
:

A Resource-Based Language

Jonathan Aldrich

Carnegie Mellon University

University of Lisbon Talk

May 21, 2010

Resource Composition

• Modern programming – composition of programs from parts

– Less emphasis on algorithms / data structures

– Challenge: is that composition correct?

• Resource composition both important and difficult

– Resource: stateful object whose use is constrained in some way– Resource: stateful object whose use is constrained in some way

– Example constraints: initialization, cleanup, lifecycle,

coordination among threads

– Even more challenging in a concurrent environment

• Scientific question

– Could designing a language around resources help us to compose

software more correctly and effectively, in a concurrent setting?

A Resource-Based Language 2

Java Database Connectivity (JDBC) Library State Space

Resources are Complex

open
closed

forward

Only

scrollable

scrolling

begin validread
noUpdate

A Resource-Based Language 3

readOnly

updatable
inserting

insert inserted

end
notYet

Read

noUpdate

pending

Java Database Connectivity (JDBC) Library State Space

Resources are Complex

open
closed

forward

Only

scrollable

scrolling

begin validread
noUpdate

33 unique states

69 simple state transitions

82 state transitions that depend on the

Statistics

A Resource-Based Language 4

readOnly

updatable
inserting

insert inserted

end
notYet

Read

noUpdate

pending

82 state transitions that depend on the

initial state

11 methods whose result tests the state

18 methods that require a particular state

7 methods that return a result that depends

on the ResultSet remaining in a state

0 methods where state does not matter

State Use in Practice

• Our empirical study found a substantial portion (~15-20%) of

Java classes used or defined a protocol

• Empirically discovered “protocol design patterns”

– Initialization before use – e.g. init(), open(), connect()

– Cleanup – e.g. close()– Cleanup – e.g. close()

– Non-redundancy – can only call a method once, e.g. setCause()

– Boundary check – e.g. hasNext()

– Marker – marks a subset of objects with an interface, e.g. immutable

collections

– Preparation – e.g. call mark() before reset() on a stream

– Matching – two operations called in a balanced way, e.g. lock/unlock

A Resource-Based Language 5

Related Work: Typestate

• Typestate [Strom and Yemeni ’86]
– Captures a resource usage protocol as a set of states, with operations for

each state

• Prior typestate work
– Fugue: extension to objects [Deline & Fähndrich ’04]

– Most systems forbid aliasing, nondeterminism, re-entrancy, concurrency,
dynamic tests, flexible inheritance (all common in practice)

– Very limited experience – only 1 significant case study (ADO.NET)– Very limited experience – only 1 significant case study (ADO.NET)

• Our Plural system had novel approaches to addressing limitations
– State guarantees; state dimensions; new permission kinds; union and

intersection types; re-entrant safe packing; additive conjunction;
supertype invariants [OOPSLA’07]; atomicity [OOPSLA ’08]

• Plural is the first demonstrated to scale to real code [ECOOP’09]
– Specification: JDBC (10 kLOC), Collections, Regular Expressions…

– Verification: PMD (38 kLOC), Apache Beehive (aliasing challenges)

A Resource-Based Language 6

Roadmap

• Introduction

• Typestate-Oriented Programming

• Plaid’s Compositional Object Model

• Parallel by Default Programming /

• Conclusion• Conclusion

A Resource-Based Language 7

Typestate-Oriented Programming

A new programming paradigm in which:

programs are made up of dynamically created objects,

each object has a typestate that is changeable

and each typestate has an interface, representation, and behavior.

– compare: prior typestate work considered only changing interfaces

Typestate-oriented Programming is embodied in the language

A Resource-Based Language 8

Typestate-Oriented Programming

state File {

val String filename;

}

state ClosedFile = File with {

method void open() [ClosedFile>>OpenFile];

}

State

transition

open closed

close()

read()

open()

}

state OpenFile = File with {

private val CFile fileResource;

method int read();

method void close() [OpenFile>>ClosedFile];

}

A Resource-Based Language 9

Different

representation
New methods

Implementing Typestate Changes

method void open() [ClosedFile>>OpenFile] {

this <- OpenFile {

fileResource = fopen(filename);

}

}

Typestate

change

primitive

Values must be

A Resource-Based Language 10

:

Values must be

specified for

each new field

Why Typestate in the Language?

• The world has state – so should programming languages
– egg -> caterpillar -> butterfly; sleep -> work -> eat -> play; hungry <-> full

• Language influences thought [Boroditsky ’09]

– Language support encourages engineers to think about states

• Better designs, better documentation, more effective reuse

• Improved library specification and verification
– Typestates define when you can call read()

11

– Typestates define when you can call read()

– Make constraints that are only implicit today, explicit

• Expressive modeling
– If a field is not needed, it does not exist

– Methods can be overridden for each state

• Simpler reasoning
– Without state: fileResource non-null if File is open, null if closed

– With state: fileResource always non-null

• But only exists in the FileOpen state

A Resource-Based Language

Checking Typestate

method void openHelper(ClosedFile>>OpenFile aFile) {

aFile.open();

}

method int readFromFile(ClosedFile f) {

openHelper(f);

This method

transitions the

argument from

ClosedFile to

OpenFile

Must leave in

the ClosedFile

state

Use the type of
openHelper(f);

val x = computeBase() + f.read();

f.close();

return x;

}

A Resource-Based Language 12

Use the type of

openHelper

f is open so

read is OK

Correct

postcondition; f

is in ClosedFile

Question: How do we

know computeBase

doesn’t affect the file

(thorugh an alias)?

Typestate Permissions
• unique OpenFile

– File is open; no aliases exist

– Default for mutable objects

• immutable OpenFile

– Cannot change the File

• Cannot close it

• Cannot write to it, or change the position

– Aliases may exist but do not matter

File

ClosedFile OpenFile

NotEOF EOF

[Chan et al. ’98]

– Aliases may exist but do not matter

– Default for immutable objects

• shared OpenFile@NotEOF [OOPSLA ’07]

– File is aliased

– File is currently not at EOF

• Any function call could change that, due to aliasing

– It is forbidden to close the File

• OpenFile is a guaranteed state that must be respected by all operations through all aliases

• none – no permission

A Resource-Based Language 13

Roadmap

• Introduction

• Typestate-Oriented Programming

• Plaid’s Compositional Object Model

• Parallel by Default Programming

• Conclusion• Conclusion

A Resource-Based Language 14

Object Model Goals

• Support for object-oriented and functional programming
– Objects and subtyping; functions and type abstraction

• Abstract, flexible interfaces
– Support after-the-fact interface extraction without modifying code

• compare Java: must modify classes to implement the new interface

• Clean, effective code reuse
– Same level of convenience as multiple inheritance– Same level of convenience as multiple inheritance

– Avoid problems like name conflicts, unintentional open recursion

• Flexibility
– Ways to escape from type system when it is too strict

• Information hiding
– Avoid violations of abstraction

• e.g. instanceof on a datatype that’s not conceptually a tagged union

A Resource-Based Language 15

Functional Programming Support

val ADT = new {

type set = List;

method set<T> union(

set<T> s1, set<T> s2) {

s1.appendList(s2);

method List<U>

map(’T -> ’U f)(List<T> lst) {

match(lst) {

case Cons(e,rest) =>

makeCons(f(e), map(f)(rest))

}

} as {

type set <: { type E; };

val union: set<T> * set<T> -> set<T>

}

case Nil => Nil

}

}

… map (fn (int x) => x + 1) (myIntList) …

A Resource-Based Language 16

Structural Types

type IntCollection = {

method IntCollection add(int newInt);

}

type IntList = {

method IntList add(int newInt);

method int get(int index);method int get(int index);

}

IntList list = makeMyList();

IntCollection coll = list; // implicit structural subtyping

A Resource-Based Language 17

Safe Code Reuse via Composition

state AbstractCollection = {

method void addAll(Collection other) {

other.do (fn (int x) => add(x))

}

requires open method void add();

}

Reusable

abstract state

Selective open recursion [SAVCBS ‘04]: open

recursion is only used in calls to methods

marked open. The open keyword

documents that subclasses can override self-

calls to this method. Other methods can be

state LinkedList = AbstractCollection[add->addLast] with {

method void add() { … }

}

A Resource-Based Language 18

calls to this method. Other methods can be

overridden but self calls are unaffected.

Trait-based

composition
Trait element

renaming

Static & Dynamic Checking in Plaid

• Typestate and permissions express design intent

– Typechecking verifies intent statically

– But sometimes static checking fails, even for OK programs

– Need to have dynamic checks as a fallback

• Principle
– All assertions about typestate and permissions can be checked either

statically or dynamicallystatically or dynamically

• Features
– Gradual types [Siek and Taha ’06]

• can omit some types, statically check as much as possible

– Casts to types, states, and permissions

• Research questions
– How does gradual typing generalize to permissions?

– How to check casts to unique?

19A Resource-Based Language

Information Hiding Challenges:

Dynamic Types and Pattern Matching

type TestMember = {

boolean isMember(E e); }

state List = { … }

state ArrayList case of List = { … }

List myList = new ArrayList{};

set = new Collection with {

val List<E> members;

method Set<E> union(Set<E> other);

} as Collection with {

method Set<E> union(Set<E> other);

}
// match OK – ArrayList a case of List

match (myList) {

case ArrayList al { … }

}

TestMember tm = myList;

// compile-time error: TestMember

// does not support case analysis

match (tm) { … }

}

dynamic dset = set; // dynamic typing

dset.members.add(e); // FAIL at run time

20

Demonstration

A Resource-Based Language 21

Roadmap

• Introduction

• Typestate-Oriented Programming

• Plaid’s Compositional Object Model

• Parallel by Default Programming
– Plaid’s instantiation of the project– Plaid’s instantiation of the project

• Conclusion

A Resource-Based Language 22

Explicit Dependencies in Plaid

• Concurrency is a major challenge

– Avoiding race conditions, understanding execution

• Inspiration: functional programming is “naturally concurrent”

– Up to data dependencies in program

• Idea: use permissions to construct dataflow graph

– Easier to track dependencies than all possible concurrent executions

– Functional programming passes data explicitly to show dependencies

– For stateful programs, we pass permissions explicitly instead

• Consequence: stateful programs can be naturally concurrent

– Furthermore, we can provide strong reasoning about correctness

23A Resource-Based Language

Features: Sharing and Dependencies

method unique Data createData();

method void print(immutable Data d);

method unique Stats getStats(immutable Data d);

method void manipulate(unique Data d,

immutable Stats s);

val d = createData();

createData

split

print getStats

unique

immutable immutable

immutableval d = createData();

print(d);

val s = getStats(d);

manipulate(d, s);

print(d);

24

join

manipulate

print

unique

immutable
immutable

A Resource-Based Language

Features: Sharing and Dependencies

method void produce(‘QG Queue q);

method void consume(‘QG Queue q);

method void dispose(unique Queue q);

group QG;

val QG Queue q = new Queue;

split QG: produce(q) || consume(q);

new QueueQG

adopt

split

uniqueunique

sharedsplit QG: produce(q) || consume(q);

q.dispose();

25

produce consume

join

shared

emancipate

unique

unique

disposeA Resource-Based Language

Consequences: Safe Concurrency

• Programmers think only about dependencies
– Move away from a sequential model

• Programs execute in parallel by default
– Execution is deterministic except for uses of split

• Compatible with shared state, nondeterminism when needed
– Shared state is tracked with permissions

– Non-determinism is explicit (in split blocks)– Non-determinism is explicit (in split blocks)

– Non-determinism is scoped to a part of the program and to a specific
group of shared data

• Reasoning support
– Consistent synchronization

– Typestate protocol verification

– Synchronization granularity (sufficient to ensure typestate)

A Resource-Based Language 26

Roadmap

• Introduction

• Typestate-Oriented Programming

• Plaid’s Compositional Object Model

• Parallel by Default Programming

• Conclusion• Conclusion

A Resource-Based Language 27

A Bridge to Existing Languages

• Familiarity

– use Java syntax wherever possible

– when no clear language design choice, use Java’s

• fix some glaring problems like nulls

(what Hoare calls his $1 billion mistake)

• Compatibility• Compatibility

– compile to platforms, like the JVM, that have good

existing libraries

28A Resource-Based Language

Current Plaid Language Research

• Core type system Darpan Saini, Joshua Sunshine

• Object model Karl Naden

• Typestate model Filipe Militão, Luís Caires (FCT)

• Gradual typing Roger Wolff, Ron Garcia,

Eric Tanter (U. Chile)

• Concurrency Sven Stork,• Concurrency Sven Stork,

Paulo Marques (U. Coimbra)

• Web programming Joshua Sunshine

• Permission parameters Nels Beckman

• Compilation/typechecking Karl Naden, Joshua Sunshine,

Mark Hahnenberg, Sven Stork

29A Resource-Based Language

The Plaid Language

• Supports programming with resources

– First-class abstractions for characterizing state

– Naturally concurrent execution

– Practical mix of static & dynamic checking

• Opens a new subfield of research

– Languages based on changeable states and permissions– Languages based on changeable states and permissions

• Work in progress

– Compiler implemented (in Java, for now)

– Plaid typechecker (in Plaid) underway

http://www.plaid-lang.org/

30A Resource-Based Language

