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Abstract. Typestate reflects how the legal operations on imperative
objects can change at runtime as their internal state changes. A typestate
checker can statically ensure, for instance, that an object method is only
called when the object is in a state for which the operation is well-
defined. Prior work has shown how modular typestate checking can be
achieved thanks to access permissions and state guarantees. However,
static typestate checking is still too rigid for some applications.
This paper formalizes a nominal object-oriented language with muta-
ble state that integrates typestate change and typestate checking as
primitive concepts. In addition to augmenting the types of object ref-
erences with access permissions and state guarantees, the language ex-
tends the notion of gradual typing to account for typestate: gradual type-
state checking seamlessly combines static and dynamic checking by auto-
matically inserting runtime checks into programs. A novel flow-sensitive
permission-based type system allows programmers to write safe code
even when the static type checker can only partly verify it.

1 Introduction

This paper investigates an approach to increasing the expressiveness and flexibil-
ity of object-oriented languages as a means to improve the reliability of software.
By introducing typestate directly into the language and extending its type sys-
tem with support for gradual typing, useful abstractions can be implemented
directly, stronger program properties can be enforced statically, and when nec-
essary dynamic checks can be introduced seamlessly.

An object’s type specifies the methods that can be called on it. In most pro-
gramming languages, this type is constant throughout the object’s lifetime, but
in practice, the methods that it makes sense to call on an object change as its
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runtime state changes (e.g., an open file cannot be opened again). These con-
straints typically lie outside the reach of standard type systems, and unintended
uses of objects result, at best, in runtime exceptions.

More broadly, types generally denote properties that hold without change,
and in mainstream type systems, they fail to account for how changes to mutable
state can affect the properties of an object. To address this shortcoming, Strom
and Yemini [26] introduced the notion of typestate as an extension of the tradi-
tional notion of type. Typestate reflects how the legal operations on imperative
objects can change at runtime as their internal state changes.

The seminal work on typestate [26] focused primarily on whether variables
were properly initialized, and presented a static typestate checker. A typestate
checker must account for the flow of data and control in a program to ensure
that objects are used in accordance with their state at any given point in a com-
putation. Since that original work, typestate has been used to codify and check
more sophisticated state-dependent properties of object-oriented programs. It
has been used, for instance, to verify object invariants on .NET [10], to ver-
ify that Java programs adhere to object protocols [12, 5, 7], and to check that
groups of objects collaborate with each other according to an interaction speci-
fication [20].

Most imperative languages cannot express typestates directly: rather, type-
states are encoded through a disciplined use of member variables. For instance,
consider a typical object-oriented file abstraction. A closed file may have a null

value in its file descriptor field. Accordingly, the close method of the file object
first checks if the file descriptor is null, in which case it throws an exception to
signal that the file is already closed. Such typestate encodings hinder program
comprehension and correctness. Comprehension is hampered because the pro-
tocols underlying the typestate properties, which reflect a programmer’s intent,
are at best described in the documentation of the code. Also, typestate encod-
ings cannot guarantee by construction that a program does not perform illegal
operations. Checking typestate encodings can be done through a whole-program
analysis (e.g. [12]), or with a modular checker based on additional program an-
notations (e.g. [4]). In either case, the lack of integration with the programming
language hinders adoption by programmers.

To overcome the shortcomings of typestate encodings, a typestate-oriented
programming (TSOP) language directly supports expressing them [2]. For in-
stance, in a class-based language that supports dynamically changing an object’s
class (like Smalltalk and its become statement), typestates can be represented
as classes and be dynamically updated: objects can have typestate-dependent
interfaces, behaviors, and representations. Protocol violations in a dynamically-
typed TSOP language however result in “method not found” errors. To avoid
such errors, it is crucial to regain the guarantees provided by static type check-
ing. Static typestate checking is challenging, especially in the presence of alias-
ing. Some approaches sacrifice modularity and rely on whole program analy-
ses [12, 20, 7]; others retain modularity at the expense of sophisticated type
systems, typically based on linear logic [27] and requiring many annotations.
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One kind of annotations is access permissions, which specify certain aliasing
patterns [8, 10, 4]. Unfortunately, these systems cannot always verify safe code,
due to the conservative assumptions they must make. Advanced techniques like
fractional permissions [8] increase the expressiveness of a type system, within
limits, but increase its complexity.

Many practical languages already provide a simple feature for overcoming the
limitations of their type systems: dynamic coercions. Although these coercions
(a.k.a. casts) may fail at runtime, they are often necessary in specific scenarios
where the static machinery is insufficient. Runtime assertions related to type-
states are not supported by any modular approach we know of; one primary
objective of this work is to support them.

In addition, once dynamic coercions on typestates are available, they can be
used to ease the transition from dynamically- to statically-typed code. We there-
fore extend gradual typing [24, 25] to account for typestates: we make typestate
annotations optional, check as much as possible statically, and automatically
insert runtime checks into programs where needed. This allows programmers to
gradually annotate their code and get progressively more support from the type
checker, while still being able to safely run a partially-annotated program.

The primary contribution of this work is Gradual Featherweight Typestate
(GFT), a core calculus for typestate-oriented programming inspired by Feath-
erweight Java [17], which supports dynamic permission checking and gradual
typing. The proposed language addresses the most important issues of current
typestate checkers. GFT directly integrates typestate as a first-class language
concept. Its analysis is modular and safe without imposing complex notions like
fractional permissions onto programmers. It also supports recovery of precise
typing using dynamically-checked assertions and supports the gradual addition
of type annotations to a program.

Section 2 introduces the key elements of typestate-oriented programming
with access permissions and state guarantees. Section 3 describes the static sub-
set of GFT, and Section 4 presents the extensions for dynamic permission check-
ing and gradual typing. The semantics are presented using a type-safe internal
language (Section 5) to which GFT translates (Section 6). The soundness proof is
available in a companion technical report [28]. Section 7 concludes. A translator
for the source language, type checker for the internal language, and executable
runtime semantics are available at:
http://www.cs.cmu.edu/˜rxg/gft.html.

2 Typestate-Oriented Programming

In order to avoid conditionals on flag fields or other indirect mechanisms like the
State pattern [13], typestate-oriented programming proposes to extend object-
oriented programming with an explicit notion of state (from here on we use state
to mean typestate). In TSOP, objects are modeled not just in terms of classes,
but in terms of changing states. Each state may have its own representation and
methods, which may transition the object to new states.
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Fig. 1. (a) Hierarchy of files states. (b) Access permissions.

To illustrate this concept in practice, consider a familiar example. A file
object has methods such as open, close and read. However, these methods
cannot be called at just any time. A file can only be read after it has been
opened; even if open, if we have reached the end-of-file, then reading is not
available anymore; an open file cannot be opened again, etc. Figure 1a depicts a
model of the file example in terms of states, using distinct classes in a subclass
hierarchy to represent them. File is an abstract state; a file object is either
in the OpenFile or ClosedFile state. Note that the path field is present in
both states, but that the file desc field, which refers to the low-level operating
system resource, is only present in the OpenFile state. Any OpenFile can be
closed; however, it is only possible to read from an open file if the end-of-file
has not been reached. Therefore, the OpenFile state has two refining substates,
AtEOF and NotEOF.

State change. A TSOP language supports a state change operation, denoted
here by <-. For instance, the close method in OpenFile can be defined as:

void close() { this <- ClosedFile(this.path); }

The expression form e <- S(...) transitions the object described by e into the
state S; the arguments are used to initialize the fields of the object. In other
words, <- behaves like a constructor, but updates the object in-place.

Declaring state changes. A statically-typed TSOP language must track state
changes in order to reject programs that invoke methods on objects in inappro-
priate states. Consider the following:

OpenFile f = ...; f.close(); f.close();

The type of f before the first call to close is OpenFile. However, the second call
to close should be rejected by a typechecker. One way to do so is to analyze the
body of the close method to deduce that it updates the state of its argument to
ClosedFile. However, this approach sacrifices modularity. Therefore, a method’s
signature should specify the output state of its arguments as well as that of
its receiver. The calculi in this paper specify the state changes of methods by
annotating each argument with its input and output state, separated by the >>

symbol. The input and output states of the receiver object are placed in square
brackets after the normal argument list, e.g.:
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void close() [OpenFile >> ClosedFile] {...}

Access permissions. In a language with aliasing, tracking state changes is a
subtle process. For instance, consider the following (where F, OF and CF are
abbreviations for File, OpenFile and ClosedFile, respectively):

void m(OF >> CF f,OF >> OF g) {f.close(); print(g.file_desc.pos);}

Because of possible aliasing, f and g may refer to the same object. In that case,
the method body of m must not be well-typed, as g may refer to a closed file by
the time it needs to access its (potentially non-existent) file desc field.

To track state changes in the presence of aliasing, Bierhoff and Aldrich have
proposed access permissions [4, 5]. An access permission specifies whether a
given reference to an object can be used to change its state or not, as well as
the access permissions that other aliases to the same object might have. In this
work we consider three kinds of access permissions (Figure 1b): full, shared and
pure. We say a reference has write access if it has the ability to change the state
of an object. full and shared have write access, where full implies exclusive write
access.

One fix for the m method is to require that f and g have exclusive write
access to an OF in order to ensure that they are not aliases, and therefore that
f.close() cannot affect g’s referent.

void m(full OF >> full CF f, full OF >> full OF g){ ... }

State guarantees. Requiring g to have exclusive write access seems like overkill
here. Only a pure permission is required to read the field file desc. But we
must still ensure that the two parameters are not aliases.

For more flexible reasoning in the presence of aliasing, access permissions
are augmented with state guarantees (proposed by Bierhoff and Aldrich [4] but
formalized and proven sound for the first time here). A state guarantee puts
an upper bound on the state change that may be performed by a reference
with write access: it can only transition an object to some subclass of the state
guarantee. A type specification then has the form k(D) C where k is the access
permission, D is the state guarantee, and C is the current state of the object. A
permission, k(D), is the access permission coupled with the state guarantee3.

Consider:

full(Object) NotEOF x = new NotEOF(...);

pure(OF) OF y = x;

x.read();

print(y.file_desc.pos);

3 When it is clear from the context, we sometimes say ’permission’ when we really
mean ’access permission’.
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While x.read() may change the state of the file by transitioning it to AtEOF, it
cannot invalidate the open file assumption held by y.

State guarantees improve modular reasoning about typestates substantially.
For instance, they recover the ability to express something similar to an ordinary
object-oriented type: shared(C) C allows an object to be updated but guaran-
tees that it will always obey the interface C. Also, it turns out that we can use
state guarantees to express an alternative solution to the previous example: re-
strict g to the pure access permission it requires, but add a state guarantee of
OF to ensure that no other reference can transition the object to ClosedFile:

void m(full(F) OF >> full(F) CF f,

pure(OF) OF >> pure(OF) OF g){ ... }

In this case, we can still statically enforce that f and g are not aliases by carefully
choosing exactly how references to objects can be created. In this way, we can
allow the programmer more flexibility than always demanding exclusive access
to objects.

Permission flows. Permissions are split between all aliases and carefully re-
stricted to ensure safety. This includes aliases in local variables, as well as in
object fields. Consider the following snippet:

class FileContainer{ shared(OF) OF file; }

full(Object) OF x = new OF(...);

pure(OF) OF y = x;

full(Object) FileContainer z = new FileContainer(x);

After construction of the OF, the reference x has no aliases, so it is safe to give it
full permission with an unrestricted update capability (Object state guarantee).
Then, a local alias y is created, capturing a pure permission with OF guarantee.
After this point, any state change done through x must respect this guarantee.
Therefore, the permission of x must be downgraded to full(OF). Finally, a
container object is created, passing x as argument to the constructor. The field
of z captures a shared(OF) permission. The permission of x is downgraded
again, this time to shared(OF). At this point, there are three aliases to the
same file object: x and z.file both hold a shared(OF) permission, and y holds
a pure(OF). All aliases must be consistent, in that a state update through one
alias must not break the invariants of other references.

Temporarily holding permissions In general, as the program executes, permis-
sions to variables get split and are strictly weakened. There are many ways to
refine the static type system in order to increase expressiveness, such as paramet-
ric polymorphism, fractional permissions and borrowing [8, 9]. Here we consider
one such refinement: a mechanism that can temporarily hold some permissions
to a reference while a sub-computation is performed. Consider the following:

void printPath(pure(F) F >> pure(F) F);
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full(Object) OF x = new OF(...);

printPath(x);

x.close();

This program is ill-typed due to the downgrading of permissions. In order to
invoke printPath, the permission to x is downgraded from full(Object) OF to
pure(F) F. Therefore, close, which requires a full(F) OF, cannot be called,
although the call to close is safe: printPath requires a read-only alias to its
argument, and there are no other writeable aliases to x. This is an unfortunate
limitation due to the conservative nature of the type system.

A workaround is to introduce a temporary alias to x with only a pure permis-
sion, and use that alias to invoke printPath. This is however cumbersome and
does not allow for permissions to be merged back later on. In order to properly
support this pattern, we introduce a novel expression, hold, which reserves a
permission to a variable for use within a lexical scope, and then merges that
permission with that of the variable at the end of the scope. For instance:

full(Object) OF x = new OF(...);

hold[x:full(F) OF] { printPath(x); }

x.close();

Dynamic asserts. As sophisticated as the type system might be (supporting hold,
borrowing, etc.), it is still necessarily conservative and therefore loses precision.
Dynamic checks, like runtime casts, are often useful to recover such precision.
For instance, consider the following extension of the FileContainer snippet seen
previously in which both y and z are updated to release their aliases to x.

...

y = new OF(...);

z <- Object();

assert<full(F) OF> x;

x.close();

Assuming close requires a full(F) permission to its receiver, the type system
is unable to determine that x can be closed, even though it is safe to do so (x
is once again the sole reference to the object). A dynamic assert allows this
permission to be recovered. Like casts, dynamic asserts may fail at runtime.

Gradual typing. A statically typed TSOP program requires more annotations
than a comparable OO program. This may be prohibitively burdensome for a
programmer, especially during the initial stages of development. For this reason,
we develop a gradually typed calculus that supports a dynamic type Dyn. Precise
type annotations can then be omitted from an early draft of a program as in the
following code:

Dyn f = ...; f.read();
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A runtime check will verify that f refers to an object that has a read method4.
Assume that read is annotated with a receiver type full(OF) NotEOF. In this
case, we must ensure that we have an adequate permission to the receiver. Thus,
a further runtime check will verify that f refers to an object that is currently in
the NotEOF state, that no aliases have write access, and that all aliases have a
state guarantee that is a superstate of OF. The last two conditions ensure that
invariants of aliases to f cannot be broken. Gradual typing thus enables dynam-
ically and statically-typed parts of a program to coexist without compromising
safety.

Putting it all together. Listing 1 exhibits the above capabilities in a small log-
ging example that generalizes to other shared resources5. The OpenFileLogger

(OFL) state holds a reference to a file object (OF) and presents a log method for
logging messages to it. When logging is complete, the close method acquires
all permissions to the file by swapping in a sentinel value (with :=:, explained in
the next section), closes the file, and transitions the logger to the FileLogger

(FL) state, which has no file handle. The client code declares and uses two log-
ging interfaces, staticLog and dynamicLog. They are somewhat contrived, but
are meant to represent APIs that utilize a file logger but do not store it. After
creating logger (line 17), the file reference no longer has enough permission
to close the file, so calls to logger.log are safe. Line 19 holds a shared per-
mission to logger during a dynamically-typed method call. By line 22, logger
only has shared permission, though no other aliases exist. After asserting back
full permission, logger can close the file log.

1 class FileLogger { /∗ Logging�related Data and Methods ∗/ }
2 class OpenFileLogger : FileLogger {
3 full(OF) OF file;
4

5 Void log(string s)[shared(OFL) OFL >> shared(OFL) OFL] {...}
6 Void close()[full(FL) OFL >> full(FL) FL] {
7 full(OF) fileT = (this.file :=: new File(”/dev/null”));
8 fileT.close();
9 this <� FileLogger();

10 }
11 }
12 // Client Code
13 Void staticLog(shared(OFL) logger >> shared(OFL) logger) { logger.log(”in staticLog”); }
14 Dyn dynamicLog(Dyn logger) { logger.log(”in dynamicLog”); }
15

16 full(OF) OF file = new OF(...);
17 full(OFL) OFL logger = new OFL(file);
18

19 hold[logger:shared(OFL) OFL]{ dynamicLog(logger); }
20 staticLog(logger);
21

22 assert<full(FL) OFL>(logger);
23 logger.close();

Listing 1. Sample Typestate-Oriented code.

4 Note that Dyn is different from Object; if f had type Object the typechecker would
check for a method read in Object, and would raise an error.

5 A practical language would provide means to abbreviate our type annotations.
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x, this P IdentifierNames
m P MethodNames
f P FieldNames

C,D,E,Object P ClassNames

PG ::= xCL, ey (programs)

CL ::= class C extends D t F M u (classes)
F ::= T f (fields)

M ::= T mpT " T xq rT " T s t return e; u (methods)
T ::= P C | Void (types)
P ::= kpDq (permissions)
k ::= full | shared | pure (access permissions)
e ::= x | let x : T = e in e | let x = e in e | new Cpxq (expressions)

| x.f | x.mpxq | x.f :=: x | xÐ Cpxq

∆ ::= x : T (type contexts)

Fig. 2. Gradual Featherweight Typestate: Syntax (static subset)

3 Static Featherweight Typestate

We present a formal model for a language with integrated support for gradual
typestate. The language is inspired by Featherweight Java (FJ) [17], so we call it
Gradual Featherweight Typestate (GFT). Gradually-typed languages are typi-
cally presented as two distinct languages: a fully static language and its gradual
extension. We only describe the gradual language; this section focuses on its
static aspects. Sections 4 and beyond present the extensions for gradual typing.
Garcia et al. [14] formalizes a fully static variant of GFT, called Featherweight
Typestate. The static subset of the language is novel in its own right: it is the
first formalization of a nominal TSOP language, with support for representing
typestates as classes, modular typestate-checking and state guarantees, and an
algorithmic flow-sensitive type system specification.

3.1 Syntax

Figure 2 presents GFT’s syntax. Smallcaps (e.g. FieldNames) indicate syntactic
categories, italics (e.g. C) indicate metavariables, and sans serif (e.g. Object)
indicates particular elements of a category. Overbars (e.g. A) indicate possibly
empty sequences (e.g. A1, ..., An). GFT assumes a number of primitive notions,
such as identifiers (including this) and method, field, and class names (including
Object). A GFT program PG is a list of class declarations CL paired with an
expression e. Class definitions are standard, except that a GFT class does not
have an explicit constructor: instead, it has an implicit constructor that assigns
an initial value to each field. Fields F and methodsM are standard. Each method
parameter is annotated with its input and output types, and the method itself
carries an annotation (in square brackets) for the receiver object. We use helper
functions like fields, method, etc., whose definitions are omitted for brevity.

Types in GFT extend the Java notion of class names as types. As explained in
Section 2, the type of a GFT object reference has two components, its permission
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k V k{k Access Permission Splitting

k V pure{k fullV full{pure

k P t full, shared u

k V shared{shared

P Ø P Compatible Permissions

E  : D

kpEq Ø purepDq

P1 Ø P2

P2 Ø P1

sharedpDq Ø sharedpDq

@i, j : i � j.Pi Ø Pj

P compatible

P  : P Subpermission

k1 V k2

k1pDq  : k2pDq

E  : D

purepEq  : purepDq

D  : E

fullpEq  : fullpDq

P1  : P2 P2  : P3

P1  : P3

P V P {P Permission Splitting

k1pD1q  : k2pD2q k1 V k2{k3
D3 = D1

 
: D2

k1pD1qV k2pD2q{k3pD3q

T V T {T Type Splitting

P1 V P2{P3 C1  : C2

P1 C1 V P2 C2{P3 C1

VoidV Void{Void

T  : T Subtyping

T1 V T2

T1  : T2

T ó T Max. Residual

T1 V T1{T2

T1 ó T2

Ó : T Ñ T Type Demotion

psharedpDq CqÓ = sharedpDq D
ppurepDq CqÓ = purepDq D

TÓ = T otherwise

A type T � kpDq C is well-formed iff C  : D

Fig. 3. Permission and Type Management Relations

and its class (or state). The permission can be broken down further into its access
permission k and state guarantee D. We write these object reference types in
the form kpDq C. The Void type classifies expressions executed purely for their
effects. No source-level values have the Void type.

To simplify the description of the type system, expressions in GFT are re-
stricted to A-normal form [22], so let expressions explicitly sequence all complex
operations (we write e1; e2 as shorthand). An optional type ascription provides
fine-grained control over how permissions are distributed to the bound variable
(Section 3.3).

Apart from method invocation, field reference and object creation (all stan-
dard), GFT includes the update operation x0 Ð Cpx1q in support of typestate.
It replaces the value of x0 with the new object of class C, which may not be
the same as x0’s current class. Also non-standard is the swapping assignment
x0.f :=: x1. It assigns the value of x1 to the field f and returns the old value as
its result. The need for this expression is detailed in Section 3.3.
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3.2 Managing Permissions

Before we present typing judgments for GFT, we must explain how permissions
are treated. Permissions to an object are a resource that is split among the vari-
ables and fields that reference it. Figure 3 presents several auxiliary judgments
that specify how permissions may be safely split, and their relation to typing.

First, access permission splitting k1 V k2{k3 describes how given a k1 per-
mission, permission k2 can be acquired, leaving behind k3 as the residual. When
we are only concerned that a permission k2 can be split from a permission k1

(i.e. the residual permission is irrelevant), we write k1 V k2. For instance, given
any permission k, fullV k and k V k.

Permissions partially determine what operations are possible, as well as when
an object can be safely bound to an identifier. The restrictions on permissions
are formalized as a partial order on permissions, analogous to subtyping. The
notation P1  : P2 says that P1 is a subpermission of P2, which means that a
reference with P1 permission may be used wherever an object reference with P2

permission is needed. As expected, the subpermission relation is reflexive and
transitive. Splitting an access permission produces a lesser (or identical) permis-
sion. The rules that mention pure and full capture how state guarantees affect
the strength of permissions. Pure permissions covary with their state guarantee
because a pure reference with a superclass state guarantee assumes less reading
capability. Full permissions contravary with their state guarantee because a full
reference with a subclass state guarantee assumes less writing capability (it can
update to fewer possible states).

Permission splitting extends access permission splitting by accounting for
state guarantees. First, if k1pD1q  : k2pD2q, splitting is safe. The question then
is to determine the proper residual permission k3pD3q. The k3 residual is obtained
by splitting k2 from k1. The resulting state guarantee D3 is the greatest lower
bound of D1 and D2 in the subclass hierarchy, denoted D1

 
: D2

6.

Permission splitting in turn extends to type splitting T V T {T , taking sub-
classes into account for object references; the Void type can be arbitrarily split.
We use type splitting to define the notion of subtyping T  : T used in GFT. As
with base permission splitting, we write P1 V P2 or T1 V T2 to express that P2

or T2 can be split from P1 or T1 respectively.

The maximum residual relation T1 ó T2 specializes type splitting for the case
where all the permissions to an object are acquired. The result type T2 is what
is leftover; for instance, fullpDq C ó purepDq C and sharedpDq C ó sharedpDq C.

The compatible permissions relation P1 Ø P2 says that two distinct refer-
ences to the same object, one with permissions P1 and the other with P2 can
soundly coexist at runtime. For instance, sharedpCq Ø sharedpCq, and fullpCq Ø
purepObjectq. This notion is used to define the relation P compatible: that the
outstanding permissions P of references to a particular object can all coexist.

Finally, we defer the discussion of type demotion to the end of Section 3.3.

6 k1pD1q  : k2pD2q implies that D1 and D2 are related by subclassing
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3.3 Static Semantics

Armed with the permission management relations, we now discuss the salient fea-
tures of the static semantics of GFT: flow-sensitive, deterministic typing through
bidirectional type checking.

Flow-sensitive typing As with FJ, the GFT type system relies upon type contexts
∆. Whereas Γ is the standard metavariable for type contexts, we use a different
metavariable∆ to emphasize that the typing contexts are not merely lexical: they
are linear [16]. In GFT’s type system, the types of identifiers are flow-sensitive
in the sense that they vary over the course of a program. In part this reflects how
the permissions to a particular object may be partitioned and shared between
references as computation proceeds, but it also reflects how update operations
may change the class of an object during execution.

The GFT typing judgments are quaternary relations roughly of the form
∆1 $ e : T % ∆2: given the typing assumptions ∆1, the expression e can be
assigned the type T and produces typing assumptions ∆2 as its output. The as-
sumptions in question are the types of each reference. Threading typing contexts
through the typing judgment captures the flow-sensitivity of type assumptions.

Deterministic type checking The type system specification must be elaborated to
both ensure determinism of our type system and also retain flexibility. Consider
a candidate typing judgment for variable references.

T1 V T2{T3

∆,x : T1 $ x : T2 % ∆,x : T3

It states that if x is assumed to have type T1, and T1 can be split into T2 and
T3, then the expression x can be typed at T2. Because T2 may not be unique, a
source program may be well-typed according to multiple derivations, with each
derivation representing a different split of permissions between this particular
variable reference and later references to x. Nondeterminism is incompatible
with dynamic permission assertions7: a system could succeed sometimes and fail
other times if permissions could flow more than one way for the same code.

Rather than requiring type annotations for all variable references, we use
bidirectional typing [21] to define a deterministic type system in which annota-
tions are used only to tune how permissions are split.

The type system is structured as two mutually recursive judgments. The type
synthesis judgment ∆1 $ e ñ T % ∆2 conceptually analyzes the expression e
in the context ∆1 and synthesizes a type T for it; the type T is an output of
the judgment, along with the output context ∆2. The type checking judgment
∆1 $ e ð T % ∆2 checks that the expression e under the type context ∆1

can be given the type T . The type T is an input to the judgment, and the only
output is the context ∆2.

7 Determinism is not important for the fully static case: Featherweight Typestate uses
non-deterministic typing rules [14].
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(ctxñ)
T1 ó T2

∆, x : T1 $ xñ T1 % ∆, x : T2
(ctxð)

T1 V T2{T3

∆, x : T1 $ xð T2 % ∆, x : T3

(êð)
∆ $ êñ T2 % ∆1 T2  : T1

∆ $ êð T1 % ∆1

(letô)
∆ $ e1 ñ T1 % ∆1 ∆1, x : T1 $ e2 ô T2 % ∆2, x : T

∆ $ let x = e1 in e2 ô T2 % ∆2

(letTô)
∆ $ e1 ð T1 % ∆1 ∆1, x : T1 $ e2 ô T2 % ∆2, x : T

∆ $ let x : T1 = e1 in e2 ô T2 % ∆2

(updateñ)

fieldspC2q = T2 f ∆ $ x2 ð T2 % ∆1, x1 : kpDq C

k P t full, shared u C2  : D

∆ $ x1 Ð C2px2q ñ Void % ∆1Ó, x1 : kpDq C2

(refñ)
T2 f P fieldspC1q T2 ó T

1
2

∆, x : P1 C1 $ x.f ñ T 1
2 % ∆, x : P1 C1

(swapñ)

T2 f P fieldspC1q

∆, x1 : P1 C1 $ x2 ð T2 % ∆1

∆, x1 : P1 C1 $ x1.f :=: x2 ñ T2 % ∆1

Fig. 4. Select Expression Typing Rules

Typing rules Figure 4 presents some of the typing rules for GFT expressions8. A
variable reference is typed differently depending on whether its type is synthe-
sized or checked. The synthesis rule (ctxñ) yields maximal permissions to the
referenced object. Its output context associates the maximum residual permis-
sions to the variable. In contrast, the checking rule (ctxð) just ensures that the
desired type can be split from the starting type, and leaves the corresponding
residual in the output context.

Each of the typing rules for let represents both a checking and synthesis rule.
Replacing the ô with ð or ñ gives the checking or synthesis rule, respectively.
The (letô) and (letTô) rules differ only in how the bound expression is typed.
When the bound variable has a type ascription, x : T1, the expression e1 is
checked against that type. If there is no type ascription, e1’s type is synthesized.

The typing rules for let and variable references combine to determine how
permissions transfer between references. When a variable reference is bound to
another variable, the new variable by default acquires maximal permissions to
the referenced object; A type annotation on the let-bound variable can tune
how permissions are transferred to a binding. For instance, assume x has type
fullpDq C and consider the two expressions:

(1) let y = x in e
(2) let y : sharedpDq C = x in e

In expression (1) y has fullpDq C type and x has purepDq C type in e, but in
expression (2) both x and y have sharedpDq C type.

8 As with FJ, well-typing is extended to apply to whole programs. The details are
covered in the technical report [28].
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Type checking is treated uniformly for all other expressions. The (êð) rule
schematically expresses checking for those expressions, which we indicate with
ê. For all of them, type checking can be characterized simply in terms of type
synthesis: an expression checks at type T1 if its type synthesizes to some subtype
T2 of T1. The rest of the expressions in the language only require type synthesis
rules (see Section 6).

A variable reference can only perform an update if it has write access. The
arguments to the constructor—which can include the reference being updated—
are type checked at the target class’s field types. We use the shorthand notation
∆ $ xð T % ∆1 to stand for iteratively checking the arguments:

∆ = ∆0 $ x0 ð T0 % ∆1; . . . ;∆n $ xn ð Tn % ∆n�1 = ∆1.

The target class of the update must respect the updated reference’s state guar-
antee, taking into account any uses of that reference in the construction of the
new object. The update operation is performed solely for its effect on the heap,
so the type of the overall expression is Void. The output type of the updated
object reflects its new class.

Type demotion. Update operations can alter the state of any number of vari-
able references. To retain soundness in the face of these operations, it is some-
times necessary to discard previously known information in case it has been
invalidated. In these cases, an object reference’s class must revert to its state
guarantee, which is a trusted state after an update. The type demotion function
TÓ (Figure 3) expresses this restricting of assumptions. Note that full references
need not be demoted since no other reference could have changed their states.
We write ∆Ó for the compatible extension of demotion to typing contexts.

The synthesis rule for the update operation in Figure 4 makes use of type
demotion: type assumptions from the input context are demoted in the output
context to ensure that any aliases to the updated object retain a conservative
approximation of the object’s current class9.

Note that type demotion does not imply any runtime overhead: it is a purely
static process. Furthermore, types of class fields have the restriction that they
must be invariant under demotion (i.e. TÓ = T ). Since the types of fields do not
change as a program runs, they must not be invalidated by update operations.
This restriction ensures that field types remain compatible with other aliases to
their objects. Also, as a result only local variable types need ever be demoted.

Field Operations As was mentioned in Section 3.1, two operations operate di-
rectly on the an object field: field reference and swapping assignment. Their type
synthesis rules appear in Figure 4. Field reference operations do not relinquish
any of the permissions held by a field, so the result type is determined by taking
the maximal residual T 12 of the field type T2. This operation does not affect the
permissions of the object reference used to access the field.

9 The language could retains more precise types by demoting only objects with types
related to the updated object. For simplicity of presentation, we demote uniformly.
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Swap operations cause an object to relinquish all permissions to a field and
replace it with a new reference. The swap expression has two purposes. The first
is to reassign a field value in the heap. The second is to return the old field value
as the result of the expression. If a field has shared or pure permissions to an
object, then field reference can yield the same amount of permission; however, if
a field has full permission to an object, only swapping can yield a full permission.

3.4 Holding Permissions

The static fragment of GFT described above captures the essence of a TSOP
language, but the design can be usefully extended. For instance, Section 2 in-
troduced the hold expression holdrx : T speq, which captures the amount of x’s
permissions denoted by T for the duration of the computation e. When e com-
pletes, these permissions are merged back into x.

e ::= ... | holdrx : T speq

The hold expression is a useful but orthogonal addition to the type sys-
tem. A practical TSOP language would build hold’s capabilities directly into the
method invocation mechanism so as to preserve permissions wherever possible.
For simplicity and exposition, we express holding as a distinct feature.

T {T V T Type merging

P = P1

 
: P2

C = C1
 

: C2

P1 C1{P2 C2 V P C

(holdñ)

T1 V T2{T3 T2Ó {T
1
3 V T 11

∆,x : T3 $ eñ T % ∆1, x : T 13
∆,x : T1 $ holdrx : T2speq ñ T % ∆1, x : T 11

The typing rule for hold depends on a notion of type merging T {T V T ,
which captures how two separate permissions to an object may be combined.
Type merging is defined in terms of the

 
: and

 
: relations, where

 
: is the

analogue of

 
: for subpermissions. For example, if we know that variable x has

both type fullpCq C and purepObjectq C, then we can merge those types, and
safely conclude that x can be typed at fullpCq C.

For space reasons, the rest of the technical development of hold (e.g. trans-
lation and dynamic semantics) is omitted, but the details can be found in the
technical report [28].

4 Gradual Featherweight Typestate

The previous section presents the essence of GFT: an FJ-like calculus where
classes model states, with an update operation to dynamically change the state
of objects; types encode states as well as permissions and state guarantees, and
the type system is both flow-sensitive and deterministic. Even if features like
hold increase the expressiveness of the type system, there are still cases where
it is necessary to resort to dynamic assertions about typestates. This section
presents the support for such assertions, as well as gradual typing.
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T V T {T Type Splitting

T V Dyn{T

T  :
� T Consistent Subtyping

T1  : T2

T1
 :
� T2

T � Dyn

Dyn  :
� T

Fig. 5. Hybrid Permission Management Relations

(ctxd ð)
T � Dyn

∆, x : Dyn $ xð T % ∆, x : Dyn

(updated ñ)
fieldspC2q = T2 f ∆ $ x2 ð T2 % ∆1, x1 : Dyn

∆ $ x1 Ð C2px2q ñ Void % ∆1Ó, x1 : Dyn

Fig. 6. Select Dynamic Typing Rules

Type assertions GFT supports an assert expression for explicitly changing the
type assumptions of a variable.

e ::= � � � | assertxT ypxq

Its type synthesis rule is as follows.

(assertñ)
∆,x : T1 $ assertxT2ypxq ñ Void % ∆,x : T2

Assert is like a cast, but instead of returning a value of the given type it changes
the type of the target variable10. When T1  : T2, the assert is statically safe;
otherwise, a runtime check is required (see Section 6).

Gradual typing To support gradual typing, GFT provides a type for dynamically
checked values.

T ::= � � � | Dyn

The type system treats the Dyn type with greater leniency: type checks on Dyn
objects are deferred to runtime.

To account for these dynamic features, Figure 5 presents several adjustments
to the type system from the last section. First, type splitting is extended to
account for Dyn. In particular, any reference can split off a Dyn without affecting
its original type or permissions. Type consistency is extended analogously.

Following Siek and Taha [25], consistent subtyping T  :
� T extends subtyping

to support using Dyn-typed values wherever another type is expected and vice-
versa. Consistent subtyping explicitly states that Dyn  :

� T , but also T  :
� Dyn

because type splitting now forces T  : Dyn. In accordance, the pê ðq type
checking rule from the last section now uses  :

� in place of  :.
Figure 6 presents some extra typing rules that are needed to account for uses

of Dyn-typed references. The (ctxd ð) rule says that a Dyn-typed variable can

10 In fact, assertions are strictly more powerful than casts: casts can be implemented
using assertions.
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o P ObjectRefs
l P IndirectRefs
s ::= x | l (simple exprs)
b ::= x | l | o (bare expr)
e ::= es | ed (expressions)
es ::= b | void | srT V T {T s | new Cpsq (static exprs)

| let x = e in e | releaserT spsq | s.f | s.mpsq
| s.f :=: s | sÐ Cpsq | assertxT " T ypsq

ed ::= s.df | s.dmpsq | s.f :=:d s (dynamic exprs)
| sÐd Cpsq | assertdxT " T ypsq

∆ ::= b : T (type context)

Fig. 7. Internal Language Syntax

be checked at any type. Note that x : Dyn can be synthesized and checked at Dyn
by the (ctxñ) and (ctxð) rules respectively. The (updated ñ) rule accounts
for updating a dynamically typed variable. The type system checks that the
arguments to the constructor are suitable, but the checks on the target of the
update are deferred to runtime (see Section 6).

5 Internal Language

GFT’s semantics are defined by type-directed translation to GFTIL, an internal
language that makes the details of dynamic permission management explicit.

5.1 Syntax

GFTIL is structured much like GFT but elaborates several concepts (Figure 7).
First, the internal language introduces explicitly dynamic variants ed of some
operations from the source language. Static variants are ensured to be safe by the
type system; dynamic variants require runtime checks. Second, many expressions
in the language carry explicit type information. This information is used to
dynamically account for the flow of permissions as the program runs. These type
annotations play a role in both the type system and the dynamic semantics.

Finally, GFTIL adds several constructs that only occur at runtime. Object
references and indirect references point to runtime objects11. GFTIL is also in
A-normal form, though at runtime the arguments to expressions are generalized
to simple expressions s: variable names or indirect references. Reference expres-
sions come in two forms. A bare reference b signifies a variable or reference that
is never used again. In contrast, a splitting reference srT V T {T s explicitly spec-
ifies the starting type, result type, and the residual type of the reference. The
releaserT spsq expression explicitly releases a reference and its permissions, after
which it can no longer be used.

11 Object references correspond to heap pointers; indirect references are an artifact
that facilitates the type safety proof (see Section 5.4).
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(invoke)
mdeclpm,C1q = Tr mpT2 " T 1

2qrP1 C1 " T 1
1s

∆, s1 : P1 C1, s2 : T2 $ s1.mps2q : Tr % ∆Ó, s1 : T 1
1, s2 : T 1

2

(invoked)
∆, s1 : Dyn, s2 : Dyn $ s1.dmps2q : Dyn % ∆Ó, s1 : Dyn, s2 : Dyn

(update)
k P t full, shared u C2  : D fieldspC2q = T f

∆, s1 : kpDq C1, s2 : T $ s1 Ð C2ps2q : Void % ∆Ó, s1 : kpDq C2

(updated)
fieldspC2q = T f

∆, s1 : Dyn, s2 : T $ s1 Ðd C2ps2q : Void % ∆Ó, s1 : Dyn

(assert)
T1 V T2

∆, s : T1 $ assertxT1 " T2ypsq : Void % ∆, s : T2

(assertd)
T1 �V T2

∆, s : T1 $ assertdxT1 " T2ypsq : Void % ∆, s : T2

Fig. 8. Select Internal Language Typing Rules

5.2 Static Semantics

Because of GFTIL’s explicit form, its typing judgment ∆ $ e : T % ∆ does not
need to be bidirectional. Furthermore, its typing rules use the same permission
and type management relations as the source language. GFTIL’s typing rules
explicitly and strictly encode permission flow by checking the input context ∆
to force their arguments s to have exactly the type required. GFTIL’s dynamic
semantics uses this encoding to track permissions.

Figure 8 presents some of GFTIL’s typing rules. For space reasons, we only
present the rules for invoke, update and assert, together with their dynamically-
typed variants. The (invoke) rule matches a method’s arguments exactly against
the method signature. Each argument’s output type is dictated by the method’s
output states. The (update) rule almost mirrors GFT’s update rule except that
its argument types must exactly match the class field specifications. The (assert)
rule is the safe subset of GFT’s rule, though GFTIL’s assert is explicitly anno-
tated with its argument’s source type. The dynamic variants of these expressions
enforce very little statically: the (updated) rule only checks that the arguments
match the constructor, and the (assertd) rule applies when the destination type
cannot be split from the source type.

5.3 Dynamic Semantics

GFTIL’s dynamic semantics, presented in Figure 9, requires several additional
syntactic notions, defined below:

Cpoq P P Objects
v ::= void | o (values)
µ P ObjectRefs á Objects (stores)
ρ P IndirectRefs á Values (environments)
E ::= � | let x = E in e (evaluation contexts)
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µ, ρ, eÑ µ, ρ, e Dynamic Semantics

(invoke)

µpρpl1qq = Cpoq P

methodpm,Cq = Tr mpTx " T 1
x xq rTt " T 1

ts t return e; u

µ, ρ, l1.mpl2q Ñ µ, ρ, rl1, l2{this, xse

(invoked)
µpρpl1qq = Cpoq P mdeclpm,Cq = Tr mpTx " T 1

xq rTt " T 1
ts | Tx |=| l2 |

µ, ρ, l1.dmpl2q Ñ µ, ρ, assertdxDyn " Ttypl1q; assertdxDyn " Txypl2q;

let ret = l1.mpl2q in assertxT 1
t " Dynypl1q;

assertxT 1
x " Dynypl2q; assertxTr " Dynypretq;

ret

(update)
µpρpl1qq = Cpoq P fieldspCq = T f µ1 =

�
µrρpl1q ÞÑ C1pρpl2qq P s

	
� o : T

µ, ρ, l1 Ð C1pl2q Ñ µ1, ρ, void

(updated)
µpρpl1qq = Cpof q P Dg =

 
: tD | kpDq P P u C1  : Dg

µ, ρ, l1 Ðd C
1pl2q Ñ µ, ρ, assertdxDyn " sharedpDgq Cypl1q;

l1 Ð C1pl2q;
assertxsharedpDgq C

1 " Dynypl1q

(assert)
µ1 = µ� ρplq : T � ρplq : T 1

µ, ρ, assertxT " T 1yplq Ñ µ1, ρ, void
(assertdv)

ρplq = void

µ, ρ, assertdxDyn " Voidyplq Ñ µ, ρ, void

(assertdo)
ρplq = o µ1 = µ� o : T � o : P 1 C1 µ1poq = Cpof q P C  : C1 P compatible

µ, ρ, assertdxT " P 1 C1yplq Ñ µ1, ρ, void

Fig. 9. Select Internal Language Dynamic Semantics Rules

Expressions in the language evaluate to values, including void and object ref-
erences o. Stores µ associate object references to objects. The novelty of GFTIL
is that an object in the store Cpoq is annotated with the set of outstanding
permissions for references to that object, P .

In addition to the store, the dynamic semantics uses a second heap, which
we call the environment ρ, that mediates between variable references and the
object store. In the source language, two variables could refer to the same ob-
ject in the store, but each can have different permissions to that object. The
environment tracks these differences at runtime. It maps indirect references l
to values v. The dynamic semantics of GFTIL is defined as transitions between
store/environment/expression triples12.

Figure 9 presents some select dynamic semantics rules of GFTIL. Certain
rules use two helper functions for tracking permissions in the heap, whose defi-
nitions are straightforward and as such omitted for brevity. Permission addition
� augments the permission set for a particular object in the heap. Conversely,
permission subtraction � removes a permission from the set of tracked permis-

12 The environment serves a purely formal purpose: it supports the proof of type safety
by keeping precise track of the outstanding permissions associated with different
references to objects at runtime, and is not needed in a practical implementation.
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Helper Functions

objTypespµ,∆, ρ, oq = rT | o : T P typespµ,∆, ρq, T � Dyns

typespµ,∆, ρq = fieldTypespµq�� envTypesp∆, ρq�� ctxTypesp∆q

fieldTypespµq =
��

o1Pdompµq

roi : Ti | µpo
1q = Cpoq P, fieldspCq = T fs

envTypesp∆, ρq = ro : T | ρplq = o, l : T P ∆s

ctxTypesp∆q = ro : T | o : T P ∆s

µ,∆, ρ $ o ok Reference Consistency

µpoq = Cpo1q P
∣∣∣o1∣∣∣ = |fieldspCq|

objTypespµ,∆, ρ, oq = kpEq D

C  : D kpEq compatible

kpEq = P

µ,∆, ρ $ o ok

µ,∆, ρ ok Global Consistency

ranpρq � dompµq Y t void u

domp∆q � dompρq Y dompµq

t l | pl : Voidq P ∆ u � t l | ρplq = void u

t l | pl : kpDq Cq P ∆ u � t l | ρplq = o u

µ,∆, ρ $ dompµq ok

µ,∆, ρ ok

Fig. 10. Permission-Consistency Relations

sions for an object. The (invoke) rule is standard. The (update) rule looks up the
object references for the target reference and the arguments to the class construc-
tor, replaces the store object for the target reference with the newly constructed
object, and releases the permissions held by the fields of the old object. The
(assert) rule uses permission addition and subtraction to track permissions, and
returns void. Rules for dynamic operators, like (invoked) and (updated), dynam-
ically assert the necessary permissions (using assertd), defer to the corresponding
static operation, and then release the acquired permission (using assert). Finally,
the (assertd) rule confirms dynamically that its type assertion is safe.

5.4 Type safety

GFTIL’s type safety proof must account for the outstanding permissions for
each object o and verify that they are mutually compatible. Figure 10 presents
the definitions used for this. The fieldTypes, ctxTypes, and envTypes functions
accumulate outstanding type information for objects in the store from the fields
of objects, the type context, and the environment respectively. The objTypes
function selects just the permission-carrying types for a particular object refer-
ence o. These definitions use square brackets to express list comprehensions, and
�� to express list concatenation.

The objTypes function is used to define reference consistency, the judgment
that an object in the store and all references to it are sensible. A consistent
object reference points to an object that has the proper number of fields, and all
references to it are well-formed, mutually compatible, and tracked in the store.

Reference consistency is used in turn to define global consistency, which es-
tablishes the mutual compatibility of a store-environment-context triple. Global
consistency implies that every object reference in the store satisfies reference
consistency, that every reference in the type context is accounted for in the store
and environment, and that Void and object-typed indirect references ultimately
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point to void values and object references respectively13. Note that global consis-
tency and permission tracking take into account even objects that are no longer
reachable in the program. To recover permissions, a program must explicitly
release the fields of an object before it becomes unreachable.

These concepts contribute to the statement (and proof) of type safety.

Theorem 1 (Progress). If e is a closed expression, µ,∆, ρ ok, and
∆ $ e : T % ∆1, then only one of the following holds:

– e is a value;
– µ, ρ, eÑ µ1, ρ1, e1 for some µ1, ρ1, e1;
– e = Ereds and µ, ρ, e is stuck.

The last case of the progress theorem holds when a program is stuck on a
failed dynamically checked expression. All statically checked expressions make
progress.

Theorem 2 (Preservation). If ∆ $ e : T % ∆1, and µ,∆, ρ ok, and
µ, ρ, eÑ µ1, ρ1, e1, then ∆2 $ e1 : T % ∆1 and µ1, ∆2, ρ1 ok for some ∆2.

6 Source to Target Translation

The dynamic semantics of GFT are defined by augmenting its type system to
generate GFTIL expressions. The type checking and synthesis judgments be-
come ∆ $ e1 ð T  eT2 % ∆1 and ∆ $ e1 ñ T  eT2 % ∆1 respectively,
where e1 is a GFT expression and eT2 is its corresponding GFTIL expression.
Figure 11 presents some of these rules. We use the T superscript to disambiguate
GFTIL expressions as needed. Several rules use the coerce partial function, which
translates consistent subtyping assertions T  :

� T into variable assertions:

coercepx, T1
 :
� T2q = assertxT1 " T2ypxq if T1  : T2

coercepx,Dyn  :
� T q = assertdxDyn " T ypxq if T � Dyn

Most of the translations are straightforward, and follow similar patterns. For
instance, the (updateñ) rule, which applies when the target of the update is
statically typed, let-binds all of the arguments to the object constructor so as
to extract the exact permissions that it needs before calling GFTIL’s static up-
date. The (updated ñ) rule, in contrast, applies when the target of the update is
dynamically typed. It translates to a dynamic update operation Ðd, but is oth-
erwise the same. Operations on dynamically typed objects translate to dynamic
operations. Other rules like (assertñ) simply use the typing rule to ascertain
the intended type annotations for the corresponding GFTIL expression.

As intended, the translation rules preserve well-typing:

Theorem 3 (Translation Soundness).
If ∆ $ eô T  eT % ∆1 then ∆ $ eT : T % ∆1.

This theorem extends straightforwardly to whole programs.

13 Dyn references may point to either Void or object references.
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(invokeñ)

mdeclpm,C1q = T mpTx " T 1
xqrTt " T 1

ts

coercepx1, P1 C1
 :
� Ttq = eT1 coercepx2, T2

 :
� Txq = eT2

∆, x1 : P1 C1, x2 : T2 $ x1.mpx2q ñ T  eT1 ; eT2 ; x1.mpx2q % ∆Ó, x1 : T 1
t, x2 : T 1

x

(invoked ñ)
coercepx2, T2

 :
� Dynq = eT2

∆, x1 : Dyn, x2 : T2 $ x1.mpx2q ñ Dyn eT2 ; x1.dmpx2q % ∆Ó, x1 : Dyn, x2 : Dyn

(êð)
∆ $ êñ T1  eT1 % ∆1 coercepret, T1

 :
� T2q = eT2

∆ $ êð T2  let ret = eT1 in eT2 ; ret % ∆1

(updateñ)

fieldspC2q = T2 f ∆ $ x2 ð T2  eT2 % ∆1, x1 : kpDq C

k P tfull, sharedu C2  : D

∆ $ x1 Ð C2px2q ñ Void let x12 = eT2 in x1 Ð C2px12q % ∆1Ó, x1 : kpDq C2

(updated ñ)
fieldspC2q = T2 f ∆ $ x2 ð T2  eT2 % ∆1, x1 : Dyn

∆ $ x1 Ð C2px2q ñ Void let x12 = eT2 in x1 Ðd C2px12q % ∆1Ó, x1 : Dyn

(assertñ)
T V T 1

∆, x : T $ assertxT 1ypxq ñ Void assertxT " T 1ypxq % ∆, x : T 1

(assertd ñ)
T �V T 1

∆, x : T $ assertxT 1ypxq ñ Void assertdxT " T 1ypxq % ∆, x : T 1

Fig. 11. Select Translation Rules from GFT to GFTIL

7 Discussion

Related Work A lot of research has been done on typestates since they were
first introduced by Strom and Yemini [26]. Most typestate analyses are whole-
program analyses, which makes them very flexible in handling aliasing. Ap-
proaches based on abstract interpretation (e.g. [12]) rely on a global alias analysis
and generally assume that the protocol implementation is correct and only verify
client conformance. Naeem and Lhoták [20] developed an analysis for checking
typestate properties over multiple interacting objects. These global analyses typ-
ically run on the complete code base, only once a system is fully implemented,
and are time consuming.

Fugue [10] was the first modular typestate verification system for object-
oriented software. It tracks objects as “not aliased” or “maybe aliased”; only
“not aliased” objects can change state. Bierhoff and Aldrich [4] extended this
approach by supporting more expressive method specifications based on linear
logic [16]. They introduce the notion of access permissions in order to allow state
changes even in the presence of aliasing. They also use fractions, first proposed
by Boyland [8], to support patterns like borrowing and adoption [9]. The Plural
tool supports modular typestate checking with access permissions for Java. It
has been used in a number of practical studies [5]. Although Plural introduced
state guarantees, this paper provides their first formalization.
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Recent work on distributed session types [15] provides essentially the same
expressiveness as Plural, but with protocols expressed in the structural setting
of a process algebra instead of the setting of nominal typestates. It considers
communication over distributed channels as well as object protocols, but does
not allow aliasing for objects with protocols.

The above approaches do not address typestate-oriented programming, as
they are not integrating typestates within the programming model, but rather
overlay static typestate analysis on top of an existing language. TSOP has been
recently proposed by Aldrich et al. [2]; its defining characteristic is supporting
run-time changes to the representation of objects in the dynamic semantics and
type system. The programming language Plaid14 is the first language to integrate
typestates in the core programming model. Saini et al. [23] recently developed
the first core calculus for a TSOP language; their language is object-based and
relies on structural types. Gradual Featherweight Typestate builds on this work
but adapts it to a class-based, nominal approach with shared permissions and
state guarantees for reasoning about typestate in the presence of aliasing. Earlier
work related to TSOP includes the Fickle system [11], which can change the class
of an object at runtime, but has limited ability to reason about the states of an
object’s fields.

This work also builds upon existing techniques for partial typing, like hybrid
typing [18] and gradual typing [24, 25, 6]. Gradual Featherweight Typestate is
a considerable advance in this sense, by showing how to gradually check flow-
sensitive resources in a modular fashion. Recently, Bodden [7] presented a hybrid
approach to typestate checking. A static typestate analysis is performed to avoid
unnecessary instrumentation of programs for monitoring typestates at runtime.
While the hybrid perspective is shared with this work, the proposed analysis is
global.

Ahmed et al. [1] define a core functional programming language that supports
strong updates, i.e. changing the type of an object in a reference cell. Similarly
to our approach, it uses linear typing. They present two languages, L3, and
extended L3. L3 allows aliasing, but only has exclusive access, through a capa-
bility: only one reference can read/write to an object. In contrast, full, shared
and pure permissions allow for more varied aliasing patterns. Extended L3 allows
recovering a capability, but the programmer must provide a proof that no other
capabilities exist to the reference cell.

Future Work Gradual Featherweight Typestate is at the core of the Plaid lan-
guage design project at CMU. We are integrating other access permissions from
Bierhoff and Aldrich [4]. Most importantly, we are exploring ways to extend the
power of the static type system in order to avoid resorting to dynamic asserts.
An example of such an extension is permission borrowing [9], which, if specified
in method signatures, avoids having to dynamically reassert permissions after
“lending” them to a sub-computation. The language we present here already
includes one such refinement, namely hold, used to hold some permissions to

14 Under development at CMU: http://plaid-lang.org
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a reference while a sub-computation is performed. Importantly, it remains an
outstanding research question if the cost of dynamic permission checking can
be amortized over the number of permission checks. As it now stands, enabling
dynamic permission checking mandates a fully-instrumented runtime semantics
to keep track of permissions. In Plaid, we intend to address this with reference
counting. Standard optimization techniques like deferred increments [3] and up-
date coalescing [19] will be applied. We believe these techniques will reduce
reference count overhead to a small percentage of runtime, as it does for garbage
collection, and will study this empirically in future. The formalism presented
here establishes a baseline from which to explore this capability and develop
new models for permission tracking.

Conclusion Gradual Featherweight Typestate (GFT) is a nominal core calcu-
lus for typestate-oriented programming. By introducing typestate directly into
the language and extending its type system with support for gradual typing,
state abstractions can be implemented directly, stronger program properties can
be enforced statically, and when necessary dynamic checks can be introduced
seamlessly. In particular GFT supports a rich set of access permissions together
with state guarantees for substantial reasoning about typestate in the presence
of aliasing. This work paves the way for further gradual approaches by showing
how to modularly and gradually check flow-sensitive resources.
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