
Principles of :

The Design and Rationale

for a New Programming Language

Jonathan Aldrich

Carnegie Mellon University

Principles of Programming Seminar

March 5, 2010

The Plaid Language

• Plaid is a new general-purpose language for professional

programmers

• This talk is about Plaid’s design, focusing on the principles

Values

Influences

2

Features

Design

Principles
Context

Values

Ideas

Influences: Values

• Dave Ungar: Values drove Self principles, which drove design
[Dahl-Nygaard Lecture 2010]
– His values: simplicity, creativity, accessibility, …

• Values driving Plaid
– Changeability: modifying, reusing, and enhancing code

• Requirements are constantly changing, we must respond effectively• Requirements are constantly changing, we must respond effectively

– Compositionality: dividing tasks into parts, working on them separately,
synthesizing into a whole

• Makes it possible to build large systems

– Understandability: reading code, understanding how it works and how
to use it

• Enables achieving the other values

• We value other things as well, but those are the most important

3

Influences: Context

• Increasing use of components (e.g. libraries and frameworks)
– Programming challenges used to be algorithms and data structures

– Now major challenge is effectively leveraging components

• Rise of multicore processors
– Achieving speedup requires concurrency

– Concurrency is difficult and error-prone in today’s systems– Concurrency is difficult and error-prone in today’s systems

• Ultra-large scale systems [SEI ’06]
– Develop software in a distributed, decentralized, data-driven,

heterogeneous environment

• There are other major trends (e.g. cyber-physical)
but these have less influence on Plaid’s design

4

Influences: CMU Ideas and Strengths

• Principled, sound language design methodology

– Type theory (CMU a pioneer)

• Deep understanding of software design

– Designs that support scale and change (Notkin, Garlan & Shaw, …)

• Object models – and synergies with functional programming• Object models – and synergies with functional programming

– Self (Ungar), Cecil (Chambers), EML (Millstein), Malayeri thesis, …

• Modular reasoning about state

– Separation logic (Reynolds, Brookes, Krishnaswami thesis)

– Typestate and permissions (Boyland, Bierhoff and Beckman theses)

5

Principle 1: Procedural + Type Abstraction

• Core of OO is procedural abstraction [Reynolds ’75][Cook ’09]

– Data abstracted via a set of functions in an existentially typed package

– Can mix and match multiple implementations of a type (e.g. in a list)

– Driving values: changeability and compositionality

• key to achieving large-scale reuse in practice

• Contrast type abstraction in languages like ML

– The name of the abstract type fixes a (hidden) representation– The name of the abstract type fixes a (hidden) representation

– Can reason about types that go together (e.g. for binary methods)

– Driving values: understandability

• effect on safety and performance

• Both are important!

– Plaid’s goal is to support them equally well

– Many interesting questions in marrying OO, functional paradigms

6

Features: Procedural + Type Abstraction

val ADT = new {

type set = List;

method set<T> union(

set<T> s1, set<T> s2) {

s1.appendList(s2);

}

type Set = Collection with {

method Set<E> union(Set<E> other);

}

state SetImpl = Collection with {

List<E> members;

method SetImpl<E> union(Set<E> other)

{ } as {

type set <: { type E; };

val union: set<T> * set<T> -> set<T>

}

{

new SetImpl {

members =

members.appendAll(other);

}

}

} as Set

7

Features: OO and Functional

• first-class lambdas = functors = methods

• object = module

• type = signature

• state = class = record = datatype

• abstract type = type member = class type parameter

• signature ascription

• composition (generalizes & cleans up inheritance)• composition (generalizes & cleans up inheritance)

• subtyping

• pattern matching (generalizes casts, external dispatch)

• local type inference (e.g. for local variables, method type parameters)

8

Principle 2: Support State Abstractions

• Abstract state machine constraints on object usage

open closed

close()

read()

open()

• Abstract state machine constraints on object usage

– Ubiquitous: 1/3 of Java classes are clients of an object protocol

– Complex and undocumented: up to dozens of states per class

– Motivates typestate [Strom & Yemeni ’86][Deline & Fähndrich ’04][Bierhoff & Aldrich ’07]

• Driving values

– Understanding how to use an abstraction

– Composing applications correctly out of components

9

Features: Typestate-Oriented Programming

state File { String filename; }

state ClosedFile = File with {

void open() [ClosedFile>>OpenFile] {

this <- OpenFile {

filePtr = fopen(filename);

}

}

State

transition

State change

primitive

Values specified

10

}

}

state OpenFile = File with {

private CFile fileResource;

int read();

void close() [OpenFile>>ClosedFile];

}

Different

representation

New methods

Values specified

for each new field

Why Typestate in the Language?

• Language influences thought [Boroditsky ’09]

– Language support encourages engineers to think about states

• Better designs, better documentation, more effective reuse

• Improved library specification and verification
– Typestates define when you can call read()

– Make constraints that are only implicit today, explicit

• Expressive modeling

11

• Expressive modeling
– If a field is not needed, it does not exist

– Methods can be overridden for each state

• Simpler reasoning
– Without state: fileResource non-null if File is open, null if closed

– With state: fileResource always non-null

• But only exists in the FileOpen state

DEMONSTRATION: Plaid Compiler

12

Principle 3: Describe Sharing of State

• Drivers: values and context

– understanding non-local effects of mutable state

– correctly changing and composing stateful components

– enabling safe concurrency

• Design

– default is immutable data, no declarations required

– for mutable data, default is uniqueness

– shared mutable data annotated with hierarchical data groups

– lightweight effect system summarizes how functions access state

• research challenge: making this scale

13

[Gifford et al. ’87], [Greenhouse & Boyland ’99]

[Leino ‘98]

[Chan et al. ’98]

Principle 4: Describe Dependencies

• Drivers: values and context

– enabling safe concurrency

– understanding computation in a concurrent setting

• Inspiration: functional programming is “naturally concurrent”

– Up to data dependencies in program

• Goal: make dependencies on state updates explicit as well

– Easier to track dependencies than all possible concurrent executions

– Functional programming passes data explicitly to show dependencies

– For stateful programs, we pass permissions explicitly instead

• Consequence: no need to express explicit control flow!

14

Features: Sharing and Dependencies

method unique Data createData();

method void print(immutable Data d);

method unique Stats getStats(immutable Data d);

method void manipulate(unique Data d,

immutable Stats s);

val d = createData();

createData

split

print getStats

unique

immutable immutable

immutableval d = createData();

print(d);

val s = getStats(d);

manipulate(d, s);

print(d);

15

join

manipulate

print

unique

immutable
immutable

Features: Sharing and Dependencies

method void produce(‘QG Queue q);

method void consume(‘QG Queue q);

method void dispose(unique Queue q);

group QG;

val QG Queue q = new Queue;

split QG: produce(q) || consume(q);

new QueueQG

adopt

split

uniqueunique

sharedsplit QG: produce(q) || consume(q);

q.dispose();

16

produce consume

join

shared

emancipate

unique

unique

dispose

Principle 5: Static & Dynamic Checking

• Driving values
– want to declare constraints for better understanding

– desirable to check statically – but better to check dynamically than not at
all

– sometimes dynamic checking enables composition with dynamically
typed code and/or easier change

• Principle• Principle
– Every constraint that can be declared can be checked statically or

dynamically

• Features
– Gradual types: can omit some types, statically check as much as possible

– Casts to types, states, and permissions

• Research question: how to check a cast to unique?

17

Principle 6: Information Hiding

• Driving values

– Facilitates change by ensuring clients depend only on

interfaces [Parnas ’72]

– Enhances understanding and composition by supporting

separate reasoning

• OO gets a bad rap for information hiding (in the PL community)• OO gets a bad rap for information hiding (in the PL community)

– Real issue is industrial languages, not the OO paradigm

• Plaid will be second to none in its support for encapsulation

– Should be possible to prove results like contextual equivalence

18

Dynamic Types, Tag Tests

type TestMember = {

boolean isMember(E e); }

state List = { … }

state ArrayList case of List = { … }

List myList = new ArrayList{};

set = new Collection with {

List<E> members;

method Set<E> union(Set<E> other);

} as Collection with {

method Set<E> union(Set<E> other);

}
// match OK – ArrayList a case of List

match (myList) {

case ArrayList al { … }

}

TestMember tm = myList;

// compile-time error: TestMember

// does not support case analysis

match (tm) { … }

}

dynamic dset = set;

dset.members.add(e); // FAIL at run time

19

Principle 7: Pay as You Go

• Should not pay for features of the language not being used

– compare to Java – many system services built in, some have high

overhead

• Research challenges

– Changing representation

– Casts that check the state and/or permission– Casts that check the state and/or permission

20

Principle 8: Bridge to Existing Languages

• Drivers: values and context
– understandability for programmers who know other

languages

– composition with components written in existing languages

– in ultra-large scale systems we cannot control the language
of all components

• Familiarity
– use Java syntax wherever possible

– when no clear language design choice, use Java’s

• fix some glaring problems like nulls (what Hoare calls his $1 billion mistake)

• Compatibility
– compile to platforms, like the JVM, that have good existing libraries

21

Principles Summary

1. Support procedural and type abstraction

2. Support state abstractions

3. Describe sharing of mutable state

4. Describe dependencies, not control flow

5. Combine static and dynamic checking

6. Enforce strict information hiding6. Enforce strict information hiding

7. Pay as you go

8. Provide a bridge to existing languages

22

Additional Standard Principles

• Abstraction

– Anything with recursive structure can be abstracted

• Simplicity

– Ungar: favor simplicity over expressiveness

• Modular checking

– All typechecking is modular

• Memory safety• Memory safety

– All behavior is well-defined

• Soundness

– Well-typed programs do not go wrong

• Design intent

– Ways of expressing the designer’s intent at multiple levels of detail

• Direct manipulation (as in Self)

– Everything – including modules – is first class; interpretation is supported

23

Current Plaid Language Research

• Core calculus Darpan Saini, Joshua Sunshine

• Information hiding Karl Naden

• Typestate model Filipe Militão, Luís Caires (FCT)

• Gradual typing Roger Wolff, Ron Garcia,

Eric Tanter (U. Chile)

• Concurrency Sven Stork,• Concurrency Sven Stork,

Paulo Marques (U. Coimbra)

• Web programming Joshua Sunshine

• Permission parameters Nels Beckman

• Compilation/typechecking Karl Naden, Joshua Sunshine,

Mark Hahnenberg, Sven Stork

24

Future Plaid Research Topics

• Overall type system design

• Module system design

• Efficient compilation – achieving pay as you go

• Practical effect specifications

• Permission-aided modular verification

• Distributed system support• Distributed system support

• Module versioning support

• Safer, more useable framework designs

25

The Plaid Language

• Values: change, composition, understanding

• Context: components, concurrency, ultra-large scale

• Primary principles

– OO + functional abstraction, tracking state + dependencies, static +

dynamic checking, modularity, efficiency, soundness

• Many new research directions• Many new research directions

• Compiler implemented (in Java, for now)

• Plaid typechecker (in Plaid) underway

http://www.plaid-lang.org/

26

