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Abstract

We present a standard sequent calculus for first-order modal logic with definite de-
scriptions. It is equivalent to Garson’s system which is a generalization and sim-
plification of the approach originally introduced in Q3 system of Thomason. This
particular theory of definite descriptions is based on free logic with identity and ex-
istence predicate where both rigid and nonrigid terms are present. We show that,
despite of the complexities unavoidable for any characterization of definite descrip-
tions, it is possible to provide a structural proof theoretic analysis of such theory. In
particular, cut elimination theorem for this sequent calculus is proved in a construc-
tive manner. We briefly consider some possible extensions of this calculus. Finally,
some other approaches to modal description theories, due to Goldblatt, and to Fitting
and Mendelsohn, are also discussed from the standpoint of structural proof theory.

Keywords: first-order modal logic, free logic, definite descriptions, sequent calculus,
cut elimination.

1 Introduction

The aim of this paper is to present a cut-free sequent calculus for first-order
modal logic with definite descriptions. It seems that a satisfactory structural
proof theory for such logics is not yet developed. We mean by that a formaliza-
tion provided in terms of sequent calculi enabling analysis of proofs. Roughly
speaking, in order to allow such an analysis, suitable sequent calculus must be
defined in terms of rules having analytical character and admitting cut elimi-
nation. These requirements will be discussed in more detail in section 4.

The first problem requiring a clarification is which logic should be taken
into account. There is a variety of first-order modal logics based on different
assumptions concerning such questions as existence or denotation? and we can
hardly say that some of them are treated as commonly acceptable. The same

1 The results reported in this paper are supported by the National Science Centre, Poland
(grant number: DEC-2017/25/B/HS1/01268).

2 For a survey see e.g. Garson [10] or Fitting and Mendelsohn [7].
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may be said about theories of definite descriptions. Since the publication of
B. Russell’s famous paper “On Denoting” [28] several theories were formulated
but neither can be claimed to be a definitive solution to the problem of de-
scriptions. In particular, a treatment of improper descriptions which fail to
designate a unique object leads to significant differences between several ap-
proaches. Many researchers dealing with the problem of definite descriptions
follow the Russellian route and eliminate them in favour of ordinary first-order
logic with identity but such reductionist approach has serious disadvantages.
However, there is an older tradition, starting with Frege [8], [9], in which defi-
nite descriptions are treated as genuine terms and a fixed denotation is assigned
to all improper descriptions. This account was formally developed by Kalish
and Montague [21] but it has also some disadvantages. It seems that a de-
tailed treatment of definite descriptions requires richer resources beyond those
offered by classical logic. In fact, a construction of a satisfactory theory of def-
inite descriptions was one of the aims of developing free logics, as reported by
Bencivenga [2]. Lambert [24] shows also that free logics offer an useful setting
for comparison of Russellian and Fregean approaches to definite descriptions.

Modal logics and semantics of possible worlds provide even better frame-
work for construction of such a theory. A good witness to this claim is a de-
tailed study of first-order modal logics with complex terms of different kinds,
including definite descriptions, developed by Fitting and Mendelsohn [7]. Tt is
probably the most subtle theory of definite descriptions which is rich enough for
expressing differences between terms that designate existent and nonexistent
object, and terms that do not (and even cannot) designate. As such it certainly
deserves attention but it is difficult to provide a suitable sequent formalization
of it. We will comment on these problems in the last section.

Another formalization of modal logic with definite descriptions, also dis-
cussed in the last section, is due to Goldblatt [12]. His approach does not
require introduction of some extra machinery beyond standard apparatus. It is
in fact not difficult to provide adequate sequent calculus for it but the problem
of proving cut elimination is open.

It seems that for the aims of proof theoretic analysis, the approach presented
by Garson [11] is a better option. He provided elegant, relatively simple, yet
well justified treatment of definite descriptions on the basis of some variant
of free logic. It is a slightly strenghtened version of Lambert’s system [23]
of minimal free description theory MFD in the language with modalities. A
strenghtening is due not only to the addition of modalities but also to the
addition of a rule specifying the relationship between rigid and nonrigid terms.
The first version of such logic was developed by Thomason [30] under the name
Q3 but with some unecessary complications. Garson provides much simpler
formalization of this system in terms of natural deduction, and this formulation
will be our basic point of reference. In what follows we present a sequent
calculus formalization of Garson’s system and prove cut elimination theorem
for it. Hence “Free” in the title is purposely ambigous in the sense of being
cut-free formalization of free modal logic.
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2 Garson’s System !S

The system is formulated in the standard predicate language with identity and
existence predicate and with iota-operator forming definite descriptions from
formulae of the language. More precisely, we will use the following categories
of expressions denoted by the following symbols:

¢ denumerably infinite set of bound variables VAR = {z,y, 2, ...}

¢ denumerably infinite set of free variables (rigid names) CON = {a,b,c, ...}
¢ denumerably infinite set of predicate symbols PRED = {A, B,C, ...}

e connectives: =, A, V,—, <> 0

e predicates of identity and existence: =, F

e (free) quantifiers: V,3

e iota-operator: 17

In general we will use the same symbols in the metalanguage but with
aditional metavariables ¢, ¥, x used for any formulae and I', A, I, ¥ for their
multisets. A definition of a term and formula is standard; note however, that
we do not admit formulae containing x,y, ... not bound by quantifiers or iota-
operator. Accordingly, the category of terms covers free variables and de-
scriptions which will be written as wxy where ¢ is a formula in the scope of
iota-operator. Metavariables ¢,tq,... will be applied for any terms, including
descriptions. Moreover, we will use a metavariable d for denoting any definite
description if its structure is not essential. [z /t] is officially used for the op-
eration of correct substitution of a term ¢ for x. However, to simplify matters,
we will be also using freely in proof schemata a notation p(z),¢(a),¢(t). In
particular, ¢(x) will be used to denote that ¢ (being a scope of some operator
which binds x) contains at least one occurrence of free x, whereas ¢(a) or p(t)
will denote the result of substitution.

Note that to simplify matters, and following Garson’s policy, we do not
introduce function symbols and we regard only elements of CON as rigid, and
definite descriptions as nonrigid terms. It is possible to divide all terms into
rigid and nonrigid, then to subdivide both classes into simple (names) and
complex terms and the latter into descriptions and functional terms. It seems
that such syntactic extensions require only additional notational complications
(two-sorted language) and no substantial changes into presented systems are
necessary. However, we will see that admitting rigid definite descriptions or
universal instantiation on nonrigid terms may lead to troubles in proving cut
elimination for sequent calculus formulation. We will comment on this problem
in the last section while discussing Goldblatt’s approach.

Garson presents his system as Jaskowski-style natural deduction. We omit
propositional details of his system and briefly recall only his rules for quantifiers,
identity and descriptions:

(VE) Vxp b FEa — ¢[z/a], where a is any (rigid) constant.
(VI) Ea — ¢[x/a] F VYap, where a is neither in active assumptions nor in
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Note that in the rules for quantifiers and boxed identity only rigid terms are
allowed to instantiate variables, whereas in other identity rules all terms may
appear. (3i) is a special rule which guarantees that all descriptions have some
denotation although not necessarily in the actual world. This rule provides a
form of “rigidification* of nonrigid terms.

In what follows we will use two equivalent rules for definite descriptions of
the form:

Ea,a = wp(z) F Ve(e(z) < 2 =a)
Ea,Vz(p(x) &z =a)t a=1wwp(x)

Although on the ground of free logic Vz(p(z) <+ = = a) is not equivalent
to p(a) AVz(p(z) — x = a), in the presence of Fa they are equivalent since
o(a) ANVz(p(z) — = = a) implies Vz(p(x) <> 2 = a) and the latter with Fa
implies p(a) A Va(p(xz) = x = a).

Garson’s system !S (where S is the name of suitable propositional modal
logic) is adequate with respect to relational semantics with varying domains (of
objects), actualist quantification and both rigid and nonrigid terms. Semanti-
cal characterisation will not be used in the remaining sections. However, for
better understanding of the meaning of his system’s principles and intuitions
behind them, we will recall briefly the notion of a model for this logic. Our
characterisation is a slightly modified version of Garson’s semantics but giving
equivalent results. In particular, for easier comparison with more standard se-
mantics of first order languages we admit variables z, ¥, ... as occurring free as
well, and our free variables a, b, ... treat as individual rigid constants. It does
not make any essential differences with Garson’s version.

A model is any structure M = (W, R, D, d, I,), where W, R is a standard
modal frame, D is a nonempty domain, d : W — P(D) is a function which
assigns a set of (existent) objects to every world, and I, is a family of world’s
relative functions of interpretation for predicate symbols, defined as follows:

I,(P™) C D™, for every n-argument predicate and world.

An assignment a is defined in a standard way as a : VARUCON — D,
similarly for the notion of z-variant. Interpretation I%(¢) of a term ¢ in w
under an assignment a is just a(t) for elements of VAR and CON. Now, I¢
for definite descriptions is defined in terms of satisfaction relation, so we recall
it first (essential clauses only):
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M, a,wE P(ty,ty) it (I9(t1), ..., 1%(tn)) € L, (P)

Em,a,w = tl = tQ iff Ig(fl) = Ig‘](tg)

M, a,wE Et it 18(¢) € d(w)

M, a,wE —p it Ma,wk e

Ma,wkE @ — P ifft M a,wk por Ma,wkEY

M, a,wE Op iff 9, a,w E p for any w’ such that Rww’
M, a,w = Voo ifft M, aZ,wkE e for all o € d(w)

M, a,w = Jzp iff I, aZ, wk @ for some o € d(w)

Now, for any definite description: If there is a unique o € d(w) such that
M, a, w E ¢, then 12 (1x¢) = o; otherwise I%(1xp) ¢ d(w).

s Yoo

Definitions of truth in a model, satisfiability, validity and entailment are
standard. Note that we obtain different normal modal logics by restricting R
suitably. Thus for T-modality which we have chosen as a fixed representative,
R must be reflexive. We omit the details of adequacy proof and direct a reader
to Garson [11]. One should note that in this semantics improper descriptions
are explained as having a nonexistent designatum in respective world. It means
that every description has a designatum but not in the sense of Fregean theory
of the chosen object where all improper descriptions have a unique designatum.
Improper descriptions just have designates somewhere. Such an approach is
also in contrast to Fitting and Mendelsohn’s solution where one can treat as
proper description a term which designates in other world and improper de-
scriptions are terms that do not designate at all. But, as Garson pointed out,
this question may be treated as a way of interpretation of worlds in a model
rather than an issue requiring a technical regulation in the semantics.

3 Sequent System SC!S

We will use a version of Gentzen’s LK calculus but with sequents built not
from finite lists but from multisets of formulae and with all rules multiplicative
(i.e. context-free in case of many-premiss rules). Since modal details are not
essential we just fix rules adequate for logic T, hence the concrete sequent
calculus specified below should be named SC!T. Clearly, one can use rules
characterising other modal logics, weaker (like K) or stronger (like S4 — as in
Thomason’s Q3). Note however, that if we want to have our system cut-free,
modal rules should be taken only from the, rather modest, list of those systems
where cut elimination holds? .

In what follows, for rules with more than two premisses we will use I'; A in
conclusions always to denote multiset unions of I'y, ..., ', Ay, ..., A, occurring
in premisses. The system consists of the following rules:

I'=Ae ¢ll=X%

(AX) o= (Cut) =AY

3 For a survey see e.g. Fitting [6], Goré [13], Indrzejczak [15], Poggiolesi [27] or Wansing
[31], [32].
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1. where a is not in I'; A and ¢.

_ t=tI=A _ 9 a=d,I'= A
(==) =152 (=d=)" =

2. where a is not in I', A, d.

5 1= Ay pfa/t] [y = Ag,t1 =t plr/ta], T's = A
(==)
I'=s A

3. where ¢ is atomic, t;, ¢y are any terms.

= =A% = A, S

I' = Ay, Ea Eb,p[z/b],T2 = As,a=1b Eb,a =b,I's = Ag, ¢lz/b]
I'=Aja=1wp

4

(=1

4. where b is not in I', A, ¢

I'n = A1,Ea I's = Ag,Eb F3:>A3,tp[:1:/b],a:b go[a:/b],a:b,F4:>A4

(=) a=wp,I' = A
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A definition of a proof is standard, as well as definitions of principal, side
and parametric formulae in rule’s applications. It is easy to demonstrate the
soundness of this calculus but we’ll rather prove it indirectly by showing that
it is not stronger than Garson’s system (Theorem 2 in the Appendix). As for
completeness one may suspect that the presented system is too weak. Thoma-
son [30] introduced a generalised versions of (VI) and (3) in order to prove
completeness of Q3. Such rules are also used by Goldblatt [12] under the name
template rules. Garson [11] avoids rules of this kind because they are deriv-
able in his natural deduction system due to the presence of modal subproofs.
In the standard sequent calculus it is not possible to represent modal nesting
mechanism involved here, so we cannot derive such rules. Nevertheless, they
are admissible and we can add to SC!S suitable counterparts of such rules of
the form:

= 1 = O(p2 = ... 0(pn = (Fa = Ylx/a])...)

_ = ¢1 = 0(p2 = ...0(pn 2 a#d)...)

where n > 1 (for n = 1 both rules are derivable), a is not in any ¢, 1, d.

However, such rules are necessary only if we prove completeness by means
of canonical models and using Thomason’s strategy of saturation. For sequent
calculus without these rules (and without cut) we can adapt completeness proof
provided by Garson for his tableau system which works without the need of
using template rules. Thus we conclude that the system is equivalent to Gar-
son’s IS (IT in particular) and admits cut elimination; proofs of both results are
in the Appendix. Note also that even the version with added template rules
admits cut elimination.

Below, in order to see how the system works we will provide some exam-
ples of proofs. For better readability we underline side-formulae of all rule-
applications.

FEa = FEa a=t=>a=1 FEt = Et
Fa,a=t= FEt
=)=
dx(z=t)= Et
This proof works for any term, rigid or nonrigid, but for the converse we
must provide two different proofs. In case of rigid terms it is trivial:

(==)

a=a=a=a
Fa = FEa =>a=a

Ea = 3z(z =a)

::>)

(=3

However, for descriptions we must apply (= d =):




394 Cut-Free Modal Theory of Definite Descriptions

Ed= Ed a=d=a=d FEa = Fa
a=d,Ed= Ea a=d=a=d
(=3
N a=d,a=d,Ed= 3z(x =d)
(= d=) a=d,kd= 3x(x=d
B Ed = Jz(z =d)
The next proof of Ewrx Ax = Awx Az is much more involved and the converse
is not provable. First we construct a proof:

(==)

(==)

Aa = Aa a=11Ar = a = wAzx AwrAx = AwrAx
Aa,a = 1wAzr = AwrAx
a=b,Aa,a=1xAx = AwxAx
let S denote the last sequent (the root) of this proof-tree; it is then used
to obtain:

(W =)

a=b=a=0»
FasBa BBy W o tsa—bda S

(=) b=1wAx,Fa,Eb,a =0,a = 1wAx = AwxAx

again the last sequent Sy of the above is used to obtain:

Fa= Fa a=b=a=0b So
Fa,a=bb=wAzx,Fa,a =b,a = wAx = AwxAx
b=1wAx,FEa,a =b,a = 1wwAx = AwrAx

(==)
(C=)

similarly (the root) S5 is applied in:
(==) b=1wAx = b=11rAx a=17Ax = a = 1wAzx S3
(C'_=>) b=1xAx a =1xAx,b=1wAx, Fa,a = wAr = AwAx
b=1xAx, Fa,a = wAr = AwxAx
Fa,a =1wAzx = AwrAx

(=d=)

and Sy is eventually used in:

a =1wAxr = a = 1Az FixAx = EwrAx Sy

(==) (C =) a = 1Az, BwxAx,a = wAx = AwrAx
(= d =) EwAx,a = wAx = AwxAx
N EwAr = AwxAx

Notice that a and b were new in both applications of (= d =) and that all
applications of (==) were on atomic formulae, as required.

We finish this section with an interesting and very useful result. It shows
that in the present setting F cannot be in general defined in terms of identity.
Theorem 3.1 (i) FT'= A Ft iff F T = A, Jzx =t

(ii) If - Bt,T = A, then bk Jza =t,T = A
(iil) If+ Jzx =t,T' = A, thent Et,T' = A, provided t is nonrigid.
Proof. By induction on the height of proofs. The basis of the equivalence and

both implications hold by the provability of sequents establishing equivalence
of Ft and Jxx = t stated above. So we need to prove only the inductive steps.
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In case of the left-right direction of the first equivalence, and of the second
item, a proof is trivial since Et may occur only as a parametric formula or
introduced by weakening and, due to context insensitivity of almost all rules,
we can safely replace it with Jza = ¢t. Note that neither (= O), nor any rule
calling for fresh constant might make any harm. The right-left direction of the
first item, and the third item require additional work since we must take into
account also cases when Jzx = t is the principal formula of the last applied
rule. In the first case we have:

F1:>A1,Ea F2:>A2,a:t
=3
( ) = A Jze=t
Now, from both premisses together with Et = FEt we obtain by (==)
I'= A, Et.
In the second case we have:

3=) Ea,a=t,I'= A
Jzx=t,T' = A
with a fresh, and we proceed as follows:

a=t=>a=t Et= Ft FEa,a=tT= A
a=t,a=t,Et,T = A
(f_::i;) a=4ET = A
o Et,T = A
a is again fresh. Notice that the application of (= d =) was necessary here
which explains the proviso in the last item.

(==)

d

4 Comments on Rules

We finish the presentation of the sequent calculus for !S with some remarks
concerning the shape of rules and possible extensions of the system. Both the
selection of these particular rules for identity and the shape of rules for iota-
operator were dictated by the need of proving cut elimination. The problems of
possible applications for proof-search was not our concern here; we only pause
to mention that standard tableau system may be easily obtained on the basis of
SCIS rules. The remarks below help to make clear if they offer some advantages
in actual proof construction.

The rules for iota-operator were constructed by decomposition of Garson’s
natural deduction rules in such a way as to obtain a well-behaved pair of
rules. By this we mean some requirements put on the rules of standard sequent
calculus analysed in Wansing [31] and Poggiolesi [27] like symmetry, explicitness
and separation. Rules which exhibit all these properties jointly, may be called
canonical, after Avron and Lev [1]. The rules for boolean connectives and
quantifiers in SCIS provide a clear example of canonical rules, whereas (= O)
fails to be separated and explicit. The rules for iota-operator are not canonical
either, although they satisfy conditions of explicitness and symmetry. They



396 Cut-Free Modal Theory of Definite Descriptions

are not fully separated since in the principal formulae identity is present in
addition to iota-operator, and identity is treated here as a logical constant.

From the point of view of cut elimination proof, more important is the fact
that both rules for description satisfy a property of reductivity. It was stated in
general form for rules of hypersequent calculi in Metcalfe, Olivetti and Gabbay
[25] and we may roughly define it as follows: A pair of introduction rules
(= %), (x =) for a constant * is reductive if an application of cut on cut
formulae introduced by these rules may be replaced by the series of cuts made
on less complex formulae, in particular on their subformulae®. Reductivity
permits induction on the complexity of cut formula in the course of proving
cut elimination (see the proof in the Appendix as an exemplification). Hence
it is important that all rules for connectives (including necessity) and for free
quantifiers, as well as both rules for descriptions, satisfy this property.

In case of the rules for identity the situation is worse but it is not a fault
of this system only. In fact, it is possible to demonstrate that identity cannot
be formalised by means of canonical rules (see Indrzejczak [20]). As for the
rules applied in SC!S we can observe that they are in a (reversed) sense sym-
metric, but they are not explicit and, in case of (= O) and (# O), also not
separated. The problem of their reductivity simply does not arise since they
are not introduction rules and, in fact, it is an advantage here allowing cut
elimination. Still, (===), (= O) and (# O) may seem like some restricted forms
of cut in disguise. It is true to some extent but it is a reasonable price for
possibility of proving general cut elimination. One may ask however, if some
other choices do not provide better solution. Suppose we will use additional
axiomatic sequents of the form = ¢ = ¢, = a = d (with a not in d) and
t1 = ta, plx/t1] = @[z/t2]. In such case it is not possible to eliminate cuts
with at least one premiss being of such form and having definite description as
one of the arguments of identity, while the other premiss having this identity
is deduced by one of the rules for ¢. Similar problem arises for sequents of the
form a = b= Oa =5, a # b= Oa # b, although here it is generated not by
identities with descriptions but by (= O). The problem is due to the fact that
(= 0O) is context sensitive and, in general, not permutable with other rules, so
after reduction of the height we cannot apply the rule with the same result.
The same problem is encountered if we use rules of the form:

_ I'= A,a=b '= A,a#b
(==0) T=A0a=5s (=#0) 1A, 0425

Notice however that if instead of our (= O) we will use a rule for transitive
logic like S4, of the form:

or' = o
O = Ogp

4 Again, one can refer here to Avron and Lev [1], where the criterion of coherency of canonical
rules yields the same result.
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the above rules will work. We decided however to choose rules which are
insensitive to the changes in background modal rules and work uniformly with
any modal logic for which cut-free sequent calculus exists.

One could also think about using some other rules for expressing Leibniz
Law instead of our (==). For instance, Negri and von Plato’s rule seems to
be a reasonable option:

t1 =t2, plz/t1], plz/to], T = A
t1 = ta, gD[.’K/tl], I'=A

But such choice also does not work if ¢; = t5 is a cut formula with descrip-
tion. Consider a situation where it is principal in both premisses but in the left
premiss introduced by (= 1); in such cases there is no possibility of replacing
this cut with cuts made on premisses of these two rule’s applications. Similarly,
if we introduce a rule used in Indrzejczak [19] for the formalization of Fregean
description theory:

(:>:/) F:>A,Lp[$/t1] H:E,tl =15
D= A Y, plz/ts]

This time we have a problem if @[z/ts] is an identity statement with de-
scription and cut formula in the right premiss is deduced by (: = ). The same
remarks apply to other possible rules — in fact there are four more (see p.79 of
Indrzejczak [15] or [20]). In general, in cases where cut-formula is an identity
with description, principal in both premisses, and in one premiss introduced by
the rule for identity whereas in the other by the rule for 1, there is no possibility
of reduction of the height or complexity of cut formula.

The most important disadvantage is that we must sacrifice subformula prop-
erty in the strict form. In proofs there may appear not only subformulae of
formulae from the root but also atomic formulae as well as boxed identities and
negated identities. But note that this is only a little more (boxed identities and
their negations) than in case of sequent calculi for several axiomatic theories
provided by Negri and von Plato [26].

5 Extensions and Alternatives

SC!T may be easily extended in at least three ways: by enriching the language,
by strenghtening the theory of descriptions, by strengthening the background
modal logic. The last option is obvious. One can easily provide modal rules for
most known normal modal logic but not many of them admit cut elimination.
Standard sequent calculi are rather weak tool in this respect and to provide
cut-free characterisation of such logics like B or S5, not to mention bimodal
temporal logics, one must use non-standard, generalised framework like hyper-
sequent calculi or nested calculi (see the references listed in footnote 3.). On the
other hand, we can develop in such a way a suitable theory of description also
in the setting of weaker modal logics, like regular, monotonic or even congru-
ent. Cut-free characterisation of many such logics was provided in Indrzejczak
[14] and [16], and may be lifted from propositional level to first-order level with
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descriptions.

As for the first option, it is not problematic to add lambda operator in
such a way as to cover Garson’s system AS which permits expression of scope
differences like de re/de dicto distinction. In Garson [11] it is formalised by
means of one axiom:

Arp(z)(a) < ¢(a)

where A\xp(z) is a predicate abstracted from a formula . It is rather
restricted use of lambda operator but still permitting important extension of
expressive power. In the setting of sequent calculus it is enough to add two
rules:

I'= A, p(a)
I'= A, \zp(z)(a)

ola),I'= A

(=) Azo(z)(a), T= A

(A=)

It is obvious that their addition cannot spoil the proof of cut elimination
since they are also reductive.

Finally, we will take a look at possible strengthenings of this system and
some alternatives. If we do not consider elements connected with the treatment
of modalities and rigid /nonrigid term distinctions but focus only on the rules for
descriptions it is obvious that Thomason’s and Garson’s theory of descriptions
is essentially the minimal free description theory MFD of Lambert [23], [24].
We have a strengthening of the latter not only in the sense that it is developed
on the basis of modal logic since it is a conservative extension. More important
is the addition of a rule (3¢) which in our system is covered by (= d =). Yet
this may be still considered to be rather weak theory of definite descriptions in
the sense that it is rather concerned with proper definite descriptions. There
are some costs of that, e.g. the law of extensionality of the form: Va(y
1) — 1 = 1y which is technically useful, cannot be proved although we can
prove its weaker version: Ewre — (Va(p <> ¢) = 1 = wtp). In the setting of
classical logic, Fregean approach with the chosen object being denotation of all
improper descriptions provides a solution to this problem. It may be criticised
as artificial (Garson’s theory does not equate all improper descriptions) but
technically it seems to be more plausible. Fregean approach was developed
formally by Kalish and Montague [21] and recently also received a cut-free
sequent calculus in Indrzejczak [19]. A counterpart of this approach in the
setting of free logic is even easier to formulate and was provided by Scott [29].
It is enough to add an axiom —Ed — d = wwx # x. Since a converse of this
implication also holds for Scott’s logic we can express it in the setting of SC
by means of two rules:

Ed,T'= A,
I'= A,d =w(x # x)

I'= A Fd
d=w(x #x),I= A

(=id) (id =)

Again it is clear that our proof of cut elimination still holds for such exten-
sion. One can prove in this logic a full version of the law of extensionality for
descriptions. Lambert [24] considered also other extensions of MFD, weaker
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than Scott’s logic, and some of them may be also expressed quite easily in our
framework by means of reasonably simple rules. We illustrate the issue with
two examples. The logic FD1 is an extension of MFD by means of the addition
of cancellation law: ¢t = (1xp = t), An effect of this axiom is directly obtained
by means of the rule similar to (==) and (= d =) but with such identity in
the antecedent of the premiss. If we are interested just in having extensionality
principle for descriptions we can add it as an axiom to MFD. This way we
obtain the system FDV due to van Fraasen. The same effect can be obtained
in SC by the addition of the rule:

elz/a],I = A plz/a] — Plz/a],ll = X, plz/a]
OII= A Y we =y
where a is not in ¢, ¢, T, AT, 3.

(:> dy = dg)

The proof of cut elimination presented in the Appendix works for all such
extensions of SCI!S.

There are at least two approaches to definite descriptions in modal logic
framework which are significantly different from the hierarchy of theories de-
veloped in free logic setting; one is due to Goldblatt [12], and the other to
Fitting and Mendelsohn [7]. The former uses two-sorted language to make a
distinction between rigid and nonrigid terms. In many respects the strategy
of expressing relations between both kinds of terms is similar to the approach
of Thomason/Garson and a rule which is a counterpart of (i) is applied.
However, there are also strong differences. Goldblatt’s theory is based on a
semantics where individual variables range not over objects from D but over
substances which are defined as partial functions from W to D. One of the
consequences of this choice is invalidation of reflexivity of identity; a weaker
axiom t =t — t = t is postulated instead. Note also that ¢t = ¢ is equivalent in
his system to Et, hence this axiom may be expressed as t = t' — Et. Although
semantical machinery of Goldblatt’s approach is a bit more complicated, on
the syntactical side it has no serious consequences. The only axiom for def-
inite descriptions® has the form: wr¢ = t <+ Et AVz(p <> x = t), where t
is rigid and does not have free x. Note that ¢t may be also a rigid descrip-
tion. Goldblatt shows that in his approach descriptions cannot be eliminated
in the Russelian way; it would be possible only for rigid descriptions and on
the condition that some chosen nonexistent object would be added in the spirit
of Fregean approach.

We can easily obtain an equivalent formalization of Goldblatt’s axiom in
standard sequent calculus by means of the following rules:

, Ti= A Bt Ea,pl[z/a],T2 = Azt =a FEa,t =a,T's = As, p[z/a]

(=) I'= Ajt=wyp

5 Strictly speaking it works for modal logics characterised by Kripkean models. Golblatt
considers also logics characterised by non-Kripkean models, where truth conditions for quan-
tifiers are weaker, and such logics require also a template rule for description.
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1. where a is not in I', A,

Et,T'1 = A1, FEa Et, T2 = Ag,p[z/al,t =a Et,plz/al,t = a,I's = Aj
t=wp,I' = A

(=)

However, one should remember that also rules for identity and quantifiers
need to be changed in order to comply with Goldblatt’s system. For com-
pleteness we need template rules like (T = V) and (T = d =). We do not
develop this system here for the lack of space; only suitable rules for definite
descriptions were displayed above just for comparison with Garson’s approach.

Both rules for Goldblatt’s theory of descriptions are also reductive, so we
can expect that cut elimination holds in the way demonstrated in the Appendix.
There is one serious difficulty however. In Goldblatt’s system rules for quanti-
fiers work not only for rigid but also for nonrigid terms. Moreover, descriptions
may be also rigid. It may seem an advantage, in comparison to Garson’s sys-
tem, but in fact it is not, since rules for quantifiers are not reductive. We mean
here the fact that in the course of the application of (= V) a variable of suitable
sort may be instantiated with definite description of arbitrary complexity, so
the instance of substituted formula is not less complex and we cannot obtain
reduction of the complexity of cut formula. To avoid the problem we should
have the instantiation of quantifiers restricted to rigid terms and only nonrigid
definite descriptions as in Garson’s system. Another possibility would be to
apply the solution from Indrzejczak [19] where all terms have the same com-
plexity measure but this solution does not work either. After changing the
definition of complexity in such a way the above rules for descriptions do not
allow for reduction of cut-degree (see Appendix) since in their premisses a term
is unpacked and occurs as a formula which is at least as complex as the identity
with description in the conclusion. It was not a problem for Fregean system
from [19] since all rules for definite descriptions introduce them only to succe-
dents and the situation with cut on such formulae as principal simply does not
arise. Summing up, in contrast to Garson’s approach, a version of description
theory present in Goldblatt is harder for proving cut elimination theorem, and
for the time being we are unable to provide a solution to this problem.

Finally, there is an alternative approach to first-order modal logics with
descriptions provided by Fitting and Mendelsohn [7]. As we mentioned in the
Introduction, their theory of definite descriptions is perhaps a subtler solution
since it does not equate existence and designation and makes distinctions be-
tween different kinds of improper descriptions. It is again significantly different
than any theory belonging to Lambert hierarchy since, for example ¢ = ¢ is also
not a thesis in general but holds only for designating terms. In this respect,
their theory is similar to Goldblatt’s approach but, in contrast, it is too rich on
the syntactical level to be dealt with by means of standard resources which are
used in this research. In particular, tableau systems for these logics are based
on the complex machinery of labels attached not only to formulae but also to
nonrigid terms to fix their denotations in possible worlds.

In fact, insufficiency of the standard apparatus for formalization of Fitting
and Mendelsohn’s theory is more connected with the way in which nonrigid
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terms in general are dealt with, than with the specific features of definite de-
scriptions in their theory. In short, nonrigid terms are “rigidified” by means
of labels, and lambda operator is used just to permit predication on nonrigid
terms, in contrast to Garson’s restricted solution.

It seems that the framework of hybrid logics is promising here. One could
possibly extend the approach to hybrid first-order modal logic provided by
Blackburn and Marx [3] to cover this theory of descriptions, and apply cut-
free sequent calculi for hybrid logics developed by Braiiner [4] or Indrzejczak
[18]. But this is a future project; for the time being we are concerned with the
abilities of standard sequent calculi with no labels or nominals.

A Appendix

We will show that for every I' - ¢ derivable in !S we can provide a proof of
I' = ¢ in SCIS and conversely. Since for the propositional part as well as
for (free) quantifiers and identity rules the equivalence is clear we restrict the
consideration to rules for descriptions.

Theorem A.1 ]fF Fis ®, then Fgoig I' = @.

Proof. Tt is sufficient to show that (3i) is a derivable rule in SC!S and that
sequents corresponding to both rules for 2 are provable. As for the first:

I'= —-a=d .
t—d=—a-d —a—dr= )
a=d,l = (Cut)

I'=
The sequents corresponding to Garson’s rules are:

Ea,a = wwp(x) = Va(p(z) < 2 =a)
Ea,Vx(p(x) & 2 =a) = a = wo(x)
We can prove the first one in the following way. First, using (: =) twice,
we construct:
Ea= Ea Eb= Eb o(b) = p(b),a=b o),a=b=a=0>
Ea,Eb,a =we(x),p(b) =a=0>

and
Ea= FEa FEb= FEb a=b=pb),a=0b p(b),a=b= p(b)
Ea,Eb,a = 1wp(z),a = b= ¢(b)
Both, by the application of (=++), contractions and (= V) yield:

Ea,Eb,a =1wwp(z) = pb) < a=0b
Ea,a = wp(z) = Va(o(x) <> a =)

where b is new in the next to last sequent.

For the second sequent we prove first:
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p)a=b=a=0b  ¢(b) = pb),a=0b

Eb= Eb PB) o a=b o) >a=b (=)
Ve(p(z) <> a=1x),Eb,p(b) =>a=0>
and
e(b),a=b=¢b) a=b=pb)a=> ()

Eb= Eb w(b) <> a=0b,a=b= ¢(b)
Ve(p(z) <> a=1x),Eb,a=b= ¢(b)
Let S7 and S5 denote the roots ot the above proof-trees. Then we obtain:

(V=)

Ea = FEa S1 So
Ea,Vz(p(x) < a=x),Va(p(z) < a=2) = a = wp(x)
Ea,Vx(p(x) < a =) = a = wp(x)

(=)
(C=)

where b is new. a

Theorem A.2 [ftgois I'= A, then I' kg VA, where VA is a disjunction of
elements of A.

Proof. Since one can simulate in Garson’s ND system !S all the rules of SC!S
we can use the reduct of the latter without the rules for description and (= d =)
but with an analog of (3¢) and two additional axiomatic sequents corresponding
to rules:

Ea,a = wwp(x) = Ya(p(z) < 2 =a)

Ea,Vx(o(x) < 2 =a) = a = we(x)

Call this calculus SC!S*. It is obviously equivalent to !S so it will be enough
to demonstrate that the three rules in question are derivable in SC!S*. Deriv-
ability of (= d =) is trivial by (= =) and (3¢) but for the remaining rules
proofs are more involved. Let us start with (= 2). On the basis of the first
sequent and the first premiss we obtain:

' = Ay, Ea Ea,a = wp(z) = Va(e(x) <> = a)
a =1p(x), 'y = A, Ve(p(z) < 2 =a)

Three remaining premisses yield:

I's = Az, p(b),a=0b p(b),a=0bT41= Ay
F2:>A2,Eb <p(b)<—>a:b,F3,F4$A3,A4 (V :>)
Vx(go(x) —a= $),F2,F3,F4 = A23A37A4

By cut on these two root sequents we obtain a = wwp(z),I' = A.

For the second rule, from the first premiss and the second sequent we obtain:

'y = Ay, Ea Ea,Vz(p(x) < a=x) = a =1wo(x)
Va(o(z) ¢ a=x),I'1 = Ay, a = we(x)
its root S in combination with the remaining premisses yields:

(Cut)
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Eb,p(b),T2 = Ag,a=b Eb,a =b,T3 = Az, p(b)
Eb, Eb, T, T3 = AQ,Ag,Qp(b) ~a=hb
Eb,T9,T3 = Ag,As,p(b) <> a=b
[, T3 = Ag, Az, Va(p(z) <> a = x) S
I'= Aja=1we(x)

(=)
(C=)

(=V)
(Cut)

where b is new. a
As a preliminary step for proving cut elimination we need:
Lemma A.3 (Substitution) Ift, I' = A, then b (I' = A)la/t].

Proof. By induction on the height of a proof. It is straightforward but tedious
exercise. Note that we provided not sheer admissibility but height-preserving
admissibility. a

Moreover, we assume that all proofs satisfy the condition of regularity —
every constant which is fresh by side condition on the respective rule must be
fresh in the entire proof, not only on the branch where the application of this
rule takes place. Clearly, every proof may be systematically transformed into
regular proof by Substitution lemma.

Let us define the notions of cut-degree and proof-degree:

(i) Cut-degree is the complexity of cut-formula ¢, i.e. the number of connec-
tives and operators occurring in ¢ and is denoted as dy;

(ii) Proof-degree (dD) is the maximal cut-degree in D.

The proof of cut elimination theorem is based on two lemmata which make
a reduction first on the right and then on the left premiss of cut. The general
strategy of proof was originally developed for hypersequent calculi by Metcalfe,
Olivetti and Gabbay [25] and later extensively used in this framework (see e.g.
Ciabattoni, Metcalfe, Montagna [5], Indrzejezak [17], Kurokawa [22]). However
it is also applicable to standard sequent calculi (see Indrzejczak [18], [20]) and
allows for elegant proof which helps to avoid many complexities inherent in
other methods of proving cut elimination. Here are the key lemmata:

Lemma A.4 (Right reduction) Let D; FT' = A, and Dy F oF 11 = %
with dD1,dDs < dy, and ¢ principal in I' = A, @, then we can construct a
proof D such that D+ T* 11 = A*. Y and dD < de.

Lemma A.5 (Left reduction) LetD; FT = A, ¢* and Dy - ¢, 11 = ¥ with
dD1,dDy < dip, then we can construct a proof D such that D F T, TIF = A, XF
and dD < dy.

Proof. For lemma 4 by induction on the height of Dy. The basis is triv-
ial. Induction step requires consideration of all cases of possible derivation of
©*, 11 = ¥ and the role of cut-formula in the transition. In cases where all
occurrences of ¢ are parametric we simply apply the induction hypotheses to
premisses of ¢*, II = 3 and then apply to them respective rule — it is essen-
tially due to the context independence of almost all rules and regularity of
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proofs which prevents violation of side conditions. If one of the occurrences of
 in the premiss(es) is a side formula of the last rule we must additionaly apply
weakening to restore the lacking formula before the application of a rule. Note
also that the situation with (= O) as the last applied rule is not of this case
since ¢, being some O, is not present in the premiss (1 is).

In cases where one occurrence of ¢ in ¥, II = ¥ is principal we make use
of the fact that ¢ in the left premiss is principal too (note that for C and W it
is trivial). We analyse two cases.

Case of Vzp(z):

Ea,T = A, p(a) Vao(z)!, I = 1, Eb o(b),Vop(r)d Iy = o
I'= A Vap(x) Vap(x)k 11 = %
5,1 = AF, S

where k =i+ j 4+ 1 and a is fresh, hence by Substitution Lemma we have:

Eb,T = A, o(b)

By the induction hypothesis we have:

Fi,Hl = Ai, El,Eb
Qo(b)’]-—‘jaHQ = AJ; E2

Now we can build a proof:
Eb,FiA,Q@(b) @(b)?rjvl_[Q :>A]722

Fi7H1:>Ai,21,Eb Eb,rj+1,H2:>Aj+1,ZQ
IF I = AF, %

Case of a = wo(x):
In the right premiss we have a = 1xp(x)*, 11 = % deduced from:

=1zp(x) I} = 31, Ea
= 1zp(x)?, y = X, Eb
=wp(z)", 5 = X3, 0(b),a=b
=zp(z)™, p(b),a =011 = X4

Q2 2 Q2

where k =i+ j+n+m+ 1 and by the induction hypothesis we obtain:

()]_'w 1_[1:>Az El,ECL
(b) [V, 11y = AJ, 5, Eb
(c) T™ 113 = A", X3, 0(b),a=b
()a—b,cp()F ,H4:>Am724

In the left premiss we have:

' = A, Ea Ec,¢(c), Ty = Ag,a=c Ec,a=¢,T3= As,¢(c)
I'= Aja=wp(x)

where ¢ is not in I'; A, ¢ hence by Substitution Lemma we obtain:
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(e) Eb, gp(b), I's = AQ, a="b
(f) Eba a = b7 F-?) = A3a @(b)
These sequents may be combined, by cuts and contractions, in the following

way':

I Iy = AY, %o, Eb Eb,a =b,T'3 = Az, p(b)

I I3 = A", %3, 0(b),a=b a="0b,TY T 's = AJ, Ty, Az, 0(b)
FH,H3,Fj,H27F3 = AH,ESaAj7227A3vS0(b)7LP(b)
I 13,19, 15, T3 = A", X3, A, 55, Ag, (b)

and

IV Iy = AV, 5o, Eb Eb, o(b),T2 = As,a=1b
@(b), T, M, Ty = A7, 55, Ag,a=b a="b,p(b), I Iy = A™ X,

go(b),cp(b),Fm,H4,Fj,H2,I‘2 = Am7247Aj7227A2
‘P(b)7rm,ﬂ4,Fj,H27F2 = Am,24,Aj,EQ7A2

By cut on the last two sequents and several contractions we obtain I'*, II =
A¥_ Y. Note that all cuts are of lower degree hence we are done. a

The proof of the Left Reduction Lemma is similar but on the height of
D;. The only difference is that now we do not assume that cut-formula in the
right premiss is principal. Therefore, when cut-formula is principal in the left
premiss we apply first the induction hypothesis and next the rule in question
to side-formulae. The new proof of the left premiss satisfies the assumption
of the Right Reduction Lemma, so we can safely apply it and, possibly after
some applications of structural rules, obtain the result. If the last rule was
(==) or (= O) and one of the active formulae from succedent was involved,
then we obtain the result by the induction hypothesis from this single premiss,
like in case of contraction. Hence no essentially new cases appear and we can
skip detailed analysis. Eventually, on the basis of the Left Reduction Lemma
we obtain cut elimination by successive decreasing of cut degree in the input
proof. Therefore:

Theorem A.6 (Cut Elimination) IfT' = A is provable, then it is provable
without applications of (Cut).

Note that this result applies also to SC!S in extended form, i.e. with tem-
plate rules (T' = V) and (T’ = d =). Since the only possible rule applied to
their premiss is (=—) both cases are treated as cases of implication and no
special operations are needed.
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