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Abstract We present ML5, a high level programming language for spa-
tially distributed computing. The language, a variant of ML, allows an
entire distributed application to be developed and reasoned about as a
unified program. The language supports transparent mobility of any kind
of code or data, but its type system, based on modal logic, statically ex-
cludes programs that use mobile resources unsafely. The ML5 compiler
produces code for all of the hosts that may be involved in the com-
putation. These hosts may be heterogeneous, with different resources
and even different architectures. Currently, our compiler and runtime
are specialized to the particular case of web programming: a distributed
computation with two sites, the web browser and the web server.

1 Introduction

ML5 is a high-level programming language for distributed computing. The lan-
guage is designed particularly for those programs that are spatially distributed;
where parts of the program must run in physically or logically distinct places.
Typically such programs must be distributed because of local resources (such
as databases or consoles for interacting with a user) that can only be accessed
at those places. ML5’s type system permits the programmer to describe the
available local resources, and then excludes all programs that use them unsafely.

Distributed applications are often developed by writing a set of programs,
one for each host, that communicate via a protocol on network sockets. In con-
trast, ML5 allows an entire distributed application to be developed as a unified
program. This has several benefits: The application may share rich, higher-order
data structures, including abstract types, between different hosts. It can even
maintain references to arbitrary remote resources, as long as those resources not
used remotely. More importantly, the program can be reasoned about as a single
semantic entity. Reasoning about the behavior of a set of programs communicat-
ing via a network can be awkward, particularly when the programs are written in
different languages. ML5’s dynamic semantics is a straightforward extension of
ML’s. The compiler can type check the code to statically verify that certain kinds
of runtime failure are impossible. ML5’s type system is based on modal logic,
!
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a kind of logic that permits simultaneous reasoning from multiple perspectives.
This logical basis means that the features for distributed computing integrate
naturally into ML’s type system, retaining (for example) type inference.

From the source program the compiler produces code for all of the hosts that
may be involved in the computation. These hosts may be heterogeneous, with
different sets of available resources and even different architectures.

ML5 is the subject of Murphy’s Ph.D. thesis and is still in development—the
language does not incorporate some desirable features such as a module system
or high-level database integration. Some planned features (such as exceptions
and mutual exclusion) are not yet implemented in the compiler. The compiler
performs only trivial optimizations, yielding generated code that is somewhat
slow. However, the implementation works well enough to run useful demo ap-
plications. Our current prototype is specialized to the particular case of web
programming: a heterogeneous distributed computation with exactly two sites,
the web browser and web server.

We will begin with a brief review of the modal logic IS5 and the particular
formulation we use for ML5 (Section 2). We then present ML5’s core features
using web programming as a source of examples (Section 3). The remainder of the
paper discusses the interesting facets of how ML5 is implemented: our marshaling
strategy based on type representations and the complications of typed closure
conversion in a modal setting (Section 4.1), and the particulars of producing
distributed applications for web browsers (Section 4.2). We conclude with a
discussion of related, ongoing, and future work (Section 6).

2 Modal Logic IS5

IS5 is a modal logic with the ability to reason about truth from multiple simul-
taneous perspectives, which are called “possible worlds.” These possible worlds
arise from contingent assumptions that differ from world to world. In our ap-
plication of modal logic to distributed computing, the logical worlds correspond
to the hosts involved in a computation, and the contingent assumptions to the
local resources particular to these hosts.

Various related logics are distinguished by the way in which the possible
worlds can access one another; IS5 is a simple degenerate case where every
pair of worlds can access one another. Of the several ways to define a modal
logic, we find an explicit worlds formulation [16] to be most suitable for our
type system [11]. This formulation uses a judgment Γ ! A@w which states that
under the assumptions in Γ , the proposition A is true at the world w. Γ holds
assumptions of the form B@w′ (positing B is true at w′), and ω (assuming the
existence of a world ω). World expressions w include only these bound world
variables ω and world constants, written w. We can only use an assumption
A@w to conclude that fact at the same world. The standard connectives from
intuitionistic logic are expressed by attaching “@w” everywhere; for instance,



implication is

Γ, A@w ! B@w
Γ ! A ⊃ B@w

⊃-I
Γ ! A ⊃ B@w Γ ! A@w

Γ ! B@w
⊃-E

Modal logic often focuses on two connectives, !A and "B (“A is true in all
worlds;” “B is true in some world”). We find that an explicit worlds formulation
gives us the ability to define ! and " in terms of finer connectives. The most
important of these is the at modality (following Jia [6]), which internalizes the
@ judgment into a proposition. It is defined by

Γ ! A@w′

Γ ! A atw@w′ at-I
Γ ! A atw′@w Γ, A@w′ ! C @w

Γ ! C @w
at-E

A modal logic where propositions can mention worlds is known as a “hy-
brid logic” [4]; contrary to its name we find the connective to be central to our
logic. For instance, !A is definable as ∀ω.A atω. Typed closure conversion (Sec-
tion 4.1) makes heavy use of the at modality. In contrast, we do not use the !

or " connectives in any of our examples.
The final feature of our logic that distinguishes it from other formulations of

S5 is our perspective-shifting rule get. This rule allows for reasoning at a world
w1 to be nested within reasoning at a world w2.

Γ ! A@w′ A mobile
Γ ! A@w

get

This rule would be nonsense for arbitrary A: all worlds would then conclude
exactly the same facts. The judgment mobile that restricts this rule to certain
propositions is better explained in terms of the values of the programming lan-
guage that characterize those propositions, so we leave that for Section 3. As
examples, A atw is mobile for any A, and A ⊃ B is never mobile.

The get rule exists for the benefit of the dynamic semantics. It allows us to
isolate all of the communication between hosts into this one rule, ensuring that
the other rules avoid any “action at a distance” [11]. For example, without get,
the at-E rule would have to allow the proof of A atw′ to come from an arbitrary
third world. With our decomposition, if we want to use a proof from another
world, we explicitly move it first.

Our decompositions preserve the meaning of the logic while allowing for a
more natural programming language and implementation. In the next section
we describe this programming language.

3 ML5

ML5’s syntax and semantics are based on core Standard ML [7]. The largest
difference is that ML5’s typing judgment is stratified by world, like the truth
judgment of IS5. Here, a world is a place in which a computation might run. We



type check an expression M using the judgment Γ ! M : A@w, which means
that under variable bindings Γ , the expression M has type A in the world w.
It is best to think of the judgment M : A@w as meaning that M is for w,
rather than at w. Although M can only be evaluated at w, at runtime it may
be moved around between worlds and placed in data structures at other worlds.
World expressions can be either variables ω or constants w. Every program must
begin execution somewhere; in ML5 this world is the constant home. The entire
program is therefore also typechecked starting at home.

An ML5 program begins by describing what it knows about the universe. This
includes the declaration of world constants and the local resources available to
them. Here is a working example:1

extern javascript world home
extern val alert : string -> unit @ home
do alert [Hello, home!]

This first line is unnecessary (because the constant home is already provided
by the compiler) but serves to show how worlds can be declared. The world-
kind javascript dictates that this world (which will be the web browser) runs
JavaScript [3] code; this is used only by the backend when generating code for the
hosts involved in a program. We can support other worldkinds by implementing
a code generator and runtime for them; currently, we support javascript and
bytecode (Section 4.2). The declaration extern val asserts the existence of a
local resource, in this case, a function called alert. The compiled program will
expect to find a symbol called alert at the world home, and a program variable
alert is bound in the code that follows. It is also possible to declare external
abstract types, and global resources (Section 3.1). The do declaration evaluates
an expression for effect, in this case calling the alert function on the supplied
string constant. This application type checks because all of these declarations
are checked at the world home; if alert were declared to be at a different world
server we would not be able to call it without first traveling to the server.

To write distributed programs we also need dynamic tokens with which to
refer to worlds. A token for the world w has type w addr, and can be thought
of as the address of that world. A world can compute its own address with the
localhost() expression, whose typing rule appears in Figure 1. Typically, a
program also expects to know the addresses of other worlds when it begins and
imports them with extern val. We use an address by traveling to the world it
indicates, using the get construct. For example, here is a program that involves
two worlds, the web browser and server:

extern bytecode world server
extern val server : server addr @ home
extern val version : unit -> string @ server
extern val alert : string -> unit @ home
do alert (from server

get version ())

1 Our examples omit the required syntax for wrapping declarations as compilation
units, since the implementation currently only supports a single compilation unit.



Γ ! localhost() : w addr @w
A mobile Γ ! M : w′ addr @w Γ ! N : A@w′

Γ ! from M get N : A@w

Γ, ω′ ! v : A@ω′

Γ ! sham ω′.v : ω′A@w

A mobile Γ ! M : A@w

Γ ! put u = M
w! u∼A

Γ ! M : ωA@w

Γ ! valid u = M
w! u∼ω.A

Γ, x:A, Γ ′
@w ! x : A@w Γ, u∼ω.A, Γ ′ ! u : [ w/ω]A@w

Γ ! v : A@w
Γ ! hold v : A atw@w′

Γ ! d
w! Γ ′ Γ, Γ ′ ! M : C @w

Γ ! let d in M : C @w

Γ ! M : A atw′
@w

Γ ! drop x = M
w! x:A@w′

Figure 1. Some rules from the ML5 internal language, which have been simplified
for presentation purposes. The judgment Γ ! d

w! Γ ′ states that the declaration d,
checked at w, produces new hypotheses Γ ′.

A mobile A atw mobile

b ∈ {string, int, . . .}
b mobile α mobile..

A mobile
µα.A mobile

w addr mobile
A mobile B mobile

A×B mobile
A mobile B mobile

A + B mobile

A mobile
∀α.A mobile

A mobile
∀ω.A mobile

Figure 2. Definition of the mobile judgment. Not all types are mobile: local resources
like arrays and file descriptors are not, nor are function types or abstract types.

This program asserts the existence of a world server with a function that
returns its version. On the home world, we display an alert whose argument
is a subexpression (the call to version) that is evaluated at the server. The
typing rule for get appears in Figure 1; it takes the address of a remote world
and an expression well-typed at that world. The type of the expression must
be mobile (Figure 2). A type is mobile if all values of that type are portable
among worlds. string is mobile, so this code is well-typed. Function types are
not mobile, because for example it would not make sense to move the function
version—a resource local to server—to the world home. Even though not all
functions are mobile, we will be able to demonstrate the mobility of particular
functions with the modality, which is discussed in the next section.

3.1 Validity

It turns out that a large fraction of the code and data in a distributed application
is not particular to any one world. We say that such values are “valid” and



introduce a new kind of hypothesis for valid values. It takes the form u∼ω.A,
meaning that the variable u is bound to a valid value which has type A at
any world. The world variable ω is bound within A and is instantiated with the
world(s) at which u is used. This variable is rarely needed, so we write u∼A when
it does not occur in A. Valid hypotheses appear in Γ like the other hypotheses.

One way to introduce a valid hypothesis is with the put declaration. The code
put x = 2 + 3 binds a valid variable x∼int. The typing rule for put appears
in Figure 1; it requires that the type of the expression be mobile. Unlike get, put
does not cause any communication to occur; it simply binds the variable such
that it can be used in any world. There can also be global resources that are
known to be available at all worlds. For example, extern val server ~ server
addr declares that the address of the server is globally available.

The modality (pronounced “shamrock”) is the internalization of the validity
judgment as a type. A value of type A is a value that can be used at any world at
type A. It is introduced by checking that a value is well-typed at a hypothetical
world about which nothing else is known (Figure 1). This hypothetical world can
in general appear in the type; when it does, we write ωA. Elimination of the
modality with the valid declaration produces a valid hypothesis. Our treatment
of validity and the modality are inspired by Park’s !modality [12]. Note that
the body of a sham (and also hold) must be a value. ML5 has several constructs
that are syntactically restricted to values; in these positions we would not be
able to safely evaluate an expression because it is typed at some other world.

The modality is useful because it analyzes a particular value for portability
(compare the mobile judgment, which is judgment on types). Therefore it can be
used to demonstrate the portability of a function value. For example, the ML5
expression sham (fn x => x + 1) has type {}(int -> int). ({} is the ASCII
syntax for .) Because A is mobile for any A, we can now get this wrapped
function or place it inside other mobile data structures.

The programmer does not usually need to use the modality manually,
because type inference will automatically generalize declarations to be valid when
possible. This is described in the next section.

3.2 Polymorphism and Type Inference

Like Standard ML, ML5 supports Hindley-Milner style type inference. When the
right hand side of a val declaration is a value (this includes any fun declaration),
the compiler will generalize the free type variables to produce a polymorphic
binding. ML5 also infers and generalizes worlds in the same manner. For instance,

val f = fn a => from a get 1234

produces a polymorphic binding of f at type ∀ω.(ω addr ⊃ int). In ML5 world
variables also appear in the judgment (the @w part), which is not in scope of the
∀ type operator and so cannot be generalized this way. If this world is uncon-
strained, the declaration is generalized to produce a valid binding by introducing
and immediately eliminating the modality. The above code elaborates into

valid f = sham (allw w. fn (a : w addr) => from a get 1234)



which binds f∼∀ω.(ω addr ⊃ int).
Validity inference allows declarations of library code (such as the ML Ba-

sis library) to precede the program and then be used as desired, without the
need to explicitly move the code between worlds or instantiate it. Thus, when
programming using only the ML subset, ML5 looks just like ML.

3.3 Web Features

The current ML5 prototype is specialized to web programming, and has a few
features that are specific to this domain. Let us look at a tiny application that
illustrates these. This program will make use of a simple persistent database
on the server that associates string values with string keys. It will allow us to
modify those keys, and will asynchronously show the value of the key whenever
it is modified (in this or any other session). We begin by importing libraries and
declaring the worlds and addresses.

import "std.mlh"
import "dom.mlh"
import "trivialdb.mlh"
extern bytecode world server
extern val home ~ home addr
extern val server ~ server addr

The Document Object Model (DOM) is JavaScript’s interface to the web
page [5]. It allows the reading and setting of properties of the page’s elements, and
the creation of new elements. The dom.mlh library provides a simple interface to
the DOM. The trivialdb.mlh library provides access to the persistent database.
Both consist mainly of extern declarations.

put k = [tdb-test]
fun getkey () =

let val v = from server get trivialdb.read k
in dom.setstring (dom.getbyid [showbox], [innerHTML], v) end

fun setkey () =
let put s = dom.getstring (dom.getbyid [inbox], [value])
in from server get trivialdb.update (k, s) end

The valid variable k holds the name of the key we’re concerned with (ML5
string constants are written with square brackets; see below). The function
getkey fetches the current value of the key from the server. It then finds the
DOM element with id showbox and sets its HTML contents to be the value of
the key. The function setkey reads the value of the DOM element inbox (a text
input box), travels to the server and sets that as the value of the key. Both
functions have type unit -> unit @ home.

do dom.setstring (dom.getbyid [page], [innerHTML],
[[k]’s value: <div id="showbox">&nbsp;</div> <br />
<input type="text" id="inbox" /> <br />
<div onclick="[say setkey ()]"

style="cursor:pointer">set key</div> ])
do from server

get trivialdb.addhook (k, cont (fn () => from home get getkey ()))



We then create the web page that the functions above interact with. We do
this by updating the element called page (provided by the ML5 runtime) with an
HTML string. This string contains the elements showbox and inbox referenced
by name above. There are two things to note here: One is ML5’s syntax for
strings, which uses square brackets. Within a string, square brackets allow an
ML5 expression of type string to be embedded (it may contain further strings,
etc.). The other is the say keyword. It takes an ML5 expression (here setkey
()) and, at runtime, returns a JavaScript expression (as a string) that when run
will evaluate that expression.2 In this example we set the onclick property of
the <div> so that it triggers setkey () when the user clicks it. Finally, we add
a hook on the key that travels to the client and calls getkey whenever the key
is changed. The hook is expected to be a first-class continuation; cont is a valid
function from the standard library of type (unit -> unit) -> unit cont.

When this program is compiled, it produces a JavaScript source file to run
on the client, and a bytecode file to run on the server. To run the application,
the user visits a URL on the web server, which creates a new session and returns
the JavaScript code along with the runtime to his web browser. The server also
launches an instance of its code. The program runs until the client leaves the
web page, at which point the session is destroyed on the server. This example
and others can be run online at http://tom7.org/ml5/.

Having given a tour of the language, we now describe how it is implemented.

4 Implementation

The ML5 implementation consists of a CPS-based type directed compiler, a
simple web server, and two runtimes: one for the client and one for the server.
For reasons of space we concentrate on only the most interesting aspects of these,
which tend to arise as a result of ML5’s modal typing judgment.

We first discuss our strategy for marshaling, which pervasively affects the way
we compile. We then discuss the phases of compilation in the same order they
occur in the compiler. We finish with a brief discussion of the runtime system.

Marshaling. The design of ML5 maintains a conceptual separation between mar-
shaling and mobility. Marshaling is an implementation technique used to repre-
sent values in a form suitable for transmission over the network. Mobility is a
semantic quality of values determined at the language level. In ML5, any well-
typed value can be marshaled, but only some values are mobile. We are able to
make this distinction because of the modal typing judgment: when a value of
type A@w1 is marshaled and then unmarshaled at w2, it still has type A@w1

and therefore cannot be consumed at w2. The notion of mobility allows us to
coerce some values of type A@w1 to A@w2.
2 We can not provide any type guarantees about JavaScript once it is in string form.

An improvement would be to use a richer language for embedded XML documents
(like Links; see Section 6) so that we can type check them, and then to have say
return a JavaScript function object rather than a string.



values v ::= x | u | sham ω.v | λx.c | v1〈w; A; v〉 | Λ〈ω; α; x:A〉.v |
wrepfor w | repfor A

conts c ::= halt | go[v]c | letsham u = v in c | leta x = v in c | call vf va

Γ ! wrepfor w : w wrep@w′
Γ, ω, α, x:A ! v : B@w

Γ ! Λ〈ω; α; x:A〉.v : 〈ω; α; A〉.B@w

Γ ! repfor A : A rep@w

Γ ! vf : 〈ω; α; A〉.B@w0 Γ ! v : A@w0

Γ ! vf 〈w; C; v〉 : [ w/ω][ C/α]B@w0

Γ ! v : A@w′

Γ ! hold v : A atw′
@w Γ, x:A@w, Γ ′ ! x : A@w Γ, u∼ω.A, Γ ′ ! u : [ w/ω]A@w

Γ ! va : w′ addr @w Γ ! c@w′

Γ ! go[va]c@w

A cmobile Γ ! v : A@w Γ, u∼A ! c@w

Γ ! put u = v in c@w

Γ ! v : ωA@w Γ, u∼ω.A ! c@w

Γ ! letsham u = v in c@w

Γ ! v : A atw′
@w Γ, x:A@w′ ! c@w

Γ ! leta x = v in c@w

Figure 3. Some of the CPS language. The judgment Γ ! v : A@w checks that the
value v has type A at w. Continuation expressions c are checked with the judgment
Γ ! e@w; they do not return and so do not have any type. The judgment cmobile is
analogous to the IL judgment mobile, but for CPS types. In an abuse of notation, we use
an overbar to indicate a vector of values, vector of typing judgments, or simultaneous
substitutions.

In order to marshal and unmarshal values, we need dynamic information
about their types and worlds. For example, to compile a polymorphic function,
we might need to generate code that marshals a value of an arbitrary type. To do
this uniformly, the low-level marshal primitive takes a value (of type A) and a
representation of its type. The type of the dynamic representation of A is A rep.
(We also have w wrep, the type of a representation of the world w.) The marshal
primitive analyzes the type representation in order to know how to create mar-
shaled bytes from the value. Recursively, the behavior of marshal is guided by
both the type and world of the value. Because marshal is a primitive—not user-
defined code—we do not need to support general type analysis constructs like
typecase.

To make sure that we have the appropriate type representation available
when we invoke marshal, we establish an invariant in the compiler that whenever
a type variable α is in scope, so is a valid variable with type α rep. Similarly, for
every world variable ω in scope, there will be a valid variable with type ω wrep.
Once we have generated all of the uses of these representations, we discard the
invariant and can optimize away any type representations that are not needed.



4.1 Compiler

After the program is elaborated into the intermediate language (IL), the first
step is to CPS convert it. CPS conversion is central to the implementation of
threads and tail recursion in JavaScript, because JavaScript does not have any
native thread support or tail call support, and has an extremely limited call
stack. We give a sample of the CPS language in Figure 3. CPS conversion of
most constructs is standard [1]; IL expressions are converted to CPS expressions
via a function convert, which is itself continuation-based. In addition to the IL
expression argument, it takes a (meta-level) function K that produces a CPS
expression from a CPS value (the result value of M). It may be illuminating to
see the case for get:

convert (from Ma get Mr) K =
convert Ma K1

where K1(va′) = let a = localhost() in
put ua = a in
go[va′ ] convert Mr Kr

where Kr(vr) = put ur = vr in
go[ua] K(ur)

We first convert Ma, the address of the destination, and then compute our own
address and make it valid so that we can use it at our destination to return. We
then go to the destination, evaluate the body Mr, and make it valid so that we
can use it when we return. To return, we go back to the original world.

The CPS abstract syntax is implemented in the compiler using a “wizard”
interface [8], where binding and substitution are implemented behind an ab-
straction boundary rather than exposing a concrete SML datatype and relying
on compiler passes to respect its binding structure. This interface guarantees that
every time a binder is “opened,” the client code sees a new freshly alpha-varied
variable. In our experience this is successful in eliminating alpha-conversion bugs,
a major source of mistakes in compilers we have written previously.

Because the compiler is type-directed, all of the transformations are defined
over typing derivations rather than the raw syntax. In order to recover these
derivations (particularly, the types of bound variables) each transformation must
essentially also be a type checker. We do not want to repeat the code to type
check and rebuild every construct in every pass. Instead, we define an identity
pass that uses open recursion, and then write each transformation by supplying
only the cases that it actually cares about. This does have some drawbacks (for
instance, we lose some useful exhaustiveness checking usually performed by the
SML compiler), but it drastically reduces the amount of duplicated code that
must be maintained in parallel.

Representation Insertion. The first such pass establishes the representation in-
variant mentioned above. A number of constructs must be transformed: con-
structs that bind type or world variables must be augmented to additionally



take representations, and uses must provide them. The CPS language uses a
“fat lambda” (written Λ〈ω;α;x:A〉.v) for values that take world, type, and
value arguments. It is converted by adding an additional value argument (of
type ω wrep or α rep) for each world and type argument. As examples, the value
Λ〈ω1,ω2;α;x:int〉.x converts to

Λ〈ω1,ω2;α;x1:ω1 wrep, x2:ω2 wrep, x3:α rep, x:int〉.x

and the application y〈home,ω3; (int× α); 0〉 converts to

y〈home,ω3; (int× α); wrepfor home, wrepfor ω3, repfor (int× α), 0〉.

The value repfor A is a placeholder for the representation of A. It is only a
placeholder because it may contain free type variables. In a later phase, repfor
is replaced with a concrete representation, and the free type variables become
free valid variables.

We also perform a similar translation for the sham ω.v and letsham con-
structs. For the introduction form, we lambda-abstract the required world rep-
resentation. We do not change the elimination site, which binds a valid variable
that can be used at many different worlds. Instead, at each use we apply the
variable to the representation of the world at which it is used.

In this phase we also insist that every extern type declaration is accompa-
nied by a extern val declaration for a valid representation of that type.

Closure Conversion. Closure conversion implements higher-order, nested func-
tions by transforming them to closed functions that take an explicit environment.
The environment must contain all of the free variables of the function. Closure
conversion is interesting in the ML5 implementation because a function may
have free variables typed at several different worlds, or that are valid.

To closure convert a lambda, we compute the free variables of its typing
derivation. This consists of world, type, and value variables. After closure con-
version the lambda must be closed to all dynamic variables, including the rep-
resentations of types and worlds. This means that in order to maintain our type
representation invariant, the set of free variables must additionally include a
valid representation variable for any occurring world or type variable. So the free
variables xi:Ai @wi are the actually occurring free variables, and the free valid
variables are uj∼ω.Bj along with uωk∼ωk wrep for any free ωk and uαl∼αl rep
for any free αl, where uω is the representation variable paired with a world
variable ω and uα is the variable pared with a type variable α.

The environment will consist of a tuple containing the values of all of the
free variables. Some of these values are typed at other worlds, so they need to be
encapsulated with the at modality. We must preserve the validity of the valid
ones using . The environment and its type are thus

(hold x1, . . . , sham ω.u1, . . .) : (A1 atw1, . . . , ω.B1, . . .)

Inside the body of the converted function we rebind these variables using leta
and letsham on components of the tuple. As usual, the pair of the closed lambda



and its environment are packed into an existential, so that all function types are
converted independently of the instance’s free variable set. Since unpacking an
existential binds a type variable, we must also include a type representation
inside each existential package so that we can maintain our invariant.

The design of closure conversion is what originally informed our addition of
the at and modalities to ML5. A general lesson can be derived: In order to type
closure conversion, the language must have constructs to internalize as types any
judgments that appear as (dynamic) hypotheses. The elimination forms must be
able to restore these hypotheses from the internalized values.

In addition to closure converting the regular λ construct, we must convert Λ
since it takes value arguments. We closure convert the body of go as well, since
we send that continuation as a marshaled value to the remote host.

After closure conversion we will never need to insert another repfor, so a pass
replaces these with the actual values that form the runtime representations of
types and worlds. We then discard our representation invariant and can optimize
away unused representations.

Hoisting. A separate process of hoisting pulls closed lambdas out of the program
and assigns them global labels. The hoisted code must be abstracted over all of
its free type and world variables, but these are now purely static. Hoisted code
can either be fixed to a specific world (when it is typed at a world constant), or
it can be generic in its world (when it is typed at a world variable). When we
generate code for each world in the back-end, we produce code for those labels
that are known to be at that world, and also any label generic in its world. Any
other label is omitted—it won’t be invoked here and we might not even be able
to generate the code if it makes use of resources particular to its true world.

4.2 Runtime

The runtime system is responsible for providing communication between the
server and client. It also contains the implementation of marshaling and threads.

When the web server returns a compiled ML5 program for the client, it
begins a session of the program that runs on the server as well. This session
contains a queue of server threads and a marshaling table (see below). Via the
go construct, threads can transfer control from client to server or vice versa.
A client thread transfers control to the server by making an HTTP request
whose body is a marshaled continuation for the server to execute. Starting a
thread on the client is trickier: For security reasons JavaScript cannot accept
incoming network connections. Instead, the client is responsible for maintaining
a devoted connection to the server, fetching a URL and asynchronously waiting
on that request. When the server wishes to start a thread on the client, it sends
a response; the client begins that thread and reinstates the connection. (This
mode of interaction is now fairly standard in web applications.)

With type representations available, marshaling is a straightforward matter.
One interesting aspect is how we use the representations of worlds; as we marshal,



we recursively keep track of the world of the value (for instance, as we descend
into a value of type A atw2, we record w2). We can then specialize the marshaled
representation of a value based on where it comes from. This is how we can
marshal local resources: A JavaScript DOM handle is represented natively at
home, but when we marshal it, we place it into a local table and marshal the index
into that table. At any other world, the handle is represented and marshaled as
this index. When it arrives back at home, we know to reconstitute the actual
handle by looking it up in the table.

5 Theory

We have formalized several of the calculi on which ML5 is based in Twelf [14] and
proved properties such as type safety for them. In addition, we have formalized
a few of the first stages of compilation, including CPS and closure conversion.
(These languages are somewhat simplified; for example we omit recursion and
type representations.) For these we prove that every well-typed program can be
converted, and that the resulting program is well-typed. All of the proofs are
machine checkable. Some of the proofs appear in Murphy’s thesis proposal [9]
and the remainder will appear in his dissertation.

6 Related and Future Work

Related Work. ML5 is in a class of new web programming languages that Wadler
deems “tierless,” that is, they allow the development of applications that nor-
mally span several tiers (database, server logic, client scripts) in a uniform lan-
guage. Links [2] is such a programming language. Functions may be annotated
as “client” or “server,” and Links allows calls between client and server code.
However, their type system does no more to indicate what code and data can be
safely mobile, and marshaling can fail at runtime. On the other hand, Links has
many features (such as a facility for embedding and checking XML documents
and database queries) that make typeful web programming easier.

Hop [15] is another tierless web programming language, using Scheme as the
unifying language. Hop has constructs for embedding a client side expression
within a server expression and vice-versa, analogous to get in ML5 (but specific
to the two-world case). The chief difference is simply that Hop is untyped, and
thus subject to dynamic failures.

Others have used modal logic for distributed computing. We have already
mentioned a few of these; for a complete discussion see our previous papers on
Lambda 5 [11] and C5 [10], as well as Murphy’s thesis proposal [9].

Future Work. There is much potential for future work on ML5 and related lan-
guages. In the short term, we wish to develop larger applications and implement
the language support necessary to do so. This will probably include support
for structured databases and mutual exclusion between threads. We will need



to improve the performance of the compiler, particularly by implementing op-
timizations that undo our simplistic closure conversion (for instance, when all
calls are direct) and type representation passing (when the representations are
not used). There is also some opportunity for optimizations particular to the
ML5 primitives (such as when a get is from a world to itself).

A more serious performance issue is resource leaks caused by mobile data
structures. Garbage that is purely local is collected by the server and JavaScript
collectors, but once a local resource is marshaled by inserting it in a table and
sending that index remotely, we can never reclaim it. Web programming systems
typically deal with this by assuming that sessions are short-lived, but it would be
preferable to allow for long-running programs through some form of distributed
garbage collection [13].

Our type theory naturally supports an arbitrary number of worlds, and most
of the compiler does, as well. Adding the ability for a program to access many
different servers would just be a matter of adding runtime support for it. Unfor-
tunately, JavaScript’s security model prevents outgoing connections to any server
other than the one that originally sent the JavaScript code. To get around this,
we would need to build an overlay network where the original server acts as a
proxy for the others. Supporting multiple clients in the same application instance
is trickier still. This is mainly because we consider the thread of control to begin
on the (one) client; it would instead need to start on the server, which would
then need to be able to discover new connecting clients at runtime.

Another concern is security. JavaScript code intended to run on the client
is actually under the complete control of an attacker. He can inspect its source
and cause it to behave arbitrarily, and invoke any continuation on the server for
which he is able to craft acceptable arguments. This is true of any distributed
system where some hosts are controlled by attackers, and the programmer must
defend against this by not trusting (and explicitly checking) data and code it
receives from the client. In some ways this problem is exacerbated in ML5: The
process of compilation from the high-level language is not fully abstract, in that
it introduces the possibility for more behaviors in the presence of an attacker
than can be explained at the source level. For example, depending on how closure
conversion and optimizations are performed, a client may be able to modify a
marshaled closure in order to swap the values of two of the server’s variables! We
believe a solution to this problem would take the form of an “attack semantics”
provided by the language and implemented by the compiler through a series
of countermeasures. The semantics would describe the range of behaviors that
a program might have in the presence of an attacker, so that the programmer
can ensure that these behaviors do not include security breaches on the server.
(The client will always be able to format his own hard drive, if he desires.)
Such properties are inherently in terms of the principals (places) involved in the
computation, and therefore we believe that our type system and semantics is
an important first step in being able express and prove properties of programs
in the presence of an attacker, and to develop mechanisms for building secure
programs.



Conclusion. We have presented ML5, a new programming language for dis-
tributed computing. ML5’s current prototype is specialized to web programming,
a domain for which its programming model is well suited—it joins a collection
of other languages with similar design goals and principles. Many of the ideas
from these languages are compatible with all three systems. ML5’s main con-
tribution to this is its type system, which permits the programmer to describe
local resources and prevent unsafe access to them. Being based on logic, the
type system is elegant and is compatible with the design of ML-like languages,
including polymorphic type inference.
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