Acceleration of Full-PIC simulation on a
CPU-FPGA tightly coupled environment

Ryotaro Sakai, Naru Sugimoto, and Hideharu Amano

Graduate School of Science and Technology,
Keio University

3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa, Japan

Email: cfd@am.ics.keio.ac.jp

Abstract—Hall thruster is a sort of electric propulsion and has
been studied in many research institutes. In the design process of
Hall thruster, a numerical simulation called Full-PIC (Particle-
In-Cell) method is used. Although this simulation provides high
accurate result, it is known as a very time consuming job. In this
paper, we present a study of acceleration of Full-PIC simulation
on a CPU-FPGA tightly coupled environment. A high-load part is
selected and off-loaded to an FPGA. Zynq-7000 and Vivado HLS
are used for implementation. To optimize the implemented design,
every target process was divided into some parts for pipelining
and adjustment interval.

Three off-loaded subroutines named ”field source”, “parti-
cle att ion” and “particle att ele” achieved 8.53 times, 12.78
times and 14.95 times performance compared with the software
execution, respectively. The total execution time of target part is
sped up 5.17 times compared with Cortex-A9 667MHz in Zynq.

1. INTRODUCTION

A Hall thruster is one of the most successful electric
propulsion which has three major advantages as follows. First,
it has high degree of thrust efficiency more than 50 % at
wide specific impulse range (1,000s ~ 5,000s). Second, thrust
density is high compared with ion thruster, and third, it is
highly useful as a compact and simple propulsion system for
versatile crafts. Consequently, Hall thrusters are considered to
be an ideal propulsion system for satellite missions like station
keeping, orbit transfer, or deep space exploration, and currently
intensively studied and developed in different institutes and
companies.

The thrust of Hall thruster is an emission of high density
plasma ion. The mechanism of thrust generation is based on
plasma physics and classified in electric propulsion (EP). EP is
one of the propulsion systems mainly used for space missions.
Although the mechanism of thrust generation of EPs is the
same as that of the conventional chemical propulsion (CP)
systems, usually EPs can achieve exhaust velocity and hence
specific impulse higher than CPs by order of magnitude. EP
can achieve much higher energy concentration and thus higher
exhaust velocity than CP, which enables space missions can
never be completed by CP like deep space exploration, for
example.

Full-PIC (Particle-In-Cell) methods are developed for a
kinetic description of plasma and is used for Hall thruster
simulation. Full-PIC is classified as first-principles model since

Takaaki Miyajima and Naoyuki Fujita
Numerical Simulation Research Unit,
Aeronautical Technology Directorate,

Japan Aerospace Exploration Agency (JAXA)
7-44-1 Jindaiji-higashi, Chofu, Japan

all species of the particles including the electron are tracked
and simulated directly. The space and time resolution are
respectively restricted by the Debye length and the plasma
frequency, which makes the simulation extremely computa-
tionally expensive. Consequently, the computational cost is the
major drawback of Full-PIC models which prevent them from
being widely used despite their effectiveness. Japan Aerospace
Exploration Agency (JAXA) has been researched Japanese
Hall thruster and developing Full-PIC code called "NSRU-
Full-PIC”. Current NSRU-Full-PIC is written in Fortran and
parallelized by OpenMPI. Practical simulation takes one week
at least, thus shorten the simulation time is highly demanded.
JAXA is investigating acceleration by GPU and FPGA.

In this paper, we focus on an acceleration of NSRU-Full-
PIC on a CPU-FPGA tightly coupled environment. We first
ported NSRU-Full-PIC to ARM CPU on Zyng-7000 AP SoC
[1] and measured computational time. Then we choose a time
consuming step called SOURCEI that includes stencil com-
putation and off-loaded to FPGA. High-level synthesis (HLS)
which converts C or C++ into the register transfer level (RTL)
was adopted. Although Vivado-HLS was used, the original
code, of course, cannot be directly converted as it is. In order
to optimize the design, first, we divided processes consisting
of a number of double loops into some segments. Second, we
designed stencil buffers for stencil computation and stream
distributors by using HLS. Finally, a pipelined data path was
built with divided segments and the input data timing was
adjusted. As a result, three subroutines: “field source”, “par-
ticle att ion” and “particle att ele” achieved 8.53 times,
12.78 times and 14.95 times performance compared with the
software execution, respectively. The total execution time of
SOURCE is sped up 5.17 times compared with Cortex-A9
667MHz in Zyngq.

II. NuMmERICAL SIMULATION OF HALL THRUSTER BY FuLL-PIC
A. Hall thruster

The thrust of Hall thrusters is generated by the electric static
acceleration of propellant, whereas the thrust is transferred to
the thruster by electromagnetic force generated by the Hall
current. The Hall thruster’s principle operation is illustrated in
Fig. 1. The electrons emitted from the cathode (red line) are
trapped by the radial magnetic field (green line) due to the

Channel

Propellant
Thrust [
Magnetic field ® Electron
Electric field
I I Cathode
Fig. 1. Hall thruster’s principle operation

E x B drift. Radial magnetic field is imposed throughout the
channel by a magnetic circuit. Additionally, strong axial elec-
tric field (yellow line) is sustained throughout the discharge
channel by the radial magnetic field. This azimuthal guiding
center drift (blue circles) forms Hall current, which enables
the heavy particle acceleration and thrust generation. That’s
why this propulsion mechanism is called “Hall thruster”. The
entrapped electrons are gradually accelerated toward the anode
(pink line) due to the diffusion, and ionize the propellant
supplied through the anode (dark blue line). The ionized pro-
pellant is accelerated by the axial electric field and exhausted
in high speed generating thrust.

A Hall thruster has became one of the most successful
electric propulsion which has three major advantages.

High thrust efficiency (more than 50 %) at wide specific im-
pulse range (1,000 s ~ 5,000 s), high thrust density compared
with ion thruster, and high degree of usability as a propulsion
system (simple and compact, can use various propellant).

Japan developed 5 kW-class Hall thruster and has been
developing larger ones. Not only Japan, Russia has already
lunched more than 100 Hall thrusters for satellite station
keeping. NASA is developing 50 kW-class high power Hall
thruster, and ESA used their own Hall thruster for a lunar
exploration mission.

B. Full-PIC method

Full Particle-In-Cell (PIC) method is used for simulation
of plasma and nuclear fusion. Actual plasma consists of
a massive number of particles (ion, electron and neutron),
and it is impossible to simulate all of them. Thus, super-
particle and background mesh are introduced. Super-particle
represents multiple particles (100 ~ 1,000 particles), and back-
ground mesh represents magnetic field. PIC solves equation
of motions for super-particles and Maxwell equations to find
interactions between super-particles. It is very similar to the
first-principle description of plasma as a system of charged
particles. PIC can recreate an actual phenomenon, but its
computational cost is very high. Most time consuming parts

are tracing all the super-particles and the interaction between
super-particles and a background mesh.

Governing equations of Full-PIC are Boltzmann equation
and Maxwell equation. Boltzmann equation governs motion
of charged particles, and Maxwell equation governs tempo-
ral/spatial variation of electromagnetic field. Assuming the
time-invariant magnetic field, the system reduces to the Pois-
son equation (Equation 1) and the equation of motion for each
particle (Equation 2) [2].

Ap=-2 (1)

&

where, ¢ is potential, p is space charge, and ¢ is permittivity.

ma =F

ma = Felectric + Fmagnetic (2)

dx . B

mos =gk q(v X B)
where, m is mass, q is charge of the species, E is electric
field, B is magnetic flux density, and v is velocity of electron.
The trajectories of all the particle species are directly traced
according to the field, whereas the field is calculated according

to the space charge weighted from the particles.

C. NSRU-Full-PIC

NSRU-Full-PIC is a Full-PIC code for Hall thruster sim-
ulation under development by JAXA. It is written in 7,000
lines of Fortran90 code. OpenMPI is used for parallelization,
but OpenMP is not used. Similar to the other Full-PIC codes,
processing step of NSRU-Full-PIC consists of the following
main five steps. Additionally, the whole processing step is
described in Fig. 2. SOURCEI, FIELD, PUSH, SOURCE2
and COLLISION respectively corresponds to step 4, step 5,
step 6/7, step 8 and step 9.

SOURCE]1 computes interaction between particles and mag-
netic field. FIELD computes electric field from magnetic field
and distribute by MPI. PUSH updates position and velocity
of all the charged particles. SOURCE?2 is a pre-processing for
COLLISION. COLLISION simulates inter-particle collisions
modeled by Direct Simulation Monte Carlo.

Fig. 3 shows a processing time of NSRU-Full-PIC on an
actual environment. We used CRAY XE6 [3] and 128 MPI
processes. According to the figure, “SOURCEL” (step 4 in
Fig. 2) accounts for 40% of the whole processing time. We
focus on the most time consuming part and investigate an
acceleration technique by using a CPU-FPGA tightly coupled
environment.

D. Related Work

Miyajima et.al reported GPU implementation of NSRU-
Full-PIC [4]. They focused on the same part and achieved
only 1.1 times speed up. Their GPU implementation was
straight forward and didn’t optimize for the GPU architecture.
PIConGPU [5] is a mult-GPU implementation of PIC method.
We cannot compare it directly with NSRU-Full-PIC, since

‘ 1.Start ’

) v

.e . 7. Particle
2. Initial Setting Motion
3. Particle 8. Particle
Injection Extrapolation
4. Charge 9.Particle
Extrapolation Collision

!}

5. Electric Field
Calculation

¥

6. Electric Field
Interpolation

I

11.Finish

Fig. 2. Flow chart of NSRU-Full-PIC

= Movement of particles
® Extrapolation

= Collision

® Electric field

= MPI communication

= Others

Fig. 3. Processing time profile of NSRU-Full-PIC on CRAY XE6

PIConGPU is based on another method of approximation. To
authors knowledge, there are no research that accelerates Full-
PIC code on CPU-FPGA environment.

Trials to use Zynq for scientifc application are also rare,
since it is originaly developed for embedded usage. Zedwulf
[6] is a 32-node Zyng SoC cluster which can be used for
scientific computation. Sugimoto [7] also proposes a para-
metric survey by using Zynq cluster. All of them use a lot
of Zed boards for enhancing their performance with parallel
processing. Although our trial can be used on such clusters,
we rather focus on the stand-alone execution on a single board
equipped on a satellite.

III. CPU-FPGA TIGHTLY CONNECTED ARCHITECTURE IN A SATELLITE
A. Zyng

Zyng-7000 All Programmable SoC (Zynq) is a System-on-
Chip (SoC) providing CPUs and FPGA by Xilinx. It consists
of Processing System (PS) including ARM CPUs and Pro-
grammables Logic (PL) with an FPGA. The communication
between PS and PL is done through ARM Advanced eXtensi-
ble Interface (AXI), and co-design with CPU and FPGA can
be easily done.

PS is consisting of Application Processor Unit (APU)
including CPU core, memory interface, I/O peripheral, and
AXI interconnect, while PL part is Xilinx’s 7 series FPGA.
Here, Xilinx’s Zed Board, a tiny evaluation board as shown
in Fig. 4is used. Under the central heat sink, XC7Z020 chip,
the second smallest chip in Zyng-7000 series is mounted.

Fig. 4. Zed Board

Zynq is low energy, low cost and compactly implemented.
CPU-FGA co-design is easily done by using Vivado HLS
design environment.

B. Providing a Zyng-board on a satellite

As shown in the previous section, the Hall thruster simula-
tion is essential for design and development of Hall thruster
engines. Moreover, the simulation is used for analyzing the
state of working engine. When engine trouble happens on the
satellite or space craft traveling far from the earth, the analysis
of the engine will be done on the base station using the data
sent from the satellite.

However, the communication between satellite becomes
often unstable to transmit a large amount of data. In such
a case, the simulation of engine is needed to be done in a
stand-alone computer in the satellite. According to the result
of analysis, the satellite can control the engine by itself without
the command from the base station. For such a purpose, an
embedded SoC like Zynq is a good candidate as a versatile
accelerator for energy-efficient computation in the satellite.
Since it includes both general purpose computers (PS part)
and FPGA (PL part), it can be used both for general purpose

computation with Linux operating system and hardwired logic
for controlling sensors and mechanical part in the satellite.
Although the current SRAM-based FPGAs are not suitable to
cosmic usage because of the soft errors by the cosmic rays,
various fault tolerant techniques have been developed [8] [9],
and some trials have been reported [10] [11]. Considering the
benefit of in-system configuration, SoCs including CPUs and
FPGAs will be equipped in the satellite in the future.

Considering the benefit of in-system configuration, SoCs
including CPUs and FPGAs will be equipped in the satellite
in the future.

IV. IMPLEMENTATION

Here, we implemented NSRU-Full-PIC on a Zynq board.
First, we installed Linaro Ubuntu Linux OS which uses the
SD card as its file system on ARM Cortex-A9 in Zynq. Then,
the Fortran-90 code of NSRU-Full-PIC was complied on it.
In five steps in NSRU-Full-PIC, the load of SOURCEI is
relatively high. Like previous research [4], we selected this
part for acceleration. Then, we further profiled SOURCEI on
ARM Cortex-A9, and the result is shown in Fig. 5.

B particle_att_init
B particle_att_ion
® particle_att_ele
3.0% m field_Ecell

2.1% m field_Icell
m field_source
field_wall_charge

field_poisson_source_term

field_RHS

Fig. 5. The profiling of SOURCE1 on Cortex-A9

As shown in the figure, the 90% of execution time of
SOURCETI is occupied with three subroutines: (1) Assignment
of charge to grids (“particle att ele”) (2) Assignment of ion
to grids (“particle att ion”) and (3) Calculation of mutual
interaction in the electric field (“field source”). Here, we
selected them as the first off-load target into FPGA because of
their simple data structure. Although the ratio in SOURCEI1
is still limited, the similar computation is used in other steps.

1) “field source”: “field source” executes 2 X 2 stencil
computation of the grid for simulating the surface of Hall
thruster built by Boron Nitride (BN). When plasma encounters
to the BN wall in a vacuum chamber, various interactions
occur. By calculation of mutual interaction of ions in the
electric field, the correction factor in the right-hand side
of Poisson equation (Equationl) is given. Here, the wall is
corresponding to the colored part in Fig. 6. The conditions
used in the computation is different in inner-wall, surface
of wall and outer-wall. “field source” is consisting of three

39 99

loops: first loop”,’second loop”, and “third loop”, and the
time consuming part is 2 X 2 stencil computation executed in
“first loop” and “third loop”.

Fig. 6. The calculation area of Hall thruster

2) “particle _att _ion”: “particle att ion” accounts for
about half of execution time of SOURCEI, since some tough
steps are needed to assign ion to grids. It is also consisting
of three loops: “Cloud in Cell (CIC)”, “boundary processing”,
and “interpolation”. The structure of “CIC” can cause a lot of
Read-After-Write (RAW) hazards because of self-assignments
of grids. This problem leads to not only incorrect computation
results but also waste of computational power for avoiding it.
Moreover, the time consuming part, 2 X 2 stencil computation
is in the “interpolation”.

3) “particle _att _ele”: Except for dealing with electron,
this subroutine is almost the same as “particle att ion”.

A. High Level Synthesis

Xilinx’s Vivado HLS is used for implementing three subrou-
tines on the PL part of Zynq. Like other practical scientific ap-
plication codes, NSRU-Full-PIC executes a large complicated
computation. Compared with describing such a code with
HDL, HLS can much reduce the time to design. Especially,
the following functions were useful in the design. (1) The bus
control between PS part and PL part can be treated easily, (2)
pipeline interval can be easily adjusted, and (3) resource can
be estimated at the earlier step of the design.

First, the code described in Fortran90 was manually trans-
lated into C language, a front-end of HLS. Here, for three loop
structures were designed as modules, respectively. Buffers for
stencil computation were provided between “first loop” and
third loop” in the “field source” and “interpolation” in the
“particle_att _ion” and “particle att ele”, respectively. The
input/output port was unified to use 64bit-data for sending
as AXI stream. Then, a pipeline structure was formed with
three modules by using the directive. Finally, the design was
optimized by setting the interval manually.

All modules work at 100MHz clock, and controlled by the
ARM CPU through the AXI Lite. Designed modules and IP
cores supported by Xilinx were connected with Vivado IP
Integrator.

B. field source module

The block diagram of “first loop” is shown in Fig. 7.
Although there are about 20 data arrays, 4 arrays “grd zI”,
“grd rE”, “grd rI” and “grd zE” among them and results
of computation with other arrays are transferred to “second
loop”. “grd _zI” and “grd rE” are updated once and “grd rI”
is updated twice, using parameters or other inputs, while
“grd zE” is not updated. “aa”, “bb”, and “xx” hold the results
of 2 x 2 stencil computation of those inputted arrays. The
computation results from “grd en” are stored into “aa” and
“bb”, while “xx” holds the results of “grd Ab”.

stenCII. grd_zI grd_rl grd_rE grd_zE
computation
grd_en | grd_Ab
—1—)
‘ ‘ ‘ update
aa || bb || xx i
update
NG
mul‘ updg
add” \—
Ve
mu{ update
add
v v v

Fig. 7. The block diagram of "first loop”

C. Stencil computation module with buffer

The stencil computation, the main processing of
“field source” and “particle att ion(ele)” computes
the value of target grid and values of surrounding grids as
shown in Fig. 8. In this example, values of red colored target
grid, left, upper and upper-left are added and stored into the
other matrix. For implementing on the FPGA, blue colored
buffer is required for storing the values of past used grids.
Thus, the module requires buffer IPs.

Direction

4 Buffer

> [-

V/
aa = a(grd_en[Z][R] + grd_en[Z — 1][R] +

grd_en[Z][R + 1] + grd_en[Z — 1][R + 1])

Fig. 8. 2 X 2 stencil computation with buffer of “first loop”

D. Overall implemented design

Fig. 9 shows an overall design implemented to the Xilinx
Zed Board. In the PS, Linux is running on the APU with
ARM Cortex-A9, and processes not off-loaded to the PL are
executed. Furthermore, DDR3 SDRAM which is under control
of Linux takes a role of data transfer between PS and PL. In
the PL, Intellectual Property (IP) cores provided by Xilinx
and modules generated by Vivado HLS (shown in Fig. 10) are
connected by Vivado IP Integrator, and 64bit AXI and AXI
stream are adopted for transferring protocol. Moreover, some
other modules are controlled by APU via AXI Lite protocol,
although they are omitted in Fig. 9.

21 types of data are inputted to the field source module,
and 2 types of data are outputted. Transferring them individu-
ally through the dedicated AXI Stream is impractical because
of the constraints of resources and complexity. Therefore, in
this study, we used demultiplexers (DEMUX) as shown on the
left side of Fig. 10 to improve the efficiency of data transfer
between the CPU and FPGA. One AXI Stream is shared up
to four types of data and it is divided by DEMUX. Each input
data is transferred through the AXI Stream sequentially after
being stored to the DDR memory as the form of Array Of
Structures (AoS). At last, it is written to the target register to
compute. Additionally, although DEMUX was generated by
Vivado HLS, it is not included in the evaluation described
later.

Xilinx Zed Board

Processing System (PS) Programmable Logic (PL)
512MB 5
DDR 3
APU S
running Linux g
E -
—d— | & field source
GigE. .
PS AXI Ge.nemled by
Inter- Vivado HLS
SD card connect
stored L
Linu; e i X
System o PCAP interface

Fig. 9. Overall implemented design

field source

Stencil buffer 1
4
3! First loop
> (21 inputs)
4
Second loop
4
Stencil buffer 2
Third loop
2

DEMUX / DEMUX \ / DEMUX \ DEMUX

Fig. 10. The detail of “field source” module

V. EvALUATION
A. Evaluation Setup

Table I shows the evaluation setup. The number of grids
and particles decide the accuracy and execution time of the
simulation. Here, the number of grid is set to be 271 x 311 =
84281, that is, the target region is divided into about 0.1mm?
grid. When computational speed is more important than the
accuracy, we can reduce the number into a half. The number
of particle was limited by the memory size on Zyngq.

TABLE I
EVALUATION ENVIRONMENT.

Zynq XC7Z020-CLG484-1
FPGA part Artix-7 100MHz
CPU part ARM Cortex-A9 667MHz
Memory DDR3 512MB

OS Linaro Ubuntu 14.04.3 LTS 32bit
Compiler GNU Fortran 4.8.4, gcc 4.8.4

Number of grids (RxZ) 271 x 311 = 84281
Number of particles 151500
Number of steps 250

B. Execution Time

First of all, the execution time of the off-loaded part is
evaluated. Here, the number of grids is 84281, and a data
element is represented with the 8-byte. For each grid, 23 reads
and writes are required in total in the “field source”. The
DDR memory bandwidth on Zynq is 4.2GB/s, that is, the
theoretical processing time of “field source” is as below.

84281 x 8 X 23 + 4.2 x 1073 = 3692.31us

Likewise, 51 reads and writes are required in the ‘“parti-
cle att ion” and that is 28 in the “particle att ele”. Calcu-
lated theoretical processing times and the measured execution
times are shown in Table. II.

TABLE 11
THE EXECUTION TIME (usec)

field source | particle att ion | particle att ele
CPU 42300.94 140679.94 90325.72
FPGA 4960.26 N/A N/A
theoretical value 3692.31 8187.30 4494.99

Compared with the theoretical processing time, when we
pay attention to “field source”, it appears that the implemen-
tation uses about 74.4% of the ideal DDR memory bandwidth,
which is close to the practical limitation. Although the design
of the remaining parts is ready, the execution time we could
measured on the real board is that of “field source” because
of a lack of resources in the current Zed board. XC7Z020 on
the current Zed board has only small FPGA logics, and we
could not off-load all of SOURCEI1 on the board. Thus, we
estimated the time of remaining part assuming that the similar
memory bandwidth of “field source” can be used for other
parts.

Compared with ARM Cortex-A9 667MHz, the off-loaded
part “field source” achieved about 8.53 times performance.
However, considering the communication overhead, the per-
formance improvement of the whole SOUCEI is about 1.14
times when only “field source” is off-loaded. On the other
hand, as shown in Fig. 11, “particle att ion(ele)” achieved
12.78 and 14.95 times performance, respectively assuming
the same memory bandwidth as the case of “field source”.
Overall execution time of SOURCEI can achieve 5.17 times
performance if three subroutines could be off-loaded to the
FPGA part.

160000

u CPU
140000 FPGA
"< 120000 u theoretical value

100000

80000

60000

Execution time [use

40000 -

20000 -

0 4

field_source

particle_att_ion particle_att_ele

Fig. 11. The execution time which includes estimated value

C. Resource Utilization

The resource utilization ratio of the actual implementation is
shown in Table III, and the breakdown results of the resource
for “field _source”, “particle att ion” and “particle att ele”
are shown in Table IV, V, and VI. As shown in below
tables, the utilization of BRAM in Table III is remarkably
high, because buffer modules for stencil computations are

implemented in the overall design.

TABLE III
THE TOTAL RESOURCE UTILIZATION RATIO (%)
FF LUT | BRAM | DSP48
total | 554 | 71.7 87.1 44.6
TABLE IV
THE BREAKDOWN OF RESOURCE FOR FIELD _ SOURCE (%)
FF LUT | BRAM | DSP48
first loop 182 | 124 0 30.5
second loop 1.9 0.95 0 9.1
third loop 8.9 6.3 0 5.0
field_source [29.0 [197 [0 | 446

TABLE V
THE BREAKDOWN OF RESOURCE FOR PARTICLE _ATT__ION (%)
FF LUT | BRAM | DSP48
CIC 254 | 55.0 0 44.5
boundary processing | 9.3 11.7 0 25.0
interpolation 3.0 5.8 0 7.7
particle_att_ion [377 [725] 0 [712
TABLE VI

THE BREAKDOWN OF RESOURCE FOR PARTICLE _ATT _ELE (%)

FF | LUT | BRAM | DSP48
CIC 21.2 | 50.0 0 44.5
boundary processing | 4.5 8.9 0 22.0
interpolation 1.4 3.5 0 6.4
particle_att_ele [271 [624 [0 | 729

Since the PL (FPGA) part of XC7Z020 is rather small, we
must use larger Zynq chip for this application. The available
resource of Zynq is shown in Table VII.

TABLE VII
THE RESOURCE OF ZYNQ
FFs LUTs extensible BRAM | DSP Slices
XC77020 | 106400 53200 560 KB 220
XC772045 | 437200 | 218600 2180 KB 900

According to the above table, XC7Z045 adopted by Xilinx
ZC706 board has much resource than XC7Z020. Thus, we can
implement all of the modules we developed in this study.

VI. CoNCLUSION

A Full-PIC simulation code for Hall thruster used in space
crafts was implemented with software/hardware co-operation
on a simple embedded board with Zynq for future stand-alone
simulation in a satellite.

The complete NSRU-Full-PIC code was ported on a Zed
Board with Linux OS. By the profiling of the running code,
the time consuming step SOURCEI] was selected as a target
of off-loading and three subroutines, “field source”, “parti-
cle att ion” and “particle att ele” were implemented on
the PL (FPGA) part by using HLS. 2 x 2 stencil computation
module was pipelined with buffer modules. The off-loaded
“field source”, “particle att ion” and “particle att ele”
achieved 8.53 times, 12.78 times and 14.95 times performance
as the software execution,respectively. The total execution time
of SOURCEI becomes 5.17 times of Cortex-A9 667MHz in
Zynqg.

The result of our study suggests that using FPGA is more
suitable to Full-PIC method than using GPU. On the other
hand, for off-loading all subroutines, the current Zed board is
not enough. We are now trying to reduce the required hardware
amount as well as preparing a powerful test board with a large
size Zynq ZC7Z045.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

”»

“Zyng-7000 All Programmable SoC, Xilinx Inc.)
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html.

S. Cho, K. Komurasaki, and Y. Arakawa, “Kinetic particle simulation
of discharge and wall erosion of a hall thruster,” Physics of Plasmas,
vol. 20, no. 6, 2013. [Online]. Available: http://scitation.aip.org/content/
aip/journal/pop/20/6/10.1063/1.4810798

“SystemA (Camphor) — Super Computer System — Institute for
Information Management and Communication, Kyoto University ,”
http://www.iimc.kyoto-u.ac.jp/ja/services/comp/supercomputer;.

T. Miyajima, S. Cho, and N. Fujita, “A study of gpu acceleration of
“source” part in hall-thruster simulation,” in IEICE Tech. Rep., ser.
CPSY2015-62, vol. 115, no. 342, Dec. 2015, pp. 7-12.

“PIConGPU - A Many-GPGPU Particle-in-Cell Code
- Helmholtz-Zentrum Dresden-Rossendorf, HZDR J
https://www.hzdr.de/db/Cms?pNid=3227.

P. Moorthy and N. Kapre, “Zedwulf: Power-Performance Tradeoffs of a
32-Node Zynq SoC Cluster,” in IEEE 23rd Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
May 2015, pp. 68-75.

N.Sugimoto, T.Miyajima, Y.Osana, N.FUjita and H.Amano, “Zynq Clus-
ter for CFD Parametric Survey,” in International Symposium on Applied
Reconfigurable Computing, March 2016.

A. Doumar and H. Ito, “Detecting dianosing and tolerating faults
in SRAM-based field programmable gate arrays: A Survey,” IEEE
Transactions on VLSI Systems, vol. 11, no. 3, pp. 386405, 2003.

D. Fay , A. Shye, S.Bhattacharya, D.Connors, and S.Wichmann, “An
Adaptive Fault-Tolerant Memory System for FPGA-based Architecu-
tures in the Space Environment,” Second NASA/ESA Conference on
Adaptive Hardware and Systems, pp. 250-257, 2007.

M.Ibrahim, A.Tobal, M.Nahas, M.Refai, “FPGA Based on Board Com-
puter for LEO Satellites,” in IEEE International Conference on Space
Science and Communication, 2011, pp. 314-319.

E.Hartley, J.Maciejowski, “Predictive control fro spacecraft rendezvous
in an elliptical orbit using an FPGA,” in European Control Conference,
2013, pp. 1359-1364.

