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Abstract—End-to-end network latency has become an impor-
tant issue for parallel application on large-scale high perfor-
mance computing (HPC) systems. It has been reported that
randomly-connected inter-switch networks can lower the end-to-
end network latency. The trade-off is a large amount of routing
information. For irregular networks, minimal routing is achieved
by using routing tables for all destinations in the network. In
this work, a novel distributed routing method called LOREN
(Layout-Oriented Routing with Entries for Neighbors) to achieve
low-latency with a small routing table is proposed for irregular
networks whose link length is limited. The routing tables contain
both physically and topologically nearby neighbor nodes to
ensure livelock-freedom and a small number of hops between
nodes. Experimental results show that LOREN reduces the
average latencies by 2.8% and improves the network throughput
by up to 39% compared with a conventional compact routing
method. Moreover, the required routing table size is reduced
by up to 67%, which improves scalability and flexibility for
implementation.

I. INTRODUCTION

For large parallel application executed on the next genera-
tion high performance computing (HPC) systems, MPI com-
munication latency should be lower than one microsecond [1],
[2]. Thus, low-latency inter-switch networks are essential
for such systems. Since delay in switches (e.g., about 100
nanoseconds in InfiniBand QDR) is typically larger than that
in the cable and for flit injection even including serial and
parallel converters, network structures with small number of
hops in switch are required.

To build inter-switch networks, connections among switches
via inter-switch links are modeled as topologies consisting of
nodes corresponding to switches and edges representing links.
Structured topologies such as torus or fat-tree are conven-
tionally used as networks for HPC systems and Datacenters,
taking into account their locality of connections and scalability.
Compared with these orderly connected networks, recently
proposed random shortcut topologies can drastically reduce
the number of hops [3], [4], [5].

There are several challenges to support scalability for im-
plementation of the randomized HPC networks. Unlike con-
ventional non-random topologies, random shortcut topologies
have a drawback of an increased aggregate cable length on a

machine room floor. The workaround is proposed which gen-
erates random topologies with the cable length limited [6], [7].
It is reported that these layout-conscious topologies achieve a
comparable average number of hops to completely irregular
topologies yet reduce the total link length. Another challenge
for scalability is reducing huge memory space consumed by
routing table entries. For the randomly connected topologies, it
is necessary to use topology-agnostic routing algorithms [8]. In
these algorithms, each switch must have routing table entries
for all destination switches. These table entries enable the
optimal routing with the memory space of O(N · log |N |) for
each switch. Due to this large memory space in routing tables,
the conventional algorithms for irregular networks degrade
scalability for larger system sizes.

To solve this problem, attention is focused on locality
of connections in the layout-conscious topologies mentioned
above. These topologies have the following two characteristics.
Firstly, randomly connected links between nodes can reduce
the average number of hops between nodes. The achieved
number of hops is comparable with completely randomized
topologies. Moreover, the restriction of link lengths can re-
duce the number of hops between nodes that are close to
each other on the floor that the topologies are placed on.
In other words, unlike completely irregular networks, they
exhibit both small-world phenomena and local connections
with randomly connected links whose lengths are limited.
In this work, a scalable routing method for layout-conscious
random topologies LOREN (Layout-Oriented Routing with
Entries for Neighbors) is proposed, which exploits irregularity
and locality in these topologies to achieve both the small
number of hops between nodes and small routing table sizes
required.

The rest of our paper is organized as follows. Section II
shows related work. In Section III, the problem for establishing
routing methodologies is defined. In Section IV, detail of the
algorithm for generation of routing tables is presented. In
Section V, a routing algorithm with routing tables generated in
Section IV is described. In Section VI, the proposed algorithm
LOREN is evaluated and compared with the conventional
compact routing method. Section VII shows some future work
and conclusion.



II. RELATED WORK

A. Low-latency Random Topologies for HPC systems

High-radix topologies which use a large scale switches with
a lot of links are advantageous to reduce the latency. Flattened
Butterfly topology [9] and Dragonfly topology [10] have been
utilized for middle scale systems. However, for large systems
with more than ten thousand nodes, such topologies require too
much cost. Increasing the number of dimensions of k-ary n-
cube is another way to reduce the network latency. BlueGene-
Q and K-supercomputer use six or five dimensional torus.
However, this approach will obviously face the limitation
because of the increasing number of distant links.

Low latency direct interconnection network topologies have
been theoretically researched since 1980’s. Although De
Bruijn graphs [11] and Star graphs [12] have lower average
hop count and diameter than k-ary n-cubes, they have never
been used in practical systems because of their strange looking
topologies.

To achieve networks with the lowest number of hops,
researchers in the field of graph theory have had interests in
the concept of Moore Bound [13]. It determines the maximum
number of nodes in a graph with a given degree and diameter.
For high-performance networks, diameter-2 optimal or quasi-
optimal graphs have been adopted, in which the number of
nodes is equal or close to Moore Bound. Hoffman-Singleton
graph [14], which is one of the well-known optimal graphs,
is exploited in intra-server networks [15]. Moreover, McKay-
Miller-Širáň (MMS) Graph [16] whose number of nodes is
close to Moore Bound is utilized in Slim Fly topologies [17].
Although these graphs can drastically reduce the number of
hops, they cannot be directly utilized with arbitrary numbers of
nodes and degrees. Optimal topologies with given numbers of
nodes and degrees have been explored, which reveals difficulty
in the optimization that is in most cases based on heuristic
approach [18].

As a workaround plan against this difficulty, randomized
topologies for HPC systems are proposed. It is shown that ran-
dom networks can achieve low latencies that are comparable
with those in the optimized networks and the networks based
on the concept of Moore Bound. These topologies exhibit
small-world phenomenon [19]. It reduces a number of hops
between nodes in proportion to logd |N |, where d and |N |
represent a degree of each node and a number of nodes, re-
spectively. Moreover, for arbitrary network sizes, randomized
networks can be generated with the smaller computational
costs than the optimized networks. These topologies applied
to inter-switch networks can improve bandwidth, scalability,
and fault-tolerance of the networks. It is reported that they
can be utilized to both HPC networks [3], [4], [5] and on-chip
networks [20].

B. Layout-conscious Random Topologies

Although random topologies achieve small number of hops
between nodes, they need a larger amount of total cable length,
which degrades probability of implementation for practical
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Fig. 1: Example of layout-conscious random topology
LRT(|N | = 16, d = 4, r = 2).

inter-switch networks. This problem can be solved with net-
works which contain randomly connected links with length
limitation [6], [7]. These networks achieve drastic reduction of
the total cable length with minimal increase in the number of
hops between nodes compared with uniform random networks.

In this work, a distributed routing method is explored for
random topologies with the link length limited. The notation
of the layout-conscious topology is defined as LRT(|N |, d, r),
where |N |, d, and r denote the number of nodes, the degree
of each node, and the maximum length of edges, respectively.
Here, topologies among nodes are assumed as regular graphs,
which means that all nodes in the topologies have the same
degree. Fig. 1 shows an example of a layout-conscious topol-
ogy LRT(16, 4, 2) that is placed on a n × n 2-dimensional
surface. The label of a node, i, is defined with the equality
i = xi+yi ·n, where (xi, yi) denotes a coordinate of the node
i. All edges in this topology are connecting between two nodes
so that the Manhattan distance between them, which is defined
in Section III-A, is equal or less than the limitation value r.

C. Reduction of Routing Table Size

The performance of packet transfers highly depends on the
implementation of routers in which packet routing information
is stored and referred. For random network, a routing table
indicating the output link for all destination nodes is required
in every router. If the number of nodes is more than thousands,
the time to refer a certain size of memory for the table might
bottleneck the operational frequency.

For layout-conscious random topologies, since the range of
nodes which can be connected with direct links is limited,
we can much reduce the number of entries. If the number of
entries becomes tens, we can use a high speed CAM (Content
Addressable Memory) consisting of a set of registers and
comparators easily.

Researchers in the field of distributed computing have well
discussed a methodology called compact routing, which is
designed to reduce the size of required routing information
up to a sublinear value at the cost of minimum increase in
numbers of hops. For evaluation of this methodology, Stretch
Factor is defined as the maximum rate of increase in numbers
of hops. There is thus a trade-off between the size of routing



table and Stretch Factor. Several methods to make compact
routing tables are proposed, one of which adds a label to each
node for compressing information for shortest paths. Such
labeling enables a compact routing scheme called Interval
Routing [21].

Another routing method called Cowen’s method uses
topology-dependent names for nodes, and achieves Stretch
Factor less than 3 with a local routing table of size
O(|N |2/3 log4/3 |N |) [22]. In the method, some nodes are
selected as “landmarks” that cover all nodes in a network.
With Cowen’s method, packets are forwarded as the following
procedure.

When a current node that a packet exists is equal to a
“landmark” node for the destination, it is forwarded to the next
hop that is contained in a header of the packet, and uses the
minimal path towards the destination node. When the previous
condition is not satisfied and there is an entry for a destination
node of the packet in a routing table of the current node, the
packet is forwarded according to the information. When these
two conditions are not satisfied, which means the destination
node is distant from the current node, firstly a landmark node
for the destination node in a header of the packet is referred.
Routing information for the landmark node in a routing table
of the current node is then referred and the packet is forwarded
according to the information.

In summary, with Cowen’s method, a minimal path is
selected in the case of nearby destination nodes, otherwise a
path to one of landmarks is selected to get close to the distant
destination nodes. This routing method can reduce the amount
of routing information with suppressing the increase of hops.
However, the overall performance may be degraded because
of the traffic concentration around landmarks.

In this work, a well load-balanced and thus high-throughput
routing method called LOREN (Layout-Oriented Routing
with Entries for Neighbors) is proposed for layout-conscious
random topologies. It is evaluated from the viewpoints of
hop counts and network throughput comparing with Cowen’s
compact routing method.

III. PROBLEM DEFINITION

A. Parameters for Graphs

In this work, cabinets each of which contains a Top-
of-Rack (ToR) switch and multiple computational hosts are
assumed to be placed on a 2-dimensional grid. Moreover,
inter-switch networks are modeled as undirected topologies,
in which nodes and edges denote switches and links between
switches, respectively. Topologies are developed on n× n 2-
dimensional coordinate, and the nodes are arranged on the
lattice positions. Namely, a set of nodes |N | and a length
of one coordinate n satisfy the equality |N | = n2. A length
of an edge between nodes i and j, e(i, j), is equal to the
Manhattan distance between the two nodes, md(i, j). In other
words, the length is equal to |xi−xj |+ |yi−yj |. In this work,
diagonal links between nodes are not used because they lead to
longer cable lengths and degrade the overall performance [23].

TABLE I: Definition of parameters.

Parameter Definition
n Lengths of x- and y-coordinates

e(i, j) Edge between nodes i and j
(xi, yi) x- and y-coordinates of node i; i = xi + yi · n
md(i, j)

Manhattan distance between node i and j;
md(i, j) = |xi − xj |+ |yi − yj |

h(i, j) Minimal number of hops between nodes i and j
N Set of nodes; |N | = n2

E Set of edges
tmax Maximum # of table entries for each node

Additionally, the minimal number of hops between nodes i and
j is denoted with h(i, j).

B. Table Entries

Each router in a network stores routing information as a
routing table, which contains a set of table entries. An entry
is defined as a set of two nodes and represented as a notation
of <vdst, vnext>. In this notation, vdst indicates a destination
node and vnext denotes a node of the next hop along the
shortest path towards vdst. The maximum number of table
entries that a routing table in each node can store is defined
as tmax. The parameters used in this work are summarized in
Tab. I. A goal of this work is to construct a set of routing tables
with the limitation of tmax so that it induces an increase in the
average number of hops between nodes as small as possible
compared with that achieved by the shortest path routing.

IV. ALGORITHM FOR GENERATING ROUTING TABLE
ENTRIES IN LOREN

In this section, an algorithm in LOREN is proposed to
construct routing information that is included in each node.
With the routing tables generated by the proposed algorithm
shown in Alg. 1, three kinds of shortest paths are constructed
as described in the following Section IV-A.

In this method, reachability of packets is supported by en-
tries for topologically and physically neighboring destination
nodes as shown in Section IV-A1 and IV-A2. The number
of these entries can be reduced for the layout-conscious
random topologies because of their locality. Moreover, the
reduced number of hops is achieved by entries for distant
destination nodes as shown in Section IV-A3. Small-world
phenomena exhibited in the topologies can reduce the number
of hops with a small number of these entries. Consequently,
the proposed method LOREN can reduce the number of table
entries required as well as the number of hops between nodes
for the layout-conscious random topologies.

A. Construction of Table Entries for Shortest Paths

1) Shortest Paths between Adjacent Nodes: Routing infor-
mation is provided between two nodes that are connected with
an edge in a graph. That is, for all edges e(i, j) ∈ E, an entry
<j, j> is added to a node i.
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Fig. 2: Example of Routing table entries for a path from a node i to a node j, P (i, j) (|P (i, j)| = 4).

Algorithm 1 Generation of routing tables

Input: LRT(|N |, d, r), maximum # of table entries: tmax

Output: Routing Table T
/* (1) Entries for nodes connected with an edge */
for all (i, j) ∈ {(i, j)|e(i, j) ∈ E} do

Add an entry <j, j> to T [i]
end for
/* (2) Entries for neighboring nodes on the coordinate */
for (i, j) ∈ {(i, j)|md(i, j) = 1, e(i, j) ̸∈ E} do

Calculate path P (i, j) = {m0(= i), ...,m|P (i,j)|−1(= j)}
for 0 ≤ k ≤ |P (i, j)| − 3 do

Add an entry <j,mk+1> to T [mk]
end for

end for
/* (3) Entries for distant nodes */
Queue Q← {}
for all (i, j) ∈ {(i, j)|e(i, j) ∈ E} do

Add a pair (i, j) to tail of Q
end for
for all i ∈ N do

Create a spanning tree for dst i, Gi

end for
while Q ̸= ∅ do

pop (u, v) from head of Q
wsucc ← a successor of u in Gv

Wpreds ← predecessors of u in Gv

if <v,wsucc> ∈ T [u] then
for all wpred ∈Wpreds do

add (wpred, v) to tail of Q
end for

else if |T [u]| < tmax then
add <v,wsucc> to T [u]
for all wpred ∈Wpreds do

add (wpred, v) to tail of Q
end for

end if
end while

2) Shortest Paths between Neighboring Nodes on a Co-
ordinate: On a 2-dimensional coordinate that is defined in
Section III-A, a set of two nodes i and j is neighboring where
the Manhattan Distance between them md(i, j) is equal to
one. Entries for a shortest path between these two nodes are
added with the following procedure.

A shortest path from a node i to a node j is represented as
a consecutive nodes,

P (i, j) := {m0(= i), ...,m|P (i,j)|−1(= j)}.

To all nodes in the path except a node j, entries for a

destination node j and nodes of the next hop along the path are
added. Namely, an entry of <j,mk+1> is added to each node
mk ∈ {m0, ...,m|P (i,j)|−3}. Note that <j, j> is already added
to a node m|Pi,j |−2 with the addition of entries for adjacent
nodes as shown in Section IV-A1; therefore, the entry is not
added again. Packets can be forwarded along this shortest path
with these routing table entries in the following way. A packet
whose destination is a node j injected to a node i(= m0) is
forwarded to a node m1 with reference of the entry <j,m1>.
Similarly, when the packet is in an intermediate node mk for
all 0 < k ≤ |P (i, j)|−3, the entry <j,mk+1> is referred and
the packet is routed along the shortest path towards a node j.
Finally the packet reaching a node m|P (i,j)−2| is forwarded to
a destination node j with the entry <j, j>. Fig. 2 shows an
example of routing table entries which achieves the shortest
path with four hops from a node i to a node j. Note that
these entries for the shortest path from i to j are also utilized
for the shortest path from the intermediate node mk for all
0 < k ≤ |P (i, j)| − 2 towards a destination node j.

3) Shortest Paths between Distant Nodes: After generation
of routing table entries for the two kinds of shortest paths
mentioned in Section IV-A1 and IV-A2, there might be some
empty routing entries in each node. These entries are utilized
for construction of table entries for some of the other shortest
paths between nodes separated with multiple hops from each
other. For effective utilization of remaining empty table en-
tries, it is desirable to put addition of the entries for paths with
a smaller number of hops ahead of addition of those for paths
with a larger number of hops. This is achieved by the following
ways. Initially spanning trees are generated for all destination
nodes, which are represented as {Gi|i ∈ N}, each of which
contains shortest paths for the destination node i. After this
generation, Breadth First Search is applied simultaneously to
all trees. In this search, if a visited node u in a tree Gv has
an empty entry, an entry <v,wsucc> is added to the node u,
where wsucc represents a successor node of u in the tree Gv .
If the entry is successfully added to u or u already has the
entry <v,wsucc>, the search is continued for predecessors of
u in Gv , Wpreds. Otherwise, the search for the predecessors is
discontinued. In the same way as described in Section IV-A2,
a packet whose destination is v in a node that contains an
entry for v can be forwarded along the shortest path.
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(a) Shortest paths for adjacent nodes.

��

�� �� �� ��

�

�

�

� �

� �

	 


�

��

(b) Shortest paths for neighboring nodes.
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(c) Shortest paths for distant nodes.

Fig. 3: Example of shortest paths for a destination node #5 induced with table entries (tmax = 7).

B. Example of Table Entries for Destination Node

Fig. 3 shows shortest paths for a destination node #5 induced
by generated routing tables. In this example, the upper bound
of a number of table entries is set to tmax = 7. A starting point
of a dashed arrow that is depicted with filled circle represents
the node which has an entry of <5, vend>, where vend is
denoted by an end point of the dashed arrow. For instance,
a node #0 has an entry <5, 8>. The dashed arrows in Fig. 3a,
3b, and 3c show paths for adjacent nodes, neighboring nodes,
and distant nodes as described in Section IV-A1, IV-A2, and
IV-A3, respectively. As shown in these figures, the adjacent
nodes of a node #5 are intermediate nodes for the other
shortest paths to a node #5 that are described in Section IV-A2
and IV-A3. It is notable that the new entries that would be
duplicated by already added entries for the adjacent nodes are
not added for these shortest paths.

V. ROUTING ALGORITHM IN LOREN

In the proposed method LOREN, after generating routing
table entries as described in Section IV-A, entries in each node
u are sorted in an increasing order in the number of hops
between u and vdst, h(u, vdst).

A node of the next hop for a packet in a node u whose
destination node is v is determined with the following pro-
cedure. Among routing table entries in the node u, the entry
<vdst, vnext> that minimizes the Manhattan Distance between
nodes vdst and v, md(vdst, v), is referred. If there are some
ties, they are broken in the order as described above. This
breaking of ties is achieved by referring the forefront entry
among the entries in a routing table of the node u, in which
entries are sorted as mentioned before.

An example of routing packets is shown in Fig. 4. A given
topology and generated table entries are the same as the
example in Fig. 3. Let a packet be routed from a node #15 to
a #5. A routing table that a node #15 has is shown in Fig. 4a.
For all entries in this table, the Manhattan Distance between
a destination node of each entry and the destination of the
packet, a node #5, is calculated. Afterwards, an entry <6, 10>
is selected from these entries and referred to forward the
packet, which has the smallest Manhattan Distance between
nodes #6 and #5, md(6, 5) = 1. The packet is thus forwarded
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(a) Routing table in node #15.
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(b) Routing table in node #10.
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(c) Established path from node #15 to #5.

Fig. 4: Example of routing from node #15 to #5 (tmax = 7).

to a node #10. A routing table in a node #10 is shown in
Fig. 4b. In the same way, an entry <6, 6> is selected that has
the smallest Manhattan Distance. Note that an entry <9, 9>
also has the smallest Manhattan Distance. In this case, an entry
<6, 6> is selected according to the order of entries in the table.
After the packet is forwarded to the node #6, there are routing
table entries for a shortest path between nodes #6 and #5, as
shown in Fig. 3. The packet is then forwarded along this path.

The livelock-freedom in LOREN is proved as follows.

Proof. Let <tgv(u), vnext> be referred in a node u to forward
a packet whose destination is a node v. An order ≻v is defined
as follows; u ≻v u′ if one of the following conditions is
satisfied.

1) md(tgv(u), v) > md(tgv(u
′), v)
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Fig. 5: Maximum number of entries tmax and achieved average path length.
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Fig. 6: Maximum number of table entries required for algorithms.

2) md(tgv(u), v) = md(tgv(u
′), v) and h(u, tgv(u)) >

h(u′, tgv(u
′))

Let us consider a packet in u for a destination v that is for-
warded to u′, where v ̸= u′ is satisfied. If h(u, tgv(u)) > 0, u′

has an entry such that tgv(u) = tgv(u
′) and h(u′, tgv(u

′)) =
h(u, tgv(u))−1 are satisfied. This entry induces a path towards
tgv(u). Otherwise, u′ has an entry such that md(tg(u′), v) =
md(tg(u), v) − 1 is satisfied, which induces a path between
neighboring nodes as mentioned in Section IV-A2. In both
cases, the order u ≻v u′ is satisfied.

By forwarding the packet repeatedly, the order of a node
u′ strictly reduces that the packet is forwarded to. This leads
to the fact that the packet can finally reach a node u′ such
that md(tgv(u

′), v) = 0 and h(u′, tgv(u
′)) = 1 are satisfied.

This is because of md(tgv(u
′), v) ≥ 0 and h(u′, tgv(u

′)) ≥
1. In this case, u′ is adjacent to v; therefore, the packet is
immediately forwarded to v with an entry for adjacent nodes
as described in Section. IV-A1.

VI. EVALUATION

In this section, the proposed routing method LOREN
is evaluated and compared with Cowen’s compact routing
method [22] introduced in Section II-C. Routing methods are
applied to the layout-conscious random topologies, LRTs, that
are defined in Section II-B. For the evaluations, LRT(64, 4, 2)
and LRT(256, 4, 4) are adopted. Namely, the degree of each

node is set to four. Moreover, the maximum link lengths are set
to two and four for 64- and 256-node networks, respectively.

A. Table Entry Size and Average Path Length

In this evaluation, the impact of table entry sizes to the
average path length is analyzed. The limitation of maximum
table entries tmax is varied to evaluate the average number of
path hops. In Cowen’s method, the number of entries for each
node depends on the input value 0 < α < 1. Consequently,
this value α also influences the achieved path lengths. In this
section, all possible values of tmax and the corresponding
average path lengths are evaluated.

Fig. 5a and Fig. 5b show the results for 64- and 256-
node networks, respectively. 10 different layout-conscious
random topologies are generated and used for evaluation.
Evaluated values in the figures represent the average and
standard deviation of those from different topologies. In these
figures, legends of the conventional and proposed methods are
represented as “Cowen’s” and “LOREN”, respectively. These
legends are used in subsequent evaluations.

For both network sizes, LOREN achieves the average
path lengths almost proportional to Cowen’s conventional
compact routing algorithm. For 256-node networks, relatively
small numbers of table entries tmax degrade the path lengths
achieved with LOREN. In this evaluation, the smallest value
of tmax that Cowen’s method can take is 42. In the same
case, LOREN increases the average path length by 6.6%.



Cowen’s conventional compact routing can reduce the number
of hops between nodes with global information that each node
contains as “landmark” nodes. On the other hand, in LOREN,
shorter paths are not taken between nodes because of a small
amount of local information that each node has. As the value
of tmax increases, LOREN achieves comparable or smaller
numbers of path lengths. For 64 nodes, LOREN can reduce
the average path hops by up to 4.2%. Moreover, for 256 nodes,
it can reduce the average number of path lengths by up to
2.8%. These result from small-world phenomena in the layout-
conscious random topologies that can be utilized with larger
local information in each node.

B. Minimal Number of Required Table Entries

As shown in Fig. 5, the minimum number of tmax that
LOREN can take is smaller than that for Cowen’s algorithm.
Hence it is notable that LOREN improves the adaptation to
various numbers of table sizes given. In this section, this
flexibility is evaluated and compared with that of Cowen’s
algorithm in detail.

As described in Section VI, Cowen’s algorithm varies the
maximum number of table entries tmax with the parameter α.
In this section, the smallest values of tmax are evaluated that
the algorithm can take for given topologies. The LOREN algo-
rithm constructs three kinds of shortest paths that mentioned
in Section IV-A. Among them, those between distant nodes
which are defined in Section IV-A3 are constructed using
redundant empty entries, that is, they are optional in the algo-
rithm. By contrast, those between adjacent nodes and between
neighboring nodes, which are described in Section IV-A1 and
IV-A2, respectively, are indispensable for livelock-freedom
in the algorithm. Accordingly, the numbers of table entries
that are required for establishing these two shortest paths are
evaluated.

Fig. 6a and Fig. 6b show distributions of the minimal num-
ber of required table entries for 1,000 64- and 256-node layout-
conscious random topologies, respectively. These results show
that LOREN achieves the small number of table entries with
the same variation compared with Cowen’s algorithm. For 64
nodes, it reduces the minimum and average number of required
table entries by 56% and 52%, respectively. Moreover, it
reduces the minimum and average by 67% and 62% for 256
nodes, respectively.

In this evaluation, the smallest numbers of tmax that
Cowen’s algorithm can take are 18 and 42 for 64 and 256
nodes, respectively. In the rest of evaluation, the values of tmax

are set to both the minimum number in Cowen’s algorithm and
half of |N |. Namely, the maximum numbers of table entries
are set to tmax = 18, 32 for 64 nodes, and tmax = 42, 128 for
256 nodes.

C. Network Simulation

A cycle-accurate network simulator Booksim [24] is used
for evaluation. For both Cowen’s routing algorithm and
LOREN algorithm, deadlock-freedom is supported with a
method to assign traffics to multiple virtual channels [25].

TABLE II: Network parameters.

Simulation period 100,000 cycles
Packet size 1 flit

Number of VCs 4
Buffer size per VC 8 flits

Number of pipeline stages 4

This assignment method is based on the assignment technique
used in LASH-TOR [26]. Network parameters for simulation
are shown in Tab. II.

Fig. 7 to Fig. 10 show simulation results under uniform,
transpose, shuffle, and reverse traffics [27]. For 64 nodes,
LOREN degrades the saturation throughput by 21% in a
reverse traffic compared with Cowen’s algorithm, with the
table entry size of tmax = 32, as shown in Fig. 10b.
This arises from large numbers of hops in this traffic. Each
node can contain only local information in LOREN, which
increases the number of hops and thus the buffer occupancy
with packets. Another result for 64 nodes is that Cowen’s
algorithm introduces instability in the saturation throughput,
which depends on traffic patterns. When the value of tmax

changes from 18 to 32 in an uniform traffic, Cowen’s algorithm
and LOREN can improve the saturation throughput by 40%
and 38%, respectively. However, in the same case except
adoption of a transpose and shuffle traffic, Cowen’s algorithm
degrades the throughput by 27% and 26%, respectively. On
the other hand, LOREN can achieve the better throughput with
larger numbers of table entries, regardless of the applied traffic.
Moreover, LOREN achieves the lower latency than Cowen’s
algorithm in most cases with 64 nodes. It reduces the latency
by up to 5.0%.

For 256 nodes, LOREN can achieve the better throughput
in most cases. In the case of an uniform traffic and tmax = 42,
it increases the throughput by 39% compared with Cowen’s
algorithm. The increase is also shown in other traffic patterns.
As a result, LOREN develops capacity to balance traffic load.
It is also shown that achieved latencies with LOREN are
comparable with those with Cowen’s algorithm in most cases.

In summary, LOREN, which utilizes local routing informa-
tion, can achieve comparable latencies to those with Cowen’s
algorithm, which exploits global routing information. More-
over, LOREN can avoid load concentration with the distributed
routing manner, which Cowen’s routing method has to face
because of the large amount of flows to “landmark” nodes.

D. Performance under Randomly Imbalanced Traffic

In Section VI-C, uniform and synthetic traffics balanced
for all nodes in the network are adopted for evaluation. In this
section, randomly imbalanced traffics are applied to LOREN
and Cowen’s method.

1) Definition of Randomly Imbalanced Traffic: In this eval-
uation, each node in a network has a destination node. Two
imbalanced traffics, hotspot(β) and local(γ) are defined as
follows.

• hotspot(β): The value 0 ≤ β ≤ 1 denotes probability for
each node to set a “hot-spot” node as a destination node.
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(c) 256 nodes, tmax = 42.

 0

 50

 100

 150

 0  0.05

A
v
e

ra
g

e
 l
a

te
n

c
y
 [

c
y
c
le

s
]

Accepted rate [flits/node/cycle]

Cowen’s
LOREN

(d) 256 nodes, tmax = 128.

Fig. 7: Network performance under uniform traffic.
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(b) 64 nodes, tmax = 32.
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(c) 256 nodes, tmax = 42.
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(d) 256 nodes, tmax = 128.

Fig. 8: Network performance under transpose traffic.
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(b) 64 nodes, tmax = 32.

 0

 50

 100

 150

 0  0.05

A
v
e

ra
g

e
 l
a

te
n

c
y
 [

c
y
c
le

s
]

Accepted rate [flits/node/cycle]

Cowen’s
LOREN

(c) 256 nodes, tmax = 42.
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(d) 256 nodes, tmax = 128.

Fig. 9: Network performance under shuffle traffic.
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(c) 256 nodes, tmax = 42.
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Fig. 10: Network performance under reverse traffic.

A destination node of each node is otherwise selected
randomly from all nodes in the network with probability
1− β.

• local(γ): A destination node v for each node u is selected
with the probability that is proportional to md(u, v)−γ ,
satisfying γ > 0.

Let S be a set of source-and-destination pairs in the gen-
erated traffic. A pair of a source node i and a destina-
tion node j is represented as (i, j) ∈ S. In this section,
a path from i to j is represented as consecutive edges,
P ′(i, j) := {e(i,m0), e(m0,m1), ..., e(mk′ , j)}, satisfying
k′ = |P ′(i, j)| − 2. A set of all paths in the traffic is defined
as P ′ := {P ′(i, j)|(i, j) ∈ S}.
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(b) 64 nodes, tmax = 32.
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(c) 256 nodes, tmax = 42.
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Fig. 11: Effective Bandwidth under imbalanced traffic.
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(b) 64 nodes, tmax = 32.

 0

 0.2

 0.4

h
o
ts

p
o
t(0

.1
)

h
o
ts

p
o
t(0

.3
)

h
o
ts

p
o
t(0

.7
)

lo
c
a
l(1

.0
)

lo
c
a
l(2

.0
)

lo
c
a
l(3

.0
)

A
v
e
ra

g
e
 E

ff
ic

ie
n
c
y

Cowen’s
LOREN

(c) 256 nodes, tmax = 42.
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(d) 256 nodes, tmax = 128.

Fig. 12: Average efficiency under imbalanced traffic.

2) Effective Bandwidth: Let a congestion factor of an edge
e, τ(e), be the number of paths in P ′ that include the edge
e. The effective bandwidth for each traffic is defined as the
following equality [28], [29].

Γ(P ′) =
1

|S|
∑

(i,j)∈S

1

max{τ(e)|e ∈ P ′(i, j)}

In this evaluation, 1,000 random traffic patterns for each
imbalanced traffic are generated, and the average effective
bandwidth is calculated.

Fig. 11 shows the results. It is shown that LOREN can
achieve the better performance than Cowen’s algorithm except
in the case of hotspot(0.7) and tmax = 42 for 256 nodes. As
shown in Section VI, LOREN increases the number of hops
between nodes in this case, which leads to a large number
of edges that each path contains and thus to high degree of
congestion. On the other hand, LOREN effectively improves
the bandwidth especially for the localized traffic. This is
because of the reduced number of hops between physically
nearby nodes and the balanced load. When tmax is large, it

improves the bandwidth by 9.1% and 6.1% for 64- and 256-
node networks, respectively.

3) Average Efficiency: Efficiency for a path between nodes
i and j is defined as a multiplicative inverse of the path
length, h(i, j)−1 [30]. It quantifies the characteristic of small-
world phenomena developed by a routing method. The average
efficiency is the average value for all paths in the traffic. In
the same way as Section VI-D2, 1,000 random patterns are
generated for each traffic and the average is calculated.

Fig. 12 shows that LOREN can improve the average effi-
ciency by up to 3.3%. The improvement in the average effi-
ciency is slightly smaller than that in the effective bandwidth
as shown in Section VI-D2. These results illustrate the fact that
LOREN can improve the bandwidth not only by the reduced
number of hops but by the balanced load achieved with the
distributed routing manner. In summary, the proposed method
LOREN can be efficiently applied to the practical localized or
unbalanced traffic.



VII. FUTURE WORK AND CONCLUSION

In this work, a scalable, low-latency, and high-bandwidth
routing method, LOREN (Layout-Oriented Routing with En-
tries for Neighbors), for layout-conscious random topologies is
proposed. This method exploits the irregularity and locality in
the topologies to achieve both lower average numbers of hops
between nodes and small routing table sizes. The entries in
routing tables of each node are constructed so that they induce
shortest paths between nodes nearby on both the topology
and the coordinate. Experimental results show that LOREN
can reduce the number of table entries required in each node
by up to 67% for 256-node networks, compared with the
conventional compact routing method. Furthermore, it can
reduce the number of hops by up to 2.8%. Results obtained
with network simulation show that LOREN can improve the
saturation throughput by up to 39%. Moreover, it can increase
the application-oriented bandwidth for the localized traffic by
up to 9.1%.

In this work, generation of routing table entries and the
routing algorithm with these entries are mainly focused on.
For practical interconnection networks for HPC systems, it is
also an important issue about implementation of LOREN on
commercial switching fabrics. It can be realized with help of
MPLS or OpenFlow technologies. The detailed methodology
for the implementation is left for future work.
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