
1 The Plaid Programming
Language

Plaid [PG10b, PG10a] is a new general purpose programming language developed
at Carnegie Mellon University whose characteristics are designed to facilitate the
development of component-based and concurrent software. The key features of
Plaid include

• typestate;

• access permissions;

• concurrency by default and

• gradual typing.

Each of these concepts will be discussed in more detail in the following sections.

1.1 Typestate

The motivation behind making typestate [SY86] a central language concept is the
observation that state is fundamental to modeling the world. Engineers think
in states and state transitions and use state machines to visualize and reason
about object behavior, but conventional programming languages provide little to
no support for expressing state machines in actual code. Often the only way to
implement a state machine is to encode the current state explicitly using some
form of an integer field inside the object or implicitly using information about
whether certain fields are set to valid values or not1. State transitions and the
checking for the correct state must be handled manually which is error-prone and
difficult to update in the case new states or operations are added.

Giving the programmer direct means of expressing stateful designs in a program-
ming language is becoming more and more important as software development
activity is shifting from writing entirely new code to reusing previously devel-
oped software components. Such components almost always define usage proto-
cols which must be followed to guarantee the correct function of objects. A usage
protocol is a valid sequence of method calls. It can, for example, state that cer-
tain method calls are only allowed if the object is in a certain state and another

1Nullable fields are often used for this purpose.

2 1. The Plaid Programming Language

method must be called to transition the object to that specific state. A file class,
for example, only allows calls to open() if the object is in state Closed, and an
iterator class only allows calls to next() if there are non-visited elements left in
the collection. Another concrete example is Java’s BufferedReader class, which
allows the user to mark the current position in the stream, using mark(), and then
later reset the stream to the marked position using reset(). Figure 1.1 shows a
state machine for this portion of BufferedReader’s behavior.

Unmarked Marked
mark()

mark()

rese t ()

Figure 1.1: Abstract state machine for BufferedReader.

An error will occur should the programmer try to reset the stream before it has
been marked. Consider the following Java code:

1 import java . i o . ∗ ;
2

3 public class MarkReset {
4 public stat ic void main (St r ing [] a rgs) {
5 try {
6 BufferedReader reader = new BufferedReader (new Fi leReader (” t e s t . f i l e ”)) ;
7 r eader . r e s e t () ;
8 }
9 catch (IOException e) {

10 System . out . p r i n t l n (e) ;
11 }
12 }
13 }

Listing 1.1: Simple protocol violation.

In this example, the intent of the reset() call was to reset the stream to the most
recent mark—however, mark() is not called before which means that the reset
call violates the usage protocol. Upon execution of the program, an IOException

carrying the message “Stream not marked” is thrown.

In general, if dynamic ways of managing the state of objects like roles or the state
design pattern are used, usage protocol compliance cannot be checked at compile-
time but only at runtime. In this case, protocol violations typically result in an
exception being thrown, just like in the example in listing 1.1. By contrast, an
object’s typestate is statically trackable. This enables the compiler to assist the
programmer in finding bugs related to the violation of usage protocols at compile-
time. Using Plaid’s typestate mechanism [ASSS09], the BufferedReader usage
protocol can be modeled like this:

1.1. Typestate 3

1 state MarkedReader {
2 var I n t eg e r markPosit ion ;
3 method void r e s e t () [MarkedReader >> MarkedReader] ;
4 method void mark () [MarkedReader >> MarkedReader] ;
5 }
6

7 state UnmarkedReader {
8 method void mark () [UnmarkedReader >> MarkedReader] ;
9 }

Listing 1.2: Usage protocol modeling using typestate.

In this Plaid snippet, two states called MarkedReader and UnmarkedReader are
defined which represent the two states in figure 1.1. States look a lot like classes
in conventional object-oriented programming languages and just like them can
contain method and field definitions. Plaid uses the keyword var to declare a mu-
table variable that can be reassigned later whereas val indicates that the variable
cannot be reassigned. Method definitions always start with the keyword method.
Note that even functions in the global namespace are thought of as being part of
a global object and are therefore also called methods and defined with the method

keyword. In the following, “global method” and “global function” will be used
interchangeably.

The bracket notation after the method definitions expresses the state transition
and as such the pre and post conditions of the methods. For example, a call to
mark() in state UnmarkedReader transitions the reader from unmarked to marked.
In the case of methods, the first specified state transition always refers to the
receiver object this. The state transition for mark() could also have been written
as [UnmarkedReader >> MarkedReader this].

Note that the availability of fields and methods is linked to the state which is a ma-
jor difference between working with typestate and using a conventional approach.
For example, the reset() method is only available for objects in state Marke-

dReader. While typestate makes it possible for objects to change their state, this
does not mean that their object identity itself changes. If the programmer tries
to call reset() on an object whose state is still UnmarkedReader, this is a com-
pile time error because as an object’s typestate is tracked statically, the compiler
knows that the UnmarkedReader state does not define a reset() method. Simi-
larly, the markPosition field only exists in the MarkedReader state and trying to
access it in the other state is a compile time error as well.

In a conventional programming language like Java, this explicit modeling of states
would not have been possible. Here, the programmer could have modeled the
state implicitly by using the markPosition field as an indicator which state the
object currently is in. In that case, some special value like −1 indicates the
state UnmarkedReader and a value ≥ 0 indicates that mark() has been called.
However, the disadvantages of this are obvious, as markPosition can be accessed
and possibly changed even if the object is in state UnmarkedReader. The same
reasoning applies to the methods and their specified state transitions. Without the
typestate mechanism, the programmer needs to add checks for protocol compliance

4 1. The Plaid Programming Language

herself, i.e. check for markPosition 6= −1 at the start of reset(). As mentioned
before, all these checks are performed at runtime as opposed to the static checking
which is possible with typestate support.

1.2 Access Permissions

While statically tracking the state of objects provides a lot of additional infor-
mation at compile time, it is extremely difficult to do without further measures.
The main problem is aliasing, i.e. the existence of multiple references to the same
object. In the case of typestate tracking, aliasing makes it extremely hard to
guarantee a certain state for the referenced object.

1 method void f oo (A x) {
2 bar () ;
3 }

Listing 1.3: Aliasing problem.

Consider listing 1.3 where state A for x cannot be guaranteed any more after the
call to bar finished because an alias to x could have been stored inside a global
variable. The function bar could have used that global reference to alter the
state of the object that is also referenced by x. One way out of this dilemma is
to restrict aliasing which of course also restricts the developer and limits their
flexibility while writing programs.

The idea of access permissions [BA07] is to combine access control and aliasing
information into one concept. A permission is able to track how the current ref-
erence is allowed to access the referenced object and also contains information
about how the object might be accessed by other references. Working with access
permissions requires each reference to be associated with such an access permis-
sion. For sake of brevity, “unique reference” is used as an equivalent to “unique
permission to a reference”. The different permissions will be discussed in more
detail in the following paragraphs. In the figures, solid lines represent references
that grant read/write access and dashed lines represent references that only grant
non-modifying access to the object.

Unique

A unique reference [Boy03] to an object guarantees that at this moment in time,
this is the only reference to that object. Therefore, the owner has exclusive access
to this particular object. Figure 1.2 illustrates the situation. In the case of unique,
there is only one reference which grants full read/write access.

1.2. Access Permissions 5

me
Object

Figure 1.2: Unique access permission.

Immutable

An immutable reference [Boy03] to an object guarantees that at this moment in
time, no reference with read/write permission to the object exists. This means
that the user’s reference itself does not grant modifying access. Note that, like
shown in figure 1.3, immutable does not restrict the number of immutable refer-
ences to an object that can exist at the same time.

me
Object

them1

them2

themn−1

themn

. . .

Figure 1.3: Immutable access permission.

Shared

A shared reference [DF04] to an object grants modifying access to the object
while making no further claims about other possible references to the object.
It is thus possible that other references with read/write permission, like other
shared references, to the same object exist. Like figure 1.4 shows, shared allows an
arbitrary number of other references with or without write access to the object.

me
Object

them1

them2

themn−1

themn

. . .

Figure 1.4: Shared access permission.

Full

A full reference [Bie06] to an object provides modifying access to the object, but
in contrast to shared, it guarantees that no other references exist to that object
which grant read/write access. As figure 1.5 illustrates, full does not restrict the
number of other references but requires all of them to be read-only.

6 1. The Plaid Programming Language

me
Object

them1

them2

themn−1

themn

. . .

Figure 1.5: Full access permission.

Pure

A pure reference [Bie06] to an object provides read-only access to the object and,
as shown in figure 1.6, does not restrict the number and quality of other references.
It is thus an access permission with very weak guarantees.

me
Object

them1

them2

themn−1

themn

. . .

Figure 1.6: Pure access permission.

None

A none reference to an object provides neither read nor write access to the object.
This may seem useless on the first glance but as the reference still points to a lo-
cation in memory, having none references can be useful. As a none permission still
points to a specific object, it can for example be used to get a particular object
out of collection of unique objects like demonstrated in [ASSS09].

Obviously, not all of the access permission types are compatible with each other.
An immutable reference to an object for example can never coexist with a reference
that allows write access. Table 1.1 sums up the properties of the permission
types again and additionally gives an overview of the compatibility amongst access
permissions.

One way to think about access permissions is to consider them resources that can
be consumed and produced. Therefore, access permission lend themselves very
well to being modeled with linear logic [Gir87]. Linear logic can be used to reason
about resources within the logic itself. For example, in linear logic the usual
implication A ⇒ B is replaced by linear implication A (B which consumes its
input A and produces the output B. Thus the input is not available any more
after it has been transformed. This is an important difference between linear logic
and classical logic. In classical logic, it is possible to conclude A ∧ B from A
and A ⇒ B whereas linear logic only allows to conclude B from A and A (B
because A is consumed in the process.

1.2. Access Permissions 7

Permission kind This reference Other references Compatible permis-
sion types

unique read/write none none
full read/write read-only pure, none
shared read/write read/write shared, pure, none
immutable read-only read-only immutable, pure, none
pure read-only read/write full, shared, im-

mutable, pure, none
none none read/write unique, full, shared,

immutable, pure, none

Table 1.1: Access permission taxonomy.

Just as in linear logic where, once a resource has been consumed, it is no longer
available, access permissions are consumed upon using them. Otherwise permis-
sions could be freely duplicated and the guarantees regarding other references to
the same object would not hold. For example, duplicating a unique permission
immediately violates the uniqueness guarantee. Thus, a unique permission to an
object is consumed as soon as the referenced object is accessed and a new access
permission needs to be produced by the operation. If no new permission were
produced, access to the object would be lost. This is also reflected by the way
method signatures in Plaid are defined. Because access permissions play a central
role in Plaid, they are integrated in the type system. Hence, the type of an object
reference in Plaid is always a tuple and consists of a permission and the actual
object type of the referenced object.

1 method void modify (unique Object >> unique Object x) ;
2 method void main () {
3 val unique Object o = new Object ;
4 modify (o) ;
5 modify (o) ;
6 }

Listing 1.4: Method signature in Plaid showing the resource-like nature of access
permissions.

In listing 1.4, a method modify is defined which takes a unique reference to its
argument and gives it back after the method body has been executed. This is
expressed by the pre-condition >> post-condition syntax which specifies the pre-
conditions and the post-conditions of the method. In the body of the main method,
a local variable o of type unique Object is defined and then initialized with a
newly constructed object. The assignment is valid because at this point in time,
the reference returned by the new expression clearly is the only reference to the new
object. After the initialization, the previously defined modify method is called.
Following the resource interpretation of access permissions, the call consumes
the unique permission to o and hands it to the called method. After modify

returns, a unique permission to o is produced as specified by modify’s method
signature. Because the permission is recovered, it is possible to call modify again.

8 1. The Plaid Programming Language

By convention, the signature of a method that does not change its argument’s
permission is often abbreviated by leaving out the part after the >> sign. Hence,
the modify method could also have been written method void modify(unique

Object x).

Consider a different example, shown in listing 1.5.

1 method void read (immutable Object >> immutable Object x) ;
2 method void pushOnStack (immutable Object >> none Object x) ;
3 method void main () {
4 val unique Object o = new Object ;
5 pushOnStack (o) ;
6 read (o) ;
7 }

Listing 1.5: Splitting example.

Here, two methods are defined. read, that does not modify its argument, takes
an immutable permission and returns an immutable permission. And pushOnStack

which saves the reference to its argument in a stack data structure.

Passing a unique permission to o to pushOnStack, as is done in main, is intuitively
no problem because a unique permission is stronger than an immutable permission.
A unique reference guarantees that no other references exist whatsoever, thereby
automatically also satisfying immutable’s requirement that no other reference with
modifying access exists. However, because capturing the reference by putting it in
a data structure consumes the access permission, pushOnStack just returns a none
permission as specified by the post condition in the method signature. Hence, the
following call to read is illegal because read requires an immutable permission
where only a none permission is available. Intuitively, this program should work
because the call to pushOnStack does not require a unique permission to o at all.
If it were somehow possible to convert the unique permission into two immutable
permissions and use one of these for each method call, the program would be
valid. But it is unclear how this conversion can be modeled while preserving the
guarantees of the different types of access permissions.

The answer to this question is called permission splitting. As demonstrated be-
fore, some permissions are intuitively stronger than others; for example unique is
stronger than immutable. Instead of passing a unique permission as an immutable
in listing 1.5, the unique permission is split into two immutable permissions. One
of those permissions remains at the call site while the other permission is passed to
the called method. It is important that splitting needs to preserve the guarantees
that are associated with the permissions. For example, it is illegal to split a unique
into two unique permissions or a full permission into a full and an immutable.

Figure 1.7 lists some legal permission split rules. The variable Π stands for an
arbitrary permission type.

A good visualization of the access permissions in a program is a permission flow
graph like the one shown in figure 1.8. The nodes of the flow graph are the
operations in the program that consume and produce permissions; for example

1.2. Access Permissions 9

unique(x) V full(x) / pure(x)

unique(x) V immutable(x) / immutable(x)

full(x) V shared(x) / shared(x)

full(x) V shared(x) / pure(x)

full(x) V immutable(x) / immutable(x)

immutable(x) V immutable(x) / pure(x)

immutable(x) V immutable(x) / immutable(x)

shared(x) V shared(x) / pure(x)

shared(x) V shared(x) / shared(x)

pure(x) V pure(x) / pure(x)

Π(x) V Π(x) / none(x)

Figure 1.7: Legal permission split rules.

split

pushOnStack

 immutable(o)

r ead

 immutable(o)

..

new Object

 unique(o)

 none(o) immutable(o)

Figure 1.8: Permission flow graph for example from listing 1.5.

function calls. When a permission split happens, this is indicated by a special
split node which is inserted into the permission flow. Incoming edges of a node
represent the permissions that are consumed by the operation and outgoing edges
represent the produced permissions. All edges are annotated with the permission
type and the name of the reference that this permission is associated with.

If permissions are split during the execution of a program, this immediately raises
the question of whether the original permission can somehow be recovered later.
Listing 1.6 gives an example where permission restoration is necessary for the
program to compile.

10 1. The Plaid Programming Language

1 method void read (immutable Object >> immutable Object x) ;
2 method void modify (unique Object >> unique Object x) ;
3

4 method void main () {
5 val unique Object o = new Object ;
6 read (o) ;
7 modify (o) ;
8 }

Listing 1.6: Motivation for permission joining.

In this example, a new object is created. Subsequently, the object is passed to a
method which performs a read-only operation on it followed by call that modifies
the object. Following the permission splitting mechanism, the unique permission is
split into two immutable permissions before read is called. After the call finished,
however, the permission system is confronted with the problem of having two
immutable permissions where one unique permission is needed for the modify call.
It is intuitively clear that combining both immutable permissions back into one
unique permission would make sense in this case.

In the following, this combination operation will be called permission joining.
But although joining might intuitively make sense here, it is not always allowed.
The reason for this is that an immutable permission can be split into an arbitrary
number of immutable permissions, as can be seen when looking at the split rules in
figure 1.7. Hence, it is unsound to allow the reconstruction of a unique permission
out of two immutable permissions because, without further measures, it is unknown
how often those permissions have been split in the meantime. If three immutable
references to same object are created via splitting and two of them are recombined
into a unique reference, the resulting situation violates the permission guarantees.

One way to deal with this problem is fractional permissions [Boy03]. Fractional
permissions are like regular access permissions but are additionally annotated
with a fraction that keeps track of how often a certain permission has been split.
By definition, a unique permission carries a full fraction represented by one (1).
If a permission is split, its associated fraction is divided by two and distributed
amongst the resulting permissions. To join two permissions, their fractions are
added and used as the fractional value for the resulting permission. This allows
the definition of combined splitting and joining rules which work as follows.

Figure 1.9 shows legal rules that combine splitting and joining, as indicated by
the double arrows. The variable β in a rule indicates that the rule applies to
any fractional value. Through the introduction of fractions, it becomes possible
to solve the problem demonstrated in listing 1.6. The permission flow graph
illustrating the splitting and joining of permissions is shown in figure 1.10.

Note that this example requires that immutable Object >> immutable Object

x implicitly means that exactly the same fraction is returned. This convention
is called borrowing. With fractional permissions, this could be made clearer by
extending the syntax to allow the expression of the fraction part of a reference
in a method signature like immutable<k> Object >> immutable<k> Object x.

1.2. Access Permissions 11

unique(x, 1) WV full(x, 1/2) / pure(x, 1/2)

unique(x, 1) WV immutable(x, 1/2) / immutable(x, 1/2)

full(x, β) WV immutable(x, β/2) / immutable(x, β/2)

immutable(x, β) WV immutable(x, β/2) / pure(x, β/2)

immutable(x, β) WV immutable(x, β/2) / immutable(x, β/2)

shared(x, β) WV shared(x, β/2) / pure(x, β/2)

shared(x, β) WV shared(x, β/2) / shared(x, β/2)

pure(x, β) WV pure(x, β/2) / pure(x, β/2)

Π(x, β) WV Π(x, β) / none(x, 0)

Figure 1.9: Legal rules for fractional permissions combining splitting and joining.

split

join

 immutable(o, 1/2) r ead

 immutable(o, 1/2)

modify

 unique(o, 1)

.. .

new Object

 unique(o, 1)

 unique(o, 1)

 immutable(o, 1/2)

Figure 1.10: Permission flow graph demonstrating fractional permissions.

The parameter k requires both immutable references to have exactly the same
fractional part.

If borrowing is enforced for all methods or if there exists some way of marking
a method parameter as borrowed, permission joining becomes possible even in a
permission system without fractions. However, to preserve soundness, the system
must differentiate between a borrowed and a non-borrowed permission on a fun-
damental level. Not all operations are allowed using a reference that is annotated

12 1. The Plaid Programming Language

with a borrowed permission. For example, borrowed permissions must not be
passed to methods that do not borrow the permission.

1.3 Gradual Typing

Gradual typing [Sie] is a type system that allows the programmer to mix dynami-
cally and statically typed code. Such a type system is flexible enough to enable the
programmer to remove type annotations from statically typed program parts and
still get a valid program. There has been much discussion about whether static
or dynamic type checking is the better choice for developing software. While the
question can certainly not be answered in general, there are certain advantages to
both approaches.

Static type checking catches certain types of bugs earlier, thereby greatly assisting
the developer in avoiding finding bugs late in the development cycle. A typical
situation is the application of a binary operation ⊕ to two operands whose types
are incompatible. In this case, the difference between dynamic and static checking
is that in the static case the program will not compile, whereas in the dynamic case
a runtime error will be raised upon execution of the binary operation. If such a bug
is located in a code path that is executed very rarely and a dynamic type system
is used, the fault can linger in the code unnoticed by the programmer for a long
time. In the worst case, the fault is not discovered during testing and the program
fails in production use. Additionally, static type systems support the optimization
phases of the compiler by giving it enough information about variables to exploit
specialized functional or storage units which might be available on the current
architecture.

On the other hand, dynamic type systems are generally regarded as more flexible
when it comes to modifying the program to react to changed requirements. In a
statically typed setting, the programmer has to change the program into a form
which is accepted by the type checker first. Furthermore, dynamic type checking
facilitates certain situations where variable types depend on runtime information,
for example when assigning the return value of a user entry to a variable.

Keeping this in mind, it seems like a good idea to try to support both static and
dynamic type checking and let the user decide what is most appropriate given the
current situation. A gradual type checker can handle programs where parts have
been annotated with types and other parts have not.

1.4. Æminium 13

1 method void incT (immutable I n t eg e r x) {
2 x + 1 ;
3 }
4

5 method void i n c (dyn x) {
6 x + 1 ;
7 }
8

9 state S {
10 }
11

12 method void main () {
13 incT (new S) ;
14 i n c (new S) ;
15 }

Listing 1.7: Gradual typing in Plaid.

Listing 1.7 shows an example of gradually typed Plaid code. Both versions of the
inc method contain the same code: they both apply the binary + operator to their
argument x with the other operand being the constant 1. The first inc method,
however, does not require its argument to be of a certain type as expressed by the
keyword dyn2. The second method, incT, does specify a type annotation for its
argument.

While type checking the main method, the type checker will report a type error
for the call to incT but not for the call to inc although both contain the same
code. This is because when checking the call to incT, the type checker can use
the information from incT’s signature and knows that the argument has to be
of type immutable Integer. Here, the argument has an object type that is not
equal to immutable Integer and the type checker will therefore report an error.
For inc, the type checker does not have static type information about x, so it will
defer type checking to runtime.

1.4 Æminium

The idea of the Æminium project [SMA09, SAM10] is to exploit additional infor-
mation available to the compiler in the form of access permissions to automatically
parallelize code. Instead of using the sequential order in which code is written to
implicitly express dependencies, permissions are used to make those dependencies
explicit. This makes it possible to declare concurrent execution to be the default,
to the extent permitted by the dependencies in the program. Thus unlike in Plaid,
the motivation for introducing access permissions in the language is not to support
the compiler in tracking the typestate of objects but to enable the programmer
to express dependencies between operations.

Although Æminium’s ideas represent the foundations of one of the key features
of Plaid, it is an independent project from Plaid. The Æminium approach can

2Actually, even dyn can be omitted here. The type is automatically assumed to be dyn in this
case.

14 1. The Plaid Programming Language

be applied to any programming language that builds access permissions into the
language. As shown in figure 1.11, Æminium’s general design includes two ma-

ÆMINIUM
Compiler

Data Flow
Graph

ÆMINIUM
Source Code

Computing
Resources

ÆMINIUM
Runtime

Figure 1.11: Æminium pipeline.

jor components: the compiler and the runtime system. The compiler’s task is to
analyze the permission flow inside the program and to compute the dependencies
between different parts of the program. Those parts are then packed into tasks
which each encapsulate a certain part of the functionality of the program. To-
gether with their inter-task dependencies, the set of tasks forms a data flow graph
which is handed to the runtime for execution. The runtime is responsible for ex-
ecuting the individual tasks with the maximum amount of concurrency allowed
by the assigned task dependencies and the currently available hardware resources.
Æminium’s runtime system is discussed in further detail in section ??.

1.4.1 Making Implicit Dependencies Explicit

One of the main problems when dealing with concurrency is shared state. Shared
state is state, i.e. a chunk of memory, that is shared between different code parts
which run in parallel. For example, two or more threads could have access to the
same variable. If at least one of the participating threads has the right to modify
the variable contents, this opens the window for data races. Data races are situa-
tions where multiple threads access and manipulate the same data concurrently,
and the result of the execution depends on the order in which the accesses took
place. In order to prevent data races, accesses need to be synchronized with special
means like locks or transactional memory. Manually managing the synchroniza-
tion is notoriously complicated and leads to a considerable portion of bugs in
concurrent applications. As soon as the programmer fails to protect shared state
against concurrent modifications, the program contains a bug that is potentially
very hard to find and can cause data corruption or program crashes.

But shared state also causes a lot of trouble for compilers that try to parallelize
code. In a world without state this parallelization is relatively easy: pure func-
tional programming languages do not allow functions to have side effects. This
means that two functions cannot interfere with each other as it is impossible for
them to access shared state. Hence, the compiler is free to execute functions in
parallel to the extent permitted by data dependencies in the program.

However, a lot of situations can be modeled more easily with a stateful design,
so the compilers for most programming languages need to deal with state. The
main problem why parallelization in the presence of state is hard, is because

1.4. Æminium 15

there exist implicit dependencies between code and state. Functions can change
arbitrary state, for example global variables, without specifying any of this in
their signature. If two functions are called in a piece of code and the compiler
wants to execute them in parallel, it has to be sure that they do not access shared
state in an unsynchronized manner; otherwise the program semantics would not
be preserved by the parallelization. But because of this lack of information about
possible side effects of functions, the compiler has to stick to the execution order
defined by the order of calls.

In Æminium, access permissions are used to make those implicit dependencies
explicit. It forces a function to specify all side effects, i.e. all of the state it
accesses, by requiring it to have an access permission available to each piece of
state that is accessed. If a function tries to access state which has not been
specified in its signature, a compile time error is reported. Hence, Æminium builds
a permission-based effect system. An effect system is a formal system that allows
the specification of the computational effects of computer programs in general and
of functions in particular.

1.4.2 Unique and Immutable

Viewed from a concurrency perspective, unique and immutable exhibit very inter-
esting properties. For unique, it is not necessary to protect the referenced object
against concurrent modifying access because as exactly one reference exists, there
cannot be competing accesses to the object. In the case of immutable references,
a similar reasoning applies. As this permission type guarantees that no refer-
ence with modifying access exists, a data race is impossible; so again, objects
do not need to be protected in any way against concurrent accesses. This is an
extremely valuable piece of information if the compiler tries to perform automatic
parallelization. Consider the sample application shown in listing 1.8.

1 method unique Histogram computeRedHistogram (immutable RGBImage m) ;
2 method unique Histogram computeGreenHistogram (immutable RGBImage m) ;
3 method unique Histogram computeBlueHistogram (immutable RGBImage m) ;
4 method void e qua l i z e (unique RGBImage m, immutable Histogram r ,
5 immutable Histogram g , immutable Histogram b) ;
6

7 method unique RGBImage h i s togramEqua l i za t ion (unique RGBImage m) {
8 val r = computeRedHistogram (m) ;
9 val g = computeGreenHistogram (m) ;

10 val b = computeBlueHistogram (m) ;
11

12 e qua l i z e (m, r , g , b) ;
13 }

Listing 1.8: Plaid/Æminium code for performing histogram equalization on a color
image.

In this piece of code, a histogram equalization is performed on a color image. An
image histogram is a representation of the brightness distribution in a grayscale
digital image and basically records the number of pixels with a given brightness. So

16 1. The Plaid Programming Language

for an eight-bit grayscale image, the histogram can be represented by a table with
28 = 256 entries where entry ei contains the number of pixels with brightness i. For
an RGB color image, the histograms of the three color channels are often computed
independently. This works because each color channel can be viewed as a grayscale
image. Histogram equalization is an operation that tries to increase the contrast
of an image by spreading out the intensity values that occur most frequent. As its
name suggests, histogram equalization works based on the histogram of the image;
in the case of a color image it uses the histograms of all three color channels.

As the method signatures in listing 1.8 indicate, computing a histogram does not
modify an image, which is why the matching methods all require an immutable per-
mission to the image. The actual contrast modification performed in the equalize
method does change the image contents and thus requires a unique permission.
The body of histogramEqualization is straightforward: the histograms for all
three color channels are computed and then passed to the equalize method. The
matching permission flow graph is shown in figure 1.12. Note, however, that it
has been idealized in two ways for presentation reasons. Firstly, the call to com-

puteBlueHistogram would normally also be preceded by a split node which has
been omitted to reduce the size of the graph. Secondly, for the same reason, the
permission splitting for r, g and b has been omitted. As can be deduced from
the method signatures, all three reference have the type unique Histogram but
are passed as immutable Histogram to equalize. So to be exact, there would
be four additional split nodes and four additional join nodes in the graph.

If the permission flow graph in figure 1.12 is interpreted from a concurrency per-
spective, it becomes clear that it lets the compiler identify independent operations.
In this case, the independent operations are the three calls to the compute meth-
ods. This is also apparent in the graph, as there are no edges that directly connect
the nodes representing the calls. The reason for this is that because they all take
an immutable permission and do not specify any other side effects, the order of
their execution is not important. Therefore, it is legal for the compiler to gener-
ate code that executes all three method calls in parallel. For example, it could
generate code that assigns each execution of a method call to a different thread.
In terms of the Æminium runtime, each method invocation could be packed into
a task and handed off to the runtime. As each task is associated with a set of
dependencies on other tasks, it becomes possible for the runtime to execute tasks
concurrently while preserving the correct semantics of the program.

1.4.3 Shared Permissions

While working with unique and immutable works very well in the shown examples,
just two permission types are not flexible enough in most cases. Take for example
a non-circular doubly-linked list. The inner list nodes which carry the values that
are saved in the list each contain two references, one for the previous and one
for the next list node. This also means that each inner list node is referenced by

1.4. Æminium 17

split1

split2

 immutable(m)

computeRedHistogram

 immutable(m)

computeGreenHis togram

 immutable(m)

computeBlueHistogram

 immutable(m)

join1

join2

 immutable(m)

equal ize

 unique(m)

.. .

 unique(m)

.. .

 immutable(m) immutable(m) immutable(m)

 unique(m)

Figure 1.12: Permission flow inside the histogramEqualization method.

exactly two other list nodes. Hence, those references cannot be unique references
because they point to the same object. But if they are immutable, all references to
the list node have to be read-only and it becomes impossible to update the value
stored inside that specific node. Æminium uses shared permissions to allow the
modeling of shared state.

As discussed in section 1.2, shared permissions allow the existence of multiple
references with read/write permission at the same time. Therefore, objects refer-
enced through a shared reference must be protected against data races. For this
purpose, Æminium introduces an atomic block statement.

18 1. The Plaid Programming Language

1 method void modify (shared Object >> shared Object o) {
2 atomic {
3 // Do something with o
4 }
5 }
6

7 method void main () {
8 val unique Object o = new Object ;
9 modify (o) ;

10 modify (o) ;
11 }

Listing 1.9: Example use of the atomic block statement.

Listing 1.9 shows an example usage of atomic. Here, a new object is created and
then used as an argument for calling the modify method twice. In contrast to
prior examples, the method now requires a shared permission to its argument. As
a unique permission can be split into two shared permissions, it is possible to feed
one shared permission to each method call and thus execute them in parallel. The
parallelism is safe in this example because access to the shared object is protected
by atomic.

Note that the way the atomic statement is actually implemented under the covers
is important for the semantics of the program. Æminium suggests using transac-
tional memory semantics for atomic. However, in an actual implementation of the
Æminium system, the designer could, for simplicity reasons, choose to first imple-
ment it using regular locks and then later switch to a transactional memory-based
implementation. While both alternatives provide adequate protection against data
races, they differ in various ways. Transactional memory semantics makes it diffi-
cult to allow the full spectrum of operations inside the atomic block. For example,
I/O operations must either be forbidden inside atomic blocks or be handled as a
special case which introduces additional complexity into the system. On the other
hand, lock-based implementations are far more likely to lead to a deadlock.

1.4.4 Data Groups

Often, multiple objects are tightly connected and together form a more complex
object, for example a data structure. In this case, managing the access to indi-
vidual objects using atomic blocks is not necessarily safe. Take the linked list
example again. Suppose the linked list contains ten elements of the form shown
in listing 1.10.

1 state ListElement {
2 var shared ListElement next ;
3 var shared ListElement prev ;
4 var unique Value value ;
5 }

Listing 1.10: State representing an element of a doubly-linked list.

Further suppose that the elements in the list shall be sorted. The sort operation
relies on the values that are saved in the ListElement objects. Thus, those

1.4. Æminium 19

objects must not be modified while the sorting process is still in progress. As
the list elements are all referenced through shared references, this means that
the programmer has to synchronize separately on each list element object. This
is tedious and possibly unsafe because it cannot be guaranteed that the whole
sort() operation is atomic even if every access to a shared object is protected by
an atomic block.

Therefore, Æminium introduces the notion of data groups [Lei98]. A data group
represents a set of objects. In the original work, data groups are used to partition
the state of one object. For example, for an object that represents a circle that
is drawn on the screen, the state could be partitioned into a data group posi-

tion containing the coordinates x and y and a second data group properties

containing the color of the circle.

In Æminium, the concept of data groups is generalized. A data group now provides
an abstract grouping for multiple objects that are somehow related but these
objects do not necessarily need to form the state of one object. Each object that
is referenced through a shared reference must be part of exactly one data group
which is called the owner or owning data group of that particular object. To make
this relationship also apparent in the syntax, shared<G> is written to express that
the referenced object is part of the data group G. This also means that all shared
references to an object must be associated with the same data group. The owner
group therefore functions as a container for all shared references to an object.
Applying the idea of data groups to the linked list example is straightforward, as
the programmer can now put all objects that the list’s state consists of, i.e. all its
list elements, in one data group and then synchronize access to the whole group
conveniently by referring to the data group.

Data groups also provide a natural way of partitioning the heap. Because objects
cannot be contained in more than one data group, two distinct data groups always
contain disjoint sets of elements. This property becomes very important when
two operations are executed on two data groups and it needs to be determined
if it is safe to execute both operations in parallel. Because of the disjointness
of distinct data groups, concurrent execution is allowed unless there exist other
dependencies, for example induced by accessing a unique reference, that prevent
parallel execution.

In order to address the problem of controlling access to objects contained in a data
group as demonstrated by the sorting example, the concept of access permissions is
applied to data groups. Quite similar to access permissions which provide aliasing
information and access control for single objects, data group permissions provide
the same for data groups. The three data group permission types exclusive, shared
and protected will be explained in more detail in the following paragraph.

Exclusive: An exclusive data group permission resembles a unique access permis-
sion in that there exists at most one exclusive permission to a data group at
the same time. If an exclusive data group permission exists, it is therefore the
only way to access the data inside the data group. Seen from a concurrency

20 1. The Plaid Programming Language

standpoint this means that unsynchronized access to all objects in the data
group is safe.

Shared: A shared group permission is defined analogously to a shared access per-
mission and allows an arbitrary number of other shared group permissions to
that data group to exist at the same time. Because of this weaker guaran-
tee, it is not safe to access any object inside the data group without proper
synchronization. Therefore having a shared permission does not let the user
access any object inside the group.

Protected: A protected group permission can be created by protecting access to
a shared data group using the atomic block statement. The runtime system
ensures that only one protected permission to a data group exists at a time
in the whole system.

In contrast to access permissions, group permissions are not automatically split
and joined. To split an exclusive permission into an arbitrary number of shared
group permissions, the share block construct can be used. share supplies each
statement in the block with its own shared permission to the group. The state-
ments in the block can also depend on other regular access permissions and the
usual splitting and joining rules apply. However, if multiple statements require a
unique permission to the same object, this is regarded as a static error. Permissions
that are available but are not mentioned in the share block are left untouched. At
the end of the share block, the shared group permissions are recombined into the
group permission that was present when the block was entered. As shared group
permissions behave exactly like shared access permissions in terms of splitting,
share can also be used to further split a shared group permission.

A shared group permission, however, does not grant access to the objects contained
in the associated data group because unsychronized access creates the possibility
of data races. First, the shared permission must be transformed into a protected
permission by using an atomic block statement. The atomic statement is ex-
tended to allow the programmer to refer to the specific data group they want
to protect. Just like a shared permission can be treated like a unique permission
inside an atomic block, a protected group permission is treated as an exclusive per-
mission, thus providing the illusion of exclusive access to the data group. Upon
reaching the end of the atomic block, the group permission is reverted to the state
it was in when the block was entered.

1 // e x c l u s i v e permiss ion to G
2 share (G) {
3 // shared permiss ion to G
4 atomic (G) {
5 // pro t ec t ed permiss ion to G
6 }
7 // shared permiss ion to G
8 }
9 // e x c l u s i v e permiss ion to G

Listing 1.11: Different group permission states.

1.4. Æminium 21

Manual splitting and joining enables the programmer to directly influence the
order in which operations are executed. Thereby they are able to express higher-
level dependencies that are not represented by data dependencies in the program.
Listing 1.12 illustrates such a situation when the non-existence of data groups is
assumed.

1 method void r e g i s t e r (shared Subject s , unique Observer >> none Observer o) ;
2 method void update (shared Subject s) ;
3

4 method void main () {
5 val unique Subject s = new Subject ;
6 val unique Observer o1 = new Observer ;
7 val unique Observer o2 = new Observer ;
8

9 r e g i s t e r (s , o1) ;
10 r e g i s t e r (s , o2) ;
11 update (s) ;
12 update (s) ;
13 }

Listing 1.12: Concurrent observer without data groups.

In this example, a subject and two observers are created. Following the standard
observer design pattern, the subject maintains a list of observer object that are
interested in state changes of the subject. In this case it keeps a list of unique
references to observer objects. As soon as the subject changes, it notifies all reg-
istered observers. To allow the maximum amount of concurrency in this example,
both register and update take shared references to the subject. This permits the
addition of observers in parallel to sending of notifications to already registered
observer objects.

However, all function calls just depend on the initialization of s; there are no data
dependencies amongst the function calls. Therefore, because of nondeterminism,
it is now possible that updates are sent before any observers are registered and
thus the messages are lost. Hence, the programmer needs a way to express the
high-level dependency that the calls to update should only happen after the calls
to register have been completed. Assuming the subject s is part of the data
group G, the share construct makes it possible to implement this, as shown in
listing 1.13. Because an exclusive group permission to G is recovered between the
two share blocks, this makes the second block dependent on the first one, thereby
enforcing the desired execution order.

1 share (G) {
2 r e g i s t e r (s , o1) ;
3 r e g i s t e r (s , o2) ;
4 }
5 share (G) {
6 update (s) ;
7 update (s) ;
8 }

Listing 1.13: Concurrent observer with data groups.

Figure 1.13 sums up the different types of access and group permissions that ex-
ist in Æminium. Solid arrows represent access or data group permissions. The

22 1. The Plaid Programming Language

numbers on the solid arrows specify the multiplicity of the relationships, i.e. there
can either be one unique permission to an object or an arbitrary number of shared
permissions, as expressed by n, or an arbitrary number of immutable permissions.
Dotted arrows represent the possible transitions between the access permissions
or data group permissions. As mentioned before, an access permissions can be
converted to another type of access permission by splitting or joining. Group per-
missions are converted via the share and atomic constructs. The dotted arrows
are annotated with the necessary action that induces the permission conversion.
The /share syntax expresses the end of a share block.

Object o

uniqueshared〈G〉 immutable

1 nn

Group G

exclusive shared protected

Object o Object o

split split

join join

1
Group G Group G

1nshare atomic

/share /atomic

Figure 1.13: Different types of permissions in Æminium.

In section ??, the further integration of Æminium into Plaid is described.

Bibliography

[ASSS09] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks.
Typestate-oriented programming. In Proceeding of the 24th ACM SIG-
PLAN conference companion on Object oriented programming systems
languages and applications, OOPSLA ’09, pages 1015–1022, New York,
NY, USA, 2009. ACM.

[BA07] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of
aliased objects. SIGPLAN Not., 42:301–320, October 2007.

[Bie06] Kevin Bierhoff. Iterator specification with typestates. In Proceedings
of the 2006 conference on Specification and verification of component-
based systems, SAVCBS ’06, pages 79–82, New York, NY, USA, 2006.
ACM.

[Boy03] John Boyland. Checking interference with fractional permissions. In
Proceedings of the 10th international conference on Static analysis,
SAS’03, pages 55–72, Berlin, Heidelberg, 2003. Springer-Verlag.

[DF04] Robert DeLine and Manuel Fähndrich. Typestates for objects. In Euro-
pean Conference on Object-Oriented Programming, ECOOP ’04, pages
465–490, Berlin, Heidelberg, 2004. Springer-Verlag.

[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, January
1987.

[Lei98] K. Rustan M. Leino. Data groups: specifying the modification of ex-
tended state. SIGPLAN Not., 33:144–153, October 1998.

[PG10a] The Plaid Group. The Plaid language: Dynamic core specifica-
tion. http://plaid-lang.googlecode.com/hg/docs/spec/current/

current.pdf, June 2010.

[PG10b] The Plaid Group. The Plaid programming language. http://www.

plaid-lang.org, 2010.

[SAM10] Sven Stork, Jonathan Aldrich, and Paulo Marques. µAEminium lan-
guage specification. Technical Report CMU-ISR-10-125R, Carnegie
Mellon University, October 2010.

[Sie] Jeremy Siek. What is gradual typing? http://ecee.colorado.edu/

~siek/gradualtyping.html.

http://plaid-lang.googlecode.com/hg/docs/spec/current/current.pdf
http://plaid-lang.googlecode.com/hg/docs/spec/current/current.pdf
http://www.plaid-lang.org
http://www.plaid-lang.org
http://ecee.colorado.edu/~siek/gradualtyping.html
http://ecee.colorado.edu/~siek/gradualtyping.html

24 Bibliography

[SMA09] Sven Stork, Paulo Marques, and Jonathan Aldrich. Concurrency by
default: using permissions to express dataflow in stateful programs. In
Proceeding of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications, OOPSLA
’09, pages 933–940, New York, NY, USA, 2009. ACM.

[SY86] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Softw. Eng.,
12:157–171, January 1986.

	1 The Plaid Programming Language
	1.1 Typestate
	1.2 Access Permissions
	1.3 Gradual Typing
	1.4 Æminium
	1.4.1 Making Implicit Dependencies Explicit
	1.4.2 Unique and Immutable
	1.4.3 Shared Permissions
	1.4.4 Data Groups

