
Compiler Framework for 
Spatial Mapping CGRA 

using LLVM
Keio Univ. JAPAN

Ayaka Ohwada, Takuya Kojima, and Hideharu Amano

1



Background: CGRA

• A kind of reconfigurable architecture

• Has a PE array composed of multiple PEs 
(Processing Elements)

• Computation and interconnection of 
each PE are reconfigurable

• Has flexibility and high power
efficiency.

• Attracts attention with the spread of IoT 
devices.

2

Coarse-Grained Reconfigurable Architecture

PE Array



Background and Motivation:
CGRA App Development Flow

3



Proposed CGRA App 
Development Tool Flow

• Consists of multiple LLVM Pass.

• The input C code is processed separately into two parts, a 
CGRA part and a CPU part.

4[1] Takuya Kojima, et al. “Real chip evaluation of a low power cgra with optimized 

application mapping,” HEART 2018. 



Case Study: VPCMA

• A kind of spatial 
mapping CGRA.

• Variable pipeline length.

• Data transfer is 
controlled by the micro 
controller.

5

Variable Pipelined Cool Mega Array[2]

[2] Ando Naoki, et al. "Variable pipeline structure for coarse grained reconfigurable 

array CMA." FPT 2016.



Evaluation
Evaluation Target

• CCSOTB2@20MHz
• A real chip implementation of 

a VPCMA

• GeyserTT@20MHz
• An embedded processor with 

a MIPS R3000 compatible CPU core.

Evaluation Environment

6

CCSOTB2

GeyserTT



Evaluation Result
• Four applications were chosen for the evaluation.

• alpha: 24bit alpha blender

• gray: 24bit gray scale

• sepia: 24bit sepia filter

• sf: 8bit sepia filter

7

void gray(int *in, int *out) {

CGRA(1, 1);

int i = 0;

int maskr = 0x00ff0000;

int maskg = 0x0000ff00;

int maskb = 0x000000ff;

out [i] = (((input[i] & maskr) >> 16) *

306+ ((in [i] & maskg) >> 8) * 601 +

(in [i] & maskb) * 117>> 10;

}

DELAY 7

LDI r3, #48

SET_LD #0x0, #1

SET_ST #0x30, #1

LP: LDST_ADD #0, #0

BNZD r3, LP

DONE



Evaluation: Code Amount
• Compared to the case described for Black Diamond compiler [3].

• Compare only the kernel part of the user-written code

87.2% code reduction on average.

8

0

50

100

150

200

alpha sepia gray sf

C
o

d
e
 a

m
o

u
n

t(
li
n

e
)

Black Diamond This tool
[3] Vasutan TUNBUNHENG, et al. “A Retargetable Compiler Based on Graph Representation for Dynamically 

Reconfigurable Processor Arrays”, I EI CE Transactions on Information and Systems, 2008.



Evaluation: Execution Time
• Execution time is defined as "time required for calculation“

• The value in parentheses indicates the number of operation data.

99% reduction in execution time on average.

9

0

100

200

300

400

500

600

alpha(248) sepia(84) gray(192) sf(192)

Ex
ec

u
ti

o
n

 t
im

e(
μ
s)

GeyserTT CCSOTB2



Conclusion

Implementation of CGRA app development tool using LLVM.

• Apps written in C language can be compiled into a form that can 
be executed on CGRA.

• Simultaneously generates code that can be executed on the 
CGRA side and the CPU side from the input C code.

• Run 4 applications on simulation

• CCSOTB2 and GeyserTT

• All applications were confirmed to work properly.

• The average code amount is reduced by 87.2% compared to 
the conventional kernel description method.

10


