2/2014 H. Sekiya 36

- Major BG source was thoughts to be γ from PMTs, but the observed data seemed to indicate additional surface contamination.
	- Aluminum sealing parts for the PMT (btw metal body and quartz glass) contains 238 U and 210 Pb (>5keV)
	- GORE-TEX between PMT and holder is suspicious below 5keV.

IPMU ACP seminar 7/2/2014

To make matters worse

- Those backgrounds deposit energy on "dead zones" and make position reconstruction difficult
	- Could not conduct a FV analysis.

XMASS Full Volume: Low BG w/o PID

- Although extra BG sources were found, XMASS BG level is still competitive.
	- w/o rejecting electron recoil events.
- XMASS has a competitive sensitivity to Light WIMPs

Light WIMPs

• XMASS set an upper limit on the WIMP-nucleon cross section for WIMPs with masses below 20GeV w/o PID and excluded part of the parameter space allowed by DAMA

Phys. Lett. B719 (2013) 78

Search via inelastic scattering

- XMASS can probe WIMP energy deposition through inelastic scattering using electronic events
- $129Xe$ (NA 26.4%) has an excited state at 39.578keV

Simulated signal in XMASS

Limits on ¹²⁹Xe inelastic scattering cross section **arXiv:1401.4737,submitted to PTEP**

Solar Axions

JETP Lett., 95, 379 (2012) A. V. Derbin et al.,arXiv:1206.4142

- Through the axio-electric effect in Xe, XMASS also has sensitivity to solar axions, which may be produced by Bremsstrahlung and Compton effects (g_{aee}) in the Sun
- N.B. Not g_{av} through Primakoff effect
	-

Expected flux $g_{\text{aee}} = 10^{-10}$.

Solar Axions **Phys. Lett. B724 (2013) 46**

- Same data set as Light WIMP search
- No indication of signals. Bound in gaee vs. mass.
- Better than any other constraint in 10-40keV.

 $\frac{10}{90}$

XMASS-1 **Refurbishment for Background reduction**

- Countermeasures
	- PMT+Cu surfaces were cleaned and GORE-TEX was removed.
	- High purity Al was deposited on the side of PMT window to prevent light leakage from dead zone
	- PMT Aluminum seal was covered
		- Cu ring around aluminum seal
		- Electro-polished Cu plate above Cu rings

XMASS-1 **Refurbishment for Background reduction**

• Countermeasures

Refurbishment

before after

• Resumed data taking in November 2013 – First data looks… improved!

IPMU ACP seminar 7/2/2014

Quick look at the data after RFB

• maxPE/totalPE = Maximum photoelectrons in one PMT Total photoelectrons

PMT array Large maxPE/totalPE

Small maxPE/totalPE

The larger R, the larger maxPE/totalPE EXCEPT events in the dead zone

IPMU ACP seminar 7/2/2014 H. Sekiya 48

Quick look at the data after RFB

Normalized by live time

- At least 1/10 BG reduction
	- Another 1/10 reduction is expected through the position reconstruction (PE,timing) New results coming soon!

IPMU ACP seminar 7/2/2014 H. Sekiya 49

XMASS-1.5

• Actively being developed w/ Hamamatsu

Single-phase TPC

Before the realization of two-phase detectors, there were many studies focused on charge amplification and proportional scintillation in single-phase LXe.

Derenzo , Phys. Rev. A 9 (1974) 2582 Charge gain ~400

Miyajima NIM 134 (1976) 403 Charge gain ~100

Fig. 1. Gain vs voltage for single-wire proportional chambers having an anode of $5 \mu m$ in diameter. Solid line represents the gain for internal ²⁰⁷Bi source and dashed line for external irradiation of collimated ¹³⁷Cs gamma rays. Inserted figure shows a schematic diagram of single wire proportional chamber.

S2 in LXe

Masuda NIM 160 (1979) 247 Charge gain & proportional scintillation

LXe

V (KV)

VOLTAGE DIFFERENCE

 $4 \text{ um } 6$ 6 µm o 8.5 \textmu m 6 10 um & 11 jum of 20 um ¢

 σ_{10}

GAIN

CHARGE

Fig. 5. Energy spectra of $207Bi$ for the center wire of 11 μ m in diameter at $V = 4.0 \text{ kV}$ which is the optimum voltage for this wire. The upper spectrum is for the charge and the lower for the proportional scintillation. The peak positions in both spectra are laid at the same channel.

Single-phase TPC **Masuda,Itow and HS**

ParisTPC conf (2012)

Gas spherical TPC Giomataris JINST 3:P09007(2008)

Will be tested with single

Single-phase TPC

Breskin ParisTPC conf (2012)

• Thick GEM in LXe Thickness 0.4mm **THGEI**

M 10p 250MSA

4 Drubt

Single-Phase TPC Karl Giboni **WPAS2014 conf.**

• Panda-X

Double phase TPC has Leveling problem!

IPMU ACP seminar 7/2/2014 H. Sekiya H. Sekiya

Future Projects How much noble liquid do we need?

• To reach \sim 10⁻⁴⁸ cm²

Future Projects (all in water)

Time

IPMU ACP seminar 7/2/2014

Evolution of Direct Dark Matter Search

• Can we push to such low BG levels? **L.Baudis Phys Dark Univ.1(2012) 94**

Conclusion

- Direct detection experiments have reached sensitivity to WIMP cross sections down to \sim 10⁻⁴⁶cm² with noble liquid technologies.
- Detectors coming online in the next 5 years will aim for $<$ 10⁻⁴⁷cm² and all will use noble liquids.
	- Can noble liquids catch Dark Matter?
	- Beyond noble liquids, completely new technology will be required?
	- SUSY? After LHC upgrade, we may have to go further…or…

