Typestate-Oriented Programming

Jonathan Aldrich

Joshua Sunshine

Darpan Saini ~ Zachary Sparks

School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

{aldrich jssunshi,dsaini,zsparks }@andrew.cmu.edu

Abstract

Objects model the world, and state is fundamental to a faith-
ful modeling. Engineers use state machines to understand
and reason about state transitions, but programming lan-
guages provide little support for reasoning about or imple-
menting these state machines, causing software defects and
lost productivity when objects are misused.

We propose Typestate-Oriented Programming as a nat-
ural extension to the object paradigm, where objects are
modeled not just in terms of classes, but in terms of chang-
ing states. Each state may have its own representation and
methods which may transition the object into a new state. A
flow-sensitive, permission-based type system helps develop-
ers track which state objects are in. First-class typestates are
a powerful abstraction that will help developers model and
reuse objects more efficiently and correctly.

Categories and Subject Descriptors D.3.1 [Programming
Techniques]: Miscellaneous—Typestate-oriented pro-
gramming; D.3.2 [Programming Languages]: Language
Classifications—Typestate-oriented languages; D.3.3
[Programming Languages]: Language Constructs and
Features—States

General Terms Design, Documentation, Human Factors,
Languages, Theory, Verification

1. Introduction

Object-oriented programming was originally developed to
facilitate simulation [Dahl and Nygaard 1966], but the object
and class abstractions used proved to be a revolutionary ad-
vance for effectively building programs in a wide variety of
domains. Part of the reason for objects’ success is that they
are useful not just for simulation of real-world entities, but

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Onward "09 October 25-29, 2009, Orlando, Florida, USA.

Copyright (© 2009 ACM 978-1-60558-768-4/09/10. .. $10.00

for building reusable libraries of abstract entities as diverse
as collections, streams, and windows.

In the last decade, sophisticated object-oriented libraries
and frameworks have leveraged the power of objects to sup-
port widespread component-based reuse. While this reuse
has enhanced productivity, it has also brought its own prob-
lems. Library and framework APIs must often be complex in
order to provide rich functionality that can be reused in very
general ways. In order to effectively leverage these APIs,
programmers must understand how to use them correctly.

One critical aspect of correct API use is fypestate—an
abstraction of the operations currently available on an ob-
ject, which may change as the program executes [Strom and
Yemini 1986]. A familiar example is files that may be open
or closed. In the open state, one may read or write to a file,
or one may close it, which causes a state transition to the
closed state. In the closed state, the only permitted operation
is to (re-)open the file.

States are a fundamental abstraction in computer science,
in engineering more broadly, and in the natural world. Look-
ing just at the Java standard libraries, we see a rich variety of
states: streams may be open or closed, iterators may have el-
ements available or not, collections may be empty or not, and
even lowly exceptions can have their cause set, or not!. Re-
sultSets from the JDBC library have dozens of states deal-
ing with different combinations of openness, direction, ran-
dom access, insertions, etc. Programmers follow engineers
and scientists in other disciplines in drawing state diagrams,
which show the possible states in a system and transitions
between them. Even the natural world has states: are you
hungry right now, or full? Perhaps a meal would produce a
satisfying state transition.

States influence behavior, and trying to perform an op-
eration on an object in the wrong state is likely to have
unfortunate results—as when a code review goes over into
lunchtime. While trying to write to a closed file may not be
common, it is easy to make state-related mistakes in libraries
with less familiar and more complex state spaces. A recent
example we observed comes from the ASPNET framework.

!'the cause of an exception can only be set once

In the drop-down list widget, one must de-select one item
before selecting another; simply selecting another item will
result in an unhelpful exception thrown, with a stack trace
that is completely unrelated to the code containing the er-
ror. These problems occur, in part, because states are an
implicit part of component interfaces—they cannot be ex-
pressed in language-level interfaces, yet they are essential
for using components correctly.

In this paper, we propose Typestate-Oriented Program-
ming as a natural extension to the object paradigm, where
objects are modeled not just in terms of classes, but in terms
of their changing states. In our model, each object state may
have its own representation and methods which may transi-
tion the object into a new state. A flow-sensitive, permission-
based type system helps developers track which state objects
are in.

Because states are a natural way of modeling the world,
we believe typestate-oriented programming will yield ab-
straction benefits similar to but beyond those provided by
object-oriented programming. Because states are ubiquitous
in today’s software designs, we believe that explicit language
support for typestate will express those designs more clearly
than the state of the art. Because the cost of misunderstand-
ing and misusing states is so high, we believe that the im-
proved documentation and checking provided by typestate
will prevent errors and enhance developers’ productivity. For
all these reasons, typestate-oriented programming has the
potential to spark a new revolution in component-based soft-
ware reuse.

2. Context and Approach

Before fleshing out the typestate-oriented programming
paradigm in section 3, we consider the historical context and
alternative approaches to the problems described in the in-
troduction.

State-Based Designs. Today’s programming languages have
no direct support for typestate. Instead, the behavioral as-
pects of state must be encoded via the State design pat-
tern [Gamma et al. 1995], if-tests on flag fields, and other
indirect mechanisms. While the State pattern offers exten-
sibility, it does not help with larger coordination challenges
such as ensuring that a client uses only operations that are
available in the current state.

Typestate Checkers. Recent advances in typestate focus on
specifying the interface of a class in terms of states and en-
suring that clients only call functions that are appropriate
in a given state. The Fugue system [Deline and Fahndrich
2004] was the first modular typestate verification system
for object-oriented software. The key verification ideas in
Fugue include classifying references as not aliased or possi-
bly aliased, associating each class state with an invariant de-
scribing the state of the class’s fields (which is necessary to

support modular verification), and a frame-based approach
to supporting verification in the presence of inheritance.

Our Plural system extended Fugue in a number of prag-
matically important ways, providing a richer set of aliasing
abstractions, a state refinement mechanism that ensures sub-
typing, a way to make guarantees about the state of shared
mutable objects, and a way to dynamically test the state of
objects. In a recent case study, we showed that Plural can
verify typestate properties such as correct iterator use across
a 30,000-line program, as well as verify compliance to pro-
tocols in a layered system that aliases stateful objects in in-
teresting ways [Bierhoff et al. 2009].

An alternative to tracking typestate through an enhanced
type system is specifying state -achine constraints on how
an abstraction is used, then applying static analysis to check
whether they are followed [Fink et al. 2008, Bodden et al.
2008]. This pushbutton approach has the advantage of low
overhead—the user simply specifies the property, runs the
tool and gets messages regarding potential errors. However,
the analysis requires good aliasing information to be suc-
cessful, which is notoriously challenging.

Benefits of a Language-Based Approach. While typestate
checking systems are approaching practicality for Java-like
languages, there are numerous advantages to building types-
tate into the object model of the language rather than running
a separate checker afterward.

First, language influences thought [Boroditsky 2009]: by
incorporating typestate explicitly into a programming lan-
guage, we encourage library writers and users to think in
terms of states, which should help them to design, document,
and reuse library components more effectively. Interfaces
have states, whether the language does or not; by adding
them to the language, we encourage library designers and
users to think about them and to write better code.

Second, support for typestate currently faces a barrier of
complexity: Java’s generics are rightly viewed as complex?,
and typestate adds additional complexity on top of that. Fur-
thermore, mechanisms like type parameterization need to be
duplicated for typestate, so that we can talk not only about a
list of files, but also about a list of open files. By adding type-
state directly to the programming language, we can integrate
it better and reuse mechanisms between the type system and
the state-tracking system, yielding a simpler and more un-
derstandable design overall. For example, our proposed de-
sign has a single parameterization construct which applies
both to traditional types and to states.

Third, putting typestate in the programming language
offers new opportunities for expressiveness. An open file
has a field holding the operating system file handle; a closed
file does not. However, in Java, that field will be present in
both the open and closed states, and so the field must be
assigned a sentinel value (e.g., null) in the closed state.

2 Wildcards—need we say more?

This makes reasoning more complex, as the maintainer of
the class must be aware of a class invariant stating that the
field has a sentinel value if and only if the object is in the
closed state. If states are supported in the language, we can
simply eliminate the field in the closed state. There is never
any possibility of misinterpreting the sentinel value as a
real one (null pointer exceptions/core dumps anyone?) and
reasoning about the invariant is simpler because it is built
into the state-based model of the system.

Prior Language-Based Approaches. The Actor
model [Hewitt et al. 1973] was one of the first pro-
gramming models to treat states in a first class way. An
Actor can accept one of several messages; in response, it can
perform computation, create other actors, send messages,
and finally determine its next state—i.e. how to respond to
the next message received. Our state-orientated approach
draws inspiration from actors, but our concurrency ap-
proach [Stork et al. 2009] stays within a call-return function
model rather than using messages.

Smalltalk [Kay 1993] introduced a become method that
allows an object to exchange state and behavior with another
object, which can be used to model state changes in a first-
class way. In a related approach, the Self language [Ungar
and Smith 1987] allows an object to change the objects it
delegates to (i.e. inherits from), also providing a way to
model state changes.

The concept of a state is related to that of a role played
in interactions with other object. While most research in the
area uses roles to describe different (simultaneous) views of
an object, Pernici proposed state-like roles where objects can
transition from one role to another [Pernici 1990].

From the object modeling point of view, the closest work
to ours is Taivalsaari’s proposal to extend class-based lan-
guages with explicit definitions of logical states (modes),
each with its own set of operations and corresponding imple-
mentations [Taivalsaari 1993]. Our proposed object model
differs in providing explicit state transitions (rather than im-
plicit ones determined by fields) and in allowing different
fields in different states.

A number of CAD tools such as iLogic Rhapsody or IB-
M/Rational Rose Real-Time support a programming model
based on Statecharts [Harel 1987]; such models benefit from
many rich features of Statecharts but lack the dynamism
of object-oriented systems. Recently Sterkin proposed em-
bedding the principal features of Statecharts as a library
within Groovy, providing a smoother integration with ob-
jects [Sterkin 2008]. Our approach focuses on adding states
to the object-oriented paradigm, and does not consider other
features of Statecharts.

Prior Type System Support. Our proposal differs from all
the approaches above by providing a type system for track-
ing state changes. A related notion is allowing class changes

state File {
public final String filename;

}

state OpenFile extends File {
private CFilePtr filePtr;
public int read() { ... }
public void close() [OpenFile>>ClosedFile]
{ ...}
3

state ClosedFile extends File {
public void open() [ClosedFile>>OpenFile]

{ ...}

Listing 1. File states in Plaid

in a statically typed language [Bejleri et al. 2006, Bettini
et al. 2009]. If changing classes are viewed as states, this is
very similar in spirit to our proposal; in fact the Fickle sys-
tem [Drossopoulou et al. 2001] distinguishes “state classes,”
which describe states that can change. The recent advances
in typestate systems described above have overcome a num-
ber of the limitations in Fickle and related systems—e.g. the
inability to track the states of fields—and leveraging these ad-
vances opens the way to the new paradigm and accompany-
ing language design we describe in this paper.

3. Typestate-Oriented Programming

In this section, we describe the typestate-oriented program-
ming paradigm through a series of illustrative examples of
files, collections, and iterators. Section 4 then demonstrates
the generality of the approach through a richer example
taken from the domain of GUI frameworks.

Our examples are written in Plaid, a typestate-oriented
programming language currently under development at
Carnegie Mellon University>. To aid in readability, Plaid
uses Java’s syntax wherever possible.

3.1 States

Consider the example in Listing 1 which declares the in-
terface of a File in terms of OpenFile and ClosedFile
states. These abstractions are declared using the state key-
word; states are just like Java’s classes, except that the state
of an object may change as an object evolves. We observe
that while the filename property is present in all files, the
read and close methods are only available in the Open-—
File state, and the open method is only available in the
ClosedFile state. Methods and fields are declared much
as they are in Java; in fact, the declarations of filename,
filePtr, and read are legal Java syntax. Here filePtr
refers to some low-level operating system resource such as a

3http://www.plaid-lang.org/

http://www.plaid-lang.org/

int readFromFile(ClosedFile f) {
openHelper (£f) ;
int x = computeBase() + f.read();
f.close();
return x;

Listing 2. File client in Plaid

FILE# in the standard C libraries, and is only present in the
OpenFile state.

The open and close methods introduce the first real new
bit of syntax, as we must specify that the receiver object
transitions between the OpenFile and ClosedFile states.
In Plaid, any argument that changes state is declared with a
pair of before and after states separated with the >> symbol.
For example, a function openHelper that opens a file might
be declared as follows:

void openHelper(ClosedFile>>0OpenFile aFile);

For the close and open methods, we are actually spec-
ifying a transition for the receiver this, which is passed
implicitly in Java-like languages. We allow the developer to
specify state changes on the receiver by placing the state
change specification in brackets [] after the normal argu-
ment list.

3.2 Tracking State Changes

Consider the File client shown in Listing 2, which accepts a
closed file, opens it using the openHelper function, reads an
integer and adds a base number, closes the file, and returns
the computed sum. The readFromFile function accepts a
single argument, ClosedFile f, and since no state transi-
tion is specified we take this as syntactic sugar for CLlosed-
File>>ClosedFile f. In this case the function signature
implies that, though the function may change the state of the
file internally, by the end of the function the file is once again
in the ClosedFile state.

The compiler tracks the state of £ through the body of
the function and alerts the programmer if it is used inconsis-
tently. In this case the compiler notes that openHelper tran-
sitions f from the ClosedFile state to the OpenFile state.
As a result the call to £.read () is legal; if we comment out
the openHelper line then the call to £.read() results in
a compiler error. Likewise, the compiler notes that the call
to £.close() transitions f to the ClosedFile state, which
is the correct final state according to the function signature.
If we comment out f.close() then we get an error stating
that £ should be in the ClosedFile state, but it is actually
in the OpenFile state.

3.3 Aliasing and Permissions

The call to computeBase in Listing 2 points out an impor-
tant subtlety. What if we have stored an alias to £ somewhere
in a global variable or in the heap? In that case we have to

consider the possibility that the call to computeBase might
close the file and make the call to £ .read () illegal.

We rule out this possibility using a system of permis-
sions [Bierhoff and Aldrich 2007], which abstractly describe
whether and how an object is shared. One of our permissions
is unique, indicating that there are no aliases to the object
referred to by a function argument, return value, or field. We
can therefore declare £ with the keyword unique before the
specified state, as shown below:

int readFromFile(unique ClosedFile f);

Since the compiler knows there are no aliases to f, the
compiler also knows that computeBase will not close the
file, and thus the call to £ .read () is OK. Because unique
is convenient, we make it the default permission, so it is un-
necessary to declare it specifically—so in fact, the declara-
tion of f in Listing 2 is semantically equivalent to the more
detailed declaration above.

All references need permissions, so in Listing 1, the
filePtr field, as well as the this argument to all the meth-
ods shown, are implicitly unique. The filename field is in-
teresting because it has type String, which is an immutable
(unchangeable) type in both Java and Plaid. Aliasing gener-
ally only causes problems for mutable objects, so it is not
a problem for fields of type String. Thus we should use a
second permission kind, immutable, which unlike unique
allows unlimited aliasing of the object, but prohibits the ob-
ject from being changed in any way. We could thus declare
the filename field as:

public final immutable String filename;

However, all Strings in the application are immutable,
so we instead declare the whole String state immutable
as follows:

immutable state String { ... }

The meaning of this declaration is that whenever we use
the state String to declare a variable, that variable defaults
to the immutable permission kind. Thus the code in List-
ing 1 does not need to be changed; the filename field de-
faults to immutable because String is an immutable
state, while the cFilePtr field defaults to unique (presum-
ably because CFilePtr is not an immutable state).

3.4 Instantiating Objects

Plaid provides a slightly different object construction model
than does Java. A full discussion is out of scope here, but we
provide a new expression form that specifies the state of the
object to be created along with values for all its fields. The
new expression requires all fields to be visible, and since
fields tend to be private or protected we will typically
provide a factory-style static method within a state that

clients can use*. For example, we might have the following
inside ClosedFile:

public static ClosedFile create(String f) {
return new ClosedFile { filename = f; }
}
Observe that according to our defaulting convention, the
returned ClosedFile will be unique.

3.5 Implementing State Changes

How does the file get opened? We can define the open
function in ClosedFile as follows:

public void open() [ClosedFile>>OpenFile] {
this <- OpenFile {
filePtr = fopen(filename);
}

In the code above, the expression form e <- S { de-
cls } transitions the object described by e into the state S,
and uses the declarations in decls to initialize the fields of S
that were not already present in e’s current state (and to as-
sign new values to pre-existing fields). In this case, we tran-
sition the receiver into the OpenFile state. The OpenFile
state has two fields, filename (inherited from File) and
filePtr. The filename does not need to be re-initialized,
because the receiver is already in a substate of File and so
filename is already defined. However, we must provide a
value for filePtr, which we do by calling into an imported
C library function (declaration not shown).

3.6 Shared Objects

So far we have introduced unique and immutable per-
missions. Each facilitates reasoning—unique because there
are no aliases, and immutable because there are no
state changes—but many real programs contain mutable,
aliased objects. As previously proposed in our typestate sys-
tem [Bierhoff et al. 2009] we provide additional permissions
such as shared, a permission that indicates sharing and mu-
tation via the shared references.

It is more difficult to track the state of a shared File,
because any function call could potentially access an alias
to that file and change its state (e.g. by closing it) without
the caller knowing. For this reason, we treat the state asso-
ciated with each shared permission as a state guarantee,
which is a state that all clients of the object agree to respect.
For example, in the code below, the shared permission is
guaranteed to remain in the OpenFile state:

void logToFile(shared OpenFile logFile){
logFile.write (LOG_TEXT) ;
}

4In Plaid, a static method is really an instance method of the object
representing the surrounding state, much like class methods in Smalltalk

state Collection {
type TElem;
public void add(TElem>>none e);
public TElem removeAny() ;
public void remove(none>>TElem e);

Listing 3. Collections in Plaid

Another approach for dealing with shared objects is dy-
namically testing the object’s state before performing a sen-
sitive operation. An example of a state test function is given
in the Iterator example below. For a full discussion of rea-
soning in the presence of shared and related permissions,
see [Bierhoff and Aldrich 2007].

3.7 Genericity

We would like to be able to store our files in a collection,
and keep track of the fact that the files are unique (if they
are) and whether they are open or closed. As we discussed in
Section 2, an advantage of building states into the language
is that we use a single parameterization mechanism rather
than having one for types and a separate one for permissions.

Listing 3 shows the interface of a Collection state in
Plaid. We declare an abstract type TElem in the Collec-
tion state [Milner et al. 1997]. Abstract types are like type
parameters but more modular’, and we provide a syntactic
sugar where Collection<String> means that the TElem
type member of the collection is bound to String. Since
Plaid types include both a state and a permission, the abstract
type represents both the permission (unique, immutable,
or shared) and the state the elements are in (e.g. OpenFile
vs. ClosedFile).

Because the TElem type might be unique, and unique
references cannot be duplicated/aliased, we must be care-
ful about managing permissions as objects are moved in and
out of the collection. When we add an object, a TElem per-
mission is required to the parameter e, and that permission
is stored in the collection and is not returned to the client.
This is symbolized by the transition PElem>>none, where
the none keyword indicates the lack of a permission to the
object.

The removeAny function removes an arbitrary element
and returns it with a TELem permission. We can also remove
a particular element, passing in the element as a parameter
without any permission, and receiving a TElem permission
back from the collection.

3 it allows a client to refer to Collection without specifying what TElem
is if the element type doesn’t matter to that client

An example client might look like this:

public void collectionClient(

Collection<unique OpenFile> c) {

unique ClosedFile aFile
= ClosedFile.create(aFilename) ;

aFile.open(); // aFile is now an OpenFile
c.add(aFile);
... // cannot call aFile.read—no permission
c.remove(aFile); // permission restored
int readValue = aFile.read();
... // use readValue

In our example all functions either add or remove an ele-
ment from the collection. There is no way to get an element
while leaving it in the collection, because that would create
an alias and if TElem was a unique permission then the in-
variant that unique permissions are not aliased would be
violated. In contrast, we say that immutable and shared
are conserved because they can be duplicated, resulting in 2
identical permissions. It is safe to define a getAny function
that operates only on conserved permissions:

<TThis extends
unique Collection<conserved TElem>>
public TElem getAny() [TThis];

In the example above, TThis is a type parameter of the
method getAny. The type parameter has a bound stating that
it must be a unique permission to some kind of Collec-
tion where the TElem is conserved. The type parameter
is the bound for the receiver object this.

3.8 Example: Iterators

Listing 4 shows how an Iterator abstraction can be de-
fined over collections. We add an iterator method that re-
turns an iterator object. This method requires a permission
TThis to the receiver object this. We want that permission
to be immutable to enforce the common constraint (e.g.
from Java and C#) that collections cannot be modified while
they are iterated over.® As with getAny, we need the TElem
permission to be conserved.

The state Iterator holds an immutable reference to
the collection that it is iterating over and the states Avail
and End are representative of the states that an iterator can be
in, as shown in Figure 1. The next () method of the Avail
state changes the state of the iterator from Avail to End if
there are no more elements in the collection, otherwise the
state remains Available.

Listing 5 shows how a client may use an iterator in Plaid.
The usage of the iterator relies on the current state of the
variable i. We only call i.next () after checking if i is in
the Avail state by using the keyword instate (similar to

6 of course, we want to regain a unique permission to the collection after
iteration so we can modify it at that point. Our solution to this problem is
outlined in [Bierhoff 2006].

state Collection {

<TThis extends
immutable Collection<conserved TElem>>
public Iterator<TElem> iterator()
[TThis>>none] ;

}

state Iterator {
conserved type TElem;
final immutable Collection<TElem> coll;

}

state Avail extends Iterator {
TElem next() [Avail >> (Avail || End)];
}

state End extends Iterator {

}

Listing 4. Iterators in Plaid

next()
(more
elements)

Avail

next()
(no more
elements)

End

Figure 1. Iterator state machine

Collection<String> c = ...
Iterator<String> i = c.iterator();

while(i instate Avail) {
String o = i.next();

}

Listing 5. Iterator client code in Plaid

instanceof in Java).

4. Typestate-Oriented Design: Interactors

Files, collections, and interators make good explanatory ex-
amples due to their familiarity, but one may ask if the idea
of states applies in other domains, a question we investigate
here.

start()

Figure 2. Interactor state diagram.

state Idle {
void start() [Idle >> Running];
}
state Running {
void stop() [Running >> Idle];
void run(InputEvent e);
}
state Moveldle extends Idle {
GraphicalObject go;
void start() [Idle >> Running] {
this <- Running {
void run(InputEvent e) {
go.move(e.x,e.y);
}
void stop() [Running >> Idle] {
this <- MoveIdle{}
}
}
}
}

Listing 6. Interactor code in Plaid.

Graphical user interfaces (GUIs), like simulations, were
one of the earliest applications of object-oriented program-
ming [Kay 1993]. We believe typestate-oriented program-
ming can extend the power of objects in this domain. To il-
lustrate this, we discuss interactors, an influential concept in
the GUI framework community. Interactors are reusable plu-
gins for graphical user interface frameworks that handle user
input [Myers 1990]. Each interactor encapsulates a high-
level interactive behavior (e.g selection, rotation) and ab-
stracts away underlying events (e.g. mouse movement, key
click). Interactor methods are called by the framework when
user input events are received. A developer adds an interac-
tor to her graphical user interface to easily add behavior to
graphical elements. For example, let’s say she is developing
a drawing tool and wants all drawn objects to be movable.
With interactors, she only needs to add a (probably prede-
fined) move interactor object to the window.

The interactors we discuss in this example are modeled
with the state diagram shown in Figure 2. All interactors
are either idle or running. An idle interactor transitions to
the running state when the start method is called, and the
stop method causes the opposite transition.

The code in Listing 6 defines two states, Idle and Run-
ning with undefined methods akin to Java interfaces. The
start method transitions the receiver from the Idle state to

the Running state and stop acts correspondingly. The run
method does not transition the receiver. Instead, the interac-
tor acts on the graphical object for which it is responsible.

An idle move interactor is represented as the MoveIdle
state. This interactor creates a running move interactor when
started. The running interactor is in an anonymous substate
of Running. When the run method is called, the object in-
vokes the move method on the associated graphical object.
The stop method transitions the object back to the MoveI-
dle state.

As mentioned earlier, the GUI framework calls the appro-
priate interactor methods in response to events. For exam-
ple, the run method of a move interactor is called when the
mouse moves. Notice that a call to the run method does not
change the interactor’s state. Assume the framework stores
the list of currently running interactors and passes incoming
events to them. In Plaid, if the framework calls run on an in-
teractor, the framework is guaranteed to be able to call run
again when the next event fires. In Java, on the other hand,
a developer who writes a new interactor might erroneously
create a run method that stops the interactor under certain
conditions. In that case the Java framework would have to
either perform a dynamic state check before every call to the
run method, or throw an exception, neither of which is de-
sirable.

5. Challenges

In order to further investigate the typestate-oriented pro-

gramming paradigm, we are currently working on an inter-

preter and typechecker for the Plaid language described in
this paper.” Many challenges remain, however, in making the
vision described here a reality:

Overhead Because we are documenting and tracking more
sophisticated properties in our system than is typical for
type systems, a major open question is whether the ap-
proach will be practical, or whether the conceptual over-
head or the overhead of declaring our permissions will be
too high. It is promising that the examples in this paper
are not substantially more complex than the equivalent
Java code.

Sharing We briefly described the challenges of tracking ob-
ject state for shared permissions. Prior work has shown
that ideas like state guarantees and dynamic state test
functions can provide great leverage, but we expect we
will need new ideas in this area as well. Experience will
show whether it is feasible to do the kind of reasoning
envisioned in this proposal on ordinary code.

Extensions The language described here is very simple.
While we hope Plaid remains straightforward, new fea-
tures will be needed to make the language usable in in-
dustrial practice. Some of these will present challenges;
for example, will adding concurrency make it more dif-
ficult to track typestate? At the same time, we hope that

7 Available at http: //www.plaid-lang.org/

http://www.plaid-lang.org/

the ideas in Plaid will provide synergies as well. For ex-
ample, our companion Onward! paper examines how the
kind of permissions used here could make concurrency
easier and safer [Stork et al. 2009].

6. Conclusion

This paper presented a new paradigm, typestate-oriented
programming, which introduces states as first-class abstrac-
tions for describing object interfaces and representations. In-
terfaces can more directly express, and the type system can
enforce, constraints that are only implicit in most object-
oriented languages, such as when it is legal to read from a
file or call next on an iterator. The representation of ob-
jects can change in a natural way when their states do, for
example allowing an OpenFile to hold a low-level file re-
source that is not present in closed files. By integrating states
into the language, we can provide this additional expressive
power while minimizing added complexity, for example by
using a single parameterization mechanism rather than one
each for states, permissions, and types. Our Interactors ex-
ample demonstrates that the idea of states is not specific to
common library abstractions like files and collections, but
applies in GUI frameworks (and we expect other domains)
as well.

Much work remains to be done before making the vi-
sion of typestate-oriented programming a practical reality,
and we are actively investigating both the theoretical under-
pinnings of the paradigm and the practical tradeoffs involved
in building a real language, Plaid. However, we believe that
states are a fundamental programming abstraction, and that
the future of direct language support for states is bright.

Acknowledgments

This work was supported in part by DARPA grant #HR0011-
0710019, NSF grants CCF-0546550 and CCF-0811592, and
Army Research Office grant number DAAD19-02-1-0389
entitled “Perpetually Available and Secure Information Sys-
tems.” We thank Eric Tanter and the Plaid group for their
helpful feedback on earlier versions of this paper.

References

Andi Bejleri, Jonathan Aldrich, and Kevin Bierhoftf. Ego: Control-
ling the Power of Simplicity. In Proc. Foundations of Object-
Oriented Languages, 2006.

Lorenzo Bettini, Sara Capecchi, and Ferruccio Damiani. A Mecha-
nism for Flexible Dynamic Trait Replacement. In Proc. Formal
Techniques for Java-like Programs, 2009.

Kevin Bierhoff. Iterator Specification with Typestates. In Proc.
Specification and Verification of Component-Based Systems,
2006.

Kevin Bierhoff and Jonathan Aldrich. Modular Typestate Checking
of Aliased Objects. In Proc. Object-Oriented Programming,
Systems, Languages, and Applications, 2007.

Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. Practical

API Protocol Checking with Access Permissions. In Proc.
European Conference on Object-Oriented Programming, 2009.

Eric Bodden, Laurie Hendren, Patrick Lam, Ondrej Lhotak, and
Nomair A. Naeem. Collaborative Runtime Verification with
Tracematches. Oxford Journal of Logics and Computation,
2008.

Lera Boroditsky. How Does Language Shape the Way We Think?
In Max Brockman, editor, What’s Next? Dispatches on the Fu-
ture of Science, pages 116—129. Vintage, 2009.

Ole-Johan Dahl and Kristen Nygaard. SIMULA: an ALGOL-based
Simulation Language. Communications of the ACM, 9(9):671—
678, 1966.

Robert Deline and Manuel Fahndrich. Typestates for Objects. In
Proc. European Conference on Object-Oriented Programming,
2004.

Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-
Ciancaglini, and Paola Giannini. Fickle: Dynamic Object
Re-classification. In Proc. European Conference on Object-
Oriented Programming, 2001.

Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Em-
manuel Geay. Effective Typestate Verification in the Presence of
Aliasing. Transactions on Software Engineering and Methodol-
ogy, 17(2), 2008.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

David Harel. Statecharts: A Visual Formalism for Complex Sys-
tems. Science of Computer Programming, 8(3):231-274, 1987.

Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Mod-
ular Actor Formalism for Artificial Intelligence. In Proc. Inter-
national Joint Conference on Artificial Intelligence, 1973.

Alan C. Kay. The Early History of Smalltalk. SIGPLAN Notices,
28(3), 1993.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). MIT Press, 1997.

Brad A. Myers. A New Model for Handling Input. ACM Transac-
tions on Information Systems, 8(3):289-320, 1990.

Barbara Pernici. Objects with Roles. In Proc. Conference on Office
Information Systems, 1990.

Asher Sterkin. State[chart]-Oriented Programming. In Proc. Multi-
paradigm Programming with Object-Oriented Languages, 2008.

Sven Stork, Paulo Marques, and Jonathan Aldrich. Concurrency
by Default: Using Permissions to Express Dataflow in Stateful
Programs. In Proc. Onward!, 2009.

Robert E Strom and Shaula Yemini. Typestate: A Programming
Language Concept for Enhancing Software Reliability. /EEE
Transactions on Software Engineering, 12(1):157-171, 1986.

Antero Taivalsaari. Object-Oriented Programming with Modes.
Journal of Object-Oriented Programming, 6(3):25-32, 1993.

David Ungar and Randall B. Smith. Self: The Power of Simplicity.
In Proc. Object-Oriented Programming, Systems, Languages,
and Applications, 1987.

	Introduction
	Context and Approach
	Typestate-Oriented Programming
	States
	Tracking State Changes
	Aliasing and Permissions
	Instantiating Objects
	Implementing State Changes
	Shared Objects
	Genericity
	Example: Iterators

	Typestate-Oriented Design: Interactors
	Challenges
	Conclusion

