Compiler Framework for Spatial Mapping CGRA using LLVM

Ayaka Ohwada*, Takuya Kojima*, and Hideharu Amano*

*Keio Univ. JAPAN

E-mail: ohwawa@am.ics.keio.ac.jp

Introduction

Coarse-grained reconfigurable architecture (CGRA) is a type of reconfigurable device. There are several steps in CGRA application development, such as converting the target application to a data flow graph (DFG), mapping the DFG to a PE array, etc. In this study, we implemented and evaluated an application development environment using LLVM for the CGRAs which covers the entire system.

Background & Motivation

VPCMA(Variable Pipelined Cool Mega Array)[1]

- PE(Processing Element)
 - Composed of
 - 1. Simple ALU
 - 2. Switching Element
 - No register file

 \rightarrow No need of clock signal

instructions which load from

Evaluation

Evaluation Target

- CCSOTB2@20MHz
 - A real chip implementation of a VPCMA
- GeyserTT@20MHz
 - An embedded processor with a MIPS R3000 compatible CPU core.

Evaluation Environment

- **PE Array** \bullet
 - 12 cols x 8 rows PEs lacksquare
- 7 pipeline registers lacksquare
- Micro-controller
 - Controls data transfer b/w data memory & PE array

CCSOTB2

GeyserTT

Application development flow

int main() { int index = get_kernel_index("gray");

cgra_setup(index); send_host_to_cgra(index, 1, data, 48, 0); cgra_run(index, 0, 0, 0); wait_cma(); send_cgra_to_host(index, 1, result, 48, 0);

- Analyses LLVM IR and outputs
- Maps the DFG to the PE array.
- Generates assembly code for the memory access controller

SET ST **#0x30**, **#1** LP: LDST_ADD #0, #0 BNZD r3, LP DONE

Sample assembly code

Design	Verilog HDL
Process	Renesas SOTB 65nm
Logic Synthesis	Synopsys Design Compiler 2016.03-SP4
Place and Route	Synopsys IC Compiler 2016.03-SP4
HDL Simulation	Cadence NC-Verilog 15.20-s020
Power-Supply Voltage	CCSOTB2:0.55V GeyserTT: 0.75V

Result

200

180

- Four applications were chosen for the evaluation.
 - alpha: 24bit alpha blender
 - gray: 24bit gray scale
 - sepia: 24bit sepia filter
 - sf: 8bit sepia filter lacksquare
- All applications were confirmed to work properly.

Sample code using CGRA Library

CGRA Library

- Used to write code that runs ulleton the CPU side.
 - Provides functions for controlling the CPU and the CGRA.
- Encapsulates calculation of data transfer

destination/source address.

Reference

[1] Ando Naoki, et al. "Variable pipeline structure for coarse grained reconfigurable array CMA." FPT 2016.

[2] Takuya Kojima, et al. "Real chip evaluation of a low power cgra with optimized application mapping," HEART 2018.

[3] Vasutan TUNBUNHENG, et al. "A Retargetable Compiler Based on Graph Representation for Dynamically Reconfigurable Processor Arrays", IEICE Transactions on Information and Systems, 2008.