
Holy States Can Save the World!

Brother Jonathan Aldrich
High Monk of the Plaid Brotherhood
jonathan.aldrich@cs.cmu.edu

ABSTRACT
The twin evils of imperative and functional programming
threaten the software world as we know it—destroying fields
and spreading garbage throughout the cybersphere. In this
paper we present Holy States as the last, best hope for peace
and harmony. Holy States avoid the wanton destruction of
field values so common in languages based on caffeine and
out of tune notes. Neither is computation based on wasteful
Schemes creating duplicate objects that then MilL around
until they are garbage. Instead, every object is considered
sacred and when no longer needed is reborn in a new, holy
state. Recapturing the original stateful spirit of Turing’s
Machines, we show all computations can be expressed in a
Holy way, with neither garbage nor field destruction.

Categories and Subject Descriptors
J.8.1 [Computer Applications]: Theology—Saving the
World

General Terms
Languages, Human Factors.

Keywords
assignment, garbage, states, holiness, salvation.

ALABAMA. INTRODUCTION
Imperative programming is evil. With every “assignment”
executed, some poor variable value is executed as well. And
be not deceived by the colloquial use of “execution” in the
field of computer science—it’s true meaning is that found
in the dictionary: the infliction of capital punishment [7].
Values are slaughtered mercilessly. The carnage must stop,
before the world is destroyed!

Functional programming [6] was developed as an alterna-
tive to imperative programming, but it only substitutes one
evil for another. Data structures are created willy nilly, to be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
used only for humor and are not made or distributed for any serious purpose.
To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or the small fee below listed below.
SIGBOVIK ’10 1 April 2010, Pittsburgh, PA
Copyright 2010 ACH 666-666-666 ...$5,000,000,000.00.

used a few times, perhaps only once, before being discarded
as “garbage.” It is well-known that functional programming
leads to a truly scandalous waste, contributing to the well-
know problems of cycle depletion [16]. While efforts have
been made to construct so-called “garbage collectors,” even
ones that integrate composting [8] this is clearly a misguided
attempt to patch things up after the damage has been done.
We must avoid the creation of garbage in the first place,
or else the world will be suffocated by the reeking stench
created by functional computation.

In this paper, we show how a hallowed approach to typestate-
oriented programming1 can save the world from the ravages
of imperative assignment and the wasteland of functional
garbage. To do so, we reach back into the mists of time to
recapture the true intent of the Chosen One, Alan Turing.
Turing showed that conceptually all computation can be ex-
pressed, simply and beautifully, in a state-based model [20].

Until the Plaid Brotherhood took up its holy quest to
save the world, however, there was no realistic program-
ming paradigm or programming language for performing
holy, state-based programming, as Turing intended. We
show how Turing’s Machines can be implemented in a Hal-
lowed subset of the typestate-based programming language
Plaid. Our approach creates no garbage—instead, whenever
objects are no longer needed in their current state, they are
Saved and Born Again in a new holy state. Nor do we ever
allow an object’s field values to be destroyed by assignment;
instead, new field values may be bestowed as part of the
Sacrament of State Change.

The epistle herein, if followed and promulgated by those
faithful to the One Plaiddish Way, can save the world!

ALASKA. THE WAY OF UNIVERSAL SAL-
VATION
The One Pladdish Way of programming follows two simple
rules. First, the wanton destruction of assignment is forbid-
den. All evolutions in the state of objects must be accom-
plished instead via the Sacrament of State Change. Second,
objects may never be released as garbage; each object must
be reborn in a new state when no longer needed.

ARIZONA. EXPERIENCING CLEAR
A programmer who has foresworn assignment and garbage,
and who is following the One Plaiddish Way, reaches a empti-

1An idea published [1] in a conference so prestigious it has
an exclamation mark in its name! please PLEASE give me
tenure!



ness of mind, spirit, and CPU that has been called“Clear”[14].
But is it possible to reach this happy state in Plaid practice?

St. Turing showed the way with his Universal Machines,
which can encode any computation using the ideas of states.
Through long study, secret handshakes, and lost symbols [2]
we have developed a construction of Turing’s Machines in
the Plaid language, following the One Plaiddish Way.

1 state Cell {
2 method getLeft() {
3 left;
4 }
5 method getRight() {
6 right;
7 }
8 val left;
9 val right;

10

11 method print() { ... }
12 }
13

14 state LeftEnd {
15 method getLeft() {
16 val me = this;
17 val myLeft = new LeftEnd with Zero {
18 right = me;
19 };
20 val myRight = this.getRight();
21

22 this <− Cell { left = myLeft; right = myRight; };
23

24 left;
25 }
26 // getRight(), etc. as in Cell
27 }

Listing 1: Modeling Tape Cells

Cells in a Turing tape are modeled as holy states which
are connected to the cells on the left and on the right, and
have additional operations such as print.

Of course, a Turing tape is infinite, which is difficult for fi-
nite minds and primitive programming models to effectively
represent. While some among the unfaithful might suggest
laziness to model an infinite data structure, Plaid theology
holds that sloth is one of the Six Deadly Sins. We therefore
apply the Sacrament of State Change to approach an under-
standing of the Infinite. A LeftEnd state is like a cell, but
it has no cell to the left of it, yet. When we need the cell to
the left, we create it as a new LeftEnd (in the initial, Zero
state—see below), set its right field to the current object
me, and transform the current object into an ordinary Cell
(using Plaid’s state transition operator, written <-). There
are corresponding states for RightEnd and the Start cell of
the tape (which is conceptually both a left and a right end).

1 state Zero {
2 method writeZero() {}
3 method writeOne() {
4 this <− One;
5 }
6 method printVal() {
7 java.lang.System.out.print(”0”);
8 }
9 }

10

11 state One { ... // similar

Listing 2: Modeling Cell States

Each cell in a Turing tape can be in one of a fixed number
of states. Here we consider two such states, Zero and One.
Either a Zero or a One state is combined with the Cell state
when a Cell object is constructed. If we are in the Zero
state, writing a one with writeOne() transforms the current
object into the One state. Each state also knows how to
print an appropriate representation.

1 state Beaver2B {
2 val cell;
3

4 method update() {
5 match (cell) {
6 case Zero {
7 cell.writeOne();
8 val newCell = cell.getLeft();
9 this <− Beaver2A { cell = newCell; };

10 }
11 case One {
12 cell.writeOne();
13 val newCell = cell.getRight();
14 this <− Halt { cell = newCell; };
15 }
16 };
17 }
18

19 method run() {
20 update();
21 run();
22 }
23 }

Listing 3: Modeling Machine States

A Turing machine is represented by one or more internal
states, such as the Halt state or the Beaver2B state shown
above (from the 2-state, 2-symbol“Busy Beaver”Turing ma-
chine). The machine’s processing is represented by the run()
method, which updates the machine’s state and then contin-
ues running in the new state (which, of course, may have a
different run() method). The update() method uses a match
to find out if the cell at the machine’s head is a Zero or a One.
It then writes a value (one in this case), moves left or right,
and transitions the machine into a new state (Beaver2A or
Halt).

As the revelation above shows, any Turing machine can be
expressed in the One Plaiddish Way. Since any program can
be expressed as a Turing machine, we have proven beyond
reasonable doubt that the One Plaiddish Way is a practical
way to live one’s programming life.

The key to salvation described above is available in the
form of Plaid source code at the Plaid monastery web site2.

ARKANSAS. ETERNAL DAMNATION
We note in passing that the creators of the Plaid language
have not reached “clear” and have regrettably included the
option of both assignment and functional programming in

2http://www.plaid-lang.org/



the language. The Supreme Revolutionary Plaid Council
of Pittsburgh has declared a Fatwa against these features,
and they shall not be used by the faithful. The penalty for
violations is the eternal torment of programming in COBOL.

CALIFORNIA. RELATED WORK
We approve of Wadler’s inclusion of an exclamation point
in the title of a paper [21]. However, we feel that changeing
the world is a rather modest goal; our ambition is instead
to save the world!

The dangers of The Assignment are well documented [9].
As for the problem of garbage, recent work paints a grim
picture of the world’s future [19].

Saving the world has been a problem for a long time. It
was notably tried over 2 millenia ago, and though the ef-
fort ended in the death of the protagonist, many believe
the approach to have been successful [5]. Other, more re-
cent (and highly misguided) approaches have, at the cost of
great struggle [13], not only failed to save the world but may
indeed have brought the end of the world [11] closer. The au-
thor notes evidence from SIGBOVIK ’09 reviews that that
Nazis used SML [4], indicating that garbage was part of their
nefarious plots.

Some attempts to save the world have been downright
spellbinding [17], and have achieved fanstastic success at
banishing evil. While most research has focused on saving
our world, recent work considers ways to save other worlds
as well [3].

Some believe the world can be saved if people would do
only 50 simple things [12]. It is notable that #47 is to avoid
garbage through recycling objects, as our State Change Sacra-
ment accomplishes.

We save our discussion of research published in the most
distinguished venues for last. MapReuse and MapRecy-
cle [15] are very much in the spirit of our state-change based
object reuse strategy. Finally, the One Plaiddish Way draws
inspiration from the One True Coding Style [10], which also
uses Holy languages, but which also blasphemously uses as-
signment in C++.

COLORADO. FUTURE WORK
In future work we hope to formalize the semantics of Holy
States in Drunken Logic [18]. Should be fun!

CONNECTICUT. CONCLUSIONS
Believe not in the false prophets of functional and imperative
programming. Holy states CAN save the world!

DELAWARE. ACKNOWLEDGEMENTS
The author gratefully acknowledges the other members of
the Plaid Brotherhood for the development of the One Plaid-
dish Way and its support in the Plaid compiler. In addition,
Miss Mouse provided moral support throughout the author’s
childhood, for which he is eternally grateful.

1. REFERENCES
[1] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks.

Typestate-oriented programming. In Onward!, 2009.

[2] D. Brown. The Lost Symbol. Doubleday, 2009.

[3] J. Cameron. Avatar, 2009.

[4] J. Cette. Review of the one true coding style. In The
8th Biarennial Workshop about Symposium on Robot
Dance Party of Conference in Celebration of Harry Q.
Bovik’s 0x40th Birthday, 2009.

[5] J. Christ. The Holy Bible. 33.

[6] A. Church. An unsolvable problem of elementary
number theory. American Journal of Mathematics,
58:354–363, 1936.

[7] Dictionary.com. Definition of execution.
http://dictionary.reference.com/browse/execution.

[8] J. Donham. Compacting, composting garbage
collection. In The 6th Biarennial Workshop about
Symposium on Robot Dance Party of Conference in
Celebration of Harry Q. Bovik’s 0x40th Birthday,
April 2007.

[9] C. Duguay. The assignment, 1997.

[10] J. M. (editor). The one true coding style. In The 8th
Biarennial Workshop about Symposium on Robot
Dance Party of Conference in Celebration of Harry Q.
Bovik’s 0x40th Birthday, 2009.

[11] Fluid. The end of the world.
http://www.albinoblacksheep.com/flash/end.

[12] E. Group. 50 Simple Things You Can Do to Save the
Earth. Bathroom Readers Press, 1990.

[13] A. Hitler. Mein Kampf. Hurst and Blackett, London,
1939.

[14] L. R. Hubbard. Dianetics The Modern Science Of
Mental Health. 1950.

[15] M. McGlohon. Mapreuse and maprecycle: Two more
frameworks for eco-friendly data processing. In The
8th Biarennial Workshop about Symposium on Robot
Dance Party of Conference in Celebration of Harry Q.
Bovik’s 0x40th Birthday, 2009.

[16] J. M. Newcomer and C. B. Weinstock. Cycle
depletion—a worldwide crisis. In The 6th Biarennial
Workshop about Symposium on Robot Dance Party of
Conference in Celebration of Harry Q. Bovik’s 0x40th
Birthday, 2007.

[17] J. K. Rowling. Harry Potter and the Deathly Hallows.
Bloomsbury, 2007.

[18] R. J. Simmons. A non-judgmental reconstruction of
drunken logic. In The 6th Biarennial Workshop about
Symposium on Robot Dance Party of Conference in
Celebration of Harry Q. Bovik’s 0x40th Birthday,
2007.

[19] A. Stanton. Wall-e, 2008.

[20] A. M. Turing. On computable numbers, with an
application to the entscheidungsproblem. Proceedings
of the London Mathematical Society, 2(42):230–265,
1937.

[21] P. Wadler. Linear types can change the world! In
Programming Concepts and Methods, 1990.


