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Abstract

We treat the smallest normal modal propositional logic with two modal operators 2 and 2+. While 2 is
interpreted in Kripke models by the accessibility relation R, 2+ is interpreted by the transitive closure
of R. Intuitively the formula 2+ϕ means the infinite conjunction 2ϕ ∧ 22ϕ ∧ 222ϕ ∧ · · · . There is a
Hilbert style axiomatization of this logic (a characteristic axiom is 2ϕ ∧ 2+(ϕ → 2ϕ) → 2+ϕ, called
“induction axiom”), and its completeness with respect to finite models was shown by the canonical
model method. This paper gives an alternative proof of this completeness. We use the method of
“semantic diagram”, which is a variant of semantic tableaux, as follows. Given an unprovable formula
ϕ, we first make a small model (consisting of one world that forces ϕ to be false); then we add worlds
step by step using the Hilbert system as an oracle, and finally we get a finite countermodel for ϕ. The
point is how to handle 2+ in this construction.

Keywords: completeness of modal logic, transitive closure of accessibility relation, semantic diagram

1 Introduction

In Kripke models, the modal operator 2 is interpreted as

w |= 2ϕ ⇐⇒ x |= ϕ for any x such that wRx

where w and x are possible worlds and R is the accessibility relation. Then we introduce
a new modal operator 2+ by

w |= 2+ϕ ⇐⇒ x |= ϕ for any x such that wR+x
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where R+ is the transitive closure of R. Intuitively 2+ϕ means the infinite conjunction
as follows:

2+ϕ ↔ 2ϕ ∧22ϕ ∧222ϕ ∧ · · · .

This paper treats the smallest normal modal propositional logic with the operators 2

and 2+ as above. This logic will be called K+.
The relationship between 2 and 2+ in K+ is equal to that between the operators

E (“everyone knows”) and C (“common knowledge”) in the common knowledge logic,
since

Cϕ ↔ Eϕ ∧ EEϕ ∧ EEEϕ ∧ · · · .

Moreover the relationship is similar to that between the operators X (“next time”) and
G (“globally”) in temporal logic, since

Gϕ ↔ ϕ ∧Xϕ ∧XXϕ ∧ · · · .

There are Hilbert style systems for the common knowledge logic and the temporal logic,
and the completeness with respect to finite models (i.e., a formula is provable in a system
if it is true in every finite model) was proved by using canonical models and filtrations
(see, e.g., [2] and [4]). Of course the argument can be applied to K+ — there is a
Hilbert system, which we will call HK+ (a characteristic axiom is the induction axiom:
2ϕ ∧ 2+(ϕ→ 2ϕ)→ 2+ϕ), and the completeness with respect to finite models can be
shown by using canonical models and filtrations.

The purpose of this paper is to give a new proof for the completeness of HK+. We use
the method of “semantic diagram”, which is a variant of semantic tableaux, as follows.
Given an unprovable formula α0, we first make a small model (consisting of one world
that forces α0 to be false); then we add worlds step by step using HK+ as an oracle, and
finally we get a finite countermodel for α0.

Here we give an informal explanation of the point of our method. It is well known
that the finite set Sub±(α0) = {ϕ,¬ϕ | ϕ is a subformula of α0} is sufficient for the
construction of a countermodel for α0. Then the point of our method is how to make

the witness of 3+ϕ. If 3+ϕ ∈ Γ and a world Γ (this means all the elements of Γ are

true at this world) is in a Kripke model, then we may consider a path to the witness
ϕ to be of the form

Γ R−→ Γ′ R−→ · · · R−→ Γ′′ R−→ ϕ (1)

where Γ,Γ′, . . . ,Γ′′ are mutually distinct subsets of Sub±(α0). For example, suppose
imaginarily that the powerset P(Sub±(α0)) consists of just three sets Γ,∆ and Λ; then
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the candidates of paths to the witness can be limited to the five paths:

Γ R−→ ϕ

Γ R−→ ∆ R−→ ϕ

Γ R−→ Λ R−→ ϕ

Γ R−→ ∆ R−→ Λ R−→ ϕ

Γ R−→ Λ R−→ ∆ R−→ ϕ

(2)

This limitation is justified by the following argument. Given a long path from Σ1 (= Γ)
to ϕ as

Σ1
R−→ Σ2

R−→ · · · R−→ Σk
R−→ ϕ , (3)

we can extract a skipping path (Σa1 ,Σa2 , . . . ,Σam
) such that

• Σa1 is the last Σ1 before ϕ; that is, Σa1 is the same set as Σ1, and none of
Σa1+1,Σa1+2, . . . ,Σk are the same set as Σ1;

• Σa2 is the last Σa1+1 before ϕ;
...

• Σam
= Σk is the last Σam−1+1 before ϕ.

Then

Σa1

R−→ Σa2

R−→ · · · R−→ Σam

R−→ ϕ

is the very path denoted by (1), of length ≤ |P(Sub±(α0))|.
This principle of extraction (of length-limited paths from unlimited paths) is the

core of our method. While such a principle was used in Brünnler and Lange [1] and
Gaintzarain et al. [3] for temporal logics, the originality of this paper is that our method
does not need the until operator. If a binary operator U ′ is available as

w |= αU ′β ⇐⇒ ∃w1, . . . ,∃wn
(
wRw1R · · ·Rwn, wi |= α for i < n, and wn |= β

)
,

then the condition “Σa1 is the last Σ1 before ϕ” can be easily described by putting

Σa1 = Σ1 ∪ {(¬Σ1)U ′ϕ}.

(Brünnler and Lange [1] and Gaintzarain et al. [3] introduced similar description as an
inference rule of sequent calculi, and proved the completeness of the calculi.) However
our K+ does not have the until operator; hence we realize the extraction by explicit
enumeration of all the possible candidates of paths to the witness, like (2) above.
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2 Axiomatization

Formulas are constructed from the following symbols: propositional variables (the set of
propositional variables is called Prop); logical connectives ∧ and ¬; and modal operators
2 and 2+. We will use letters p, q, . . . to denote propositional variables, and letters
α, β, . . . ϕ, ψ, . . . to denote formulas. Other symbols (⊥,>,→,∨,3,3+, . . .) are defined
by the usual abbreviations. Parentheses are omitted by the convention that the unary
operators ¬, 2, 2+, 3, and 3+ bind stronger than other connectives, ∧ and ∨ bind
stronger than →, and that α1 → α2 → · · · → αn = α1 → (α2 → (· · · → (αn−1 →
αn) · · · )). For example, the axiom scheme (A2) below is (2(α → β)) → ((2α) → 2β),
and ¬α ∧ β → 2+γ ∨ δ = ((¬α) ∧ β)→ ((2+γ) ∨ δ).

A Kripke model is a triple M = 〈W,R, V 〉 where W is a nonempty set (the set
of possible worlds), R is a binary relation on W (the accessibility relation), and V is
a function from W × Prop to {True,False}. M is said to be finite if W is a finite
set. The transitive closure of R is denoted by R+; that is, xR+y holds if and only if
x=a0Ra1R · · ·Ran=y for some a0, a1, . . . , an (n ≥ 1). The notion “a formula ϕ is true
at a world w in M”, written by “M,w |= ϕ” (or “w |= ϕ” for short), is defined as usual:
w |= p ⇐⇒ V (w, p) = True; w |= α ∧ β ⇐⇒ w |= α and w |= β; w |= ¬α ⇐⇒ w 6|= α;
w |= 2α⇐⇒ x |= α for any x such that wRx; and w |= 2+α⇐⇒ x |= α for any x such
that wR+x. We say that a formula ϕ is valid in M if and only if M,x |= ϕ for any world
x.

The system HK+ is defined as follows (cf. the axiomatization of linear temporal logic
in [4, §9]). The axiom schemata are

(A1) instances of classical tautologies,

(A2) 2(α→ β)→ 2α→ 2β (‘K axiom’ for 2),

(A3) 2+(α→ β)→ 2+α→ 2+β (‘K axiom’ for 2+),

(A4) 2+α→ 2α ∧22+α, and

(A5) 2α ∧2+(α→ 2α)→ 2+α (induction axiom)

and the inference rules are

(R1)
α→ β α

β
(modus ponens), and

(R2)
α

2+α
(generalization for 2+).

Note that the ‘transitive axiom’ 2+α→ 2+2+α is derivable using (A4) and the instance
22+α ∧ 2+(2+α → 22+α) → 2+2+α of induction axiom. The generalization rule for
2 is also derivable using (R2) and (A4).

By “` ϕ”, we mean “ϕ is provable in HK+”. The purpose of this paper is to give
a new proof of the completeness of HK+ with respect to finite models, which states “if
α0 is valid in any finite model, then ` α0” or equivalently “if 6` α0, then there is a
finite countermodel for α0”. The soundness (converse of the completeness) can be easily
shown as usual.
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3 Special formulas

In this section, we show provability of certain formulas which will be used in the next
section.

Two formulas α and β are said to be provably equivalent when ` (α→β)∧(β→α).
If Γ = {γ1, γ2, . . . , γn} is a finite set of formulas, then “` Γ⇒ ϕ” means “ ` (γ1 ∧ γ2 ∧
· · · ∧ γn) → ϕ”. Note that we do not mind permutations or duplications in Γ because,
for example, ((γ1∧γ2)∧γ3)→ ϕ and ((γ2∧γ1)∧ (γ3∧γ1))→ ϕ are provably equivalent.

Lemma 3.1 (1) If ` {ϕ1, ϕ2, . . . , ϕn}⇒ ψ, then ` {ϕ1∨ρ, ϕ2∨ρ, . . . , ϕn∨ρ}⇒ ψ∨ρ.

(2) If ` {ϕ1, ϕ2, . . . , ϕn}⇒ ψ, then ` {ρ→ϕ1, ρ→ϕ2, . . . , ρ→ϕn}⇒ ρ→ψ.

(3) If ` {ϕ1, ϕ2, . . . , ϕn}⇒ ψ, then ` {2ϕ1,2ϕ2, . . . ,2ϕn}⇒ 2ψ.

(4) If ` {ϕ1, ϕ2, . . . , ϕn}⇒ ψ, then ` {2+ϕ1,2
+ϕ2, . . . ,2

+ϕn}⇒ 2+ψ.

Proof. (1) and (2) are properties of classical logic. (3) and (4) are properties of normal
modal logics. 2

Lemma 3.2 If formulas σ, σ′, τ, τ ′ and ω satisfy the conditions (a) ` σ → 2τ , (b)
` σ′ → 2τ ′, and (c) ` ¬σ′ → 2τ ; then we have ` {σ → 2+(τ → ω), σ → 2+(τ → σ′ →
2+(τ ′ → ω))}⇒ σ → 2+ω.

Proof. See Appendix A. 2

In the rest of this section, a natural number N ≥ 2 and formulas ω, σi, τi (i =
1, 2, . . . , N) are fixed. A formula is called special if and only if it is of the form

σf(1) → 2+
(
τf(1) → σf(2) → 2+

(
τf(2) → · · · → σf(m) → 2+(τf(m) → ω) · · ·

))
for some natural number m and some function f that satisfy the following conditions.

• 1 ≤ m ≤ N .
• f is an injection (one-to-one) from {1, 2, . . . ,m} to {1, 2, . . . , N}.
• f(1) = 1.

The set of special formulas is called SP, which is a finite set. For example, if N = 3,
then

SP =
{
σ1 → 2+(τ1 → ω),
σ1 → 2+(τ1 → σ2 → 2+(τ2 → ω)),
σ1 → 2+(τ1 → σ3 → 2+(τ3 → ω)),
σ1 → 2+(τ1 → σ2 → 2+(τ2 → σ3 → 2+(τ3 → ω))),
σ1 → 2+(τ1 → σ3 → 2+(τ3 → σ2 → 2+(τ2 → ω)))

}
.

(4)

Note that the shapes of these formulas are same as the paths (2) in Section 1. If N = 4,
then SP consists of sixteen formulas.

Theorem 3.3 (Main theorem on special formulas) Suppose that
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Fig. 1.

mx - my1 - my2 - my3 - my4 - my5 - my6 - my7 - my8σ1 σ4 σ1 σ3 σ1 σ4 σ2 σ2

τ1 τ1 τ4 τ2

(i) ` σ1 ∨ σ2 ∨ · · · ∨ σN , and

(ii) ` σi → 2τi, for i = 1, 2, . . . , N ,

where N ≥ 2. Then we have ` SP⇒ (σ1 → 2+ω).

Before the proof, we give a semantical explanation of this theorem; that is, we show
the formula 2+ω is true at a world x in a model M = 〈W,R, V 〉 on the assumption that
(I) σ1 ∨ σ2 ∨ · · · ∨ σN is valid, (II) σi → 2τi (i = 1, 2, . . . , N) are all valid, (III) all the
special formulas are true at x, and (IV) σ1 is true at x. For example, let us assume that
Figure 1 describes some worlds around x, where xRy1Ry2R · · ·Ry8 and the displayed
σi is true there (∵ (I),(IV)). We can verify that ω is true at all yi (i = 1, 2, . . . , 8). For
example, ω is true at y3 because x |= σ1 → 2+(τ1 → ω) (∵ (III)), x |= σ1 (∵ (IV)), and
y3 |= τ1 (∵ y2 |= σ1 → 2τ1 by (II)); and ω is true at y8 because x |= σ1 → 2+(τ1 → σ4 →
2+(τ4 → σ2 → 2+(τ2 → ω))) (∵ (III)), x |= σ1 (∵ (IV)), y1 |= τ1 ∧ σ4 (∵ x |= σ1 → 2τ1
by (II)), y6 |= τ4 ∧ σ2 (∵ y5 |= σ4 → 2τ4 by (II)), and y8 |= τ2 (∵ y7 |= σ2 → 2τ2 by
(II)).

Now we start proving Theorem 3.3. If N = 2, this can be done by simple application
of Lemma 3.2 (by σ = σ1, σ′ = σ2, τ = τ1, τ ′ = τ2). However, we need a more
complicated proof when N > 2. For this, we introduce an extra notion of key formulas.

A formula is called a key formula of type I if and only if it is of the form

σf(1) → 2+
(
τg(1) → σf(2) → 2+

(
τg(2) → · · · → σf(m) → 2+(τg(m) → ω) · · ·

))
(5)

(the underline will be used later) for some natural number m and some functions f and
g that satisfy the following conditions.

• 1 ≤ m ≤ N .
• f is an injection from {1, 2, . . . ,m} to {1, 2, . . . , N}.
• g is a function (not limited to injection) from {1, 2, . . . ,m} to {1, 2, . . . , N}.
• f(1) = g(1) = 1.

♥ (∀i ∈ {1, . . . ,m})(∃j ≤ i)(f(j) = g(i)).

The set of key formulas of type I is called KeyI, which is a finite superset of SP. For
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example, if N = 3, then KeyI is the union of SP (see (4)) and{
σ1 → 2+(τ1 → σ2 → 2+(τ1 → ω)),
σ1 → 2+(τ1 → σ3 → 2+(τ1 → ω)),
σ1 → 2+(τ1 → σ2 → 2+(τ1 → σ3 → 2+(τi → ω))) (i = 1, 2, 3),

σ1 → 2+(τ1 → σ2 → 2+(τ2 → σ3 → 2+(τj → ω))) (j = 1, 2)†,
σ1 → 2+(τ1 → σ3 → 2+(τ1 → σ2 → 2+(τi → ω))) (i = 1, 2, 3),

σ1 → 2+(τ1 → σ3 → 2+(τ3 → σ2 → 2+(τk → ω))) (k = 1, 3)†
}
.

(† This is a special formula if j = 3 or k = 2.)
A formula ϕ is called a key formula of type II if and only if there is a formula ψ that

satisfies the following conditions.

• ψ is a key formula of type I as (5) where m ≤ (N − 1).
• ϕ is obtained from ψ by deleting the underlined ‘τg(m) →’ in (5).

The natural number m is called the depth of ϕ. For example, if N = 3, then there are
just three key formulas of type II:

σ1 → 2+ω. (depth = 1)
σ1 → 2+(τ1 → σ2 → 2+ω). (depth = 2)
σ1 → 2+(τ1 → σ3 → 2+ω). (depth = 2)

The set of key formulas of type II is called KeyII.
The target formula σ1 → 2+ω of Theorem 3.3 is the shortest element of KeyII, and

the other elements will be used in the inductive proof of Lemma 3.5 below.

Lemma 3.4 ` SP⇒ ϕ, for any ϕ ∈ KeyI.

Lemma 3.5 Suppose that

(i) ` σ1 ∨ σ2 ∨ · · · ∨ σN , and

(ii) ` σi → 2τi, for i = 1, 2, . . . , N ,

where N ≥ 2. Then ` KeyI⇒ ϕ, for any ϕ ∈ KeyII.

These two lemmas straightforwardly imply the Main Theorem 3.3. So the rest of
this section is devoted to proving these lemmas.

Proof of Lemma 3.4. For any key formula ϕ of type I, there is a special formula ϕ∗
embedded in ϕ such that ` {ϕ∗}⇒ ϕ. For example, if ϕ is

σ1 → 2+(τ1 → σ2 → 2+(τ1 → σ3 → 2+(τ3 →
σ4 → 2+(τ3 → σ5 → 2+(τ1 → σ6 → 2+(τ5 → ω)))))),

then ϕ∗ is
σ1 → 2+(τ1 → σ3 → 2+(τ3 → σ5 → 2+(τ5 → ω)))),
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which is embedded in ϕ as

σ1 → 2+(τ1 → σ2 → 2+(τ1 → σ3 → 2+(τ3 →
σ4 → 2+(τ3 → σ5 → 2+(τ1 → σ6 → 2+(τ5 → ω)))))).

In general, ϕ∗ is defined as follows. Let ϕ be the formula as (5). Without loss of
generality, we suppose f(i) = i for all i. Then, by the property ♥, we have

g(i) ≤ i. (♥′)

Now we define a sequence a1, a2, . . . of natural numbers by

a1 = g(m), ax+1 = g(ax − 1) for x = 1, 2, . . .

By (♥′), this sequence is strictly decreasing, and ϕ∗ is

σaz → 2+
(
τaz → σaz−1 → 2+

(
τaz−1 → · · · → σa1 → 2+(τa1 → ω) · · ·

))
where az = 1. The fact ` {ϕ∗} ⇒ ϕ is obtained from ` {2+(τg(m) → ω)} ⇒
2+(τg(m) → ω) by appropriate applications of Lemma 3.1(2), 3.1(4) and the fact “`
{2+α}⇒ 2+β implies ` {2+α}⇒ 2+(τ → σ → 2+β)”. 2

Proof of Lemma 3.5. The key formula ϕ of type II is of the form

σf(1) → 2+
(
τg(1) → · · · → σf(m−1) → 2+

(
τg(m−1) → σf(m) → 2+ω

)
· · ·
)
.

We will abbreviate this to
• → σf(m) → 2+ω.

That is, “•” denotes the context “ σf(1) → 2+(τg(1) → · · · → σf(m−1) → 2+(τg(m−1) →
”. Therefore, for example, • → σf(m) → 2+(τg(m) → ω) is the formula (5), and
• → σ1 → 2+ω is just σ1 → 2+ω when m = 1.

We define a set U of natural numbers by

U = {1, 2, . . . , N} − {f(1), f(2), . . . , f(m)}.

U is not empty because of the definition of key formula of type II. We prove Lemma 3.5
by induction on |U |; in other words, we prove this lemma for any ϕ of depth (N − 1),
any ϕ of depth (N − 2), . . . , any ϕ of depth 1, successively.

(Case 1: |U | = 1; depth of ϕ is N − 1.) For any i ∈ {1, . . . ,m}, the formula

• → σf(m) → 2+(τf(i) → ω)

is a key formula of type I. Therefore we have

` KeyI⇒ • → σf(m) → 2+((τf(1) ∨ τf(2) ∨ · · · ∨ τf(m))→ ω) (6)
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because of the fact

` {τf(1)→ω, τf(2)→ω, . . . , τf(m)→ω}⇒ (τf(1) ∨ τf(2) ∨ · · · ∨ τf(m))→ ω

and Lemma 3.1(4) and 3.1(2). Let u be the only element of U . Similarly to (6), we have

` KeyI⇒ • → σf(m) → 2+
(
(τf(1) ∨ τf(2) ∨ · · · ∨ τf(m))→ σu → 2+(τu → ω)

)
(7)

because the formula

• → σf(m) → 2+(τf(i) → σu → 2+(τu → ω))

is a key formula of type I for any i ∈ {1, . . . ,m}. On the other hand, by Lemma 3.2
(σ = σf(m), σ′ = σu, τ = (τf(1) ∨ τf(2) ∨ · · · ∨ τf(m)), τ ′ = τu), we get

` { σf(m) → 2+((τf(1) ∨ · · · ∨ τf(m))→ ω),
σf(m) → 2+((τf(1) ∨ · · · ∨ τf(m))→ σu → 2+(τu → ω)) } ⇒ σf(m) → 2+ω.

(8)

Note that the hypotheses (a), (b), and (c) of Lemma 3.2 are shown by the hypotheses
(i) and (ii) of this Lemma 3.5. Then (6), (7), (8) and Lemma 3.1 imply

` KeyI⇒ • → σf(m) → 2+ω, (9)

which is the required formula.
(Case 2: |U | > 1; depth of ϕ is less then N − 1.) By the same argument as (6), we

obtain
` KeyI⇒ • → σf(m) → 2+((τf(1) ∨ τf(2) ∨ · · · ∨ τf(m))→ ω). (10)

On the other hand, for any i ∈ {1, . . . ,m} and any u ∈ U , the formula

• → σf(m) → 2+(τf(i) → σu → 2+ω))

is a key formula of type II with greater depth. Therefore by the induction hypothesis,

` KeyI⇒ • → σf(m) → 2+(τf(i) → σu → 2+ω)),

and then

` KeyI⇒ • → σf(m) → 2+
(
(τf(1) ∨ · · · ∨ τf(m))→ (σu1 ∨ · · · ∨ σuk

)→ 2+(> → ω)
)

(11)
where U = {u1, . . . , uk}. Now (10), (11), and Lemma 3.2 (σ = σf(m), σ′ = (σu1 ∨ · · · ∨
σuk

), τ = (τf(1) ∨ · · · ∨ τf(m)), τ ′ = >) imply

` KeyI⇒ • → σf(m) → 2+ω

similarly to (9). 2
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Fig. 2. A semantic diagram.

a α :T, β :T, γ :F

b

e δ :T, ε :F

c ζ :T d η :F

f g θ :F, ι :F

HHH
2

2+

2+

��
�
2+

HHH
2+

�
��2

4 Making a countermodel

If ϕ is a formula, then the expressions ϕ : T and ϕ : F are called signed formulas. A
semantic diagram is a finite tree whose nodes are associated with finite sets of signed
formulas and whose edges are labeled by 2 or 2+. Set(a) denotes the set of signed
formulas that is associated with the node a. If a node b is a 2-successor (or 2+-successor)
of a node a, then we write a<2b (or a<2+

b, respectively). Moreover we write a < b if
and only if a<2b or a<2+

b. The transitive closure of < is written by �. Figure 2 is an
example of a semantic diagram, in which Set(a) = {α :T, β :T, γ :F}, Set(b) = ∅, a<2b,
b<2+

e, a < b, b < e, a 6< e, a � b, a � e, and a 6� a hold. In the following, Γ,∆, . . .
will denote sets of signed formulas, S, T , . . . will denote semantic diagrams, and a, b, . . .

will denote nodes of diagrams. By “ϕ ∈T x” (or “ϕ ∈F x”), we mean “(ϕ :T) ∈ Set(x)”
(or “(ϕ :F) ∈ Set(x)”, respectively).

For each diagram S, we define a formula Neg(S) (called the negation of S) inductively
as follows. If a set {ϕ1 :T, ϕ2 :T, . . . , ϕm :T, ψ1 :F, ψ2 :F, . . . , ψn :F} is associated with
the root of S, and subdiagrams S1,S2, . . . ,Sk are connected with the root by 2-edges
and T1, T2, . . . , Tl are connected with the root by 2+-edges, then Neg(S) is the formula

⊥ ∨ ¬ϕ1 ∨ ¬ϕ2 ∨ · · · ∨ ¬ϕm ∨ ψ1 ∨ ψ2 ∨ · · · ∨ ψn∨
2(Neg(S1)) ∨2(Neg(S2)) ∨ · · · ∨2(Neg(Sk))∨

2+(Neg(T1)) ∨2+(Neg(T2)) ∨ · · · ∨2+(Neg(Tl)).

For example, the negation of the diagram of Figure 2 is provably equivalent to the
formula ¬α ∨ ¬β ∨ γ ∨ 22+(¬δ ∨ ε) ∨ 2+¬ζ ∨ 2+

(
η ∨ 2+⊥ ∨ 2(θ ∨ ι)

)
. A diagram S is

said to be HK+-consistent if and only if 6` Neg(S).

Let S and T be semantic diagrams and a be a node of S. By S
a
+ T , we mean the

diagram obtained by joining S and T , in which a and the root of T are merged into one
node. Figure 3 describes an example.

Let L be a finite set {λ1, λ2, . . . , λk} of formulas. We say that a set Λ of signed
formulas is a valuation of L if Λ is {λ1 :•1, λ2 :•2, . . . , λk :•k} (•i is T or F). There are
2k distinct valuations of L.

For a set Γ of signed formulas, we define a formula 〈Γ〉 and a set ΓT
� of signed formulas

as follows.
〈Γ〉 =

∧
{ϕ | (ϕ :T) ∈ Γ} ∧

∧
{¬ϕ | (ϕ :F) ∈ Γ}.

ΓT
� = {ϕ :T | (2ϕ :T) ∈ Γ}.
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Fig. 3. Semantic diagrams S, T and S
a
+ T .

S

Γ1

Γ2 a Γ3

Γ4

@@ ��
2 2

2+
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∆1

∆2

∆3 ∆4

@@ ��

2+

2 2+

S
a
+ T

Γ1

Γ2 Γ3,∆1

Γ4

@@ ��

@@

2 2

2+

∆2

∆3 ∆4

��

@@ ��

2+

2+2

For example, if Γ = {2ϕ1 : T, 22ϕ2 : T, ¬¬2ϕ3 : T, 2+ϕ4 : T, 2ϕ5 : F}, then 〈Γ〉 is
2ϕ1 ∧22ϕ2 ∧ ¬¬2ϕ3 ∧2+ϕ4 ∧ ¬2ϕ5, and ΓT

� is {ϕ1 :T, 2ϕ2 :T}. Note that

` 〈Λ〉 → 2〈ΛT
�〉 (12)

holds for any set Λ; for example, ` (2ϕ1∧22ϕ2∧¬¬2ϕ3∧2+ϕ4∧¬2ϕ5)→ 2(ϕ1∧2ϕ2)
if Λ is the above Γ.

We give some basic lemmas on diagrams.

Lemma 4.1 Let S, T , T1, T2, . . . , Tn be semantic diagrams (n ≥ 0) and a be a node of
S. If

` {Neg(T1), Neg(T2), . . . , Neg(Tn)}⇒ Neg(T ),

then
` {Neg(S

a
+ T1), Neg(S

a
+ T2), . . . , Neg(S

a
+ Tn)}⇒ Neg(S

a
+ T ).

Proof. By Lemma 3.1 and the definition of Neg(). 2

Lemma 4.2 (Maximalization) Let L = {λ1, λ2, . . . , λk} (k ≥ 1) be a finite set of
formulas. If a semantic diagram S is HK+-consistent and a is a node of it, then there
exists a valuation Λ of L such that the diagram S

a
+ Λ (i.e., the diagram obtained from

S by adding Λ to the node a) is HK+-consistent. The process of making S
a
+ Λ from S

will be called “maximalization for a with respect to L”.

Proof. Since ` {¬λi, λi} ⇒ ⊥, one of the diagrams S
a
+ {λi : T} and S

a
+ {λi : F} is

HK+-consistent (otherwise ` Neg(S) by Lemma 4.1). By iterating this argument, we

can chose •1, •2, . . . , •k (•i ∈ {T,F}) such that S
a
+ {λ1 : •1, λ2 : •2, . . . , λk : •k} is

HK+-consistent. 2

Lemma 4.3 (Fulfillment of 2) If a diagram S of Figure 4 is HK+-consistent, then
also the diagram T of Figure 4 is HK+-consistent. (In the Figure, U , V1, V2, . . ., Vn
are subdiagrams, where U may be null and n ≥ 0 — this means that the node a may be
the root or a leaf.) The process of making T from S will be called “fulfillment of 2ϕ :F
for a”, and the added node b will be called the “witness node”.
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Fig. 4. Diagrams S and T of Lemma 4.3.

S

A
A
A

�
�
�

U

Γ, 2ϕ :Fa
A
A
A

�
�
�V1

A
A
A

�
�
�V2 · · ·

A
A
A

�
�
�Vn

T

A
A
A

�
�
�

U

Γ, 2ϕ :Fa
A
A
A

�
�
�V1

A
A
A

�
�
�V2 · · ·

A
A
A

�
�
�Vn

2

ϕ :Fb

Fig. 5. Diagram S of Proposition 4.4.

S

A
A
A

�
�
�

U

Γ, 2+ϕ :F
A
A
A

�
�
�V1

· · ·
A
A
A

�
�
�Vn

Proof. Neg(S) and Neg(T ) are provably equivalent. 2

Let us explain the outline and the point of our completeness proof.
The goal is to construct a finite countermodel for a given unprovable formula α0.

When α0 does not contain the operator 2+, the argument is equivalent to the well-
known completeness proof for the smallest normal modal logic K, and it is arranged as
follows. If 6` α0, then the one-node diagram {α0 : F} is HK+-consistent. We extend it
by iterated applications of maximalization (Lemma 4.2) and fulfillment of 2 (Lemma
4.3), and we eventually get a “saturated diagram” T . Then a model M = 〈W,R, V 〉 is
defined by: W is the set of nodes in T ; R = <2; and V (a, p) = True ⇐⇒ p ∈T a. This
is the required countermodel, because “ϕ ∈T a⇒M, a |= ϕ” and “ϕ ∈F a⇒M, a 6|= ϕ”
hold for any ϕ, and the root contains α0 :F.

When α0 contains both the operators 2 and 2+, we need additional constructions to
fulfill 2+ϕ :F. There are two naive and unsuccessful ways for this. After showing these
bad ways, we will present our good way, which enables us to make a witness of 2+ϕ : F
in an HK+-consistent diagram.

The first way uses the following proposition corresponding to Lemma 4.3.

Proposition 4.4 If a diagram S of Figure 5 is HK+-consistent, then at least one of the
diagram Ti of Figure 6 is HK+-consistent. Note that Figure 6 contains infinitely many
diagrams.

In this way, we are faced with a difficulty in proving Proposition 4.4. Of course we
can prove this proposition using the soundness and completeness of HK+; however, we
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Fig. 6. Diagrams T1, T2, . . . of Proposition 4.4.
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Fig. 7. Diagrams S and T of Proposition 4.5.
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A
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A
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�Vn
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ϕ :F

are now in course of proving completeness theorem.
The second way uses the following proposition.

Proposition 4.5 If a diagram S of Figure 7 is HK+-consistent, then also the diagram
T of Figure 7 is HK+-consistent.

This proposition is easily proved in contrast to Proposition 4.4; however, we are faced
with another difficulty in making a countermodel — we cannot define a well-behaved
accessibility relation on the saturated diagram based on Proposition 4.5.

Then the following lemma is the third and successful way, which is the main contri-
bution of this paper. This is done by enumerating all possible candidates of paths to
the witness (called “special paths” below), as (2) in Section 1.

Lemma 4.6 (Fulfillment of 2+) Let L = {λ1, λ2, . . . , λk} (k ≥ 1) be a finite set of
formulas. If a diagram S of Figure 8 is HK+-consistent and Γ1 is a valuation of L, then
there exist valuations Γ2,Γ3, . . . ,Γm of L for some m ≥ 1 such that the diagram T of
Figure 8 is HK+-consistent. The process of making T from S will be called “fulfillment
of 2+ϕ :F for a with respect to L”, and the top node b will be called the “witness node”.

Proof. We say that a diagram is a special path from Γ1 to ϕ :F if and only if it is of the
form as in Figure 9 for some valuations Γ2, . . . ,Γm of L (m ≥ 1) such that Γ1,Γ2, . . . ,Γm
are mutually distinct. There are finitely many distinct valuations of L, say Λ1,Λ2 . . . ,ΛN
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Fig. 8. Diagrams S and T of Lemma 4.6
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Fig. 9. Special path from Γ1 to ϕ :F

Γ1

2+

Γ1
T
�, Γ2

2+
···
2+

Γm−1
T
�, Γm

2+

ΓmT
�, ϕ :F

(N = 2k ≥ 2 because k ≥ 1); therefore the number of all special paths from Γ1 to ϕ :F
is also finite. Then let {W1,W2, . . . ,WP } be the set of special paths. Now we will show

` {Neg(W1),Neg(W2), . . . ,Neg(WP )}⇒ Neg(Γ1,2
+ϕ :F). (13)

The negation of a special path is provably equivalent to the formula

〈Γ1〉→2+
(
〈Γ1

T
�〉→〈Γ2〉→2+

(
· · · →2+

(
〈Γm−1

T
�〉→〈Γm〉→2+

(
〈ΓmT

�〉→ϕ
))))

,

and the formula Neg(Γ1,2
+ϕ :F) is provably equivalent to

〈Γ1〉 → 2+ϕ.
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Moreover we have
` 〈Λ1〉 ∨ 〈Λ2〉 ∨ · · · ∨ 〈ΛN 〉

because this formula is a tautology. Using these facts and (12) (before Lemma 4.1),
we can apply Theorem 3.3 ( {σ1, σ2, . . . , σN} = {〈Λ1〉, 〈Λ2〉, . . . , 〈ΛN 〉}, σ1 = 〈Γ1〉,
σf(i) = 〈Γi〉, τf(i) = 〈ΓiT�〉, ω = ϕ ), and we get (13). Now the HK+-consistent diagram

S of Figure 8 is equivalent to S
a
+ {Γ1,2

+ϕ :F}. Then (13) and Lemma 4.1 imply that

there is a special path W such that S
a
+W is HK+-consistent. 2

Remarks on Lemma 4.6.
(1) If the set L is closed under subformulas and T is HK+-consistent, then it must be
the case that ΓiT� ⊆ Γi+1 in the node {ΓiT�,Γi+1}.
(2) Special paths consist of not 2-edges, but 2+-edges, since the origin of a 2+-edge is
the R+-edge between {Σai

} and {Σa(i+1)} in the long path (3) from Section 1. On the
other hand, the 2+-edges will become not R+-edges but R-edges in the countermodel
below. This one-step reachability is justified by the connection between Γi and ΓiT�.

Now let us fix a formula α0, for which we are going to construct a countermodel.
The set of subformulas of α0 is called Sub(α0). We define some conditions on a node a

of semantic diagrams as follows.

[Sub(α0)-maximality] ϕ ∈ Sub(α0) ⇐⇒ (ϕ ∈T a or ϕ ∈F a).

[2-correctness] If 2ϕ ∈T a and a < b, then ϕ ∈T b.

[2-witness property] If 2ϕ ∈F a, then the following condition holds.

∃b
(
a<2b and ϕ ∈F b

)
. (♠)

[2+-witness property] If 2+ϕ ∈F a, then the following condition holds.

∃m ≥ 1,∃b1,∃b2, . . . ,∃bm
(
a<2+

b1<
2+

b2<
2+
· · ·<2+

bm and ϕ ∈F bm
)
. (♣)

We say that a node x is set-fresh if and only if the condition (y� x ⇒ Set(y) 6= Set(x))
holds for any node y. The following is called the diagram-model condition for T with
respect to Sub(α0), which is the key notion of our completeness proof.

• T is HK+-consistent;
• all nodes of T are Sub(α0)-maximal and 2-correct; and
• all set-fresh nodes of T satisfy 2-witness and 2+-witness properties.

Lemma 4.7 If 6` α0, then there exists a semantic diagram T such that the diagram-
model condition holds with respect to Sub(α0) and the root contains the signed formula
α0 :F.

Proof. We define a procedure to construct semantic diagrams T0, T1, T2 . . . , such that
Ti is HK+-consistent and all the nodes of Ti are Sub(α0)-maximal and 2-correct.
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[Construction of T0]
The one-node diagram {α0 : F} is HK+-consistent because 6` α0. We apply the
maximalization with respect to Sub(α0) (Lemma 4.2). Then we obtain a diagram whose
only node is Sub(α0)-maximal and contains α0 :F. This is the diagram T0.

[Construction of Ti+1 from Ti]
If Ti satisfies the diagram-model condition with respect to Sub(α0), then we stop the
procedure and we get the required diagram. Otherwise there is a node, say a, which is
set-fresh, but the 2-witness (or 2+-witness) property fails; that is, there is a formula
2ϕ (or 2+ϕ) ∈F a such that the condition ♠ (or ♣) does not hold. Then we apply
the fulfillment (Lemma 4.3 or 4.6) of 2ϕ : F (or 2+ϕ : F) for a and maximalization
(Lemma 4.2) with respect to Sub(α0) for the witness node (the other nodes are already
maximal), and the resulting diagram is Ti+1. The node a will be called a growing
point. Note that all the nodes of Ti+1 satisfy 2-correctness; here we show some cases:
(Case 1) If 2ψ : T is in the growing point of fulfillment of 2ϕ : F, then ψ : T must be
in the maximalized witness node, say b; otherwise (ψ : F) ∈ b and the diagram would
be HK+-inconsistent because ` ¬2ψ ∨ 2(ψ ∨ · · · ). (Case 2) If 2ψ : T is in a node
{ΓjT�,Γj+1} in the special path of fulfillment of 2+ϕ :F, then (2ψ :T) ∈ Γj+1 (otherwise
(2ψ : F) ∈ Γj+1 and the diagram would be HK+-inconsistent), and then ψ : T is in the
next node {Γj+1

T
�
,Γj+2}.

We show that the above procedure must terminate, and hence we eventually get the
required diagram. In fact, otherwise an infinite sequence T0, T1, T2 . . . is produced. Then
consider the infinite diagram

⋃∞
i=0 Ti. This infinite tree is finite branching because we

can apply at most p times fulfillment for each growing point where p is the number
of 2- or 2+- formulas in Sub(α0). Therefore there is an infinite path which contains
infinitely many growing points; however this is impossible because each growing point
must be set-fresh and the number of set-fresh nodes in one path cannot be greater than
2|Sub(α0)|. 2

Lemma 4.8 If a semantic diagram T satisfies the diagram-model condition with respect
to Sub(α0), then the following hold for any node a of T . (1) If ϕ ∈F a, then ϕ 6∈T a. (2)
If ϕ ∧ ψ ∈T a, then ϕ ∈T a and ψ ∈T a. (3) If ϕ ∧ ψ ∈F a, then ϕ ∈F a or ψ ∈F a. (4)
If ¬ϕ ∈T a, then ϕ ∈F a. (5) If ¬ϕ ∈F a, then ϕ ∈T a. (6) If 2+ϕ ∈T a and a < b, then
2+ϕ ∈T b and ϕ ∈T b.

Proof. We check only the clause (6), which is divided into the following four: (6-1)
If 2+ϕ ∈T a and a<2b, then 2+ϕ ∈T b. (6-2) If 2+ϕ ∈T a and a<2b, then ϕ ∈T b.
(6-3) If 2+ϕ ∈T a and a<2+

b, then 2+ϕ ∈T b. (6-4) If 2+ϕ ∈T a and a<2+
b, then

ϕ ∈T b. The clause (6-1) is verified as follows. If 2+ϕ ∈T a, a<2b, and 2+ϕ 6∈T b,
then 2+ϕ ∈F b by Sub(ϕ0)-maximality, and then T would be HK+-inconsistent because
` ¬2+ϕ ∨ 2(2+ϕ ∨ · · · ) (∵ ` 2+ϕ → 22+ϕ). The clauses (6-2), (6-3) and (6-4) are
considered similarly using the facts ` ¬2+ϕ ∨ 2(ϕ ∨ · · · ) (∵ ` 2+ϕ → 2ϕ), ` ¬2+ϕ ∨
2+(2+ϕ ∨ · · · ) (∵ ` 2+ϕ→ 2+2+ϕ), and ` ¬2+ϕ ∨2+(ϕ ∨ · · · ) (∵ ` 2+ϕ→ 2+ϕ). 2

Theorem 4.9 (Completeness of HK+ with respect to finite models) If 6` α0,
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then there exists a finite model M such that M,x 6|= α0 for some world x.

Proof. Let T be the diagram obtained by Lemma 4.7. We define M = 〈W,R, V 〉 as
follows.

• W is the set of nodes in T .
• aRb ⇐⇒ a < b or ∃a0

(
a0 � a, Set(a0) = Set(a), and a0 < b

)
.

• V (a, p) = True ⇐⇒ p ∈T a.

Using the diagram-model condition of T and (6) of Lemma 4.8, we can show the follow-
ing:

(i) If 2ϕ ∈T a and aRb, then ϕ ∈T b.

(ii) If 2ϕ ∈F a, then there is a node b such that aRb and ϕ ∈F b.

(iii) If 2+ϕ ∈T a and aR+b, then ϕ ∈T b.

(iv) If 2+ϕ ∈F a, then there is a node b such that aR+b and ϕ ∈F b.

Then we have “ϕ ∈T a ⇒ M, a |= ϕ” and “ϕ ∈F a ⇒ M, a 6|= ϕ”, which are proved by
induction on ϕ using (1)–(5) of Lemma 4.8 and (i)–(iv) above. M is the required model
because the root of T contains α0 :F. 2

5 Concluding remarks

This paper gives a new proof of the completeness theorem for the Hilbert style system
of the propositional modal logic with two operators 2 and 2+. Our method is “semantic
diagram”, and the point is how to construct the witness of ¬2+ϕ. We enumerate all
the possible candidates of paths to the witness (“special paths”), and search them using
the Hilbert system as an oracle. The two-facedness of 2+-edges (Remark (2) on Lemma
4.6) is also remarkable.

A feature of our method is that we do not need extra operators other than 2 and
2+. If the ‘until’ operator is allowed, there may be another possible way as in Brünnler
and Lange [1] and Gaintzarain et al. [3]. Although our method seems to be ineffective
for more complex logics like modal µ-calculus, it may be useful for certain logics without
the ‘until’ operator, for example, epistemic logics.
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A Proof of Lemma 3.2

Define formulas α, β, γ, δ, δ′, δ′′, ε, ε′, ε′′, ζ, ζ ′ :

α = 2τ. β = 2+(σ′ → 2τ ′). γ = 2+(¬σ′ → 2τ).
δ = 2+(τ → ω). δ′ = 2+2(τ → ω). δ′′ = 2(τ → ω).
ζ = σ′ → 2+(τ ′ → ω). ζ ′ = σ′ → 2(τ ′ → ω).
ε = 2+(τ → ζ). ε′ = 2(τ → ζ). ε′′ = 2+(2τ → 2ζ).

An outline of the proof is as follows.

(i) ` 2+(τ ′ → ω)→ 22+(τ ′ → ω). (∵ A4)

(ii) ` 2+(τ ′ → ω)→ 2ζ. (∵ i)

(iii) ` 2+(2+(τ ′ → ω)→ 2ζ). (∵ ii, R2),

(iv) ` {α, ε′}⇒ 2ζ. (∵ A2)

(v) ` {γ, ε′′}⇒ 2+(¬σ′ → 2ζ). (∵ Lemma 3.1(4))

(vi) ` {γ, ε′′}⇒ 2+(¬σ′ ∨2+(τ ′ → ω)→ 2ζ). (∵ v, iii)

(vii) ` {γ, ε′′}⇒ 2+(ζ → 2ζ). (∵ vi)

(viii) ` {α, γ, ε′, ε′′}⇒ 2+ζ. (∵ iv, vii, A5)

(ix) ` {α, δ′′}⇒ 2ω. (∵ A2)

(x) ` {2τ ′, 2(τ ′ → ω)}⇒ 2ω. (∵ A2)

(xi) ` {β, 2+ζ ′}⇒ 2+(σ′ → 2ω). (∵ x, Lemma 3.1(2,4))

(xii) ` {2τ, 2(τ → ω)}⇒ 2ω. (∵ A2)

(xiii) ` {γ, δ′}⇒ 2+(¬σ′ → 2ω). (∵ xii, Lemma 3.1(2,4))

(xiv) ` {β, γ, δ′, 2+ζ ′}⇒ 2+2ω. (∵ xi, xiii)

(xv) ` {α, β, γ, δ′, δ′′, 2+ζ ′}⇒ 2+ω. (∵ ix, xiv, A5)

(xvi) ` δ → δ′, ` δ → δ′′, ` ε→ ε′, ` ε→ ε′′, ` ζ → ζ ′.

(xvii) ` {α, β, γ, δ, ε}⇒ 2+ω. (∵ viii, xv, xvi)

(xviii) ` 2+(σ′ → 2τ ′). (∵ (b), R2)

(xix) ` 2+(¬σ′ → 2τ). (∵ (c), R2)

(xx) ` {α, δ, ε}⇒ 2+ω. (∵ xvii, xviii, xix)

(xxi) ` {σ → α, σ → δ, σ → ε}⇒ σ → 2+ω. (∵ xx, Lemma 3.1(2))

(xxii) ` {σ → 2+(τ → ω), σ → 2+(τ → σ′ → 2+(τ ′ → ω))}⇒ σ → 2+ω.

(∵ (a), xxi)
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