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Abstract 1. Introduction

Objects often define usage protocols that clients must follow In object-oriented software, objects often defirgage pro-
in order for these objects to work properly. Aliasing makes tocolsthat clients must follow in order for these objects to
it notoriously difficult to check whether clients and imple- work properly. Protocols essentially define legal sequences
mentations are compliant with such protocols. Accordingly, of method calls. In conventional object-oriented languages,
existing approaches either operate globally or severely re-developers have three ways of finding out about protocols:
strict aliasing. reading informal documentation, receiving runtime excep-
We have developed a sound modular protocol checking tions that indicate protocol violations, or observing incorrect
approach, based on typestates, that allows a great deal oprogram behavior as a result of protocol violations that broke
flexibility in aliasing while guaranteeing the absence of pro- internal invariants.
tocol violations at runtime. The main technical contribution It is the goal of this work to help developers follow pro-
is a novel abstractioraccess permissionshat combines  tocols while they write code as well as to allow them to cor-
typestate and object aliasing information. In our methodol- rectly and concisely document protocols for their code. We
ogy, developers express their protocol design intent throughbuild on our previous work on leveragigpestate$34] for
annotations based on access permissions. Our checking aplightweight object protocol specification [4]. Our protocols
proach then tracks permissions through method implemen-are state machines that are reminiscent of Statecharts [20].
tations. For each object reference the checker keeps track Aliasing, i.e. the existence of multiple references to
of the degree of possible aliasing and is appropriately con- the same object, is a significant complication in checking
servative in reasoning about that reference. This helps de-whether clients observe a protocol: a client does not neces-
velopers account for object manipulations that may occur sarily know whether its reference to an object is the only
through aliases. The checking approach handles inheritancaeference that is active at a particular execution point. This
in a novel way, giving subclasses more flexibility in method also makes it difficult to check whether a class implements
overriding. Case studies on Java iterators and streams proits specified protocol because reentrant callbacks through
vide evidence that access permissions can model realisticaliases can again lead to unexpected state changes.
protocols, and protocol checking based on access permis- Existing protocol checking approaches fall into two cate-
sions can be used to reason precisely about the protocols thagiories. They either operate globally, i.e. check an entire code
arise in practice. base at once, or severely restrict aliasing. Global analyses
typically account for aliasing but they are not suitable for
interactive use during development. Moreover, they do not
check whether a declared protocol is implemented correctly,
a crucial requirement in object-oriented software where any
class might have a protocol of its own.
General Terms Languages, Verification. Modular protocol checkers, like Fugue. [12],_the first
sound modular typestate checker for an object-oriented lan-
Keywords Typestates, aliasing, permissions, linear logic, guage, better support developers while they write code: like
behavioral subtyping. a typechecker, they check each method separately for pro-
tocol violations while assuming the rest of the system to
behave as specified. The trade-off, unfortunately, has been
that modular checkers require code to follow pre-defined
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This approach has serious drawbacks. First, many exam-
ples of realistic code might be excluded. Moreover, from a

Current permission has ...

Access throug
other permissions Read/write access Read-only access

developer’s point of view, the boundaries of what a checker
supports are hard to predict and they might not fit with the
best implementation strategy for a particular problem. Fi-

None | unique [6]
Read-only| full [3]
Read/write| share [12]

immutable [6]
pure [3]

nally, aliasing restrictions arguably leave developers alone
just when they have the most trouble in reasoning about their
code, namely, in the presence of subtle aliasing.

This paper proposes a sound modular typestate check-
ing approach for Java-like object-oriented languages that
allows a great deal of flexibility in aliasing. For each ref-
erence, it tracks the degree of possible aliasing, and is
appropriately conservative in reasoning about that refer-
ence. This helps developers account for object manipu-
lations that may occur through aliases. High precision in
tracking effects of possible aliases together with system-
atic support fordynamic state testd.e. runtime tests on
the state of objects, make this approach feasible. Our ap-
proach helped expose a way of breaking an internal invari-

ant that causes a commonly used Java standard library class,

java.io.BufferedInputStream, t0 access an array out-
side its bounds. Contributions of this paper include the fol-
lowing.

e Our main technical contribution is a novel abstraction,
calledaccess permissionthat combines typestate with
aliasing information about objects. Developers use access
permissions to express tlesign intentof their proto-

Figure 1. Access permission taxonomy

also implies astate guaranteeven for weak permis-
sions, i.e. a guarantee that the referenced object will
not leave a certain state.

¢ We handle inheritance in a novel way, giving subclasses
more flexibility in method overriding. This is necessary
for handling realistic examples of inheritance such as
Java'sBuf feredInputStream (details in section 3.2).

¢ We validated our approach with two case studies, itera-
tors (section 2) and streams (section 3) from Sun’s Java
standard library implementation. These case studies pro-
vide evidence that access permissions can model realistic
protocols, and protocol checking based on access permis-
sions can be used to reason precisely about the protocols
that arise in practice.

A more complete evaluation of our approach is beyond

the scope of this paper, which focuses on fully presenting
our checking technique. The evaluation does establish that
our—compared to full-fledged program verification systems

cols in annotations on methods and classes. Our modulari28; 2l—relatively simple approach can verify code idioms

checking approach verifies that implementations follow
this design intent.

Access permissions systematically capture different pat-
terns of aliasing (figure 1). A permission tracks (a) how a
reference is allowed to read and/or modify the referenced
object, (b) how the object might be accessed through
other references, and (c) what is currently known about
the object’s typestate.

In particular, oufull andpure permissions [3] capture the

and find errors that no other decidable modular system can.
The case studies reflect actual Java standard library protocols
and, as far as we can tell, cannot be handled by any existing
modular protocol verification system.

The following two sections introduce access permissions

and verification approach with examples from our case stud-
ies before sections 4 and 5 give a formal account of our ap-
proach. Section 6 compares our approach to related work.

2. Read-Only Iterators

situation where one reference has exclusive write accessthjg section illustrates basic protocol specification and ver-

to an object (afull permission) while other references

ification using our approach based on a previous case study

are only allowed to read from the same object (using on javaterators[3]. Iterators follow a straightforward pro-

pure permissions). Read-only access throygtie per-
missions is intuitively harmless but has to our knowledge

tocol but define complicated aliasing restrictions that are eas-
ily violated by developers. They are therefore a good vehicle

not been exploited in existing modular protocol checkers. {7 introduce our approach to handling aliasing in protocol

include two additional novel features, which makeak
permissionamore useful than in existing work. We call
permissions “weak” if the referenced object can poten-
tially be modified through other permissions.

In order to increase precision of access permissions, weverification. Iterators as presented here cannot be handled
by existing modular typestate checkers due to their aliasing
restrictions.

2.1 Specification Goals

The specification presented in this section model§ theator

» Temporary state informationan be associated with

interface defined in the Java standard library. For the sake of

weak permissions. Our checking approach makes surep e, ity e focus onread-onlyiterators, i.e. iterators that

that temporary state information is “forgotten” when
it becomes outdated.

cannot modify the collection on which they iterate. We will
refer to read-only iterators simply as “iterators” and qualify

» Permissions can be confined to a particular part of full Java iterators as “modifying iterators”. In earlier work
the referenced object’s state. This allows separate per-we showed how to capture full Java iterators [3]. Goals of
missions to independent parts of the same object. It the presented specification include the following.
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Figure 2. Read-only iterator state machine protocol

e Capture the usage protocol of Java iterators.

¢ Allow creating an arbitrary number of iterators over col-
lections.

¢ [nvalidate iterators before modification of the iterated
collection.
2.2 State Machine Protocol

An iterator returns all elements of an underlyiogilection
one by one. Collections in the Java standard library are
lists or sets of objects. Their interface includes methods to

add objects, remove objects, and test whether an object is

part of the collection. The interface also defines a method
iterator that creates a new iterator over the collection.
Repeatedly callingqrext on an iterator returns each object
contained in the iterated collection exactly once. The method
hasNext determines whether another objectiailable or

the iteration reached itend. It is illegal to callnext once
hasNext returnsfalse. Figure 2 illustrates this protocol as

a simple state machine.

Notice thathasNext is legal in both states but does not
change state. We calhsNext adynamic state tesits return
value indicates what state the iterator is currently in. The
next section will show how this protocol can be specified.

2.3

States Through Refinement. We call the set of possible
states of an object itstate spaceand define it as part of

Iterator Interface Specification

Access Permissions Capture Design Intentlterators have
only two methods, but these have very different behavior.
While next canchangethe iterator's statehasNext only
teststhe iterator’s state. And even when a calhtext does

not change the iterator’s state, it still advances the iterator to
the next object in the sequentasNext, on the other hand,

is pure it does not modify the iterator at all.

We use a novel abstractioagcess permissior{§permis-
sions” for short), to capture thdesign intenas part of the it-
erator’s protocol. Permissions are associated with object ref-
erences and govern how objects can be accessed through a
given reference [7]. Fotiext andhasNext we only need
two kinds of permissions; more kinds of permissions will be
introduced later.

e full permissions grant read/write access to the refer-
enced objecand guarantee that no other reference has
read/write accesto the same object.

® pure permissions grant read-only access the the refer-
enced object buassume that other permissions could
modifythe object.

A distinguishedfull permission can co-exist with an ar-
bitrary number obure permissions to the same object. This
property will be enforced when verifying protocol compli-
ance. In a specification we wriperm(z) for a permission to
an object referenced by, wherepermis one of the permis-
sion kinds. Access permissions carry state information about
the referenced object. For exampl&ll(this) in available”
represents &ull permission for an objectl{is) that is in the
available state.

Linear Logic Specifications. Methods can be specified
with a state transitionthat describes how method param-
eters change state during method execution. We previously
argued that existing typestate verification approaches are
limited in their ability to express realistic state transitions
[4] and proposed to capture method behavior more precisely

the object’s interface. As suggested above, we can modelWith logical expressions.

the iterator state space with two stategsilable and end.
In our approach, states are introducedréfinementof an

Access permissions represent resources that have to be
consumed upon usage—otherwise permissions could be

existing state. State refinement corresponds to OR-states irffreely duplicated, possibly violating other permissions’ as-

Statecharts [20] and puts states into a tree hierarchy.
State refinement allows interfaces to, at the same fime,

sumptions. Therefore, we base our specifications on linear
logic [18]. Pre- and post-conditions are separated with a

herit their supertypes’ state spaces, define additional (morelinear implication () and use conjunction) and disjunc-

fine-grained) states, and be propeslybstitutableas sub-

tion (@).! In certain cases, internal choic&,(also called

types of extended interfaces [4]. Refinement guarantees thagdditive conjunction) has been useful [3]. These connectives
all new states defined in a subtype correspond to a state infepresent the decidable multiplicative-additive fragment of

herited from the supertype. States form a hierarchy rooted in
a statealive defined in the root typ8bject. Iterators there-
fore define their state space as follows.

states available, end refine alive;

Typestates dmot correspond to fields in a class. They
describe an object’s state of execution abstractly and infor-
mation about fields can keed to typestates using state in-
variants (see section 3.1).

linear logic (MALL).

Iterators illustrate that state transitions are often non-
deterministic. Fornext, we can use anmprecise post-
condition and specifyiext so that it requires &ll permis-

sion in stateavailable and returns théull permission in the

1“Tensor” (®) corresponds to conjunction, “alternatives) to disjunction,

and “lollie” (—o) to implication in conventional logic. The key difference is
that linear logic treats known facts as resources that are consumed when

proving another fact. This fits well with our intuition of permissions as
resources that give access to objects.



alive state. In a Statechart, this corresponds to transitioning

to a state that contains substates (figure 2). Collection ¢ = mew ...
Iterator it = c.iterator(); // legal
) . Q) s . while(it.hasNext() && ...) { // legal
full(this) in available —o full(this) in alive Object o = it.next() // legal
. . . . Iterator it2 = c.iterator(); // legal
Dynamic state tests (likeasNext) require relatmg the while(it2.hasNext ) { // legal
(Boolean) method result to the state of the tested object (usu- Object 02 = it2.next(); // legal
ally the receiver). A disjunction of conjunctions expresses ..}
the two possible outcomes bésNext (figure 4) where each ¥
conjunction relates a possible method result to the corre- if(it.hasNext() &% c.size() == 3) { // legal
sponding receiver state. (We adopt the convention that c.remove(it.next()); // legal
binds weaker tha® and@_) if(it.hasNext()) ... } // ILLEGAL
Iterator it3 = c.iterator(); // legal
pure(this) —o (result= true ® pure(this) in available)
@ (result= false © pure(this) in end) Figure 3. A simpleIterator client

These specifications enforce the characteristigNext /

next call pairing:hasNext determines the iterator's current  Ilerator object.

state. I_f i_t returnsrue then it is legal to calhext. The it- public class Collection {

erator is in an unknown state aftesxt returns, and another Iterator iterator() : immutable(this) — unique(result)
hasNext call determines the iterator’'s new state. }

2.4 Creating and Disposing Iterators It turns out that this specification precisely captures Sun’s

) ) , i . Java standard library implementation of iterators: Iterators
Multiple (independent) iterators are permitted for a single e realized as inner classes that implicitly reference the
collection at the same time. However, the collection must not qection they iterate.

be modified while iteration is in progress. Standard imple- o . o
mentations try to detect such situationscohcurrent modi- ~ Permission Splitting. How can we track permissions?
ficationon a best-effort basis. But, ultimately, Java program- Consider a client such as the one in figure 3. It gets a
mers have to make sure on their own that collections are notunique permission when first creating a collection. Then
modified while iterated. (Note that “concurrent” modifica- it creates an iterator which capturesiamutable permis-
tions often occur in single-threaded programs [32].) sion to the collection. However, the client later needs more
This section shows how the aliasing constraints betweenimmutable permissions to create additional iterators. Thus
iterators and its collection can be handled. As we will see, While @ unique permission is intuitively stronger than an
this problem is largely orthogonal to specifying the rela- immutable permission we cannot just coerce the client's
tively simple protocol for for individual iterators that was unique permission to afmmutable permission and pass it

discussed in the previous section. to iterator: it would get captured by the newly created it-
erator, leaving the client with no permission to the collection
Immutable Access Prevents Concurrent ModificationAc- at all.

cess permissions can guarantee the absence of concurrent |n order to avoid this problem we ugermission splitting
modification. The key observation is that when an iterator is in our verification approach. Before method calls we split the
created it stores a reference to the iterated collection in oneoriginal permission into two, one of which is retained by the
of its fields. This reference should be associated with a per- caller. Permissions are split so that their assumptions are not
mission that guarantees the collectioimsmutability while violated. In particular, we never duplicatefl or unique
iteration is in progress. We include two previously proposed permission and make sure that fidl permission co-exists
permissions [6] into our system in order to properly specify with animmutable permission to the same object. Some of

collections. the legal splits are the following.
¢ immutable permissions grant read-only access to the unique(z) = full(z) ® pure(z)
referenced objecand guarantee that no reference has full(z) = immutable(x) ® immutable(z)
read/write accesto the same object. immutable(x) = immutable(z) ® immutable(x)

e unique permissions grant read/write accessl guaran- immutable(z) = immutable(x) @ pure(z)

tee that no other reference hasyaccesdo the object. They allow the example client in figure 3 to retain an
immutable permission when creating iterators, permitting
multiple iterators and reading the collection directly at the
same time.

Thus immutable permissionscannot co-exist with full
permissions to the same object. We can specify the collec-
tion's iterator method using these permissions as follows.
Notice how itconsume®r capturesthe incoming receiver  Permission Joining Recovers Modifying AccessWhen
permission and returns an initiadique permissionto afresh  splitting a full permission to a collection intimmutable



interface Iterator<c:Collection, k: Fract> { Collection c = new ... unique(c)

states available, end refine alive Iterator it<c, 1/2> = c.iterator();
immutable(c, 1/2) ® unique(it)
boolean hasNext() : while(it.hasNext() && ...) {
pure(this) — (result= true ® pure(this) in available)) immutable(c, 1/2) ® unique(it) in available
@ (result= false ® pure(this) in end) Object o = it.next();
Object next() : immutable(c, 1/2) ® unique(it)
full(this) in available — full(this) Iterator it2<c, 1/4> = c.iterator();
void finalize() : immutable(c, 1/4) ® unique(it) ® unique(it2)
unique(this) —o immutable(c, k) while(it2.hasNext()) {
} immutable(c, 1/4) ® unique(it) ® unique(it2) in available
Object 02 = it2.next();
interface Collection { immutable(c, 1/4) ® unique(it) ® unique(it2)
void add(Object o) : full(this) — full(this) ... ¥ // it2 dies
int size() : pure(this) —o result> 0 ® pure(this) } immutable(c, 1/2) ® unique(it)
// remove(), contains() etc. similar if (it.hasNext() && c.size() == 3) {
immutable(c, 1/2) ® unique(it) in available
Iterator<this, k> iterator() : c.remove(it.next()); // it dies after next()
immutable(this, k) — unique(result) unique(c) and no permission for it
} if (it.hasNext()) ... } // ILLEGAL
// it definitely dead unique(c)

Iterator it3<c, 1/2> = c.iterator();

Figure 4. Read-onlyIterator and partialCollection immutable(c, 1/2) © unique(it3)

interface specification

o N ) ) Figure 5. Verifying a simpleIterator client
permissions we lose the ability to modify the collection.

Intuitively, we would like to reverse permission splits to

regain the ability to modify the collection. For lack of a more suitable location, we annotate the
Suchpermission joiningcan be allowed if we introduce ~ finalize method to indicate what happens when an iter-

the notion of fractions [6]. Essentially, fractions keep track ator is no longer usable. And in order to re-estabéizactly

of how often a permission was split. This later allows join- the permission that was originally passed to the iterator we

ing permissions (with known fractions) by putting together parameteriz&terator objects with the collection permis-

their fractions. Aunique permission by definition holds a  sion’s fraction. Thef inalize specification can then release

full fraction that is represented by one (1). We will capture the captured collection permission from dead iterators. The

fractions as part of our permissions and wjerm)(z, k) complete specification for iterators and a partial collection

for a given permission with fractioh. We usually do not  Specification are summarized in figure 4.

care about the exact fraction and therefore implicitly quan- . S

tify over all fractions. If a fraction does not change we often 2.5 Client Verification

will omit it. Fractions allow us to define splitting and joining  Figure 5 illustrates how our client from figure 3 can be

rules as follows. verified by tracking permissions and splitting/joining them

as necessary. After each line of code we show the current

unique(z, 1) <= full (z,1/2) ® pure(z, 1/2) set of permissions on the right-hand side of the figure. We

full(x, k i tabl k/2)®i tabl k/2 - - .
immutabule((?k:)) gi ilmgﬁtaablz((jkﬁ))giIEQStaabI:((?k;Q)) recover collection permissions from dead iterators as soon
immutable(x, k) &= immutable(x7 k/2) @ pure(z, k/2) ’ as possible. This lets us verify the entire example client. We

correctly identify the seeded protocol violation.

For example, we can spliall(it, 1/2) into full(it,1/4) ®
pure(it, 1/4) and recombine them. Such reasoning lets our 2:6 Summary
iterator client recover anique iterator permission after each  We presented a specification of read-only iterators that pre-
call into the iterator. vents concurrent collection modification. To this end it asso-
ciates collections and iterators widltcess permissionde-
fines a simple state machine to capture the iterator usage pro-
tocol, and tracks permission information using a decidable
fragment of linear logic. Our logic-based specifications can
relate objects to precisely specify method behavior in terms
of typestates and support reasoning about dynamic tests.

Recovering Collection Permissions.lterators are created
by trading a collection permission forumique iterator per-
mission. We essentially allow the opposite trade as well in
order to modify a previously iterated collection again: We
can safely consumeumique iterator permission and recover
the permissions to its fields because no reference will be able
to access the iterator anymore. A simple live variable analy- .
sis can identify when variables witinique permissions are 3. Java Stream Implementations

no longer used. (As a side effect, a permission-based ap-1/O protocols are common examples for typestate-based pro-
proach therefore allows identifying dead objects.) tocol enforcement approaches [11, 12, 4]. This section sum-
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read() character'\-/

filled, the latter corresponding to a full buffer.

At the same time, however, we would like to track
whether the source was closed, i.e., whetheteivedLast
was called. We previously proposstite dimensionwo ad-
dress such separate concerns (here, the buffer filling and the
source state) [4] with states that are independent from each
other. State dimensions correspond to AND-states in State-

Figure 6. PipedInputStream’s State space (insidgpen)

marizes a case study in applying our approach to daaa
acter stream&nd in particulastream pipesindbuffered in-
put streamsThe section focuses amplementation verifica-  charts [20].
tion of stream classes, which—to our knowledge—has not  We can simply refinmonEmpty twice, along different
been attempted with typestates before. Implementation veri-dimensions We call the states for the second dimension
fication generalizes techniques shown in the previous sectionsourceOpen andsourceClosed with the obvious semantics.
for client verification. Note that we only need the additionsdurce dimension
while the buffer isnonEmpty; the source is by definition
3.1 Stream Pipes open (closed) in thempty (eof) state? To better visualize

Pipes are commonly used in operating system shells to for-the sink’s state space, figure 6 summarizes it as a Statechart.

ward output from one process to another process. Pipes carmgnared Modifying Access. Protocols for source and sink
alphanumericcharactersfor a source to a sink. The Java  gre formalized in figures 7 and 8 with specifications that
I/O library includes a pair of classeBipedOutputStream work similar to the iterator example in the last section. How-

andPipedInputStream, that offers this functionality inside gy, the sink is conceptually modified through two distinct

Java applications. This section provides a specification for reterences, one held by the source and one held by the reader.
Java pipes and shows how the classes implementing pipes inn, order to capture this, we introduce our last permission.
the Java standard library can be checked using our approach.

e share permissions grant read/write access to the refer-
enced object buassume that other permissions have
read/write access as well

Informal Pipe Contract. In a nutshell, Java pipes work as
follows: A character-producing “writeriirites characters
into a PipedOutputStream (the “source”) that forwards
them to a connecteplipedInputStream (the “sink”) from
which a “reader” cairead them. The source forwards char- useshare permissions for mutable state. Interestinghgre
acters to the sink using the internal methsgteive. The permissions are split and joined exactly likemutable per-
writer callsclose on the source when it is done, causing the missions. Sincehare andimmutable permissions cannot co-
source to calkeceivedLast on the sink (figure 7). exist, our rules force a commitment to either one when ini-
The sink caches received characters in a circular buffer. tially splitting afull permission.
Callingread on the sink removes a character from the buffer
(figure 8). Eventually the sink will indicate, using &md
of file token(EOF, -1 in Java), that no more characters can
be read. At this point the reader can safely close the sink.

Closing the sink before EOF was read is unsafe because thesiaie Guarantees. We notice that most modifying methods

writer may still be active. _ _ _cannot change a stream’s state arbitrarily. For exaneptej

The pipe classes in Sun’s standard library implementation gnqyeceive will never leave thepen state and they cannot
have built-in runtime checks that throw exceptions in the igjerate other permission to leavgen.
following error cases: (1) closing the sink before the source,  \\e make this idea part of our access permissions. We
(2) writing to a closed source or pushing characters to the jcjyde another parameter into permissions that specifies a
sink after the source was closed, and (3) reading from a giate guaranted.e. a state that cannot be left even by mod-
closed smk..The spemﬂcatlon we present here makes thesquing permissions. Thus a state guarantee (also called the
error cases impossible. permission’sroot) corresponds to an “area” in a Statechart
that cannot be left. As an example, we can write the permis-

Conventional programming languages effectively always

full(z, k) &= share(z, k/2) ® share(x, k/2)
share(z, k) &= share(z, k/2) ® share(z, k/2)
share(x, k) &= share(x, k/2) ® pure(z, k/2)

State Space with Dimensions.The source protocolcan
.be .mOdeled with three Sta.tesw’ open, and closed. r:c]W 2This is onlyoneway of specifying the sink. It has the advantage that read-
indicates that the source is not connected to a sink yet. grs need not concern themselves with the internal communication between
For technical reasons that are discussed below, we refinesource and sink.




public class PipedOutputStream {
states raw, open, closed refine alive;
states ready, sending refine open;

raw := Sink= null
ready := half(sink open)
sending := SiNK# null
closed := sink# null

private PipedInputStream sink;

public PipedQOutputStream() :
1 —o unique(this) inraw { }

void connect(PipedInputStream snk) :
full(this) in raw ® half(snk open) —o
full(this) in ready
{ sink = snk; store permission in field
} full(this) in open

public void write(int b) :
full(this, open) in ready ® b > 0 —o full(this, open) in ready

{ half(sink open) from invariant
sink.receive(b); returnshalf(sink open)
} full(this, open) in ready

public void close() :
full(this) in ready —o full(this) in closed

{ half(sink open) from invariant
sink.receivedLast(); consumesalf(sink open)
} full(this) in closed

}

Figure 7. JavaPipedOutputStream (simplified)

sion needed foread asshare(this, open). Without an ex-
plicit state guarantee, onblive is guaranteed (this is what
we did for iterators).

State guarantees turn out to be crucial in makihgre
andpure permissions useful because they guarantee a state
even in the face of possible changes to the referenced object
through other permissions. Moreover, if we combine them
with state dimensions we get independent permissions for
orthogonal object aspects that, e.g., let us elegantly model
modifying iterators [3].

Explicit Fractions for Temporary Heap Sharing. When
specifying the sink methods used by the soutoecéive
andreceivedLast) we have to ensure that the source can
no longer call the sink aftefeceivedLast so the sinkcan  }
be safely closed. Moreover, in order to close the sink, we

class PipedInputStream {

stream = open, closed refines alive;

position = within, eof refines open;

buffer = empty, nonEmpty refines within;

filling = partial, filled refines nonEmpty;

source = sourcelpen, sourceClosed refines nonEmpty;

empty := in < 0 ® closedByWriter= false
partial :=in > 0 ® in # out

filled := in = out

sourceOpen := closedByWriter= false
sourceClosed := closedByWriters half(this, open)
eof := in < 0 ® closedByWriterz half(this, open)

private boolean closedByWriter = false;
private volatile boolean closedByReader =
private byte buffer[] = new byte[1024];
private int in = -1, out = 0;

false;

public PipedInputStream(PipedOutputStream src) :
full(src) in raw —o half(this, open) ® full(src) in open

{ unique(this) in open = half(this, open) ® half(this, open)
src.connect (this) ; consumes onkalf(this, open)

} half(this, open) ® full(src) in open

synchronized void receive(int b) :
half(this, open) ® b > 0 —o half(this, open) in nonEmpty
{ // standard implementation checks if pipe intact
while(in out) half(this, open) in filled
... // wait a second
half(this, open) in empty @ partial
if(in < 0) { in = 0; out = 0; }
buffer[in++] (byte) (b & OxFF);
if(in >= buffer.length) in = 0;
} half(this, open) in partial

synchronized void receivedLast() :
half(this, open) — 1
{ closedByWriter = true; } this is nowsourceClosed
public synchronized int read() :
share(this, open) — (result> 0 ® share(this, open))
@ (result= —1 ® share(this, open) in eof)
{ ... } // analogous to receive()

public synchronized void close() :
half(this, open) in eof —o unique(this) in closed

{ half(this, open) from eof invariant=> unique(this, open)
closedByReader = true;
in = -1;

}

need to restore a permission rootedalive. Thus the two
share permissions for the sink have to be joined in such a
way that there are definitely no other permissions relying on

Figure 8. JavaPipedInputStream (simplified)

open (such permissions, e.g., could have been split off of one root and its super-states) to fractions. For example, if we
of theshare permissions). split an initialunique permission for @ipedInputStream

We extend the notion of fractions to accomplish this task. into two share permissions guaranteeirgpen then these
We use fractions to tracKpr each state separatgljnow permissions rely onpen andalive with a1/2 fraction each.
many permissions rely on it. What we get isfraction (Iterator permissions root live and their fraction functions
functionthat maps guaranteed states (i.e. the permission’smapalive to the given fraction.)



In order to close the sink, we have to make sure thatthere  Client BufferedinputStream instance Inside

areexactlytwo share permissions relying onpen. Fraction references frames

functions make this requirement precise. For readability, X BRI LSHrRE e this

we use the abbreviatioalf in figure 8 that stands for the ~ ESLE e SRl EF -

foIIowing permission. State invariant unique(super) in eof thisy
® 0 < pos < count -«

half(x, open) = share(x, open, {alive — 1/2,0open — 1/2}) lsuper

By adding fractions and moving the state guarantee up FilterlnputStream frame

in the state hierarchy, the initial permission for the sink, s Current typestate  eof thisy

unique(this, alive, {alive — 1}), can be regained from two | State invariant unique(s) in eof “

half(this, open) permissions.half is the only permission lsuper

with an explicit fraction function. All other specifications

implicitly quantify over all fraction functions and leave them InputStream frame thisy

unchanged. Current typestate  alive M

State Invariants Map Typestates to FieldsWe now have

a sufficient specification for both sides of the pipe. In order — - -
to verify their implementations we need to know what types- Figure 9. Frames of 8ufferedInputStream instance in
tates correspond to in implementations. Our implementation Statefilled. The bluevirtual frameis in a different state
verification extends Fugue's approach of usatgte invari- than its super-frame.

antsto map states to predicates that describe the fields of

an object in a given state [12]. We leverage our hierarchi- oiginal Java implementation; we removed additional non-
qal state spaces and _allow state invariants for states with re+, || and state tests that are obviated by our approach. This
finements to capture invariants common to all substates of a;, ¢ only shows how our approach forces necessary state tests

state. ) ) _butalso suggests that our specifications could be usgeito
Figure 7 shows that the source’s state invariants describeg atesych tests automatically.

its three states in the obvious way based on the el

pointing to the sink. Notice that the invariant does not only 3.2 Buffered Input Streams
talk about the sink’s state (as in Fugue) but uses permission
to control access through fields just as through local vari-
ables.

The sink’s state invariants are much more involved (fig-
ure 8) and define, e.g., what the difference betweeamany
buffer (n < 0) and afilled circular buffer (n = ouf)
is. Interestingly, these invariants are all meticulously docu-
mented in the original Java standard library implementation
for PipedInputStream [4]. The half permission to itself ~ Class Hierarchy. BufferedInputStream iS a subclass
that the sink temporarily holds for the time between calls to of FilterInputStream, which in turn is a subclass of
receivedLast andclose lets us verify thatclose is al- InputStream. InputStreamis the abstract base class of all
lowed to close the sink. input streams and defines their protocol with informal docu-
mentation that we formalize in figure 10. It implemeots-
venience methodaich axead (int [1) in terms of other—
abstract—method§ilterInputStream holds an underly-
ing stream in a fiel&s and simply forwards all calls to that
stream (figure 10BufferedInputStream overrides these
methods to implement buffering.

SA BufferedInputStream (or “buffer”, for short) wraps an-
other “underlying” stream and provides buffering of charac-
ters for more efficient retrieval. We will use this example to
illustrate our approach to handling inheritance. Compared to
the original implementation, we made fields “private” in or-
der to illustrate calls to overridden methods usinger. We
omit intermediate states in this specification.

Verification with Invariants. Implementation checking as-
sumes state invariants implied by incoming permissions and
tracks changes to fields. Objettave to be in a state when-
ever they yield control to another objedbcluding during
method calls. For example, the source transitiornetding
before calling the sink. However, the writer never finds the
source in theending state but alwaysady—sending never Frames. The buffer occasionally calls overridden meth-
occurs in a method specification. We call states that are notods to read from the underlying stream. How can we reason
observed by a clierihtermediate statesThey help us deal  about these internal calls? Our approach is based on Fugue’s
with re-entrant calls (details in section 5.2). A practical syn- framesfor reasoning about inheritance [12]. Objects are bro-
tax could make such intermediate states implicit. ken into frames, one for each class in the object’s class hi-
Figures 7 and 8 show how implementation checking pro- erarchy. A frame holds the fields defined in the correspond-
ceeds for most of the source’s and sink’s methods. We showing class. We call the frame corresponding to the object’s
in detail how field assignments change the sink’s state. Theruntime type thevirtual frame referred to with normal ref-
sink’s state information is frequently a disjunction of possi- erences (includinghis). Relative to a method, we call the
ble states. Dynamic tests essentially rule out states based owrurrent frame—corresponding to the class that the method
incompatible invariantsAll of these tests are present in the is defined in—withthis;,, and the frame corresponding to



public abstract class InputStream {

states open, closed refine alive;
states within, eof refine open;

public abstract int read() :
share(thisg, open) —o (result> 0 ® share(this,, open))
@ (result= —1 ® share(thiss, open) in eof)
public abstract void close() :
full(thisg,, alive) in open —o full(this,, alive) in closed

public int read(byte[] buf) :
share(this, open) ® buf# null —
(result= —1 ® share(this, open) in eof) ®
(result> 0 ® share(this, open))

public class BufferedInputStream
extends FilterInputStream {
states depleted, filled refine within;

closed := unique(supel in closed ® buf = null
open := unique(buf)

filled := pos< count® unique(supep in open
depleted := pos> count® unique(supel in within
eof := pos> count® unique(supel in in eof

private byte buf[] = new byte[8192];
private int count = 0, pos = 0;

public BufferedInputStream(InputStream s)

{ ... for(...) unique(s) in open —o unique(this;) in open
. int ¢ = this.read() ... } count= pos= 0 ® unique(buf)
} super(s) ; unique(supel in open
} unique(thisg, alive) in open

public class FilterInputStream extends InputStream {

within := unique(s) in within
eof := unique(s) in eof
closed := unique(s) in closed

private volatile InputStream s;

public synchronized int read() {
if (pos >= count)
{ share(thisy, open) in depleted @ eof
£il1Q); share(thisg, open) in filled © eof
if (pos >= count)

return -1; returnsshare(thisy,, open) in eof

protected FilerInputStream(InputStream s) } any path:share(this;,, open) in filled
unique(s, alive) in open —o unique(thisy,, alive) in open return buf[pos++] & OxFF;
{ this.s = s; } } share(thisg, open) in filled © eof

... // read() and close() forward to s
} private void £ill()
share(thiss, open) in depleted @ eof —o
share(thisg, open) in filled @ eof
{ invariant: unique(supel in within & eof
count = pos = 0; note: assumes buffer was fully read
int b = super.read(); unique(suped in within @ eof
while(b >= 0) { unique(supel in within
buf [count++] = (byte) (b & OxFF);
share(thisg,, open) in filled

if (count >= buf.length) break;

b = super.read(); unique(supel in within @ eof
Frame Permissions. In our approach, a permission actu- } if loop never takenshare(thisy, open) in eof
ally grants access to a particular frame. The permissions we 1} share(this, open) in filled & eof
have seen so far give a client access to the referenced ob-
ject’s virtual frame. Permissions for other frames are only
accessible from inside a subclass throsgper

Figure 9 illustrates thatBuf feredInputStream's State
can differ from the state its filter frame is in: the filter's
state might beof (when the underlying stream reackes$)
while the buffer’s is stillwithin (because the buffer array
still holds unread characters). The state invariants in figure
11 formalize this. They let us verify thatper calls in the
buffer implementation respect the filter’s protocol.

Because the states of frames can differ it is important to
enforce that a permission is only ever used to access fields
in the frame it grants permission to. In specifications we  This distinction implies thatil1 (figure 11)cannotcall
specifically mark permissions that will actually access fields read(int[]) (because it does not have a suitable virtual
(and not just call other methods) of the receiver vifils;,. frame permission) buinly super.read (). This is impera-
We require all methods that use these permissions to betive for the correctness dfill because a dynamically dis-
overridden. On the other hand, convenience methods suchpatched call would lead back into the—stithpty—buffer,
asread(int[]) can operate with permissions to the virtual causing an infinite loop. (One can trigger exactly this effect
frame and need not be overridden (figure 10). in the Java 6 implementation BhfferedInputStream.)

Figure 10. JavaFilterInputStream forwards all calls to
underlyingInputStream (simplified)

the immediate superclass is callsdperframe. Figure 9
shows a sampl8ufferedInputStream instance with its
three frames.

public synchronized void close() {
buf = null; invariant: unique(supel in open
super.close(); unique(supel in closed
} full(thist, alive) in closed

Figure 11. BufferedInputStream caches characters from
FilterInputStream base class



3.3 Summary

This section showed how our approach can be used to ver- ~ Programs PR .= (CL,e)

ify realistic Java pipe and buffered input stream imple-  classdecl. CL := classCextendsC'{FRINM}
mentations. The notion of access permissions is central to ~ fielddecl.  F' == f:Tinn

our approach. Overall, we introduced five different kinds ~ meth.decl. M == Tm(T'z): MS=e

of permissions (figure 1). While three kinds are adapted  Statedecl. R := d=Srefines s

from existing work [7, 12] we recently proposédll and terms ¢ = x| o | true | false

pure permissions [3]. State guarantees and temporary state _ | tiandiy | tyorty | mott
information increase the usefulness of “weakhare and expressions e = t | f | assignf:=t -
pure) permissions. Permission splitting and joining is flexi- | new C(t) | to.m(t) | super.m(t)
ble enough to model temporary aliasing on the stack (during | if(t,e1,e2) | letw=e1ines
method calls) and in the heap (e.g., in pipes and iterators). values v == o | true | false
Permission-based state invariants enable reasoning about references r == z | f | o

protocol implementations. We handle inheritance based on types T u= C | bool

frames [12] and permit dynamic dispatch within objects for nodes n u= s |d

convenience methods. ) ) )
classes C' fields f variables = objects o

methods m states s dimensions d
4. Formal Language
This section formalizes an object-oriented language with
protocol specifications. We briefly introduce expression and
class declaration syntax before defining state spaces, acce
permissions, and permission-based specifications. Finally,
we discuss handling of inheritance and enforcement of be-
havioral subtyping.

Figure 12. Core language syntax. Specificatiohd\, MS
SIQ figure 14.

4.2 State Spaces

State spaces are formally defined as a list of state refinements
4.1 Syntax (see figure 12). A state refinemern®)(refines an existing

Fi 12 sh h N t 2 simple cl based obi tstate in a new dimension with a set of mutually exclusive
Igure >z Shows the syntax ol a Simple class-based O0bjeCl-g,,, siates. We useandd to range over state and dimension
oriented language. The language is inspired by Feather-

ht J FJ. [241): il extend it to include t names, respectively. Aoden in a state space can be a state
weight Java (FJ, [24]); we will extend it to include type- o 4imension. State refinements are inherited by subclasses.
state protocols in the following subsections. We identify

X . . We assume a root staséive that is defined in the root class
classes '), methods %), and fields () with their names. Object ve
As usual, z ranges over variables including the distin- -~ \ye gefine a variety of helper judgments for state spaces
guished variabl¢his for the receiver object. We use an over-

b : bbrevi list of el E | in figure 13.refinements(C') determines the list of state
ar notation to abbreviate a list of elements. For example, rofinements available in clags. ¢ - A wf defines well-
z: T = x1:Th, ..., xn:T,. Types ) in our system in-

lude Bool del formed state assumptions. Assumptiofiscombine states
clude oo ea”Sb(°°1? and classes. . and are defined in figure 14. Conjunctive assumptions have
Programs are defined with a list of class declarations and

) . . ; to cover orthogonal parts of the state spaCet- n < n’
a main expression. A class declaratiOi gives the class a J P P =

. . e defines the substate relation for a clags: A # A’ defines
unique name”' and defines its fields, methods, typestates, orthogonality of state assumptionsand A’ are orthogonal
and state invariants. A constructor is implicitly defined with

i | . . ) if they refer to different (orthogonal) state dimensio@'s-
th.e clas_ss own and inherited f|eIQS. F.'eldg) are dgclared A < n defines that a state assumptidronly refers to states
with their name and type. Each field is mapped into a part

: ok d th tnodeC - A finds the tightest such
of the state space that can depend on the field (details in underneath aroot node ¢ < niinds the tightest suc

section 5.2). A method){/) declares its result type, formal
parameters, specification and a body expression. State €2 3 Access Permissions
finementsR will be explained in the next section; method o _ o
specifications\/ S and state invarianty’ are deferredtosec-  ACCess permissiong give references permission to access
tion 4.4. an object. Permissions to objects are writietess(r, n, g, k, A)
We syntactically distinguish pure termand possibly ef-  (figure 14). (We wroteperm(r, n, g) in A before.) The ad-
fectful expressions. Arguments to method calls and object ditional parameter: allows us to uniformly represent all
construction are restricted to terms. This simplifies reason- Permissions as explained below.
ing about effects [30, 9] by making execution order explicit. .
Notice that we syntactically restricts field access and as- * Permissions are granted to referenceReferences can
signments to fields of the receiver class. Explicit“getter’and P& variables, locations, and fields.
“setter” methods can be defined to give other objects access ¢ Permissions apply to a particulaubtreein the space
to fields. Assignments evaluate to theeviousfield value. space ofr that is identified by its root node. It rep-




class C extends O’ { F R ...} refinements(C’) = R’ p in refinements(C)

refinements(Object) = - refinements(C) = R/, R C+nwf
CHAwf CFHAywf CH A wf A # Ay COF Aywf  d=3refines s € refinements(C) ok 5 wf
Chk AL @ Ay wf Chk A ® Ay wf Chs; <d Chkd<s Ckn<n
CkFn<n" CFn”<n' d=3%refiness* € refinements(C) d = s refines s* € refinements(C) d # d’
Ckn<n Crd#d
Ckni<nf CkEni#n, Ckna<nf), CHAH#A CFA#A CHA#A Ckn <n
Ctny#ng CHFA#A CHA QA #A CHA DA #A Chkn <n
CHAio<n CHA®@Aswf CHA2<n CHA@Aswf CFHA<n VYn':CFA<n'impliesn <n'/
CHAI®Ay<n CHA @Ay <n CHAKnNn

Figure 13. State space judgments (assumptidngdefined in figure 14)

resents astate guarantedsection 3). Other parts of the

state space are unaffected by the permission. permissions p = access(r,n,g,k, A)

« Thefraction functiong tracks for each node on the path facts ¢ == t=true | {=false
from n to alive a symbolic fraction [6]. The fraction func- assumptions A == n | A1 @4y | A1 ® 4
tion keeps track of how often permissions were split at fractionfct. g := 2| 7=
different nodes in the state space so they can be coalesced _ | 9/2 ] 91,9
later (see section 5.5). fractions k== 110z |k/2

} predicates P == p | g

* Thesubtree fractiork encodes the level of access granted | PeP |1
by the permissionk > 0 grants modifying acces$. < | P&Py | T
1 implies that other potentially modifying permissions | PaP |0
exist. Fraction variables are conservatively treated as | 32:HP |Vz:HP
avalue betweenOand 1,i.6.< z < 1. method specs MS = P - F

* An state assumptiord expresses state knowledge within expr.types E = dx:T.P
the permission’s subtree. Onfyll permissions can per- stateinv. N == n=P
manently make state assumptions until they modify the initial state I == initially (3f:T.P,S)
object’s state themselves. For weak permissions, the state precise state S = $®...®s,
assumption igemporary i.e. lost after any effectful ex- fract. terms h = g | k
pression (because the object’s state may change without fract. types H == Fract | = — Fract
the knowledge of"). fract. vars. z

We can encodenique, full, share, andpure permissions : — —
as follows. In our formal treatment we ontmutable per- Figure 14. Permission-based specifications
missions, but it is straightforward to encode them with an

additional "bit” that distinguishesnmutable andshare per- Method specifications. Methods are specified with a linear

mISsIons. implication (—) of predicates {/.5). The left-hand side of
unique(r, n, g) in A = access(r,n, {g,n — 1}, 1, A) the implication (method pre-condition) may refer to method
full(r,n, g) in A = access(r, n g,’ A) receiver and formal parameters. The right-hand side (post-

in A = access(r,n, g, k, A) (0 <k < 1) condition) existentially quantifies the method result (a simi-
' lar technique is used in Vault [11]). We refer to the receiver
with thisand usually call the return valuesult

4.4 Permission-Based Specifications State invariants. We decided to use linear logic predicates
We combine atomic permissions) @nd facts about Boolean  for state invariants as wellN). In general, several of the
values §) using linear logic connectives (figure 14). We also defined state invariants will have to be satisfied at the same
include existential{z : H.P) and universal quantification time. This is due to our hierarchical state spaces. Each class
of fractions §z : H.P) to alleviate programmers from declares an initialization predicate and a start statehat
writing concrete fraction functions in most cases. We type are used for object construction (instead of an explicit con-
all expressions as an existential tyde) ( structor).

)
share(r,n, g, k)
pure(n,n g)in A= access(r,n,g,O,A)



4.5 Handling Inheritance checking a particular syntactic form. The gekeeps track

Permissions give access to a particular frame, usually the vir-Of fields that were assigned to, which is important for the
tual frame (see section 3.2) of an object. Permissions to thecorrect handling of_p_ermlsg,lons to fields. It is omitted when
virtual frame are calledbject permissionBecause of sub-  €MPLy. The markef in the judgment can be 0 or 1 where

typing, the precise frame referenced by an object permission! = 1 indicates that states of objects in the context may

is statically unknown. change during evaluation of the expression. This will help us
reason about temporary state assumptions. A combination of
references r = ... |super | thisg markers withi v j is 1 if at least one of the markers is 1.
In order to handle inheritance, we distinguish references  Valid contexts T' == - | I,z :T | T,z: H | I'q
to the receiver’s “current” frametlfis;,) and its super-frame linear contexts A = - | A,
(supe). Permissions for these “special” references are called effects & == [ &, f

frame permissiongA this;, permission grants access to fields

and can be used in method specifications. Permissions for. fValldt.and Ilnfear contexts dlstlnngsh valid (perpwar:(erét)
super are needed for super-calls and are only available in information ) from resourcesA). Resources are tracke

state invariants. All methods requiringthis;, permission Ilne_arly,_ forbidding the|rdupllcat|on,Whllef_acts can _be used
arbitrarily often. (In logical terms, contraction is defined for

must be overridden because such methods rely on beingf ¢ ). Th lid text t biect variables. fracii
defined in a particular frame to access its fields. acts on y). The vali 1 context types object variables, fraction

variables, and location types and keeps track of facts about
4.6 Behavioral Subtyping termsq. Fraction variables are tracked in order to handle
fraction quantification correctly. The linear context holds
currently available resource predicates.

The judgment’ F ¢ : T types terms. It includes the usual
types[29] of the extended class. Our system enforces be- rule for subsumptlop baged on nominal subtyplng induced
X . . . - by the extends relation (figure 16). Term typing is com-

havioral subtyping in two steps. Firstly, state space inheri- . :
pletely standard and can be found in the companion report.

tance conveniently guarantees that states of subclasses The companion report also includes rules for formally typin
wayscorrespond to states defined in superclasses [4]. Sec-, P P ytyping

Y ; .. fractions and fraction functions [5].
ondly, we make sure that every overriding method’s specifi- Our expression checking rules are syntax-directed up to
cation implies the overridden method’s specification [4] us- reasoning about permissions. Permission reasoning is de-
ing theoverride judgment (figure 16) that is used in checking ferred to a separate judgmelﬁfA = P that uses the rules
method declarations. This check leads to method specifica- !

. o ) - . of linear logic to prove the availability of permissiofsin
tions that are contra-variant in the domain and co-variantin | . o X . ; .
) . . a given context. This judgment will be discussed in section
the range as required by behavioral subtyping. o : )
5.5. Permission checking rules for most expressions appear

e in figure 15 and are described in turn. Packing, method calls,
5. Modular Typestate Verification and field assignment are discussed in following subsections.
This section describes a static modular typestate checkingHelper judgments are summarized in figure 16. The notation
technique for access permissions similar to conventional [¢//z]e substitutes’ for occurrences af in e.
typechecking. It guarantees at compile-time that protocol . )
specifications will never be violated at runtime. We empha- * P-TERMembeds terms. It formalizes the standard logical
size that our approach does not require tracking typestates at judgment for existential introduction and has no effect on
run time. existing objects.

A companion technical report contains additional judg- e P-FELD checks field accesses analogously.
mrzr;;sn?en ddig tshoilsminzsrs[sp]m‘?;(faofrr: Eaegnr??jgtagfrfgfi%i?;n ¢ P-NEw checks object construction. The parameters passed
i?lheritance and oﬁlypsupp(')rts perm%ssions for objects as a to the constructor havc_a to SQtIﬁfy |n|t|allzat|on predicate
whole. State dimensions are omitted and specifications are P _and pecome thg_objecf[’s |n|t|al f|elq value§. The new

: existentially quantified object is associated witlmaque

deter@?ﬁggioﬁzewgﬁﬂgigg:szmqg%ﬂﬂ()léasrhazétzr}ﬂ for- permission to the root state that makes state assumptions
pure p porary according to the declared start stateObject construc-

Subclasses should be allowed to define their own specifi-
cations, e.g. to add precision or support additional behav-
ior [4]. However, subclasses need to behavioral sub-

mation. tion has no effect on existing objects.

5.1 Permission Tracking The judgmentnit (figure 16) looks up initialization pred-
We permission-check an expressienwith the judgment icate and start state for a class. The start state is a con-
;A F, e : 3z : T.P \ £ This is read as, “in valid junction of states (figure 14). The initialization predicate
contextI” and linear context\, an expressior executed is the invariant needed for the start state.

within receiver class” has type T, yields permissions, e P-IF introduces non-determinism into the system, re-
and affects field€”. PermissionsA are consumed in the flected by the disjunction in its type. We make sure that

process. We omit the receivérwhere it is not required for the predicate is of Boolean type and then assume its truth



Ht:T T;AF[t/x]P boT localFields(C) = f: T T;AF [fi/z]P bR
ARt 3z : TP "IERM DARY f: 3w TP “HELD

THt:T init(C) = (3f:T.P,A) T;AF[t/f]P
[; A R0 new C(%) : 3z : C.access(z, alive, {alive — 1}, 1, A)

P-NeEw

(Tt =true);AFie; : do: T.P \ &

I'Ht:bool (I,t=false);AF ey:3x:T.Pp\ &
F;A pivi if(t,el,eg) Az TP Py \51 Ué&s

;AR e : 3z :T.P\&E (T,z:T);(A,P)H ey : Bz \ &
1 = 1 implies no temporary assumptionsAi Fields in&; do not occur inA’

P-IF

— P-LET
[ (AAYFYI let oz =e;iney: B \EGUE
(x:T,this: C); P+ e Jresult: T,.P. @ T\ & E = Jresult: T,..P, override(m,C,Vz : T.P — E) o.M
— -METH
T, m(Tx): P—o E=ecokinC
M ok in C M overrides all methods with thispermissions irC’ CLok -F'e:E\€E

————== P-CLASsS — P-PrOG

class CextendsC' {FRINM } ok (CL,e): E

Figure 15. Permission checking for expressions (part 1) and declarations

class C extends C' {...} € CL classC{... M...} eCL T, m(Tx):P —o 3Jresult: T,.P' =e€ M
C extends C’

mtype(m,C) =V : T.P — Jresult: T,..P’

C extends ¢’ mtype(m,C’) =V : T.M S implies(z : T, this : C);- = MS — MS’" classC... {F ...} e CL
override(m, C,Vx : T.MS) localFields(C) = F

class C extends C' {f : T inn S initially (3f': T/, f: T.P' ® P,A) ...}

init(C")y = (3f": T".P',A’) -; (P, full(super,alive, {alive — 1}, A")) Finvg(4) @ T

init(Object) = (1, alive) init(C)=3f:T",f : T.P'® P, A)
classC{...n=P..} € CL P =@, <prnpredc(n") inve(A) =P =n'
pred-(n) = P pred~(n',n) = P inve(n, A) = P ® pred(n’,n) ® pred(n)

inve(4;) = P, = n; preda(n;,n) =P ni®nya<n (i=1,2)

7

inve(n) =1=n inve (A1 ® A2) =PL@ P @ P Py =n

inve(4;) = P, = n; preda(ni,n) =P ni@&nya<n (i€1,2)

K3

inve (A1 @ Ag) = (PL® P)) @ (P2 @ prede(ng,n)) = n

only pure permissions inP  existsshare or full permission inP
effectsAllowed(P) = 0 effectsAllowed(P) =1

Figure 16. Protocol verification helper judgments

(falsehood) in checking thiéhen (elsg branch. This ap- fields affected by the first expression. This makes sure
proach lets branches make use of the tested condition. that outdated field permissions do not “survive” assign-

e P-LET checks alet binding. The linear context used ments or packing. Moreover, temporary state information
in checking the second subexpression must not mention 1S dropped if the first subexpression has side effects.



A program consists of a list of classes and a main ex-
pression (P-Rog, figure 15). As usual, the class tabl&d.
is globally available. The main expression is checked with
initially empty contexts. The judgmeritL ok (P-CLASS) inve(n, g,0, A)
checks a class declaration. It checks fields, states, and in- whereabovec(n)
variants for syntactic correctness (omitted here) and verifies
consistency between method specifications and implementa-
tions using the judgment/ ok in C. P-METH assumes the Figure 17. Invariant constructionplurify in figure 19)
specified pre-condition of a method (i.e. the left-hand side
of the linear implication) and verifies that the method’s body

expression produces the declared post-condition (i.e. the _ ; -
right-hand side of the implication). Conjunction with predicate necessary for packing the unpacked permission

drops excess permissions, e.g., to dead objects.ovére and then assumes that permission in checking the body ex-

ride judgment concisely enforces behavioral subtyping (see Préssion. The new state assumptiércan differ from be-
section 4.6). A method itself is not a linear resource since all fore only if a modifying permission was unpacked. Finally,

resources it uses (including the receiver) are passed in uporf"® E’Ie ensures that permissions to fields do not “survive
invocation. packing.

inve(n, g, k, A) inve(n, A) ® purify(abovec(n))

purify (inve(n, A) ® aboves(n))

= ®n’:n<n’§alive predC(n/)

P-Pck does the opposite of PNWACK. It derives the

52 Packing and Unpacking Invariarjt transformation. _The juo.lgmeninvlc(n,.g, k,A)
i ) ] ) determines what permissions to fields are implied by a per-

We use a refined notion efnpacking[12] to gain access to  mjssionaccess(thisg, n, g, k, A) for a frame of clas€. It is
fields: we unpack and pack a specific permission. The accesgjefined in figure 17 and useparify function (figure 19) to
we gain reflects the permission we unpacked. Full and sharedzonyert arbitrary intgure permissions.
permissions give modifying access, while a pure permission  ynpacking a full or shared permission with root node
gives read-only access to underlying fields. n yields purified permissions for nodes “above’and in-

To avoid inconsistencies, objects are always fully packed ¢|ydes invariants following from state assumptions as—is.

when methods are called. To simplify the situation, only one conversely, unpacking a pure permission yields completely
permission can be unpacked at the same time. Intuitively, we pyrified permissions.

“focus” [13] on that permission. This lets us unpastiare
like full permissions, gaining full rather than shared access 5.3 Calling Methods
to underlying fields (if available). The syntax for packing

2 Checking a method call involves proving that the method’s
and unpacking is as follows.

pre-condition is satisfied. The call can then be typed with the
method’s post-condition.
Unfortunately, calling a method can result into reentrant
callbacks. In order to ensure that objects are consistent when
Packing and unpacking always affects the receiver of the called we require them to be fully packed before method
currently executed method. Thepack parameters express calls. This reflects that aliased objects always have to be
the programmer’s expectations about the permission beingprepared for reentrant callbacks.

expressions e = ... | unpack(n,k,A)ine
| packtoAine

unpacked. For simplicity, an explicit subtree fractibris This rule is not a limitation because we can always pack
part of unpack expressions. It could be inferred from a to some intermediate state although it may be inconvenient
programmer-provided permission kind, eshare. in practice. Notice that sucintermediate packingbviates

the need for adoption while allowing focus [13]: the interme-
diate state represents the situation where an adopted object
was taken out of the adopting object. Inferring intermediate
states as well as identifying where reentrant calls are impos-
sible (intermediate packing avoidance) are important areas
for future research.

The checking rules for packing and unpacking are given Virtual calls
in figure 18. Notice that packing and unpacking always af- '
fects permissions tehisy,. (We ignore substitution afthis
with an object location at runtime here.)

P-UNPACK first derives the permission to be unpacked.
The judgmeninv determines a predicate for the receiver’s
fields based on the permission being unpacked. It is usedSuper calls. Super calls are statically dispatched (rule P-
when checking the body expression. Aipacked predicate SUPER). Recall thatsuper is used to identify permissions
is added into the linear context. We can prevent multiple to the super-frame. We substituteper only for this,. We
permissions from being unpacked at the same time using aomit a substitution othis for the receiver this again) for
straightforward dataflow analysis (omitted here). clarity.

Typechecking. In order forpack to work properly we have
to “remember” the permission we unpacked. Therefore we
introduceunpacked as an additional linear predicate.

permissions p = ... | unpacked(n,g,k, A)

Virtual calls are dynamically dispatched
(rule P-CGaLL). In virtual calls, frame and object permis-
sions are identical because object permissions simply refer
to the object’s virtual frame. This is achieved by substituting
the given receiver for botthis andthisy,.



I'; A b¢ access(thisy, n, g, k, A) receiver packed
k=0impliesi =0 T;(A’,inve(n,g,k, A),unpacked(n, g, k, A)) Fse: E\ €

I; (A, A') FL unpack(n, k, A) ine: E\ €

;A beinve(n, g, k, A) ® unpacked(n, g, k, A’) k= 0impliesA = A’
I'; (A, access(thisy, n, g, k, A)) Fio e : E\ € localFields(C) = f: T inn Fields do not occur im\’

P-UNPACK

4 = P-Pack
I (A, A") F packnto Aine: E\ f
FkHty:Cy THt:T T;AF [to/this][to/thisg][t/T|P
mtype(m,Co) =Vz : T.P — E i = effectsAllowed(P) receiver packed b.ca
: = = -CaLL
;A Fotg.m(?) : [to/this][to/thisg][t/Z]E
I'kt:T T;At [super/thisg|[t/ZT]P C extends C’
mtype(m,C’) =Vx : T.P — E i = effectsAllowed(P) receiver packed 6.9
, - — -SUPER

I'; A FL super.m(t) : [super/thisg][t/Z|E

D;AR¢: 32T, P Ty A Fo [fi/2'|P ®p
localFields(C) = f: Tinn n; <n p=unpacked(n,g,k, A),k#0

PN - , v P-ASSIGN

I (AA") Fpoassign fy:=t: 32" T, P @ [fi/z]P@p)\ fi
Figure 18. Permission checking for expressions (part 2)
p = access(r,n,g,k, A)  purify(Py) = P purify(P) = P op € {®,&,d}
purify(p) = pure(r,n, g, A) purify(Py op Py) = P{ op P;
unit € {1, T, 0} purify(P) = P’ purify(P) = P’
purify(unit) = unit purify(3z : H.P) =3z : H.P' purify(Vz: H.P)=Vz: H.P’
Figure 19. Permission purification
5.4 Field Assignments 5.5 Permission Reasoning with Splitting and Joining

Assignments to fields change the state of the receiver’s cur-Our permission checking rules rely on proving a predidate
rent frame. We point out that assignments to a fielchdo given the current valid and linear resources, writted\ -
change states of objects referenced by the field. ThereforeP. We use standard rules for the decidable multiplicative-
reasoning about assignments mostly has to be concernechdditive fragment of linear logic (MALL) with quantifiers
with preserving invariants of the receiver. Thepacked that only range over fractions [28]. Following Boyland [7]
predicates introduced in section 5.2 help us with this task. we introduce a notion of substitution into the logic that al-

Our intuition is that assignment to a field requires unpack- lows substituting a set of linear resources with an equivalent
ing the surrounding object to the point where all states that one.
refer to the assigned field in their invariants are revealed. No- AREP PSP
tice that the object does not have to be unpacked completely IARP
in this scheme. For simplicity, each field is annotated with
the subtree that can depend on it (figure 12). Thus we inter-
pret subtrees as data groups [27].

The rule P-AssiGN(figure 18) assigns a given objedb
a field f; and returns the old field value as an existential
This preserves information about that value. The rule verifies
that the new object is of the correct type and that a suitable
full or share permission is currently unpacked. By recording
an effect onf; we ensure that information about the old field
value cannot “flow around” the assignment (which would be
unsound).

SUBST

The judgmentP = P’ defines legal substitutions. We
use substitutions for splitting and joining permissions (fig-
ure 20). The symboE=> indicates that transformations are
allowed in both directions. 81 and Asym generalize the
rules from section 2. Most other rules are used to split per-
missions for larger subtrees into smaller ones and vice versa.
A detailed explanation of these rules can be found in the
companion report [5].

Our splitting and joining rules maintain a consistent set
of permissions for each object so that no permission can ever
violate an assumption another permission makes. Fractions



A=A =A"or(A=A"andA” =n)or (A= A"andA’ =n)
access(r, n, g, k, A) &= access(r,n,g/2,k/2,A’) ® access(r,n,g/2,k/2, A”)
A=A =A"or(A=A"andA” =n)or (A= A"andA’ =n)

Sym

access(r,n, g, k, A) €= access(r,n, g/2,k, A’) ® pure(r,n, g/2, A”) ASYM
nl#ng A1<n1§n A2<n2§n
p; = full(r,n;, {g, nodes(n;,n) — 1}/2, A;)
F-SPLIT-®
full(r,n, g, A1 @ A2) = p1 ® p2
ni#Fny Ay <ni<n Ay <ns<n
p; = full(r,n;, {g,n — 1,nodes(n;,n) — 1}/2, A;)
F-JOIN-®
p1 ®pa = full(r,n, {g,n — 1}, 41 ® As)
Ay # Ao e
full(r,n, g, A1 ® As) €= full(r,n, g, A1) @ full(r,n, g, As)
A=<n <n F-DowN
full(r,n, g, A) = full(r,n’, {g, nodes(n’,n) — 1}, A)
A<n' <n F-Up
full(r,n’,{g,n — 1,nodes(n’,n) — 1}, A) = full(r,n,{g,n — 1}, A)
n <n
= P-Up

pure(r,n, {g,nodes(n’,n) — k}, A) = pure(r,n’, g, A)

FORGET
access(r,n, g,k, A) = access(r,n, g, k,n)

Figure 20. Splitting and joining of access permissions

of all permissions to an object sum up to (at most) 1 forevery = Becausefill operates on ahare permission our veri-
node in the object’s state space. fication approach forces taking into account possible field
changes through reentrant calls with otkeare permis-
56 Example sions. (This is precisely what our malicious stream does.)
To illustrate how verification proceeds, figure 21 shows We could avoid field re-assignments by haviregd require
thefill method fromBufferedInputStrean (figure 11) afull permission, thereby documenting that reentrant (mod-
written in our core language. As can be seen we need anifying) calls are not permitted for this method.

intermediate stateeads and a marker fieldreading that
indicate an ongoing call to the underlying stream. We also

need an additional state refinement to specify an internal6' Related Work

method replacing thehile loop in the original implemen-  In previous work we proposed more expressive typestate
tation. (We assume thalis;, permissions can be used for specifications [4] that can be verified with the approach pre-
calls toprivate methods.) sented in this paper. We also recently propdsdidandpure

Maybe surprisingly, we have to reassign field values af- permissions and applied our approach to specifying full Java
ter super .read () returns. The reason is that when calling iterators [3]. Verification of protocol compliance has been
super we lose temporary state information fibiis. Assign- studied from many different angles including type systems,
ment re-establishes this information and lets us pack prop-abstract interpretation, model checking, and verification of
erly before callingdoFill recursively or terminating in the  general program behavior. Aliasing is a challenge for all of
cases of a full buffer or a depleted underlying stream. these approaches.

It turns out that these re-assignments @oéjust an in- The system that is closest to our work is Fugue [12],
convenience caused by our method but point to a real prob-the first modular typestate verification system for object-
lem in the Java standard library implementation. We could oriented software. Methods are specified with a determinis-
implement a malicious underlying stream that calls back into tic state transition of the receiver and pre-conditions on argu-
the “surrounding’BufferedInputStream oObject. This call ments. Fugue’s type system tracks objects as “not aliased” or
changes a field, which causes the buffer’s invariant@mt “maybe aliased”. Leveraging research on “alias types” [33]
to permanently breakater onresulting in an undocumented  (see below), objects typically remain “not aliased” as long
array bounds exception when trying to read behind the endas they are only referenced on the stack. Only “not aliased”
of the buffer array. objects can change state; once an object becomes “maybe



class BufferedInputStream extends FilterInputStream {

states ready, reads refine open; ...
states partial, complete refine filled;

reads := reading ready := reading= false;...
private boolean reading; ...

public int read() : Vk: Fract.... =
unpack(open, k) in
let r = reading in if(r == false, ... fill(Q) ...
private bool £ill() : Vk : Fract.
share(thisg, open) in depleted @ eof —o
share(thisy, open) in available @ eof =
unpack(open, k, depleted @ eof) in
assign count = 0 in assign pos = 0 in
assign reading = true in
pack to reads in
let b = super.read() in
unpack(open, k, open) in
let r = reading in assign reading = false in
assign count = 0 in assign pos = 0 in
if(r, if(b = -1, pack to eof in false,
pack to depleted in doFill(b)),
pack to eof in false)

private bool doFill(int b) :Vk : Fract.
share(thisg, open) in depleted & partial —
share(this, open) in partial © complete =
unpack(open, k, depleted @ partial) in
let ¢ = count in let buffer = buf in
assign buffer[c] = b in assign count = ¢ + 1 in
let 1 = buffer.length in
if(c + 1 >= 1, pack to complete in true,
assign reading = true in pack to reads in
let b = super.read() in unpack(open, k) in

let r = reading in assign reading = false in

assign count = ¢ + 1 in assign pos = 0 in
pack to partial in

if(r == false || b == -1, true, doFill(b))

Figure 21. Fragment oBufferedInputStream from fig-
ure 11 in core language

porary state assumptiorfa]l, immutable, andpure permis-
sions, or permissions for object parts in Fugue.

Verification of protocol compliance has also been de-
scribed as “resource usage analysis” [23]. Protocol specifica-
tions have been based on very different concepts including
typestates [34, 11, 25], type qualifiers [16], size properties
[9], direct constraints on ordering [23, 35], and type refine-
ments [30, 10]. None of the above systems can verify im-
plementations of object-oriented protocols like our approach
and only two [35, 10] target object-oriented languages. Ef-
fective type refinements [30] employ linear logic reasoning
but cannot reason about protocol implementations and do not
support aliasing abstractions. Hob [25] verifies data struc-
ture implementations for a procedural language with static
module instantiation based on typestate-like constraints us-
ing shape analyses. In Hob, data can have states, but modules
themselves cannot. In contrast, we can verify the implemen-
tation of stateful objects that are dynamically allocated and
support aliasing with permissions instead of shape analysis.
Finally, concurrent work on Java(X) proposes “activity an-
notations” that are comparable fll, share, andpure per-
missions for whole objects that can be split but not joined.
Similar to effective type refinements, state changes can be
tracked for a pre-defined set of types, but reasoning about
the implementation of these types is not supported. To our
knowledge, none of the above systems supports temporary
state information.

Because programming with linear types [36] is very in-
convenient, a variety of relaxing mechanisms were pro-
posed. Uniqueness, sharing, and immutability (sometimes
called read-only) [7] have recently been put to use in re-
source usage analysis [23, 9]. Alias types [33] allow multiple
variables to refer to the same object but require a linear token
for object accesses that can be borrowed [7] during function
calls. Focusing can be used for temporary state changes of
shared objects [13, 16, 2]. Adoption prevents sharing from
leaking through entire object graphs (as in Fugue [12]) and
allows temporary sharing until a linear adopter is deallocated
[13]. All these techniques need to be aware of all references
to an object in order to change its state.

Access permissions allow state changes even if objects
are aliased from unknown places. Moreover, access permis-
sions give fine-grained access to individual data groups [27].
States and fractions [6] let us capture alias types, borrow-
ing, adoption, and focus with a single mechanism. Sharing

aliased” its state is permanently fixed although fields can be ¢individual data groups has been proposed before [7], but
assigned to if the object's abstract typestate is preserved. i has not been exploited for reasoning about object behav-
Our work is greatly inspired by Fugue's abilities. Our o |n Boyland's work [6], a fractional permission means
approach supports more expressive method specification§mmtapility (instead of sharing) in order to ensure non-
based on linear logic [18]. Our verification approach is based iarference of permissions. We use permissions to keep

on “access permissions” that permit state changes even ingiate assumptions consistent but track, split, and join per-
the presence of aliases. We extend several ideas from Fugueyissions in the same way as Boyland.

to work with access permissions including state invariants,  g|gpal approaches are very flexible in handling alias-
packing, and frames. Fugue’s specifications are expressiblen, - Approaches based on abstract interpretation (e.g. [1,
with our system [4]. Fugue's "not aliased” objects can be 19 14)) typically verify client conformance while the pro-

simulated withunique permissions foralive and “maybe  5¢0| implementation is assumed correct. Sound approaches
aliased” objects co_rrespond_ibare permissions W|th_ state rely on a global aliasing analysis [1, 14]. Likewise, most
guarantees. There is no equivalent for state dimensions, tem-



model checkers operate globally (e.g. [21]) or use assume-for reasoning about permissions. We hope to leverage our
guarantee reasoning between coarse-grained static compoexperiences in using our approach to increase its practicality.
nents [17, 22]. The Magic tool checks individual C func- Based on the case studies presented in this paper we made
tions but has to inline user-provided state machine abstrac-the following observations:

tions for library code in order to accommodate aliasing [8].
The above analyses typically run on the complete code base
once a system is fully implemented and are very expensive.
Our approach supports developers by checking the code at
hand like a typechecker. Thus the benefits of our approach
differ significantly from global analyses.

Recently, there has been progress in inferring typestate
protocols in the presence of aliasing [31], which we believe
could be fruitfully combined with our work to reduce initial
annotation burden.

Finally, general approaches to specifying program behav- e Specification effort lies primarily with protocample-
ior [26, 15, 2] can be used to reason about protocols. The mentationdevelopers, which better amortizes over time.

¢ In this paper we chose to make the linear logic formal-
ism underlying our approach explicit in example proto-
col specifications. However, our case studies suggest that
practical protocols follow certain patterns. For example,
method specifications often consist of simple conjunc-
tions that can be expressed by annotating each method
argument separately. With syntactic sugar for such pat-
terns we believe that programmers will only rarely have
to use linear logic operators explicitly.

JML [26] is very rich and complex in its specification fea-

tures; it is more capable than our system to express object

behavior (not just protocols), but also potentially more dif-
ficult to use due to its complexity. Verifying JML specifica-

Conversely, iterator, stream, and other libraries’ clients
have (we believe) minimal work to do unless they store
objects in fields. (Fugue’s experience suggests that loop
invariants for typestate checking can often be inferred

[12].)

Only a fraction of our system’s capabilities are needed
for any given example (although they all are necessary
in different situations). Developers do have to understand
the general idea of access permissions.

tions is undecidable in the general case. Tools like ESC/Java
[15] can partially check JML specifications but are unsound
because they do not have a sound methodology for handling
aliasing. Spect# is comparable in its complexity to the JML
and imposes similar overhead. The Boogie methodology al-
lows sound verification of Spec# specifications but requires
programs to follow an ownership discipline [2]. We believe that these observations indicate that the ap-
Our system is much simpler than these approaches, fo-proach can be practical, especially with the help of syntax
cusing as it does on protocols, and it is designed to be de-that captures common cases concisely. A systematic eval-
cidable. Our treatment of aliasing makes our system sound,uation of this claim is an important part of planned future
where ESC/Java is not. While the treatment of aliasing in work.
our system does involve complexity, it gives the program-
mer more flexibility than Boogie’s while remaining modular Acknowledgments
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