
Modular Typestate Checking of Aliased Objects

Kevin Bierhoff Jonathan Aldrich
Institute for Software Research, School of Computer Science

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
{kevin.bierho�,jonathan.aldrich} @ cs.cmu.edu

Abstract
Objects often define usage protocols that clients must follow
in order for these objects to work properly. Aliasing makes
it notoriously difficult to check whether clients and imple-
mentations are compliant with such protocols. Accordingly,
existing approaches either operate globally or severely re-
strict aliasing.

We have developed a sound modular protocol checking
approach, based on typestates, that allows a great deal of
flexibility in aliasing while guaranteeing the absence of pro-
tocol violations at runtime. The main technical contribution
is a novel abstraction,access permissions, that combines
typestate and object aliasing information. In our methodol-
ogy, developers express their protocol design intent through
annotations based on access permissions. Our checking ap-
proach then tracks permissions through method implemen-
tations. For each object reference the checker keeps track
of the degree of possible aliasing and is appropriately con-
servative in reasoning about that reference. This helps de-
velopers account for object manipulations that may occur
through aliases. The checking approach handles inheritance
in a novel way, giving subclasses more flexibility in method
overriding. Case studies on Java iterators and streams pro-
vide evidence that access permissions can model realistic
protocols, and protocol checking based on access permis-
sions can be used to reason precisely about the protocols that
arise in practice.

Categories and Subject DescriptorsD.2.4 [Software Engi-
neering]: Software/Program Verification; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms Languages, Verification.

Keywords Typestates, aliasing, permissions, linear logic,
behavioral subtyping.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

1. Introduction
In object-oriented software, objects often defineusage pro-
tocols that clients must follow in order for these objects to
work properly. Protocols essentially define legal sequences
of method calls. In conventional object-oriented languages,
developers have three ways of finding out about protocols:
reading informal documentation, receiving runtime excep-
tions that indicate protocol violations, or observing incorrect
program behavior as a result of protocol violations that broke
internal invariants.

It is the goal of this work to help developers follow pro-
tocols while they write code as well as to allow them to cor-
rectly and concisely document protocols for their code. We
build on our previous work on leveragingtypestates[34] for
lightweight object protocol specification [4]. Our protocols
are state machines that are reminiscent of Statecharts [20].

Aliasing, i.e. the existence of multiple references to
the same object, is a significant complication in checking
whether clients observe a protocol: a client does not neces-
sarily know whether its reference to an object is the only
reference that is active at a particular execution point. This
also makes it difficult to check whether a class implements
its specified protocol because reentrant callbacks through
aliases can again lead to unexpected state changes.

Existing protocol checking approaches fall into two cate-
gories. They either operate globally, i.e. check an entire code
base at once, or severely restrict aliasing. Global analyses
typically account for aliasing but they are not suitable for
interactive use during development. Moreover, they do not
check whether a declared protocol is implemented correctly,
a crucial requirement in object-oriented software where any
class might have a protocol of its own.

Modular protocol checkers, like Fugue [12], the first
sound modular typestate checker for an object-oriented lan-
guage, better support developers while they write code: like
a typechecker, they check each method separately for pro-
tocol violations while assuming the rest of the system to
behave as specified. The trade-off, unfortunately, has been
that modular checkers require code to follow pre-defined
patterns of aliasing. Once a program leaves the realm of
supported aliasing, any further state changes are forbidden.
Generally speaking, state changes are only allowed where
the checker is aware ofall references to the changing object.

This approach has serious drawbacks. First, many exam-
ples of realistic code might be excluded. Moreover, from a
developer’s point of view, the boundaries of what a checker
supports are hard to predict and they might not fit with the
best implementation strategy for a particular problem. Fi-
nally, aliasing restrictions arguably leave developers alone
just when they have the most trouble in reasoning about their
code, namely, in the presence of subtle aliasing.

This paper proposes a sound modular typestate check-
ing approach for Java-like object-oriented languages that
allows a great deal of flexibility in aliasing. For each ref-
erence, it tracks the degree of possible aliasing, and is
appropriately conservative in reasoning about that refer-
ence. This helps developers account for object manipu-
lations that may occur through aliases. High precision in
tracking effects of possible aliases together with system-
atic support fordynamic state tests, i.e. runtime tests on
the state of objects, make this approach feasible. Our ap-
proach helped expose a way of breaking an internal invari-
ant that causes a commonly used Java standard library class,
java.io.BufferedInputStream, to access an array out-
side its bounds. Contributions of this paper include the fol-
lowing.

• Our main technical contribution is a novel abstraction,
calledaccess permissions, that combines typestate with
aliasing information about objects. Developers use access
permissions to express thedesign intentof their proto-
cols in annotations on methods and classes. Our modular
checking approach verifies that implementations follow
this design intent.

Access permissions systematically capture different pat-
terns of aliasing (figure 1). A permission tracks (a) how a
reference is allowed to read and/or modify the referenced
object, (b) how the object might be accessed through
other references, and (c) what is currently known about
the object’s typestate.

• In particular, ourfull andpure permissions [3] capture the
situation where one reference has exclusive write access
to an object (afull permission) while other references
are only allowed to read from the same object (using
pure permissions). Read-only access throughpure per-
missions is intuitively harmless but has to our knowledge
not been exploited in existing modular protocol checkers.

• In order to increase precision of access permissions, we
include two additional novel features, which makeweak
permissionsmore useful than in existing work. We call
permissions “weak” if the referenced object can poten-
tially be modified through other permissions.

Temporary state informationcan be associated with
weak permissions. Our checking approach makes sure
that temporary state information is “forgotten” when
it becomes outdated.

Permissions can be confined to a particular part of
the referenced object’s state. This allows separate per-
missions to independent parts of the same object. It

Access through Current permission has . . .
other permissions Read/write access Read-only access

None unique [6] –
Read-only full [3] immutable [6]
Read/write share [12] pure [3]

Figure 1. Access permission taxonomy

also implies astate guaranteeeven for weak permis-
sions, i.e. a guarantee that the referenced object will
not leave a certain state.

• We handle inheritance in a novel way, giving subclasses
more flexibility in method overriding. This is necessary
for handling realistic examples of inheritance such as
Java’sBufferedInputStream (details in section 3.2).

• We validated our approach with two case studies, itera-
tors (section 2) and streams (section 3) from Sun’s Java
standard library implementation. These case studies pro-
vide evidence that access permissions can model realistic
protocols, and protocol checking based on access permis-
sions can be used to reason precisely about the protocols
that arise in practice.

A more complete evaluation of our approach is beyond
the scope of this paper, which focuses on fully presenting
our checking technique. The evaluation does establish that
our—compared to full-fledged program verification systems
[26, 2]—relatively simple approach can verify code idioms
and find errors that no other decidable modular system can.
The case studies reflect actual Java standard library protocols
and, as far as we can tell, cannot be handled by any existing
modular protocol verification system.

The following two sections introduce access permissions
and verification approach with examples from our case stud-
ies before sections 4 and 5 give a formal account of our ap-
proach. Section 6 compares our approach to related work.

2. Read-Only Iterators
This section illustrates basic protocol specification and ver-
ification using our approach based on a previous case study
on Javaiterators [3]. Iterators follow a straightforward pro-
tocol but define complicated aliasing restrictions that are eas-
ily violated by developers. They are therefore a good vehicle
to introduce our approach to handling aliasing in protocol
verification. Iterators as presented here cannot be handled
by existing modular typestate checkers due to their aliasing
restrictions.

2.1 Specification Goals

The specification presented in this section models theIterator
interface defined in the Java standard library. For the sake of
brevity we focus onread-only iterators, i.e. iterators that
cannot modify the collection on which they iterate. We will
refer to read-only iterators simply as “iterators” and qualify
full Java iterators as “modifying iterators”. In earlier work
we showed how to capture full Java iterators [3]. Goals of
the presented specification include the following.

Figure 2. Read-only iterator state machine protocol

• Capture the usage protocol of Java iterators.

• Allow creating an arbitrary number of iterators over col-
lections.

• Invalidate iterators before modification of the iterated
collection.

2.2 State Machine Protocol

An iterator returns all elements of an underlyingcollection
one by one. Collections in the Java standard library are
lists or sets of objects. Their interface includes methods to
add objects, remove objects, and test whether an object is
part of the collection. The interface also defines a method
iterator that creates a new iterator over the collection.
Repeatedly callingnext on an iterator returns each object
contained in the iterated collection exactly once. The method
hasNext determines whether another object isavailable or
the iteration reached itsend. It is illegal to callnext once
hasNext returnsfalse. Figure 2 illustrates this protocol as
a simple state machine.

Notice thathasNext is legal in both states but does not
change state. We callhasNext adynamic state test: its return
value indicates what state the iterator is currently in. The
next section will show how this protocol can be specified.

2.3 Iterator Interface Specification

States Through Refinement.We call the set of possible
states of an object itsstate spaceand define it as part of
the object’s interface. As suggested above, we can model
the iterator state space with two states,available and end.
In our approach, states are introduced byrefinementof an
existing state. State refinement corresponds to OR-states in
Statecharts [20] and puts states into a tree hierarchy.

State refinement allows interfaces to, at the same time,in-
herit their supertypes’ state spaces, define additional (more
fine-grained) states, and be properlysubstitutableas sub-
types of extended interfaces [4]. Refinement guarantees that
all new states defined in a subtype correspond to a state in-
herited from the supertype. States form a hierarchy rooted in
a statealive defined in the root typeObject. Iterators there-
fore define their state space as follows.

states available, end refine alive;

Typestates donot correspond to fields in a class. They
describe an object’s state of execution abstractly and infor-
mation about fields can betied to typestates using state in-
variants (see section 3.1).

Access Permissions Capture Design Intent.Iterators have
only two methods, but these have very different behavior.
While next canchangethe iterator’s state,hasNext only
teststhe iterator’s state. And even when a call tonext does
not change the iterator’s state, it still advances the iterator to
the next object in the sequence.hasNext, on the other hand,
is pure: it does not modify the iterator at all.

We use a novel abstraction,access permissions(“permis-
sions” for short), to capture thisdesign intentas part of the it-
erator’s protocol. Permissions are associated with object ref-
erences and govern how objects can be accessed through a
given reference [7]. Fornext andhasNext we only need
two kinds of permissions; more kinds of permissions will be
introduced later.

• full permissions grant read/write access to the refer-
enced objectand guarantee that no other reference has
read/write accessto the same object.

• pure permissions grant read-only access the the refer-
enced object butassume that other permissions could
modifythe object.

A distinguishedfull permission can co-exist with an ar-
bitrary number ofpure permissions to the same object. This
property will be enforced when verifying protocol compli-
ance. In a specification we writeperm(x) for a permission to
an object referenced byx, wherepermis one of the permis-
sion kinds. Access permissions carry state information about
the referenced object. For example, “full(this) in available”
represents afull permission for an object (this) that is in the
available state.

Linear Logic Specifications. Methods can be specified
with a state transitionthat describes how method param-
eters change state during method execution. We previously
argued that existing typestate verification approaches are
limited in their ability to express realistic state transitions
[4] and proposed to capture method behavior more precisely
with logical expressions.

Access permissions represent resources that have to be
consumed upon usage—otherwise permissions could be
freely duplicated, possibly violating other permissions’ as-
sumptions. Therefore, we base our specifications on linear
logic [18]. Pre- and post-conditions are separated with a
linear implication (() and use conjunction (⊗) and disjunc-
tion (⊕).1 In certain cases, internal choice (&, also called
additive conjunction) has been useful [3]. These connectives
represent the decidable multiplicative-additive fragment of
linear logic (MALL).

Iterators illustrate that state transitions are often non-
deterministic. Fornext, we can use animprecisepost-
condition and specifynext so that it requires afull permis-
sion in stateavailable and returns thefull permission in the

1 “Tensor” (⊗) corresponds to conjunction, “alternative” (⊕) to disjunction,
and “lollie” (() to implication in conventional logic. The key difference is
that linear logic treats known facts as resources that are consumed when
proving another fact. This fits well with our intuition of permissions as
resources that give access to objects.

alive state. In a Statechart, this corresponds to transitioning
to a state that contains substates (figure 2).

full(this) in available (full(this) in alive

Dynamic state tests (likehasNext) require relating the
(Boolean) method result to the state of the tested object (usu-
ally the receiver). A disjunction of conjunctions expresses
the two possible outcomes ofhasNext (figure 4) where each
conjunction relates a possible method result to the corre-
sponding receiver state. (We adopt the convention that(
binds weaker than⊗ and⊕.)

pure(this) ((result= true⊗ pure(this) in available)
⊕ (result= false⊗ pure(this) in end)

These specifications enforce the characteristichasNext /
next call pairing:hasNext determines the iterator’s current
state. If it returnstrue then it is legal to callnext. The it-
erator is in an unknown state afternext returns, and another
hasNext call determines the iterator’s new state.

2.4 Creating and Disposing Iterators

Multiple (independent) iterators are permitted for a single
collection at the same time. However, the collection must not
be modified while iteration is in progress. Standard imple-
mentations try to detect such situations ofconcurrent modi-
ficationon a best-effort basis. But, ultimately, Java program-
mers have to make sure on their own that collections are not
modified while iterated. (Note that “concurrent” modifica-
tions often occur in single-threaded programs [32].)

This section shows how the aliasing constraints between
iterators and its collection can be handled. As we will see,
this problem is largely orthogonal to specifying the rela-
tively simple protocol for for individual iterators that was
discussed in the previous section.

Immutable Access Prevents Concurrent Modification.Ac-
cess permissions can guarantee the absence of concurrent
modification. The key observation is that when an iterator is
created it stores a reference to the iterated collection in one
of its fields. This reference should be associated with a per-
mission that guarantees the collection’simmutabilitywhile
iteration is in progress. We include two previously proposed
permissions [6] into our system in order to properly specify
collections.

• immutable permissions grant read-only access to the
referenced objectand guarantee that no reference has
read/write accessto the same object.

• unique permissions grant read/write accessand guaran-
tee that no other reference hasanyaccessto the object.

Thus immutable permissionscannot co-exist with full
permissions to the same object. We can specify the collec-
tion’s iterator method using these permissions as follows.
Notice how itconsumesor capturesthe incoming receiver
permission and returns an initialunique permission to a fresh

Collection c = new ...
Iterator it = c.iterator(); // legal
while(it.hasNext() && ...) { // legal

Object o = it.next(); // legal
Iterator it2 = c.iterator(); // legal
while(it2.hasNext()) { // legal

Object o2 = it2.next(); // legal
... }

}
if(it.hasNext() && c.size() == 3) { // legal

c.remove(it.next()); // legal
if(it.hasNext()) ... } // ILLEGAL

Iterator it3 = c.iterator(); // legal

Figure 3. A simpleIterator client

iterator object.

public class Collection {
Iterator iterator() : immutable(this) (unique(result)

}

It turns out that this specification precisely captures Sun’s
Java standard library implementation of iterators: Iterators
are realized as inner classes that implicitly reference the
collection they iterate.

Permission Splitting. How can we track permissions?
Consider a client such as the one in figure 3. It gets a
unique permission when first creating a collection. Then
it creates an iterator which captures animmutable permis-
sion to the collection. However, the client later needs more
immutable permissions to create additional iterators. Thus
while a unique permission is intuitively stronger than an
immutable permission we cannot just coerce the client’s
unique permission to animmutable permission and pass it
to iterator: it would get captured by the newly created it-
erator, leaving the client with no permission to the collection
at all.

In order to avoid this problem we usepermission splitting
in our verification approach. Before method calls we split the
original permission into two, one of which is retained by the
caller. Permissions are split so that their assumptions are not
violated. In particular, we never duplicate afull or unique
permission and make sure that nofull permission co-exists
with an immutable permission to the same object. Some of
the legal splits are the following.

unique(x) V full(x)⊗ pure(x)
full(x) V immutable(x)⊗ immutable(x)

immutable(x) V immutable(x)⊗ immutable(x)
immutable(x) V immutable(x)⊗ pure(x)

They allow the example client in figure 3 to retain an
immutable permission when creating iterators, permitting
multiple iterators and reading the collection directly at the
same time.

Permission Joining Recovers Modifying Access.When
splitting a full permission to a collection intoimmutable

interface Iterator<c : Collection, k : Fract> {
states available, end refine alive

boolean hasNext() :
pure(this) ((result= true⊗ pure(this) in available))

⊕ (result= false⊗ pure(this) in end)
Object next() :

full(this) in available (full(this)
void finalize() :

unique(this) (immutable(c, k)
}

interface Collection {
void add(Object o) : full(this) (full(this)
int size() : pure(this) (result≥ 0⊗ pure(this)
// remove(), contains() etc. similar

Iterator<this, k > iterator() :
immutable(this, k) (unique(result)

}

Figure 4. Read-onlyIterator and partialCollection
interface specification

permissions we lose the ability to modify the collection.
Intuitively, we would like to reverse permission splits to
regain the ability to modify the collection.

Suchpermission joiningcan be allowed if we introduce
the notion of fractions [6]. Essentially, fractions keep track
of how often a permission was split. This later allows join-
ing permissions (with known fractions) by putting together
their fractions. Aunique permission by definition holds a
full fraction that is represented by one (1). We will capture
fractions as part of our permissions and write(perm)(x, k)
for a given permission with fractionk. We usually do not
care about the exact fraction and therefore implicitly quan-
tify over all fractions. If a fraction does not change we often
will omit it. Fractions allow us to define splitting and joining
rules as follows.

unique(x, 1) WV full(x, 1/2)⊗ pure(x, 1/2)
full(x, k) WV immutable(x, k/2)⊗ immutable(x, k/2)

immutable(x, k) WV immutable(x, k/2)⊗ immutable(x, k/2)
immutable(x, k) WV immutable(x, k/2)⊗ pure(x, k/2)

For example, we can splitfull(it, 1/2) into full(it, 1/4)⊗
pure(it, 1/4) and recombine them. Such reasoning lets our
iterator client recover aunique iterator permission after each
call into the iterator.

Recovering Collection Permissions.Iterators are created
by trading a collection permission for aunique iterator per-
mission. We essentially allow the opposite trade as well in
order to modify a previously iterated collection again: We
can safely consume aunique iterator permission and recover
the permissions to its fields because no reference will be able
to access the iterator anymore. A simple live variable analy-
sis can identify when variables withunique permissions are
no longer used. (As a side effect, a permission-based ap-
proach therefore allows identifying dead objects.)

Collection c = new ... unique(c)
Iterator it<c, 1/2> = c.iterator();

immutable(c, 1/2)⊗ unique(it)
while(it.hasNext() && ...) {

immutable(c, 1/2)⊗ unique(it) in available
Object o = it.next();

immutable(c, 1/2)⊗ unique(it)
Iterator it2<c, 1/4> = c.iterator();

immutable(c, 1/4)⊗ unique(it)⊗ unique(it2)
while(it2.hasNext()) {
immutable(c, 1/4)⊗ unique(it)⊗ unique(it2) in available

Object o2 = it2.next();
immutable(c, 1/4)⊗ unique(it)⊗ unique(it2)

... } // it2 dies
} immutable(c, 1/2)⊗ unique(it)
if(it.hasNext() && c.size() == 3) {

immutable(c, 1/2)⊗ unique(it) in available
c.remove(it.next()); // it dies after next()

unique(c) and no permission for it
if(it.hasNext()) ... } // ILLEGAL

// it definitely dead unique(c)
Iterator it3<c, 1/2> = c.iterator();

immutable(c, 1/2)⊗ unique(it3)

Figure 5. Verifying a simpleIterator client

For lack of a more suitable location, we annotate the
finalize method to indicate what happens when an iter-
ator is no longer usable. And in order to re-establishexactly
the permission that was originally passed to the iterator we
parameterizeIterator objects with the collection permis-
sion’s fraction. Thefinalize specification can then release
the captured collection permission from dead iterators. The
complete specification for iterators and a partial collection
specification are summarized in figure 4.

2.5 Client Verification

Figure 5 illustrates how our client from figure 3 can be
verified by tracking permissions and splitting/joining them
as necessary. After each line of code we show the current
set of permissions on the right-hand side of the figure. We
recover collection permissions from dead iterators as soon
as possible. This lets us verify the entire example client. We
correctly identify the seeded protocol violation.

2.6 Summary

We presented a specification of read-only iterators that pre-
vents concurrent collection modification. To this end it asso-
ciates collections and iterators withaccess permissions, de-
fines a simple state machine to capture the iterator usage pro-
tocol, and tracks permission information using a decidable
fragment of linear logic. Our logic-based specifications can
relate objects to precisely specify method behavior in terms
of typestates and support reasoning about dynamic tests.

3. Java Stream Implementations
I/O protocols are common examples for typestate-based pro-
tocol enforcement approaches [11, 12, 4]. This section sum-

Figure 6. PipedInputStream’s state space (insideopen)

marizes a case study in applying our approach to Javachar-
acter streamsand in particularstream pipesandbuffered in-
put streams. The section focuses onimplementation verifica-
tion of stream classes, which—to our knowledge—has not
been attempted with typestates before. Implementation veri-
fication generalizes techniques shown in the previous section
for client verification.

3.1 Stream Pipes

Pipes are commonly used in operating system shells to for-
ward output from one process to another process. Pipes carry
alphanumericcharactersfor a source to a sink. The Java
I/O library includes a pair of classes,PipedOutputStream
andPipedInputStream, that offers this functionality inside
Java applications. This section provides a specification for
Java pipes and shows how the classes implementing pipes in
the Java standard library can be checked using our approach.

Informal Pipe Contract. In a nutshell, Java pipes work as
follows: A character-producing “writer”writes characters
into a PipedOutputStream (the “source”) that forwards
them to a connectedPipedInputStream (the “sink”) from
which a “reader” canread them. The source forwards char-
acters to the sink using the internal methodreceive. The
writer callsclose on the source when it is done, causing the
source to callreceivedLast on the sink (figure 7).

The sink caches received characters in a circular buffer.
Callingread on the sink removes a character from the buffer
(figure 8). Eventually the sink will indicate, using anend
of file token(EOF, -1 in Java), that no more characters can
be read. At this point the reader can safely close the sink.
Closing the sink before EOF was read is unsafe because the
writer may still be active.

The pipe classes in Sun’s standard library implementation
have built-in runtime checks that throw exceptions in the
following error cases: (1) closing the sink before the source,
(2) writing to a closed source or pushing characters to the
sink after the source was closed, and (3) reading from a
closed sink. The specification we present here makes these
error cases impossible.

State Space with Dimensions.The source protocolcan
be modeled with three statesraw, open, and closed. raw
indicates that the source is not connected to a sink yet.
For technical reasons that are discussed below, we refine

open into ready andsending. The writer will always find the
source in stateready.

For the sink protocol we again distinguishopen and
closed. A refinement ofopen helps capturingread’s pro-
tocol: The sink iswithin as long asread returns characters;
the eof state is reached whenread returns the EOF token.
Whilewithin, we keep track of the sink’s buffer beingempty
or nonEmpty. We further refinenonEmpty into partial and
�lled, the latter corresponding to a full buffer.

At the same time, however, we would like to track
whether the source was closed, i.e., whetherreceivedLast
was called. We previously proposedstate dimensionsto ad-
dress such separate concerns (here, the buffer filling and the
source state) [4] with states that are independent from each
other. State dimensions correspond to AND-states in State-
charts [20].

We can simply refinenonEmpty twice, along different
dimensions. We call the states for the second dimension
sourceOpen andsourceClosed with the obvious semantics.
Note that we only need the additionalsource dimension
while the buffer isnonEmpty; the source is by definition
open (closed) in theempty (eof) state.2 To better visualize
the sink’s state space, figure 6 summarizes it as a Statechart.

Shared Modifying Access. Protocols for source and sink
are formalized in figures 7 and 8 with specifications that
work similar to the iterator example in the last section. How-
ever, the sink is conceptually modified through two distinct
references, one held by the source and one held by the reader.
In order to capture this, we introduce our last permission.

• share permissions grant read/write access to the refer-
enced object butassume that other permissions have
read/write access as well.

Conventional programming languages effectively always
useshare permissions for mutable state. Interestingly,share
permissions are split and joined exactly likeimmutable per-
missions. Sinceshare andimmutable permissions cannot co-
exist, our rules force a commitment to either one when ini-
tially splitting afull permission.

full(x, k) WV share(x, k/2)⊗ share(x, k/2)
share(x, k) WV share(x, k/2)⊗ share(x, k/2)
share(x, k) WV share(x, k/2)⊗ pure(x, k/2)

State Guarantees. We notice that most modifying methods
cannot change a stream’s state arbitrarily. For example,read
andreceive will never leave theopen state and they cannot
tolerate other permission to leaveopen.

We make this idea part of our access permissions. We
include another parameter into permissions that specifies a
state guarantee, i.e. a state that cannot be left even by mod-
ifying permissions. Thus a state guarantee (also called the
permission’sroot) corresponds to an “area” in a Statechart
that cannot be left. As an example, we can write the permis-

2 This is onlyoneway of specifying the sink. It has the advantage that read-
ers need not concern themselves with the internal communication between
source and sink.

public class PipedOutputStream {
states raw, open, closed refine alive;
states ready, sending refine open;

raw := sink= null
ready := half(sink, open)
sending := sink 6= null
closed := sink 6= null

private PipedInputStream sink;

public PipedOutputStream() :
1 (unique(this) in raw { }

void connect(PipedInputStream snk) :
full(this) in raw⊗ half(snk, open) (
full(this) in ready

{ sink = snk; store permission in field
} full(this) in open

public void write(int b) :
full(this, open) in ready⊗ b ≥ 0 (full(this, open) in ready

{ half(sink, open) from invariant
sink.receive(b); returnshalf(sink, open)

} full(this, open) in ready

public void close() :
full(this) in ready (full(this) in closed

{ half(sink, open) from invariant
sink.receivedLast(); consumeshalf(sink, open)

} full(this) in closed
}

Figure 7. JavaPipedOutputStream (simplified)

sion needed forread as share(this, open). Without an ex-
plicit state guarantee, onlyalive is guaranteed (this is what
we did for iterators).

State guarantees turn out to be crucial in makingshare
andpure permissions useful because they guarantee a state
even in the face of possible changes to the referenced object
through other permissions. Moreover, if we combine them
with state dimensions we get independent permissions for
orthogonal object aspects that, e.g., let us elegantly model
modifying iterators [3].

Explicit Fractions for Temporary Heap Sharing. When
specifying the sink methods used by the source (receive
andreceivedLast) we have to ensure that the source can
no longer call the sink afterreceivedLast so the sink can
be safely closed. Moreover, in order to close the sink, we
need to restore a permission rooted inalive. Thus the two
share permissions for the sink have to be joined in such a
way that there are definitely no other permissions relying on
open (such permissions, e.g., could have been split off of one
of theshare permissions).

We extend the notion of fractions to accomplish this task.
We use fractions to track,for each state separately, how
many permissions rely on it. What we get is afraction
function that maps guaranteed states (i.e. the permission’s

class PipedInputStream {
stream = open, closed refines alive;
position = within, eof refines open;
buffer = empty, nonEmpty refines within;
filling = partial, filled refines nonEmpty;
source = sourceOpen, sourceClosed refines nonEmpty;

empty := in ≤ 0⊗ closedByWriter= false
partial := in ≥ 0⊗ in 6= out
�lled := in = out
sourceOpen := closedByWriter= false
sourceClosed := closedByWriter⊗ half(this, open)
eof := in ≤ 0⊗ closedByWriter⊗ half(this, open)

private boolean closedByWriter = false;
private volatile boolean closedByReader = false;
private byte buffer[] = new byte[1024];
private int in = -1, out = 0;

public PipedInputStream(PipedOutputStream src) :
full(src) in raw (half(this, open)⊗ full(src) in open

{ unique(this) in open V half(this, open)⊗ half(this, open)
src.connect(this); consumes onehalf(this, open)

} half(this, open)⊗ full(src) in open

synchronized void receive(int b) :
half(this, open)⊗ b ≥ 0 (half(this, open) in nonEmpty

{ // standard implementation checks if pipe intact
while(in == out) half(this, open) in �lled
... // wait a second

half(this, open) in empty⊕ partial
if(in < 0) { in = 0; out = 0; }
buffer[in++] (byte)(b & 0xFF);
if(in >= buffer.length) in = 0;

} half(this, open) in partial

synchronized void receivedLast() :
half(this, open) (1

{ closedByWriter = true; } this is nowsourceClosed

public synchronized int read() :
share(this, open) ((result≥ 0⊗ share(this, open))

⊕ (result= −1⊗ share(this, open) in eof)
{ ... } // analogous to receive()

public synchronized void close() :
half(this, open) in eof (unique(this) in closed

{ half(this, open) from eof invariant V unique(this, open)
closedByReader = true;
in = -1;

}
}

Figure 8. JavaPipedInputStream (simplified)

root and its super-states) to fractions. For example, if we
split an initialunique permission for aPipedInputStream
into two share permissions guaranteeingopen then these
permissions rely onopen andalive with a1/2 fraction each.
(Iterator permissions root inalive and their fraction functions
mapalive to the given fraction.)

In order to close the sink, we have to make sure that there
areexactlytwo share permissions relying onopen. Fraction
functions make this requirement precise. For readability,
we use the abbreviationhalf in figure 8 that stands for the
following permission.

half(x, open) ≡ share(x, open, {alive 7→ 1/2, open 7→ 1/2})

By adding fractions and moving the state guarantee up
in the state hierarchy, the initial permission for the sink,
unique(this, alive, {alive 7→ 1}), can be regained from two
half(this, open) permissions.half is the only permission
with an explicit fraction function. All other specifications
implicitly quantify over all fraction functions and leave them
unchanged.

State Invariants Map Typestates to Fields.We now have
a sufficient specification for both sides of the pipe. In order
to verify their implementations we need to know what types-
tates correspond to in implementations. Our implementation
verification extends Fugue’s approach of usingstate invari-
ants to map states to predicates that describe the fields of
an object in a given state [12]. We leverage our hierarchi-
cal state spaces and allow state invariants for states with re-
finements to capture invariants common to all substates of a
state.

Figure 7 shows that the source’s state invariants describe
its three states in the obvious way based on the fieldsnk
pointing to the sink. Notice that the invariant does not only
talk about the sink’s state (as in Fugue) but uses permissions
to control access through fields just as through local vari-
ables.

The sink’s state invariants are much more involved (fig-
ure 8) and define, e.g., what the difference between anempty
buffer (in < 0) and a�lled circular buffer (in = out)
is. Interestingly, these invariants are all meticulously docu-
mented in the original Java standard library implementation
for PipedInputStream [4]. The half permission to itself
that the sink temporarily holds for the time between calls to
receivedLast andclose lets us verify thatclose is al-
lowed to close the sink.

Verification with Invariants. Implementation checking as-
sumes state invariants implied by incoming permissions and
tracks changes to fields. Objectshave to be in a state when-
ever they yield control to another object, including during
method calls. For example, the source transitions tosending
before calling the sink. However, the writer never finds the
source in thesending state but alwaysready—sending never
occurs in a method specification. We call states that are not
observed by a clientintermediate states. They help us deal
with re-entrant calls (details in section 5.2). A practical syn-
tax could make such intermediate states implicit.

Figures 7 and 8 show how implementation checking pro-
ceeds for most of the source’s and sink’s methods. We show
in detail how field assignments change the sink’s state. The
sink’s state information is frequently a disjunction of possi-
ble states. Dynamic tests essentially rule out states based on
incompatible invariants.All of these tests are present in the

Figure 9. Frames of aBufferedInputStream instance in
statefilled. The bluevirtual frame is in a different state
than its super-frame.

original Java implementation; we removed additional non-
null and state tests that are obviated by our approach. This
not only shows how our approach forces necessary state tests
but also suggests that our specifications could be used togen-
eratesuch tests automatically.

3.2 Buffered Input Streams

A BufferedInputStream (or “buffer”, for short) wraps an-
other “underlying” stream and provides buffering of charac-
ters for more efficient retrieval. We will use this example to
illustrate our approach to handling inheritance. Compared to
the original implementation, we made fields “private” in or-
der to illustrate calls to overridden methods usingsuper. We
omit intermediate states in this specification.

Class Hierarchy. BufferedInputStream is a subclass
of FilterInputStream, which in turn is a subclass of
InputStream. InputStream is the abstract base class of all
input streams and defines their protocol with informal docu-
mentation that we formalize in figure 10. It implementscon-
venience methodssuch asread(int[]) in terms of other—
abstract—methods.FilterInputStream holds an underly-
ing stream in a fields and simply forwards all calls to that
stream (figure 10).BufferedInputStream overrides these
methods to implement buffering.

Frames. The buffer occasionally calls overridden meth-
ods to read from the underlying stream. How can we reason
about these internal calls? Our approach is based on Fugue’s
framesfor reasoning about inheritance [12]. Objects are bro-
ken into frames, one for each class in the object’s class hi-
erarchy. A frame holds the fields defined in the correspond-
ing class. We call the frame corresponding to the object’s
runtime type thevirtual frame, referred to with normal ref-
erences (includingthis). Relative to a method, we call the
current frame—corresponding to the class that the method
is defined in—withthisfr, and the frame corresponding to

public abstract class InputStream {
states open, closed refine alive;
states within, eof refine open;

public abstract int read() :
share(thisfr, open) ((result≥ 0⊗ share(thisfr, open))

⊕ (result= −1⊗ share(thisfr, open) in eof)
public abstract void close() :
full(thisfr, alive) in open (full(thisfr, alive) in closed

public int read(byte[] buf) :
share(this, open)⊗ buf 6= null (

(result= −1⊗ share(this, open) in eof)⊕
(result≥ 0⊗ share(this, open))

{ ... for(...)
... int c = this.read() ... }

}

public class FilterInputStream extends InputStream {
within := unique(s) in within
eof := unique(s) in eof
closed := unique(s) in closed

private volatile InputStream s;

protected FilerInputStream(InputStream s)
unique(s, alive) in open (unique(thisfr, alive) in open

{ this.s = s; }
... // read() and close() forward to s

}

Figure 10. JavaFilterInputStream forwards all calls to
underlyingInputStream (simplified)

the immediate superclass is calledsuper frame. Figure 9
shows a sampleBufferedInputStream instance with its
three frames.

Frame Permissions. In our approach, a permission actu-
ally grants access to a particular frame. The permissions we
have seen so far give a client access to the referenced ob-
ject’s virtual frame. Permissions for other frames are only
accessible from inside a subclass throughsuper.

Figure 9 illustrates that aBufferedInputStream’s state
can differ from the state its filter frame is in: the filter’s
state might beeof (when the underlying stream reacheseof)
while the buffer’s is stillwithin (because the buffer array
still holds unread characters). The state invariants in figure
11 formalize this. They let us verify thatsuper calls in the
buffer implementation respect the filter’s protocol.

Because the states of frames can differ it is important to
enforce that a permission is only ever used to access fields
in the frame it grants permission to. In specifications we
specifically mark permissions that will actually access fields
(and not just call other methods) of the receiver withthisfr.
We require all methods that use these permissions to be
overridden. On the other hand, convenience methods such
asread(int[]) can operate with permissions to the virtual
frame and need not be overridden (figure 10).

public class BufferedInputStream
extends FilterInputStream {

states depleted, filled refine within;

closed := unique(super) in closed⊗ buf = null
open := unique(buf)
�lled := pos< count⊗ unique(super) in open
depleted := pos≥ count⊗ unique(super) in within
eof := pos≥ count⊗ unique(super) in in eof

private byte buf[] = new byte[8192];
private int count = 0, pos = 0;

public BufferedInputStream(InputStream s)
unique(s) in open (unique(thisfr) in open

{ count= pos= 0⊗ unique(buf)
super(s); unique(super) in open

} unique(thisfr, alive) in open

public synchronized int read() {
if(pos >= count)
{ share(thisfr, open) in depleted⊕ eof
fill(); share(thisfr, open) in �lled⊕ eof
if(pos >= count)
return -1; returnsshare(thisfr, open) in eof

} any path:share(thisfr, open) in �lled
return buf[pos++] & 0xFF;

} share(thisfr, open) in �lled⊕ eof

private void fill()
share(thisfr, open) in depleted⊕ eof (
share(thisfr, open) in �lled⊕ eof

{ invariant: unique(super) in within⊕ eof
count = pos = 0; note: assumes buffer was fully read
int b = super.read(); unique(super) in within⊕ eof
while(b >= 0) { unique(super) in within
buf[count++] = (byte) (b & 0xFF);

share(thisfr, open) in �lled
if(count >= buf.length) break;
b = super.read(); unique(super) in within⊕ eof

} if loop never taken,share(thisfr, open) in eof
} share(this, open) in �lled⊕ eof

public synchronized void close() {
buf = null; invariant: unique(super) in open
super.close(); unique(super) in closed

} full(thisfr, alive) in closed

Figure 11. BufferedInputStream caches characters from
FilterInputStream base class

This distinction implies thatfill (figure 11)cannotcall
read(int[]) (because it does not have a suitable virtual
frame permission) butonlysuper.read(). This is impera-
tive for the correctness offill because a dynamically dis-
patched call would lead back into the—stillempty—buffer,
causing an infinite loop. (One can trigger exactly this effect
in the Java 6 implementation ofBufferedInputStream.)

3.3 Summary

This section showed how our approach can be used to ver-
ify realistic Java pipe and buffered input stream imple-
mentations. The notion of access permissions is central to
our approach. Overall, we introduced five different kinds
of permissions (figure 1). While three kinds are adapted
from existing work [7, 12] we recently proposedfull and
pure permissions [3]. State guarantees and temporary state
information increase the usefulness of “weak” (share and
pure) permissions. Permission splitting and joining is flexi-
ble enough to model temporary aliasing on the stack (during
method calls) and in the heap (e.g., in pipes and iterators).
Permission-based state invariants enable reasoning about
protocol implementations. We handle inheritance based on
frames [12] and permit dynamic dispatch within objects for
convenience methods.

4. Formal Language
This section formalizes an object-oriented language with
protocol specifications. We briefly introduce expression and
class declaration syntax before defining state spaces, access
permissions, and permission-based specifications. Finally,
we discuss handling of inheritance and enforcement of be-
havioral subtyping.

4.1 Syntax

Figure 12 shows the syntax of a simple class-based object-
oriented language. The language is inspired by Feather-
weight Java (FJ, [24]); we will extend it to include type-
state protocols in the following subsections. We identify
classes (C), methods (m), and fields (f) with their names.
As usual, x ranges over variables including the distin-
guished variablethis for the receiver object. We use an over-
bar notation to abbreviate a list of elements. For example,
x : T = x1:T1, . . . , xn:Tn. Types (T) in our system in-
clude Booleans (bool) and classes.

Programs are defined with a list of class declarations and
a main expression. A class declarationCL gives the class a
unique nameC and defines its fields, methods, typestates,
and state invariants. A constructor is implicitly defined with
the class’s own and inherited fields. Fields (F) are declared
with their name and type. Each field is mapped into a part
of the state spacen that can depend on the field (details in
section 5.2). A method (M) declares its result type, formal
parameters, specification and a body expression. State re-
finementsR will be explained in the next section; method
specificationsMS and state invariantsN are deferred to sec-
tion 4.4.

We syntactically distinguish pure termst and possibly ef-
fectful expressionse. Arguments to method calls and object
construction are restricted to terms. This simplifies reason-
ing about effects [30, 9] by making execution order explicit.

Notice that we syntactically restricts field access and as-
signments to fields of the receiver class. Explicit “getter” and
“setter” methods can be defined to give other objects access
to fields. Assignments evaluate to thepreviousfield value.

programs PR ::= 〈CL, e〉
class decl. CL ::= class C extends C′ { F R I N M }
field decl. F ::= f : T in n

meth. decl. M ::= T m(T x) : MS = e
state decl. R ::= d = s refines s0

terms t ::= x | o | true | false
| t1 and t2 | t1 or t2 | not t

expressions e ::= t | f | assign f := t
| new C(t) | t0.m(t) | super.m(t)
| if(t, e1, e2) | let x = e1 in e2

values v ::= o | true | false
references r ::= x | f | o

types T ::= C | bool
nodes n ::= s | d

classes C fields f variables x objects o
methods m states s dimensions d

Figure 12. Core language syntax. Specifications (I, N, MS)
in figure 14.

4.2 State Spaces

State spaces are formally defined as a list of state refinements
(see figure 12). A state refinement (R) refines an existing
state in a new dimension with a set of mutually exclusive
sub-states. We uses andd to range over state and dimension
names, respectively. Anoden in a state space can be a state
or dimension. State refinements are inherited by subclasses.
We assume a root statealive that is defined in the root class
Object.

We define a variety of helper judgments for state spaces
in figure 13. re�nements(C) determines the list of state
refinements available in classC. C ` A wf defines well–
formed state assumptions. AssumptionsA combine states
and are defined in figure 14. Conjunctive assumptions have
to cover orthogonal parts of the state space.C ` n ≤ n′

defines the substate relation for a class.C ` A # A′ defines
orthogonality of state assumptions.A andA′ are orthogonal
if they refer to different (orthogonal) state dimensions.C `
A ≺ n defines that a state assumptionA only refers to states
underneath a root noden. C ` A � n finds the tightest such
n.

4.3 Access Permissions

Access permissionsp give references permission to access
an object. Permissions to objects are writtenaccess(r, n, g, k,A)
(figure 14). (We wroteperm(r, n, g) in A before.) The ad-
ditional parameterk allows us to uniformly represent all
permissions as explained below.

• Permissions are granted to referencesr. References can
be variables, locations, and fields.

• Permissions apply to a particularsubtreein the space
space ofr that is identified by its root noden. It rep-

re�nements(Object) = ·
class C extends C ′ { F R . . . } re�nements(C ′) = R′

re�nements(C) = R′, R

n in re�nements(C)
C ` n wf

C ` A1 wf C ` A2 wf

C ` A1 ⊕A2 wf

C ` A1 wf A1 # A2 C ` A2 wf

C ` A1 ⊗A2 wf

d = s refines s ∈ re�nements(C)
C ` si ≤ d C ` d ≤ s

C ` n wf
C ` n ≤ n

C ` n ≤ n′′ C ` n′′ ≤ n′

C ` n ≤ n′
d = s refines s∗ ∈ re�nements(C) d′ = s′ refines s∗ ∈ re�nements(C) d 6= d′

C ` d # d′

C ` n1 ≤ n′1 C ` n′1 # n′2 C ` n2 ≤ n′2
C ` n1 # n2

C ` A′ # A

C ` A # A′
C ` A1,2 # A

C ` A1 ⊗A2 # A

C ` A1,2 # A

C ` A1 ⊕A2 # A

C ` n′ ≤ n

C ` n′ ≺ n

C ` A1,2 ≺ n C ` A1 ⊗A2 wf

C ` A1 ⊗A2 ≺ n

C ` A1,2 ≺ n C ` A1 ⊕A2 wf

C ` A1 ⊕A2 ≺ n

C ` A ≺ n ∀n′ : C ` A ≺ n′ impliesn ≤ n′

C ` A � n

Figure 13. State space judgments (assumptionsA defined in figure 14)

resents astate guarantee(section 3). Other parts of the
state space are unaffected by the permission.

• The fraction functiong tracks for each node on the path
from n to alive a symbolic fraction [6]. The fraction func-
tion keeps track of how often permissions were split at
different nodes in the state space so they can be coalesced
later (see section 5.5).

• Thesubtree fractionk encodes the level of access granted
by the permission.k > 0 grants modifying access.k <
1 implies that other potentially modifying permissions
exist. Fraction variablesz are conservatively treated as
a value between 0 and 1, i.e.,0 < z < 1.

• An state assumptionA expresses state knowledge within
the permission’s subtree. Onlyfull permissions can per-
manently make state assumptions until they modify the
object’s state themselves. For weak permissions, the state
assumption istemporary, i.e. lost after any effectful ex-
pression (because the object’s state may change without
the knowledge ofr).

We can encodeunique, full, share, andpure permissions
as follows. In our formal treatment we omitimmutable per-
missions, but it is straightforward to encode them with an
additional “bit” that distinguishesimmutable andshare per-
missions.

unique(r, n, g) in A ≡ access(r, n, {g, n 7→ 1}, 1, A)
full(r, n, g) in A ≡ access(r, n, g, 1, A)

share(r, n, g, k) in A ≡ access(r, n, g, k,A) (0 < k < 1)
pure(n, n, g) in A ≡ access(r, n, g, 0, A)

4.4 Permission-Based Specifications

We combine atomic permissions (p) and facts about Boolean
values (q) using linear logic connectives (figure 14). We also
include existential (∃z : H.P) and universal quantification
of fractions (∀z : H.P) to alleviate programmers from
writing concrete fraction functions in most cases. We type
all expressions as an existential type (E).

permissions p ::= access(r, n, g, k,A)
facts q ::= t = true | t = false

assumptions A ::= n | A1 ⊗A2 | A1 ⊕A2

fraction fct. g ::= z | n 7→ v
| g/2 | g1, g2

fractions k ::= 1 | 0 | z | k/2
predicates P ::= p | q

| P1 ⊗ P2 | 1
| P1 & P2 | >
| P1 ⊕ P2 | 0
| ∃z : H.P | ∀z : H.P

method specs MS ::= P (E
expr. types E ::= ∃x : T.P

state inv. N ::= n = P
initial state I ::= initially 〈∃f : T .P, S〉

precise state S ::= s1 ⊗ . . .⊗ sn

fract. terms h ::= g | k
fract. types H ::= Fract | n → Fract
fract. vars. z

Figure 14. Permission-based specifications

Method specifications. Methods are specified with a linear
implication (() of predicates (MS). The left-hand side of
the implication (method pre-condition) may refer to method
receiver and formal parameters. The right-hand side (post-
condition) existentially quantifies the method result (a simi-
lar technique is used in Vault [11]). We refer to the receiver
with thisand usually call the return valueresult.

State invariants. We decided to use linear logic predicates
for state invariants as well (N). In general, several of the
defined state invariants will have to be satisfied at the same
time. This is due to our hierarchical state spaces. Each class
declares an initialization predicate and a start state (I) that
are used for object construction (instead of an explicit con-
structor).

4.5 Handling Inheritance

Permissions give access to a particular frame, usually the vir-
tual frame (see section 3.2) of an object. Permissions to the
virtual frame are calledobject permissions. Because of sub-
typing, the precise frame referenced by an object permission
is statically unknown.

references r ::= . . . | super | thisfr

In order to handle inheritance, we distinguish references
to the receiver’s “current” frame (thisfr) and its super-frame
(super). Permissions for these “special” references are called
frame permissions. A thisfr permission grants access to fields
and can be used in method specifications. Permissions for
super are needed for super-calls and are only available in
state invariants. All methods requiring athisfr permission
must be overridden because such methods rely on being
defined in a particular frame to access its fields.

4.6 Behavioral Subtyping

Subclasses should be allowed to define their own specifi-
cations, e.g. to add precision or support additional behav-
ior [4]. However, subclasses need to bebehavioral sub-
types[29] of the extended class. Our system enforces be-
havioral subtyping in two steps. Firstly, state space inheri-
tance conveniently guarantees that states of subclassesal-
wayscorrespond to states defined in superclasses [4]. Sec-
ondly, we make sure that every overriding method’s specifi-
cation implies the overridden method’s specification [4] us-
ing theoverride judgment (figure 16) that is used in checking
method declarations. This check leads to method specifica-
tions that are contra-variant in the domain and co-variant in
the range as required by behavioral subtyping.

5. Modular Typestate Verification
This section describes a static modular typestate checking
technique for access permissions similar to conventional
typechecking. It guarantees at compile-time that protocol
specifications will never be violated at runtime. We empha-
size that our approach does not require tracking typestates at
run time.

A companion technical report contains additional judg-
ments and a soundness proof for a fragment of the system
presented in this paper [5]. The fragment does not include
inheritance and only supports permissions for objects as a
whole. State dimensions are omitted and specifications are
deterministic. The fragment does includefull, share, and
pure permissions with fractions and temporary state infor-
mation.

5.1 Permission Tracking

We permission-check an expressione with the judgment
Γ;∆ `i

C e : ∃x : T.P \ E . This is read as, “in valid
contextΓ and linear context∆, an expressione executed
within receiver classC has type T, yields permissionsP ,
and affects fieldsE”. Permissions∆ are consumed in the
process. We omit the receiverC where it is not required for

checking a particular syntactic form. The setE keeps track
of fields that were assigned to, which is important for the
correct handling of permissions to fields. It is omitted when
empty. The markeri in the judgment can be 0 or 1 where
i = 1 indicates that states of objects in the context may
change during evaluation of the expression. This will help us
reason about temporary state assumptions. A combination of
markers withi ∨ j is 1 if at least one of the markers is 1.

valid contexts Γ ::= · | Γ, x : T | Γ, z : H | Γ, q
linear contexts ∆ ::= · | ∆, P

effects E ::= · | E , f

Valid and linear contexts distinguish valid (permanent)
information (Γ) from resources (∆). Resources are tracked
linearly, forbidding their duplication, while facts can be used
arbitrarily often. (In logical terms, contraction is defined for
facts only). The valid context types object variables, fraction
variables, and location types and keeps track of facts about
termsq. Fraction variables are tracked in order to handle
fraction quantification correctly. The linear context holds
currently available resource predicates.

The judgmentΓ ` t : T types terms. It includes the usual
rule for subsumption based on nominal subtyping induced
by the extends relation (figure 16). Term typing is com-
pletely standard and can be found in the companion report.
The companion report also includes rules for formally typing
fractions and fraction functions [5].

Our expression checking rules are syntax-directed up to
reasoning about permissions. Permission reasoning is de-
ferred to a separate judgmentΓ;∆ ` P that uses the rules
of linear logic to prove the availability of permissionsP in
a given context. This judgment will be discussed in section
5.5. Permission checking rules for most expressions appear
in figure 15 and are described in turn. Packing, method calls,
and field assignment are discussed in following subsections.
Helper judgments are summarized in figure 16. The notation
[e′/x]e substitutese′ for occurrences ofx in e.

• P-TERM embeds terms. It formalizes the standard logical
judgment for existential introduction and has no effect on
existing objects.

• P-FIELD checks field accesses analogously.

• P-NEW checks object construction. The parameters passed
to the constructor have to satisfy initialization predicate
P and become the object’s initial field values. The new
existentially quantified object is associated with aunique
permission to the root state that makes state assumptions
according to the declared start stateA. Object construc-
tion has no effect on existing objects.

The judgmentinit (figure 16) looks up initialization pred-
icate and start state for a class. The start state is a con-
junction of states (figure 14). The initialization predicate
is the invariant needed for the start state.

• P-IF introduces non-determinism into the system, re-
flected by the disjunction in its type. We make sure that
the predicate is of Boolean type and then assume its truth

Γ ` t : T Γ;∆ ` [t/x]P
Γ;∆ `0 t : ∃x : T.P

P-TERM
localFields(C) = f : T Γ;∆ ` [fi/x]P

Γ;∆ `0
C fi : ∃x : Ti.P

P-FIELD

Γ ` t : T init(C) = 〈∃f : T .P,A〉 Γ;∆ ` [t/f]P
Γ;∆ `0 new C(t) : ∃x : C.access(x, alive, {alive 7→ 1}, 1, A)

P-NEW

(Γ, t = true);∆ `i e1 : ∃x : T.P1 \ E1

Γ ` t : bool (Γ, t = false);∆ `j e2 : ∃x : T.P2 \ E2

Γ;∆ `i∨j if(t, e1, e2) : ∃x : T.P1 ⊕ P2 \ E1 ∪ E2
P-IF

Γ;∆ `i e1 : ∃x : T.P \ E1 (Γ, x : T); (∆′, P) `j e2 : E2 \ E2

i = 1 implies no temporary assumptions in∆′ Fields inE1 do not occur in∆′

Γ; (∆,∆′) `i∨j let x = e1 in e2 : E2 \ E1 ∪ E2
P-LET

(x : T , this : C);P `i
C e : ∃result : Tr.Pr ⊗> \ E E = ∃result : Tr.Pr override(m,C,∀x : T .P (E)

Tr m(T x) : P (E = e ok in C
P-METH

. . . M ok in C M overrides all methods with thisfr permissions inC ′

class C extends C′ { F R I N M } ok P-CLASS
CL ok ·; · `i

_ e : E \ E
〈CL, e〉 : E

P-PROG

Figure 15. Permission checking for expressions (part 1) and declarations

class C extends C ′ {. . .} ∈ CL

C extends C ′

class C {. . . M . . .} ∈ CL Tr m(T x) : P (∃result : Tr.P
′ = e ∈ M

mtype(m,C) = ∀x : T .P (∃result : Tr.P
′

C extends C ′ mtype(m,C ′) = ∀x : T .MS′ implies(x : T , this : C); · ` MS (MS′

override(m,C,∀x : T .MS)

class C . . . {F . . .} ∈ CL

localFields(C) = F

init(Object) = (1, alive)

class C extends C ′ {f : T in n S initially 〈∃f ′ : T ′, f : T .P ′ ⊗ P,A〉 . . . }
init(C ′) = (∃f ′ : T ′.P ′, A′) ·; (P, full(super, alive, {alive 7→ 1}, A′)) ` invC(A)⊗>

init(C) = 〈∃f ′ : T ′, f : T .P ′ ⊗ P,A〉

class C {. . . n = P . . .} ∈ CL

predC(n) = P

P =
⊗

n′≤n′′<n predC(n′′)

predC(n′, n) = P

invC(A) = P ⇒ n′

invC(n, A) = P ⊗ predC(n′, n)⊗ predC(n)

invC(n) = 1⇒ n

invC(Ai) = Pi ⇒ ni predC(ni, n) = P ′
i n1 ⊗ n2 � n (i = 1, 2)

invC(A1 ⊗A2) = P1 ⊗ P ′
1 ⊗ P2 ⊗ P ′

2 ⇒ n

invC(Ai) = Pi ⇒ ni predC(ni, n) = P ′
i n1 ⊕ n2 � n (i ∈ 1, 2)

invC(A1 ⊕A2) = (P1 ⊗ P ′
1)⊕ (P2 ⊗ predC(n2, n)) ⇒ n

onlypure permissions inP

e�ectsAllowed(P) = 0
existsshare or full permission inP

e�ectsAllowed(P) = 1

Figure 16. Protocol verification helper judgments

(falsehood) in checking thethen(else) branch. This ap-
proach lets branches make use of the tested condition.

• P-LET checks alet binding. The linear context used
in checking the second subexpression must not mention

fields affected by the first expression. This makes sure
that outdated field permissions do not “survive” assign-
ments or packing. Moreover, temporary state information
is dropped if the first subexpression has side effects.

A program consists of a list of classes and a main ex-
pression (P-PROG, figure 15). As usual, the class tableCL
is globally available. The main expression is checked with
initially empty contexts. The judgmentCL ok (P-CLASS)
checks a class declaration. It checks fields, states, and in-
variants for syntactic correctness (omitted here) and verifies
consistency between method specifications and implementa-
tions using the judgmentM ok in C. P-METH assumes the
specified pre-condition of a method (i.e. the left-hand side
of the linear implication) and verifies that the method’s body
expression produces the declared post-condition (i.e. the
right-hand side of the implication). Conjunction with>
drops excess permissions, e.g., to dead objects. Theover-
ride judgment concisely enforces behavioral subtyping (see
section 4.6). A method itself is not a linear resource since all
resources it uses (including the receiver) are passed in upon
invocation.

5.2 Packing and Unpacking

We use a refined notion ofunpacking[12] to gain access to
fields: we unpack and pack a specific permission. The access
we gain reflects the permission we unpacked. Full and shared
permissions give modifying access, while a pure permission
gives read-only access to underlying fields.

To avoid inconsistencies, objects are always fully packed
when methods are called. To simplify the situation, only one
permission can be unpacked at the same time. Intuitively, we
“focus” [13] on that permission. This lets us unpackshare
like full permissions, gaining full rather than shared access
to underlying fields (if available). The syntax for packing
and unpacking is as follows.

expressions e ::= . . . | unpack(n, k,A) in e
| pack to A in e

Packing and unpacking always affects the receiver of the
currently executed method. Theunpack parameters express
the programmer’s expectations about the permission being
unpacked. For simplicity, an explicit subtree fractionk is
part of unpack expressions. It could be inferred from a
programmer-provided permission kind, e.g.share.

Typechecking. In order forpack to work properly we have
to “remember” the permission we unpacked. Therefore we
introduceunpacked as an additional linear predicate.

permissions p ::= . . . | unpacked(n, g, k,A)

The checking rules for packing and unpacking are given
in figure 18. Notice that packing and unpacking always af-
fects permissions tothisfr. (We ignore substitution ofthis
with an object location at runtime here.)

P-UNPACK first derives the permission to be unpacked.
The judgmentinv determines a predicate for the receiver’s
fields based on the permission being unpacked. It is used
when checking the body expression. Anunpacked predicate
is added into the linear context. We can prevent multiple
permissions from being unpacked at the same time using a
straightforward dataflow analysis (omitted here).

invC(n, g, k,A) = invC(n, A)⊗ purify(aboveC(n))

invC(n, g, 0, A) = purify (invC(n, A)⊗ aboveC(n))

whereaboveC(n) =
⊗

n′:n<n′≤alive
predC(n′)

Figure 17. Invariant construction (purify in figure 19)

P-PACK does the opposite of P-UNPACK. It derives the
predicate necessary for packing the unpacked permission
and then assumes that permission in checking the body ex-
pression. The new state assumptionA can differ from be-
fore only if a modifying permission was unpacked. Finally,
the rule ensures that permissions to fields do not “survive”
packing.

Invariant transformation. The judgmentinvC(n, g, k,A)
determines what permissions to fields are implied by a per-
missionaccess(thisfr, n, g, k, A) for a frame of classC. It is
defined in figure 17 and uses apurify function (figure 19) to
convert arbitrary intopure permissions.

Unpacking a full or shared permission with root node
n yields purified permissions for nodes “above”n and in-
cludes invariants following from state assumptions as–is.
Conversely, unpacking a pure permission yields completely
purified permissions.

5.3 Calling Methods

Checking a method call involves proving that the method’s
pre-condition is satisfied. The call can then be typed with the
method’s post-condition.

Unfortunately, calling a method can result into reentrant
callbacks. In order to ensure that objects are consistent when
called we require them to be fully packed before method
calls. This reflects that aliased objects always have to be
prepared for reentrant callbacks.

This rule is not a limitation because we can always pack
to some intermediate state although it may be inconvenient
in practice. Notice that suchintermediate packingobviates
the need for adoption while allowing focus [13]: the interme-
diate state represents the situation where an adopted object
was taken out of the adopting object. Inferring intermediate
states as well as identifying where reentrant calls are impos-
sible (intermediate packing avoidance) are important areas
for future research.

Virtual calls. Virtual calls are dynamically dispatched
(rule P-CALL). In virtual calls, frame and object permis-
sions are identical because object permissions simply refer
to the object’s virtual frame. This is achieved by substituting
the given receiver for boththisandthisfr.

Super calls. Super calls are statically dispatched (rule P-
SUPER). Recall thatsuper is used to identify permissions
to the super-frame. We substitutesuper only for thisfr. We
omit a substitution ofthis for the receiver (this again) for
clarity.

Γ;∆ `C access(thisfr, n, g, k, A) receiver packed
k = 0 impliesi = 0 Γ; (∆′, invC(n, g, k,A), unpacked(n, g, k,A)) `i

C e : E \ E
Γ; (∆,∆′) `i

C unpack(n, k,A) in e : E \ E
P-UNPACK

Γ;∆ `C invC(n, g, k,A)⊗ unpacked(n, g, k,A′) k = 0 impliesA = A′

Γ; (∆′, access(thisfr, n, g, k, A)) `i
C e : E \ E localFields(C) = f : T in n Fields do not occur in∆′

Γ; (∆,∆′) `i
C pack n to A in e : E \ f

P-PACK

Γ ` t0 : C0 Γ ` t : T Γ;∆ ` [t0/this][t0/thisfr][t/x]P
mtype(m,C0) = ∀x : T .P (E i = e�ectsAllowed(P) receiver packed

Γ;∆ `i t0.m(t) : [t0/this][t0/thisfr][t/x]E
P-CALL

Γ ` t : T Γ;∆ ` [super/thisfr][t/x]P C extends C ′

mtype(m,C ′) = ∀x : T .P (E i = e�ectsAllowed(P) receiver packed

Γ;∆ `i
C super.m(t) : [super/thisfr][t/x]E

P-SUPER

Γ;∆ ` t : ∃x : Ti.P Γ;∆′ `C [fi/x′]P ′ ⊗ p
localFields(C) = f : T in n ni ≤ n p = unpacked(n, g, k,A), k 6= 0

Γ; (∆,∆′) `1
C assign fi := t : ∃x′ : Ti.P

′ ⊗ [fi/x]P ⊗ p \ fi
P-ASSIGN

Figure 18. Permission checking for expressions (part 2)

p = access(r, n, g, k,A)
purify(p) = pure(r, n, g, A)

purify(P1) = P ′
1 purify(P2) = P ′

2 op ∈ {⊗,&,⊕}
purify(P1 op P2) = P ′

1 op P ′
2

unit ∈ {1,>, 0}
purify(unit) = unit

purify(P) = P ′

purify(∃z : H.P) = ∃z : H.P ′
purify(P) = P ′

purify(∀z : H.P) = ∀z : H.P ′

Figure 19. Permission purification

5.4 Field Assignments

Assignments to fields change the state of the receiver’s cur-
rent frame. We point out that assignments to a field donot
change states of objects referenced by the field. Therefore
reasoning about assignments mostly has to be concerned
with preserving invariants of the receiver. Theunpacked
predicates introduced in section 5.2 help us with this task.

Our intuition is that assignment to a field requires unpack-
ing the surrounding object to the point where all states that
refer to the assigned field in their invariants are revealed. No-
tice that the object does not have to be unpacked completely
in this scheme. For simplicity, each field is annotated with
the subtree that can depend on it (figure 12). Thus we inter-
pret subtrees as data groups [27].

The rule P-ASSIGN(figure 18) assigns a given objectt to
a fieldfi and returns the old field value as an existentialx′.
This preserves information about that value. The rule verifies
that the new object is of the correct type and that a suitable
full or share permission is currently unpacked. By recording
an effect onfi we ensure that information about the old field
value cannot “flow around” the assignment (which would be
unsound).

5.5 Permission Reasoning with Splitting and Joining

Our permission checking rules rely on proving a predicateP
given the current valid and linear resources, writtenΓ;∆ `
P . We use standard rules for the decidable multiplicative-
additive fragment of linear logic (MALL) with quantifiers
that only range over fractions [28]. Following Boyland [7]
we introduce a notion of substitution into the logic that al-
lows substituting a set of linear resources with an equivalent
one.

Γ;∆ ` P ′ P ′ V P

Γ;∆ ` P
SUBST

The judgmentP V P ′ defines legal substitutions. We
use substitutions for splitting and joining permissions (fig-
ure 20). The symbolWV indicates that transformations are
allowed in both directions. SYM and ASYM generalize the
rules from section 2. Most other rules are used to split per-
missions for larger subtrees into smaller ones and vice versa.
A detailed explanation of these rules can be found in the
companion report [5].

Our splitting and joining rules maintain a consistent set
of permissions for each object so that no permission can ever
violate an assumption another permission makes. Fractions

A = A′ = A′′ or (A = A′ andA′′ = n) or (A = A′′ andA′ = n)
access(r, n, g, k,A) WV access(r, n, g/2, k/2, A′)⊗ access(r, n, g/2, k/2, A′′)

SYM

A = A′ = A′′ or (A = A′ andA′′ = n) or (A = A′′ andA′ = n)
access(r, n, g, k,A) WV access(r, n, g/2, k, A′)⊗ pure(r, n, g/2, A′′)

ASYM

n1 # n2 A1 ≺ n1 ≤ n A2 ≺ n2 ≤ n
pi = full(r, ni, {g, nodes(ni, n) 7→ 1}/2, Ai)

full(r, n, g, A1 ⊗A2) V p1 ⊗ p2
F-SPLIT-⊗

n1 # n2 A1 ≺ n1 ≤ n A2 ≺ n2 ≤ n
pi = full(r, ni, {g, n 7→ 1, nodes(ni, n) 7→ 1}/2, Ai)

p1 ⊗ p2 V full(r, n, {g, n 7→ 1}, A1 ⊗A2)
F-JOIN-⊗

A1 # A2

full(r, n, g, A1 ⊕A2) WV full(r, n, g, A1)⊕ full(r, n, g, A2)
F-⊕

A ≺ n′ ≤ n

full(r, n, g, A) V full(r, n′, {g, nodes(n′, n) 7→ 1}, A)
F-DOWN

A ≺ n′ ≤ n

full(r, n′, {g, n 7→ 1, nodes(n′, n) 7→ 1}, A) V full(r, n, {g, n 7→ 1}, A)
F-UP

n′ ≤ n

pure(r, n, {g, nodes(n′, n) 7→ k}, A) V pure(r, n′, g, A)
P-UP

access(r, n, g, k,A) V access(r, n, g, k, n)
FORGET

Figure 20. Splitting and joining of access permissions

of all permissions to an object sum up to (at most) 1 for every
node in the object’s state space.

5.6 Example

To illustrate how verification proceeds, figure 21 shows
thefill method fromBufferedInputStream (figure 11)
written in our core language. As can be seen we need an
intermediate statereads and a marker fieldreading that
indicate an ongoing call to the underlying stream. We also
need an additional state refinement to specify an internal
method replacing thewhile loop in the original implemen-
tation. (We assume thatthisfr permissions can be used for
calls toprivate methods.)

Maybe surprisingly, we have to reassign field values af-
ter super.read() returns. The reason is that when calling
super we lose temporary state information forthis. Assign-
ment re-establishes this information and lets us pack prop-
erly before callingdoFill recursively or terminating in the
cases of a full buffer or a depleted underlying stream.

It turns out that these re-assignments arenot just an in-
convenience caused by our method but point to a real prob-
lem in the Java standard library implementation. We could
implement a malicious underlying stream that calls back into
the “surrounding”BufferedInputStream object. This call
changes a field, which causes the buffer’s invariant oncount
to permanently break,later onresulting in an undocumented
array bounds exception when trying to read behind the end
of the buffer array.

Becausefill operates on ashare permission our veri-
fication approach forces taking into account possible field
changes through reentrant calls with othershare permis-
sions. (This is precisely what our malicious stream does.)
We could avoid field re-assignments by havingread require
a full permission, thereby documenting that reentrant (mod-
ifying) calls are not permitted for this method.

6. Related Work
In previous work we proposed more expressive typestate
specifications [4] that can be verified with the approach pre-
sented in this paper. We also recently proposedfull andpure
permissions and applied our approach to specifying full Java
iterators [3]. Verification of protocol compliance has been
studied from many different angles including type systems,
abstract interpretation, model checking, and verification of
general program behavior. Aliasing is a challenge for all of
these approaches.

The system that is closest to our work is Fugue [12],
the first modular typestate verification system for object-
oriented software. Methods are specified with a determinis-
tic state transition of the receiver and pre-conditions on argu-
ments. Fugue’s type system tracks objects as “not aliased” or
“maybe aliased”. Leveraging research on “alias types” [33]
(see below), objects typically remain “not aliased” as long
as they are only referenced on the stack. Only “not aliased”
objects can change state; once an object becomes “maybe

class BufferedInputStream extends FilterInputStream {
states ready, reads refine open; ...
states partial, complete refine filled;

reads := reading; ready := reading= false; . . .

private boolean reading; ...

public int read() : ∀k : Fract. . . . =
unpack(open, k) in
let r = reading in if(r == false, ... fill() ...)

private bool fill() : ∀k : Fract.
share(thisfr, open) in depleted⊕ eof (
share(thisfr, open) in available⊕ eof =

unpack(open, k, depleted⊕ eof) in
assign count = 0 in assign pos = 0 in
assign reading = true in
pack to reads in
let b = super.read() in
unpack(open, k, open) in
let r = reading in assign reading = false in
assign count = 0 in assign pos = 0 in
if(r, if(b = -1, pack to eof in false,

pack to depleted in doFill(b)),
pack to eof in false)

private bool doFill(int b) : ∀k : Fract.
share(thisfr, open) in depleted⊕ partial (
share(thisfr, open) in partial⊕ complete =

unpack(open, k, depleted⊕ partial) in
let c = count in let buffer = buf in
assign buffer[c] = b in assign count = c + 1 in
let l = buffer.length in
if(c + 1 >= l, pack to complete in true,
assign reading = true in pack to reads in
let b = super.read() in unpack(open, k) in
let r = reading in assign reading = false in
assign count = c + 1 in assign pos = 0 in
pack to partial in
if(r == false || b == -1, true, doFill(b))

Figure 21. Fragment ofBufferedInputStream from fig-
ure 11 in core language

aliased” its state is permanently fixed although fields can be
assigned to if the object’s abstract typestate is preserved.

Our work is greatly inspired by Fugue’s abilities. Our
approach supports more expressive method specifications
based on linear logic [18]. Our verification approach is based
on “access permissions” that permit state changes even in
the presence of aliases. We extend several ideas from Fugue
to work with access permissions including state invariants,
packing, and frames. Fugue’s specifications are expressible
with our system [4]. Fugue’s “not aliased” objects can be
simulated withunique permissions foralive and “maybe
aliased” objects correspond toshare permissions with state
guarantees. There is no equivalent for state dimensions, tem-

porary state assumptions,full, immutable, andpure permis-
sions, or permissions for object parts in Fugue.

Verification of protocol compliance has also been de-
scribed as “resource usage analysis” [23]. Protocol specifica-
tions have been based on very different concepts including
typestates [34, 11, 25], type qualifiers [16], size properties
[9], direct constraints on ordering [23, 35], and type refine-
ments [30, 10]. None of the above systems can verify im-
plementations of object-oriented protocols like our approach
and only two [35, 10] target object-oriented languages. Ef-
fective type refinements [30] employ linear logic reasoning
but cannot reason about protocol implementations and do not
support aliasing abstractions. Hob [25] verifies data struc-
ture implementations for a procedural language with static
module instantiation based on typestate-like constraints us-
ing shape analyses. In Hob, data can have states, but modules
themselves cannot. In contrast, we can verify the implemen-
tation of stateful objects that are dynamically allocated and
support aliasing with permissions instead of shape analysis.
Finally, concurrent work on Java(X) proposes “activity an-
notations” that are comparable tofull, share, andpure per-
missions for whole objects that can be split but not joined.
Similar to effective type refinements, state changes can be
tracked for a pre-defined set of types, but reasoning about
the implementation of these types is not supported. To our
knowledge, none of the above systems supports temporary
state information.

Because programming with linear types [36] is very in-
convenient, a variety of relaxing mechanisms were pro-
posed. Uniqueness, sharing, and immutability (sometimes
called read-only) [7] have recently been put to use in re-
source usage analysis [23, 9]. Alias types [33] allow multiple
variables to refer to the same object but require a linear token
for object accesses that can be borrowed [7] during function
calls. Focusing can be used for temporary state changes of
shared objects [13, 16, 2]. Adoption prevents sharing from
leaking through entire object graphs (as in Fugue [12]) and
allows temporary sharing until a linear adopter is deallocated
[13]. All these techniques need to be aware of all references
to an object in order to change its state.

Access permissions allow state changes even if objects
are aliased from unknown places. Moreover, access permis-
sions give fine-grained access to individual data groups [27].
States and fractions [6] let us capture alias types, borrow-
ing, adoption, and focus with a single mechanism. Sharing
of individual data groups has been proposed before [7], but
it has not been exploited for reasoning about object behav-
ior. In Boyland’s work [6], a fractional permission means
immutability (instead of sharing) in order to ensure non-
interference of permissions. We use permissions to keep
state assumptions consistent but track, split, and join per-
missions in the same way as Boyland.

Global approaches are very flexible in handling alias-
ing. Approaches based on abstract interpretation (e.g. [1,
19, 14]) typically verify client conformance while the pro-
tocol implementation is assumed correct. Sound approaches
rely on a global aliasing analysis [1, 14]. Likewise, most

model checkers operate globally (e.g. [21]) or use assume-
guarantee reasoning between coarse-grained static compo-
nents [17, 22]. The Magic tool checks individual C func-
tions but has to inline user-provided state machine abstrac-
tions for library code in order to accommodate aliasing [8].
The above analyses typically run on the complete code base
once a system is fully implemented and are very expensive.
Our approach supports developers by checking the code at
hand like a typechecker. Thus the benefits of our approach
differ significantly from global analyses.

Recently, there has been progress in inferring typestate
protocols in the presence of aliasing [31], which we believe
could be fruitfully combined with our work to reduce initial
annotation burden.

Finally, general approaches to specifying program behav-
ior [26, 15, 2] can be used to reason about protocols. The
JML [26] is very rich and complex in its specification fea-
tures; it is more capable than our system to express object
behavior (not just protocols), but also potentially more dif-
ficult to use due to its complexity. Verifying JML specifica-
tions is undecidable in the general case. Tools like ESC/Java
[15] can partially check JML specifications but are unsound
because they do not have a sound methodology for handling
aliasing. Spec# is comparable in its complexity to the JML
and imposes similar overhead. The Boogie methodology al-
lows sound verification of Spec# specifications but requires
programs to follow an ownership discipline [2].

Our system is much simpler than these approaches, fo-
cusing as it does on protocols, and it is designed to be de-
cidable. Our treatment of aliasing makes our system sound,
where ESC/Java is not. While the treatment of aliasing in
our system does involve complexity, it gives the program-
mer more flexibility than Boogie’s while remaining modular
and sound. Because it is designed for protocol verification in
particular, our system will generally impose smaller specifi-
cation overhead than the JML or Spec#.

7. Conclusions
This paper proposes a sound modular protocol checking ap-
proach, based on typestates, that allows a great deal of flex-
ibility in aliasing. A novel abstraction, access permissions,
combines typestate and object aliasing information. Devel-
opers express their protocol design intent using access per-
missions. Our checking approach then tracks permissions
through method implementations. For each object reference
the checker keeps track of the degree of possible aliasing and
is appropriately conservative in reasoning about that refer-
ence. A way of breaking an invariant in a frequently used
Java standard library class was exposed in this way. The
checking approach handles inheritance in a novel way, giv-
ing subclasses more flexibility in method overriding. Case
studies on Java iterators and streams provide evidence that
access permissions can model realistic protocols, and pro-
tocol checking based on access permissions can be used to
reason precisely about protocols arising in practice.

In future work we hope to further refine and evaluate
our approach. We plan to develop a deterministic algorithm

for reasoning about permissions. We hope to leverage our
experiences in using our approach to increase its practicality.
Based on the case studies presented in this paper we made
the following observations:

• In this paper we chose to make the linear logic formal-
ism underlying our approach explicit in example proto-
col specifications. However, our case studies suggest that
practical protocols follow certain patterns. For example,
method specifications often consist of simple conjunc-
tions that can be expressed by annotating each method
argument separately. With syntactic sugar for such pat-
terns we believe that programmers will only rarely have
to use linear logic operators explicitly.

• Specification effort lies primarily with protocolimple-
mentationdevelopers, which better amortizes over time.
Conversely, iterator, stream, and other libraries’ clients
have (we believe) minimal work to do unless they store
objects in fields. (Fugue’s experience suggests that loop
invariants for typestate checking can often be inferred
[12].)

• Only a fraction of our system’s capabilities are needed
for any given example (although they all are necessary
in different situations). Developers do have to understand
the general idea of access permissions.

We believe that these observations indicate that the ap-
proach can be practical, especially with the help of syntax
that captures common cases concisely. A systematic eval-
uation of this claim is an important part of planned future
work.

Acknowledgments
We thank John Boyland, Frank Pfenning, the Plaid group,
Sebastian Boßung, and Jason Reed for fruitful discussions
on this topic. We also thank the anonymous reviewers for
their helpful feedback. This work was supported in part by
NASA cooperative agreement NNA05CS30A, NSF grant
CCF-0546550, the Army Research Office grant number
DAAD19-02-1-0389 entitled “Perpetually Available and Se-
cure Information Systems”, and the U.S. Department of De-
fense.

References
[1] T. Ball and S. K. Rajamani. Automatically validating

temporal safety properties of interfaces. InProc. of the
Eighth SPIN Workshop, pages 101–122, May 2001.

[2] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and
W. Schulte. Verification of object-oriented programs with
invariants. Journal of Object Technology, 3(6):27–56, June
2004.

[3] K. Bierhoff. Iterator specification with typestates. In5th Int.
Workshop on Specification and Verification of Component-
Based Systems, pages 79–82. ACM Press, Nov. 2006.

[4] K. Bierhoff and J. Aldrich. Lightweight object specification
with typestates. InJoint European Software Engineering
Conference and ACM Symposium on the Foundations of

Software Engineering, pages 217–226. ACM Press, Sept.
2005.

[5] K. Bierhoff and J. Aldrich. Modular typestate veri-
fication of aliased objects. Technical Report CMU-
ISRI-07-105, Carnegie Mellon University, Mar. 2007.
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/CMU-
ISRI-07-105.pdf.

[6] J. Boyland. Checking interference with fractional permis-
sions. InInt. Symposium on Static Analysis, pages 55–72.
Springer, 2003.

[7] J. T. Boyland and W. Retert. Connecting effects and
uniqueness with adoption. InACM Symposium on Principles
of Programming Languages, pages 283–295, Jan. 2005.

[8] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. InInt. Conference
on Software Engineering, pages 385–395, May 2003.

[9] W.-N. Chin, S.-C. Khoo, S. Qin, C. Popeea, and H. H.
Nguyen. Verifying safety policies with size properties and
alias controls. InInt. Conference on Software Engineering,
pages 186–195, May 2005.

[10] M. Degen, P. Thiemann, and S. Wehr. Tracking linear and
affine resources with Java(X). InEuropean Conference on
Object-Oriented Programming. Springer, Aug. 2007.

[11] R. DeLine and M. Fähndrich. Enforcing high-level protocols
in low-level software. InACM Conference on Programming
Language Design and Implementation, pages 59–69, 2001.

[12] R. DeLine and M. Fähndrich. Typestates for objects. In
European Conference on Object-Oriented Programming,
pages 465–490. Springer, 2004.

[13] M. Fähndrich and R. DeLine. Adoption and focus: Practical
linear types for imperative programming. InACM Conference
on Programming Language Design and Implementation,
pages 13–24, June 2002.

[14] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective typestate verification in the presence of aliasing.
In ACM Int. Symposium on Software Testing and Analysis,
pages 133–144, July 2006.

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. Saxe, and R. Stata. Extended static checking for Java. In
ACM Conference on Programming Language Design and
Implementation, pages 234–245, May 2002.

[16] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type
qualifiers. InACM Conference on Programming Language
Design and Implementation, pages 1–12, 2002.

[17] D. Giannakopoulou, C. S. Păs̆areanu, and J. M. Cobleigh.
Assume-guarantee verification of source code with design-
level assumptions. InInt. Conference on Software Engineer-
ing, pages 211–220, May 2004.

[18] J.-Y. Girard. Linear logic.Theoretical Computer Science,
50:1–102, 1987.

[19] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
ACM Conference on Programming Language Design and
Implementation, pages 69–82, 2002.

[20] D. Harel. Statecharts: A visual formalism for complex
systems.Sci. Comput. Programming, 8:231–274, 1987.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Lazy abstraction. InACM Symposium on Principles of
Programming Languages, pages 58–70, 2002.

[22] G. Hughes and T. Bultan. Interface grammars for modular
software model checking. InACM Int. Symposium on
Software Testing and Analysis, pages 39–49. ACM Press,
July 2007.

[23] A. Igarashi and N. Kobayashi. Resource usage analysis. In
ACM Symposium on Principles of Programming Languages,
pages 331–342, Jan. 2002.

[24] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. InACM Conference
on Object-Oriented Programming, Systems, Languages &
Applications, pages 132–146, 1999.

[25] V. Kuncak, P. Lam, K. Zee, and M. Rinard. Modular
pluggable analyses for data structure consistency.IEEE
Transactions on Software Engineering, 32(12), Dec. 2006.

[26] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation
for detailed design. In H. Kilov, B. Rumpe, and I. Simmonds,
editors,Behavioral Specifications of Businesses and Systems,
pages 175–188. Kluwer Academic Publishers, Boston, 1999.

[27] K. R. M. Leino. Data groups: Specifying the modification
of extended state. InACM Conference on Object-Oriented
Programming, Systems, Languages & Applications, pages
144–153, Oct. 1998.

[28] P. Lincoln and A. Scedrov. First-order linear logic without
modalities is NEXPTIME-hard. Theoretical Computer
Science, 135:139–154, 1994.

[29] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages
and Systems, 16(6):1811–1841, Nov. 1994.

[30] Y. Mandelbaum, D. Walker, and R. Harper. An effective
theory of type refinements. InACM Int. Conference on
Functional Programming, pages 213–225, 2003.

[31] M. G. Nanda, C. Grothoff, and S. Chandra. Deriving object
typestates in the presence of inter-object references. In
ACM Conference on Object-Oriented Programming, Systems,
Languages & Applications, pages 77–96, 2005.

[32] G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and
M. Sagiv. Deriving specialized program analyses for certify-
ing component-client conformance. InACM Conference on
Programming Language Design and Implementation, pages
83–94, 2002.

[33] F. Smith, D. Walker, and G. Morrisett. Alias types. In
European Symposium on Programming, pages 366–381.
Springer, 2000.

[34] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability.IEEE
Transactions on Software Engineering, 12:157–171, 1986.

[35] G. Tan, X. Ou, and D. Walker. Enforcing resource usage pro-
tocols via scoped methods. InInt. Workshop on Foundations
of Object-Oriented Languages, 2003.

[36] P. Wadler. Linear types can change the world! InWorking
Conference on Programming Concepts and Methods, pages
347–359. North Holland, 1990.

