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Abstract leak some amount of sensitive information as part of their
proper functioning.

Noninterference requires that there is no information  One way to accommodate information release is to allow
flow from sensitive to public data in a given system. How- expjicit downgrading or declassification of sensitive infor-
ever, many systems perform intentional release of sensitivenation (e.g., [13, 24, 5]). These mechanisms are inherently
information as part of their correct functioning and there- ynsafe and there is the possibility that a downgrading chan-
fore violate noninterference. To control information flow nej that is part of a larger system may be exploited to re-
while permitting intentional information release, some sys- |ease information in a way that was not intended.
tems have a downgrading or declassification mechanism.
A major danger of such a mechanism is that it may Causey, oy that the information release occurs in accordance

unintentional information release. This paper s_hows that a with some presumably more flexible security policy. How-
robustness property can be used to characterize programs,

in which declassificati hani b loi dever, it seems to be difficult in general to express these poli-
in which declassification mechanisms cannot Ve EXP olte cies precisely and even more difficult to show that systems
by attackers to release more information than intended. It

d i ol bl ¢ his rob satisfy them. Therefore a reasonable strategy is instead to
escribes a simple way to provably enforce this ro UStnessidentify and enforce importardspectsof the intended se-

prc_)perty through a type-based compile—.tim(-a program anal- curity policy rather than trying to express and enforce the
ysis. The paper also presents a generalization of robustnessentire policy

that supports upgrading (endorsing) data integrity.

Given that noninterference is not satisfied, we would like

A recent example of this approachrisbust declassifi-
cation, a security property defined by Zdancewic and My-
ers [43]. The intuition is that although the system may re-
1. Introduction lease information, an attacker should have no control over

what information is released. More generally, in a system

Information flow controls have some appealing proper- that is separated into untrusted and trusted components, the
ties as a security enforcement mechanism. Unlike accessintrusted components should not be able to affect informa-
controls, they track the propagation of information and pre- tion release. Zdancewic and Myers captured this idea for-
vent sensitive information from being released publicly, re- mally in the context of a state transition system, but offered
gardless of how information is transformed by the system. no practical way to analyze whether a program satisfied ro-
Dually, information flow controls may be used to enforce bust declassification.
data integrity. One common formal underpinning of these  Thjs paper generalizes the previous work on robustness
mechanisms is theoninterferencesecurity property [16],  in three ways. First, it shows how to express the property
which imposes an end-to-end requirement on the behaviori, g |anguage-based setting; specifically, for a simple im-
of the system: sensitive data cannot affect public data. How-perative programming language. Second, it generalizes the
ever, in practice noninterference is too strong; real systemsprgperty so that—unlike the earlier robustness property—
untrusted code and data are explicitly part of the system
*  This work was partly done while the author was at Cornell University. rather than appearing only when there is an active attacker.




Third, it introduces a security guarantee calgalified ro-
bustnesshat provides untrusted code with a limited ability HL
to affect information release.
The key technical result of the paper is a demonstra-
tion that both robustness and qualified robustness can be
enforced by a compile-time program analysis based on a
simple type system. A type system is given that tracks HH LL
data confidentiality and integrity in the imperative program-
ming language, similarly to the type system defined by
Zdancewic [42]. This paper also takes the new step of prov-
ing that all well-typed programs satisfy the language-based

robustness condition it defines. LH
The rest of the paper is structured as follows. Section 2
presents some of the basic assumptions and models used Figure 1. Security lattice L7z

for this work, including a simple imperative language with
an explicit declassification construct that downgrades confi-
dentiality levels. Section 3 presents and generalizes the ro-stricted than that of high-integrity data, which helps prevent
bustness condition in this language-based setting, and giveinformation corruption.

some motivating code fragments that are used as running Anexamplel;,; of a security lattice is displayed in Fig-
examples. Section 4 presents a security type system for thaire 1. This lattice is a product of a simple confidentiality lat-
imperative language. This type system tracks both the con-tice (with elementd. and H of low and high confidential-
fidentiality and integrity of data and imposes integrity re- ity so thatL Cc H) and a dual integrity lattice (with ele-
quirements on declassification operations. It also ensuresnentsL and H of low and high integrity so thatl =; L).

that any well-typed program satisfies the robust declassifi-At the bottom of the lattice is the levdlH for data that
cation condition. Section 5 presents more detailed examplesnay be used arbitrarily. This data has the lowest confiden-
and shows how the robust declassification condition givestiality and highest integrity level. At the top of the lattice is
insight into program security. Section 6 generalizes the ro-the data that is most restrictive in usage. This data has the
bust declassification condition to allow untrusted code lim- highest confidentiality and lowest integrity level.

ited control over information release, and shows that useful

code examples satisfy this limited robustness property. Sec- o Attacker model

tion 7 discusses related work, and Section 8 concludes.

The goal of this paper is to characterize programs in
which untrusted components cannot improperly affect what
information is released. These untrusted components are as-
sumed to be under the control of some attacker. This is

2. Language and attacker model

2.1. Security lattice a very general model of the system. This attacker may in
fact be an ordinary user, in which case the goal is to un-
We assume that the security levels fornseurity lat- derstand whether program users can cause unintended in-

tice £. The ordering specifies the relationship between dif- formation release, perhaps by providing unexpected inputs.
ferent security levels. To enable reasoning about both confi-Alternatively, as in the work on secure program partition-
dentiality and integrity, the security latticgis a product of ing [45, 46], the system might be a distributed program in

confidentialityandintegrity lattices £ and£;, with order- which some of the program code runs on untrusted hosts
ingsC¢ andCy, respectively. IfC Co ¢ (I Ty I') then and is assumed to be controlled by a malicious attacker.
data at level” (I) is no more confidential (no less trustwor- In all these scenarios, the attacker is described by a con-

thy) than data at level” (I’). An element/ of the prod- fidentiality levelC 4 representing the confidentiality of data
uct lattice is a paifC'(¢), I(¢)) (which we sometimes write  the attacker is expected to be able to read, and an integrity
asC(¢)I(¢) for brevity), where we denote the confidential- level 14 defining the integrity of data that the attacker is ex-
ity and integrity parts of by C'(¢) andI(¢), respectively.  pected to be able to affect. Thus, the robustness of a sys-
The ordering orZ, L¢, andL; corresponds to the restric- tem is with respect to the attacker paramet{érg, 14). As
tions on how data at a given security level can be used. Thefar as a given attacker is concerned, the four-point lattice
use of high-confidentiality data is more restricted than that £ captures the relevant features of the general latlice

of low-confidentiality data, which helps prevent informa- Let us define high- and low-confidentiality areasty

tion leaks. Dually, the use of low-integrity data is morere- Ho = {¢| C({) L Cx} andLe = {£| C(¢) E Cyu}, re-



Attacker can modify

Attacker can read

Figure 2. Attacker’s view of a general lattice.

a security policy specifying that information flow from a
variablev; to a variablev, is allowed only ifI'(v;) T
F(Ug).

The only non-standard language expression is the con-
struct declassify(e, ¢), which declassifiesthe security
level of the expression to the levell € L. Operationally,
the result ofdeclassify(e, ¢) is the same as that efre-
gardless off. The intention is that declassification is used
for controlling the security level of information without af-
fecting the execution of the program.

The evaluation semantics are defined in terms of small-
step transitions between configurations. A configuration
(M, c) consists of a memory/ (which is a finite map-
ping M : Var — Val from variables to values) and a
command (or expression) A transition from configuration
(M, ¢) to configuration(M’, ¢’y is denoted by M, c) —

easbyL; = {£| I+ C I(0)} and H; = {¢| 1o Z I(0)},
respectively. The four key areas of latti€ecorrespond ex-
actly to the four points of lattic€ 1 :

LH ~ LcN Hy HH ~ HoN Hy
LL~LcNLy HL ~ HcN Ly

minating configuration with memonp/’ is denoted by
(M,c) — M’. As usual,—* is the reflexive and tran-
sitive closure of—. Configuration(M, ¢) terminatesin
M’ if (M,c) —* M’, which is denoted byM, c¢) || M’

or, simply, (M, ¢) | whenM' is unimportant. If there is an
infinitely long sequence of transitions from the initial con-

This correspondence is illustrated in Figure 2. From the at- figuration (M, ¢) then that configurationiverges written

tacker’s point of view, area H describes data that is visible
but cannot be modified; arddH describes data that is not
visible and cannot be modified; aréd describes data that
is both visible and can be modified; and, finally, affade-

(M, c) ft. We assume that operations used in expressions
are total, and, hence, expression configurations always ter-
minate (while command configurations might diverge). The
trace Tr((M, c)) of the execution of configuratiofd/, ¢) is

scribes data that is not visible but can be modified by the at-the sequenc\/, M’, M”,...] of memories extracted from

tacker. Because of this correspondence betw&en and
L, results obtained for the lattic®;, i generalize naturally
to the full latticeL.

2.3. Language

the sequence of configuratiofd/,c) — (M’ ) —
(M", "y — ... Similarly to configurations, a tracder-
minates (inM), writtent |} (¢t | M) whent is finite (and
the last memory in is M); t diverges, writtert 1}, if ¢ is in-
finite.

This paper uses a simple sequential language consisting
of expressions and commands. It is similar to several other3, Robustness condition

security-typed imperative languages (e.g., [40, 2]), and its

semantics are largely standard (cf. [41]).

A common way of specifying confidentiality is as non-

Definition 1. The language syntax is defined by the follow- interference [16], a security property that says that in-

ing grammar:
e:=wval |v]|e; opey|declassify(e,l)
cu=skip|v:=e] ;e

| if e then ¢ else ¢o | while edo ¢

wherewval ranges over value¥al = {false true,0,1,... },

v ranges over variable¥ar, op ranges over arithmetic and
boolean operations on expressions, ahrthnges over the
security levels

The security environment' : Var — L describes the

puts of high confidentiality do not affect outputs of lower
confidentiality. Recent work on language-based security
(e.g., [40, 1, 17, 36, 38, 2, 34, 28, 35, 44, 3, 29]) has used
various definitions of noninterference as the definition of se-
curity. However, noninterference cannot characterize the se-
curity of a program designed to declassify confidential in-
formation as part of its proper functioning. Therefore we
propose a security condition that captures important aspects
of the information release policy. This security condition
is based on robust declassification [43], which intuitively
states that declassification may not be abused by the attacker

type of each program variable as a security level. The se-to gain more knowledge about secrets than intended. In Sec-
curity lattice and security environment together constitute tion 6, we also consider hoendorsementa dual primitive



that upgrades thiategrity of data) affects the security char-
acterization.

Let us define the view of the memory at lewel The
idea is that the observer at levélmay only distinguish
data whose security level is at or beléwFormally, mem-
ories M and M, are indistinguishable at a levél(writ-
tenM, =, Mg) if V’UF(U) C/l{ = Ml(U) = MQ(U).
The restriction M|, of memory M to the security level
is defined by restricting the mapping to variables whose se-
curity level is at or below!. Define theprojectiont|, of
tracet to the security level by the trace consisting of the

sequence of memories restricted to variables at or below

¢ Formally, [My, ..., My,...]l¢ = [Miley. .., Mple...].

Because computation steps can be observed only if they
make changes to the observable part of memory, we identify

traces up tdiigh-stutteringwith respect to a security level
£. Traces; andt, for configurationg My, ¢1) and(Ma, c2)

are relatedi ~ to) if My =, M, and the subsequences
(of t; andts) of memories resulting frond-observable as-
signments inc; and e, are ¢-indistinguishable. Two traces
t, andts areindistinguishable up td (writtent, =, to) if
whenever both; andt, terminate then; ~, to. We lift in-
distinguishability from memories and traces to configura-
tions by the following definition:

Definition 2. Two configurations(M, ¢;) and (Ms, c2)
are weakly indistinguishable up té (written (M7, ¢1) =y
<M2,CQ>) if TT’(<M1,61>) 2y TT(<M2,62>). We say that
two configurations arestrongly indistinguishable up té
(written <M1,Cl> =y <M27CQ>) if <M1,Cl> 4, <M2,CQ> 4,
and <]\417 Cl> 2y <Z\/[2, Cg).

Note that weak indistinguishability is timing- and
termination-insensitive because it allows one trace to end
prematurely; strong indistinguishability requires the ter-
mination of both configurations so that the traces remain
related throughout their entire execution.

Noninterference says that if two memories are indistin-
guishable at a certain level, then the executions of a given

visible data). Here we model both kinds of attackers rela-
tive to a pointA in a security lattice. A passivd-attacker
may read data at or belo@/, (i.e., at or below(C4, T) in

the product lattice) whereas an actideattacker may mod-
ify data at or above 4 (i.e., at or above L, 14) in the
product lattice). In general, an attacker may run any pro-
gram satisfying a combination of conditions on what data
can be read and modified. We call such progrdaisat-
tacks

Definition 4. A command: is a fair attackif it is formed
according to the following grammar (for soriec LL):

a ::= skip
|v:i=e (Vo € Vars(e).I'(x) =0 =T(v)) | a1; az
| if b then ay else ag (Vo € Vars(h).T'(z) = ¢)
| while bdo a (Vo € Vars(b).T'(x) = ¢)

Attacker-controlled low-integrity computation may be
interspersed with high-integrity code. To distinguish the
two, the high-integrity code is represented as a program in
which some statements are missing, replaced by he)es (
The idea is that the holes are places where the attacker can
insert arbitrary low-integrity code. There may be multiple
holes in the high-integrity code, represented by the nota-
tion &. The high-integrity computation is thercantextc|e]
in which the holes can be replaced by a vector of attacker
code fragments; to obtain a complete prograa]. An at-
tack is thus a vector of such code fragments.

Although the assumption that attackers are constrained
to interpolating sequential code may seem atrtificial, it is
a reasonable assumption to make both in a single-machine
setting where the attacker’s code can be statically checked
before it is run, and in a distributed setting where the at-
tacker has complete power to change the untrusted code,
but where that code is limited in its ability to affect the ma-
chines on which trusted code is run [45].

High-integrity contexts are defined formally as follows:

program on these two memories are also (at least weakly)Definition 5. High-integrity contexts, or commands with

indistinguishable at that level:

Definition 3 (Noninterference). A commandc satisfies
noninterferenceinder" if

\V/g, Ml,MQ.]\/ll =y M2 — <M1,C> 7 <M2,C>

holes,c[e] are defined by extending the command grammar
from Definition 1 with:

Using this definition, robust declassification can be trans-

Because noninterference flatly rejects dependencies atated into the language-based setting. Robust declassifica-

any security level, it is overly restrictive for many systems.

tion holds if for all @, whenever program{d] cannot dis-

(However, it is still useful for reasoning about fragments tinguish the behaviors of the program on some memories,
of a larger program.) As described by Zdancewic and My- then any change of the attacker’'s code to any other attack
ers [43], robust declassification ensures that declassificatiors’ still cannot distinguish the behaviors of the program on
cannot be abused by the attacker. More precisely, a systenthese memories. In other words, the attacker’'s observations
is secure if an active attacker (who can observe and modifyaboutc[a’] may not reveal any secrets apart from what the
a part of the system state) may not learn more sensitive in-attacker already knows from observations abdu}. This
formation than a passive attacker (who can merely observeis formally expressed in the following definition.



Definition 6 (Robustness).Command:[e] hasrobustness
with respect to fair attacks if

VM, My, @, a. (M, c[d@)) =a (Mo, cld]) =
(M, cla’]) ~a (Ma, cla’])

As noted, the attacker can observe data below the lattice
point (C4, T;). This level is used for the relatiors 4
and=z 4, requiring equality for the low-confidentiality parts
of memories and configurations, respectively. Note that
(My,c) =4 (Ms,c) implies thatM; =4 M, by Defini-

tion 2.

The definition of robustness uses both strong and weak
indistinguishability, which is needed to deal properly with
nontermination. Because we are ignoring timing and termi-
nation channels, information is only really leaked if con-  For example, under latticé . ;; and attacker ak.L, con-
figurations are not weakly indistinguishable. However, the gjger programs:
premise of the condition is based on strong indistinguisha-
bility because a sufficiently incompetent attacker may in- [o]; 21y = declassify(ynn, LH)
sert nonterminating code and thus make fewer observations
than even a passive attacker who insettsp into every
hole. We are not concerned with such attackers. [o]; if x Ly then yry := declassify(zyy, LH)

Note that the robustness definition quantifies over both else skip

passive and active attacks. This is because neither passive o ]
or active attacker behavior is known a priori. The vector of NO matter what (terminating attack) fills the hole, these pro-

skip commands is an example of a possible attack. Impor-9rams are reject.ed by nqninterference although their declas-
tantly, the robustness definition also guards against other atSification operations are intended. On the other hand, these
tacks (which might affect what critical fragments of the tar- Programs have robustness because the attacker may not in-
get program are reachable). For example, under laftige fluence whatis declassmgd (by assigning/tg, in the for-.

and attacker aL.L, consider the following program (here Mer program) or by manipulating the control flow leading

and in the rest of the paper the subscript of a variable indi- {0 declassification (by assigning ta. in the latter pro-
cates its security level): gram). Indeed, no fair attack filling the hole may assign to

eithery gy or zpz. However, the program

. Flow origins
|:| Flow destinations

Figure 3. Effects of declassification.

xpr := 1;[e];while x5 > 0 do skip;
if xy, = 0thenyry := declassify(zyy, LH)
else skip

[o]; if 1L then yyy := declassify(zgyy, LH)
else skip

is rejected because the attacker might affect what is declas-

This program would be robustdfin Definition 6 were fixed  sified or when it is declassified, by controlling the decision
to be theskip command (ag[a] would always diverge). variablez ;.
However, the attacker may tamper with the declassification
mechanism in the program because whether declassification;,  Security type system for robustness
code is reachable depends on the attacker-controlled vari-
ablez . This is indeed captured by Definition 6, which Figure 4 gives typing rules for the simple sequential lan-
deems the program as non-robust (take z .z, := —1 and guage. These are security typing rules because they impose
a'=uxzrg:=0). conditions on the security level components of type. As we

The robustness definition ensures that the attacker’s acshow later in this section, any program that is well-typed
tions cannot lead the declassification mechanism to increaseccording to these rules also satisfies the robustness prop-
the attacker’s observations about secrets. Note that robusterty. We writel’, pc |- e : £ to mean that an expressiemas
ness is really a property of a high-integrity program context type £ under an environmerit and a contexpc. For com-

rather than of an entire program. A full progratfd) is ro- mands, we writd", pc - ¢ if commandc is well-typed un-
bust if its high-integrity part[e] is itself robust. Because der an environmerif and a contexpc.
the low-integrity codez is assumed to be under the con- The typing rules control the information flow due to as-

trol of the attacker, the security property is insensitive to it. signments and control flow in a largely standard fashion



I',pct val : ¢

L(v)=¢
Lypckwv: /4

Iypcke:l T,pcke : ¥4
I,pcteope : ¢

I,pcke:l pcd’ Cpe LTV
I,pc’Fe:t

I, pc t- skip

I,pcke: ¢ LUpcET(v)
IipcFv:=e

Iypcker Typek o

I',pct ci;c9

I'ipcke:l T, lUpckcy T,0Upck co

T', pc - if e then ¢; else ¢y

Iypcke: ¢ T, lUpckc
I',pc - whileedoc

I,pckc pc C pc
I,pc' Fec

T,pcke: ¢ {UpcCT(v)
I(0) = 1(¢')  I(pc), I(¢') € Hy

T, pc v := declassify(e, ()

Figure 4. Typing rules.

therefore with respect fair attacks.

Definition 7. A commanda is an A-attack under I if
I, (Le,Ia) F a anddeclassify does not occur if.

Under lattice L,y and A = LL, examples of at-
tacks are programs; := yrr,while xy; do skip,
and (a harmless attaclgkip. On the other hand, pro-
gramszyy := yry andzpy = declassify(yry, LH)
are not attacks as they manipulate high-integrity data.
Note that programs:;;, := declassify(ypgyr, LL) and
if xpr then yrr:=declassify(zyy, LH) else skip
are not valid attacks becauseclassify may not be
used in attacks. This is consistent with the discipline en-
forced by the type system that the attacker may not
control declassification. Recall the partition of data accord-
ing to the confidentiality #o and L) and integrity (.
and H;) levels from Section 2.2. The following proposi-
tions provide some useful (and straightforward to prove)
properties of attacks.

Proposition 1. A fair attack is also am-attack.

Proposition 2. An A-attack under” (i) does not have oc-
currences of assignments to high-integrity variables (such
v thatT'(v) € Hjy); and (i) satisfies noninterference un-
derT.

The type system can be used to enforce two interesting
properties: noninterference @itclassify is not used) and
robust declassification (even if it is).

Theorem 1. If T', pc F ¢ anddeclassify does not occur
in ¢, thenc satisfies noninterference.

This resultis proved with a straightforward induction on the
evaluation of [40].

The interesting question, however, is what the type sys-
tem guarantees when declassification is used. Observing
that declassification affects only confidentiality, we prove

(cf. [40]). However, the key rule governing uses of declassi- that the integrity part of the noninterference property is pre-

fication is non-standard, though similar to that proposed by served in the presence of declassification:

Zdancewic [42] (we discuss the relation at the end of this

section). This rule states that only high-integrity data is al-

lowed to be declassified and that declassification might only

occur inghigh—integrity cqntegp(:). The gffect of_this rple VMY, My My =10y My = (My,¢) =11y (Mz,c)

can be visualized by considering the lattice depicted in Fig-

ure 3. The figure includes an arrow corresponding to a de-  As for the confidentiality part, we show the key result of

classification from security levélto level¢’. Restrictingthe  this paper: typable programs satisfy robust declassification

area of possible flow origins (belofy to the high-integrity ~ and, thus, the attacker may not manipulate the declassifica-

area of the lattice prevents the attacker (who controls thetion mechanism to leak more information than intended.

low-integrity area of the lattice) from compromising the de- For robustness it is important that holes not be placed

classification mechanism. into high-confidentiality environments. This is achieved by
Using the type system, we defing-attacks programs defining a suitable typing rule for holes:

controlled by the attacker at levdl which subsume fair at-

tacks. We prove that well-typed programs are robust with C(pc) € Lo

respect tad-attacks (or simply “attacks” from here on) and T,pct e

Theorem 2. If T', pc F ¢ then for all integrity leveld we
have



This rule allows program context$e] to be type-checked.
The robustness result is:

Theorem 3. If T', pc - c[#] thenc[e] satisfies robust declas-
sification.

The proof is found in Appendix A. It is a straightforward
induction on the structure efs].

It is worth clarifying the relation of the type system to
that defined by Zdancewic [42]. While both type systems re-
quire highpc integrity in the typing rule fodeclassify,

the present system also requires high integrity of the expres-
sion to be declassified. The purpose of the latter requirement

is illustrated by the following example:

[.]7 if THL then YHL = ZHL else YHL ‘= VHL;
wrp, := declassify(ypz, LL)

This program is allowed by the typing rules presented by
Zdancewic [42]. However, the program clearly violates the
definition of robustness presented here. By requiring hig

integrity of the declassified expression, the type system in

Figure 4 ensures that the program above is rejected.

5. Password checking example

This section applies robust declassification to a program

that performs password checking, illustrating how the type

system gives security types to password-checking routines

and prevents attacks.

Password checking in general releases information about

match(pwdl, salt, pwd, hashR, matchR) checks whether
the password imagpwdl matches the hash of the pass-
word pwd with the saltsalt. It stores the result in the vari-
able matchR. We assume that”, and I, denote the
confidentiality C(T'(v)) and integrity(I'(v)) of the vari-
ablev, respectively.

T, pc - hash(pwd, salt) :
prdlpwd X Csaltlsalt - CsaltI
= declassify(buildHash(pwd||salt), Csail)
T, pc b match(pwdl, salt, pwd, hashR, matchR)
= hashR := hash(pwd, salt);
matchR := (pwdl == hashR)

WherecmatchR = prdl U Osalta ImatchR = Ipwdl u I,
I = Iwa U Lqy; andI, I(pc) € Hy. As before, basic se-
curity types are written in the forr@'I (e.g.,L H) whereC

his the confidentiality level and is the integrity level. Let

us assume the lattic&,,;; from Figure 1 andd = LL. In-
stantiating the typings (and omitting the environmEptor
these functions shows that they capture the desired intuition:

The users apply hash to a password and salt:
LH + hash(pwd, salt) : HH x LH — LH

The users match a password to a password image:
LH + match(pwdl, salt, pwd, hashR, matchR)
LH x LH x HH x LH x LH

passwords when attempts are made to log on. This is true

even when the login attempt is unsuccessful, because the

user learns that the passwordnist the password tried. A

password checker must therefore declassify the result of"##
password checking in order to report it to the user. The dan-

ger is that an attacker might exploit this login procedure by
encoding some other sensitive data as a password.

We consider UNIX-style password checking where the
system database stores iheages(e.g., secure hashes) of

Consider an attack that exploits declassificatiohdah
and match in order to leak information about whether

(F(:L’HH) = HH) equaISyLL (P(yLL) = LL)

[e]; match(hash(x gy, 0),0,yLL, hashR, matchR);
if matchR then z5, ;= 1 else zr, :=0

This attack is rejected by the type system because low-

password-salt pairs. The salt is a publicly readable stringiNtegrity datayyr, is fed tomatch. Indeed, this attack com-
stored in the database for each user id, as a protectiorP"OMises robustness. For example, take and M, such
against dictionary attacks. For a successful login, the user ighat My (zpr) = 2 and M (rpe) = 35 a = yrr = 0;
required to provide a query such that the hash of the string@Nda’ = yLL := 2. We have(M,, c[a]) =4 (M, cla]) (the

and salt matches the image from the database.
Below are typed expressions/programs for comput-

else branch is taken regardlessof;r) but (M, c[a’]) %4
(Ms, c[a’]) (which branch of the conditional is taken de-

ing the hash, matching the user input to the passwordPends on the outcome of thatch).

image from the database, and updating the password. Ar-

rows in the types for expressions indicate that under
the types of the arguments on the left from the ar-
row, the type of the result is on the right from the ar-
row. The expression hash(pwd, salt) concatenates
the passwordpwd with the salt salt and applies the
one-way hash functiorbuildHash to the concatena-
tion (the latter is denoted by{). The result is declassi-
fied to the levelC,;; (whereCy,: € L¢e). The command

As a side note, this laundering attack is not defended
against in many approaches that are agnostic about the ori-
gin (or integrity) of data. For example, a typical intransitive
noninterference model accepts the attack as a secure pro-
gram. Clearly, robust declassification and intransitive non-
interference capture different aspects of safe downgrading.
The process of updating passwords can also be modeled
as a typable program that satisfies robustness. We might de-
fine a procedurapdate to which the users must provide



their old password in order to update to a new password:

T, pc - update(pwdl, salt, oldP, newP, hashR, matchR)
= match(pwdl, salt, oldP, hashR, matchR);
if matchR
then pwdl := hash(newP, salt)
else skip

where Csalt(Isalt U IoldP u InewP) E prdIIpde and
Lsaits Lotap, Inewr, I(pc) € Hj. In order for this code to
be well-typed, both the old passworddP and the new
passwordnewP must be high-integrity variables; other-
wise,hash would attempt to declassify low-integrity infor-
mationnewP (with the decision to declassify dependent on
low-integrity informationoldP), which the type system pre-

Suppose that the program contains endorsements of
some expressions. We wish to qualify the robust declas-
sification property to make it insensitive to how these
expressions evaluate. To do this we consider the be-
havior of the program under an alternate semantics for
endorse expressions, in which thesndorse expres-
sion evaluates to a nondeterministically chosen new value
val:

(M, endorse(e, £)) — val

Interpreting theendorse statement in this way makes the
evaluation semantics nondeterministic, so it is necessary to
modify the definitions of configuration indistinguishability
to reflect the fact that a given configuration may have mul-

vents. Thus, an attacker is prevented from using the passtiple traces.

word system to launder information. Instantiating this typ-
ing to the simple lattice€;,; and A = LL is as follows:

The users modify a password:
LH + update(pwdl, salt, oldP, newP, hR, mR) :
LH x LH x HH x HH x LH x LH

6. Endorsement and qualified robustness

Two trace setd; and T, areindistinguishable up td
(Written T, =y Tg) if Vi, € T1.3ta € To.tg =p ta &
Vo € To. 3t € Th. 1 =~y to, i.€., fOr any trace from; we
can find a trace frond’, so that if both terminate than they
are indistinguishable up toand vice versa. We can now lift
Definition 2 to multiple-trace semantics:

Definition 8. Two configurations(My, ¢;) and (Ms, co)
are weakly indistinguishable up té (written (M, c1) =

Sometimes it makes sense to give untrusted code the(Ma,c2)) if Tr({My,c1)) ~¢ Tr((Mz,cz)). We say that

ability to affect what information is released by a program.

two configurations arestrongly indistinguishable up té

For example, consider an application that allows untrusted(written (M, c1) &y (My,cg)) if (My,c1) ~e (Ma,c3)
users to select and purchase information. The informationand both(M, c1) and (Ms, c2) always terminate.

provider does not care which information is selected, as-

suming that payment is forthcoming. This application is ab-
stractly described by the following code:

[¢];if 1y, = 1 then z1y := declassify(yyy, LH)
else zy := declassify(yyy, LH)

There are two pieces of information availablg;y and
Y- The purchaser computes the choice in low-integrity
codee, which sets the variable;;. The user expects to
receive output oreyy. This code obviously violates ro-
bust declassification because the “attackg] := 1 and
xr 1, := 2 release different information, yet the program can
reasonably be considered secure.

6.1. Characterizing qualified robustness

To address this shortcoming, we generalize robust de-

classification to gualified robustneggroperty in which un-
trusted code is given a limited ability to affect information
release. This ability is marked explicitly in the code by the
use of a new construcgéndorse(e, £). This endorsement
operation has the same result as the expressibat up-
gradesthe integrity of the result, indicating that although

Using this notation, the robust declassification property
can be qualified to express the idea that the attacker’s effect
on endorsed expressions does not matter:

Definition 9 (Qualified robustness). Commandc[e] has
qualified robustnessith respect to fair attacks if
VM, My, d,al. (My,cl@)) =4 (Ms,cld)) —
(My, c[d’]) ~a (My, cld])
Note the similarity of qualified robustness to the original ro-
bustness property from Definition 6. In fact, the difference

is entirely contained in the generalized indistinguishability
relations= 4 and~ 4.

6.2. Enforcing qualified robustness

The use okndorse is governed by the following typing
rule; in addition, attacker code may not ugselorse:

Dypcke:l ¢UpcCT(v) CU)=CY)
T, pc v := endorse(e, ¢)

Adding this rule to the type system has no impact on con-

this value might be affected by untrusted code, the real se-fidentiality when nodeclassify occurs in a program. To

curity policy is insensitive to the value.

be more precise, we have the following theorem:



Theorem 4. If T', pc I ¢ and nodeclassify occurs inc The users modify a password:
then for all confidentiality level€ we have LH + update(pwdl, salt, oldP, newP, hR, mR) :
LH x LH x HL x HL x LH x LH

Under this typing, the above variant apdate satisfies
The interesting question is what security assur- qualified robustness by Theorem 5.

ance is guaranteed in the presence of bidhlassify

and endorse. The rule above rejects possible mis- 6.4. Battleship game example

uses of the endorsement mechanism leading to undesired . .
declassification, as illustrated by the following exam-  The second example is based on the game of Battleship,

le,]\/IQ.Ml =(C,T1) My — <M1,C> ~(e,Tr) <]V[2,C>

ple: an example used by Zheng et al. [46]. Initially, two play-
ers place ships on their grid boards in secret. During the
[e];if x 1y, then yry := endorse(zLy, LH) game they try to destroy each other’s ships by firing shots at
else skip; locations of the opponent’s grid. On each move the player
if yrg thenvpy := declassify(wyy, LH) making a shot learns whether it hit a ship or not. The game
else skip ends when all squares containing a player’s ships are hit.
It is critical to the security of a battleship implementation
In this example, the attacker has control owgp, which,  thatinformation is disclosed one location at a time. Because
in turn, controls whether the variable ;, is endorsed for  the locations are initially secret, this disclosure must hap-
assignment tgy . It is through the compromise af, pen through declassification. However, a malicious oppo-
that the attacker might cause the declassificatiom gf; . nent should not be able to hijack the control over the declas-
This program does not satisfy qualified robustness (takesification mechanism to cause additional leaks about the se-
Mi(wpn) =2, Ma(wpn) = 3, Mi(yu) = M2(yLu) = cret state of the board. On the other hand, the opponent does
0, Mi(z2p) = Ma(zrr) = l,a = xpp = 0 and have some control over what is disclosed because the oppo-

o/ = zp = 1to receive(M, cla]) =4 (Ma,cla]) but  nent picks the grid location to hit. To allow the opponent to
(My,cla’]) #a (Mz,cla’])) and is rightfully rejected by  affect the declassification in this waghdorse can be used

the type systemefdorse fails to type check under a low- g express the idea that any move by the opponent is accept-
integrity pc). In general, we prove that all typable programs gple.

(using the extended type system that includes the rule for  without loss of generality, let us consider the game from

endorse) must satisfy qualified robustness: the viewpoint of one player only. The security classes can
Theorem 5. If T', pc - c[#] thenc[s] satisfies qualified ro- ~ @gain be modeled by the simple lattiCg ; with A = LL.
bust declassification. Consider the following core fragment of the main battleship

. . . . program loop:
A proof is sketched in Appendix B. Below we consider

two examples of typable and, thus, secure programs thatin- while not_done do

volve both declassification and endorsement. [o1];
mi, := endorse(ms, LH);
6.3. Password update example revisited s1 1= apply(s1,my);
my = get_move(sy);
The first example is a variant of the password update my = declassify(m}, LH);
code in which the requirement that the old and new pass- not_done := declassify(not_final(sy), LH);
words have high integrity is explicitly lifted (the assump- [o5]

tion, in this case, is that checking the old password pro- ] ,
vides sufficient integrity assurance). Under the simple lat- e Suppose that; stores the first player's state (the secret
grid and the current knowledge about the opponent) where

tice L1p:
I'(s1) € HH. While the game is not finished the program
LH +update(pwdl, salt, oldP, newP, hashR, matchR) gets a move from the opponent, computefbir} and stored
= oldH := endorse(oldP, LH); in mo whereI'(mz) € LL. In order to authorize the oppo-
newH := endorse(newP, LH); nent to decide what location ef to disclose, the move:,
match(pwdl, salt, oldH , hashR, matchR):; is endorsed in the assignmentiid, whereI'(m}) € LH.
if matchR The states; is updated by a functionpply. Then the first
then pwdl = hash(newH, salt) player's movem) (wherel'(m)) € HH) is computed us-

ing the current state. This move includes information about
the location to be disclosed to the attacker. Hence, it is de-
which enables the following typing for password update:  classified to variablen; (whereI'(m;) € LH) before the

else skip



actual disclosure, which takes place[#]. The informa- dering information through programs that declassify the re-
tion whether the game is finished (which determines whensult of encryption.Approximate noninterferencfl2] re-

to leave the main loop) is publiciot_done € LH. Hence, laxes noninterference by allowing confidential processes to
when updatingnot_done, the value ofnot_final(sy) is be (in a probabilistic sense) approximately similar for the
downgraded td . H . attacker.

Clearly, this program is typable. Hence, from Theorem 5  Intransitive noninterferencpolicies [31, 27, 30, 22] al-
we know that no more secret information is revealed than ter noninterference so that the interference relation is intran-

intended. sitive. Certain information flows are designated as down-
ward and must pass through trusted system components.
7. Related work The language-based work by Bevier et al.camtrolled in-

terferencel4] similarly allows policies for information re-
Protecting confidential information in computer systems lEaSEd ;? a S?t cﬂge_znt_s Man(';el a:cnd _San_ds [23]. N on5|de_zr
is an important problem that has been studied from manyt e problem of specifying and enforcing intransitive nonin-

angles. This work has focused on language-based Securit)}’erference in a multi-threaded language-based setting. Such
which has its roots in Cohen and Denning’s work [7, 9, 11] policies are attractive, but the concept of robustness in this

See the recent survey by Sabelfeld and Myers [32] for an paper is largely orthogonal to intransitive noninterference
overview of the language-based approach. (cf. the discussion on the laundering attack in Section 5),

Related to this paper is Myers’ and Liskov's work on the suggesting that it may be profitable to combine the two ap-

) . ; . . hes.

decentralized label modf5], which provides a rich policy proac ) ) .

language that includes a notion @fvnershipof the policy. Vo!panq anq Smith [39] cons@er arestricted form of de-
Downgrading a principal’'s policy requires their authority. _cIaSS|f|cat|0n, in the form of a built imatchy, (1) operation,
The decentralized label model has been implemented in thdntended to model the password example. They reqice

Jif compiler [26]. Work by Zdancewic and Myers [43, 42] be an unmodifiable constant when introduciegtchy, (1), ’
also has similar goals to the work presented here, as disPUt this means that password may no be updated. Volpano’s

cussed in the introduction. The major contribution of this subsequent work [37] models one-way functions by primi-

work is that it connects a semantic security condition for ro- 1V€S /() and amatch-like f(h) = f(h) (whereh andr

bustness directly to a type-based enforcement mechanismc0'respond to the password and user query, respectively),

this connection has not been previously established. which are used in a hash-based password checking. The
Giambiagi’s and Dam'’s work oadmissible flow§8, 15] assumppon IS hovye_ver, that one-way funct!ons may not

takes a similar approach to ours. Their security condition be applllzddto mgd|tf|abile sec;rt;ts. Bczjth ftUd'es arg][lrj]ettha:

requires that the implementation reveal no more informa- one could do updates in an independent program that sat-

tion than the specification of a protocol. This is appealing |sf|es_br_llc_i_nmt?rfelrencde. !—Iowet\t/eri(ln _Iggger?ll th'Z opegs up
but the intended leaks are explicit in the syntax of the speci—'oofsls'_II 'eZ’ or a_l:_n ering ? acks. I:; ’fd( )i an_f_
fication. In our approach, this is not necessary as robustnes%c(m) = f(h) primitives are less general than declassifica-

is expressed purely in terms of semantics. R v, Sabelfeld and M h develooed del
The alternate semantics fendorse that are used to de- ecently, Sabelield and Myers have developed a mode

fine the qualified robustness are inspired by the “havoc” se—lfor delimited mfcirmaltlon rglefas[é33]t: DeI|.m|‘:ced releahs etarll— ”
mantics that Joshi and Leino used to model confidential- _?;]NS aprogram ho rehease information wg t()ascape atc esh
ity [18]. They are also similar to some aspects of the gen- ese escape hatches are represented by expressions that

eralization of noninterference proposed by Giacobazzi andmight legitimately leak sensitive information. Delimited re-
Mastroeni [14], based on abstract interpretation; in partic- Ieas_e guarantees that the pragram may leak no more infor-
ular, the abstraction that causes “deceptive” flows to be ig- mation than the escape hatch expressions alone.
nored.

Despite their importance, general downgrading mecha-8. Conclusions
nisms and their related security policies are not yet thor-
oughly understood?artial information flow policies [7, 18, This paper presents a language-based robustness prop-
35] weaken noninterference by partitioning the domain of erty that characterizes an important aspect of security poli-
confidential information into subdomains such that nonin- cies for information release: that information release mech-
terference is required only within each subdom&uan- anisms cannot be exploited to release more information than
titative information flow policies [10, 21, 6] restrict the intended. The language-based security condition general-
information-theoretic quantity of downgraded information. izes the earlier robustness condition of Zdancewic and My-
Complexity-theoretiinformation flow policies [19, 20] fa-  ers [43] expressing the property in a language-based set-
cilitate preventing complexity-bound attackers from laun- ting: specifically, for a simple imperative programming lan-



guage. Second, untrusted code and data are explicitly partiations contained in this material are those of the authors
of the system rather than an aspect that appears only whemand do not necessarily reflect the views of the Office of
there is an active attacker. This removes an artificial mod- Naval Research. This work was also supported by the Na-
eling limitation of the earlier robustness condition. Third, a tional Science Foundation under Grant Nos. 0208642 and
generalized security condition callgdalified robustnesis 0133302, and by an Alfred P. Sloan Research Fellowship.
introduced that grants untrusted code a limited ability to af-
fect information release.

The key contribution of the paper is a demonstration
that robustness can be enforced by a compile-time program 1] m. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core
analysis based on a simple type system. A type system is  calculus of dependency. Rroc. ACM Symp. on Principles
given that tracks data confidentiality and integrity in the im- of Programming Languagepages 147—160, Jan. 1999.

perativg programming language, similarly to the type SYS- [2] J. Agat. Transforming out timing leaks. Rroc. ACM Symp.
tem defined in [42]; this paper takes the new step of proving on Principles of Programming Languaggmges 40-53, Jan.
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One such proposition says that if a sequential composi-form skip or v := e then the command has no holes, im-

-

tion of well-typed commands may not distinguish two low- plying c[a] = c[a’], which is a vacuous case. Note that this
equivalent memories (through terminating execution), then case covers (trusted) assignments wligltlassify in the
the first command of the composition may not distinguish right-hand side. The casgs] = [e] is straightforward be-
between the memories (which implies that it terminates in cause by Proposition 2 attack satisfies noninterference.
some low-equivalent intermediate memories). Further, the Structural cases offa] (where appropriate, we assume that
second command may not distinguish between these in-q is split into two vectorsii andas):

termediate memories. This property is achieved due to the
trace-level granularity of the security condition: the indis-
tinguishability of configurations requires the indistinguisha-
bility of traces (up to high-stuttering).

Proposition 3. If T',pc F c¢1;¢0 and (My,ci500) =4
(Ma, c1;¢0) then(My,c1) =a (Ma, c1). Further, we have
(My,c1) | Ny and(Ms, ¢q) |} No for someN; and N, so
that <N1, 62> A <N2, CQ>.

The following proposition relates the executions of two
well-typed programs formed by filling a target program
with two different attacks. The proposition says that if for
some memory both programs terminate then they agree on
high-integrity data (if the latter exist) at the end of computa-
tion. This is a form of noninterference of low-integrity code
with high-integrity values.

Proposition 4. If H; # 0, T, pc + c[s], (M, c[a]) § N,
and (M, c[a’]) | N’ for some attackg anda’ thenN (v) =
N'(v) for all v such thafl’(v) € Hj.

Suppose we have a typable command and two memories
forming configurations with this command. The next propo-
sition states that whenever the terminating behaviors of the
configurations are indistinguishable for the attacker then
no alteration of the attacker-controlled part of the mem-
ory may make the behaviors distinguishable for the attacker.

c1]ail; eo[az] We

have (My,c1[di]; c2[ds)) XA
(Ma, c1[ai]; c2[as]). By Proposition 3 we infer
(M, c1[a1]) =a (Ma,ci[ai]). By the induction hy-
pothesis we obtainM,, c1[d)]) ~a (M, ci[d)]).
If one, say <M1,c1[a71]>, of the configurations di-
verges then(My,c[a’]) ~a (Ma,c[d’]) because
potential computation of, [aé] in the second config-
uration may not change the relation. If both configu-
rations <M1,cl[a71}> and (M, ¢q [aﬁb terminate, we
have (Ms, ¢; [a_’;]> ~g (M, [a_’;]>. Thus, there ex-
ist some M, and M) so that(Ml,cl[aZ]> I My,
(My, c1[dl]) U M}, and M| =4 M},

Because(Mi, ci[a1]) =a (Ma,ci[ai]), we have
<M1,Cl[a_i]> U M and <M2701[a_i]> I No for
some N; and N». Applying Proposition 4 twice,
we have M{(v) = N;(v) and Mi(v) = Nz(v)
for all high-integrity variables v. Because
(M, cld]) =4 (Ma,cla]) andNy =4 N, by Propo-
sition 3 we have(Ny,colaz]) =4  (Na, calaz]).
The application of Propositon 5 yields
(M7, ealaz]) =a (M}, co[az]) By the induction hy-
pothesis we havelM], cy[d}]) ~a (M}, colah)).
Connecting the traces for; and c;, we receive

(My, c1[d}]; ealab]) mea (Ma, cr[d]]; ea[ad)).

The key idea is that because declassification is not allowed; ¢ 4 then ¢, @] else colaz] If Vars(h) C L then

in a low-integrity context, no change of a low-integrity
value at the beginning of computation may reflect on low-
confidentiality behavior of the computation.

Proposition 5. If I', pc = ¢ and (M;,¢) =4 (Ma,c) for
somelM; and Ms then for any valueval and variablev so
thatT'(v) € Ly we have(M], c) ~4 (M}, c) whereM| =
M;[v +— wal] and M5 = Ms[v +— wal].

We are now ready to prove Theorem 3.

Theorem 3. If T, pc F c[@] thenc[e] satisfies robust declas-
sification.

Proof. If H; = ( then declassification is disallowed by
the typing rules, and the theorem follows form Theorem 1.
In the rest of the proof we assunfé; # 0. Induction

on the structure ot[s]. Suppose that for somea] and
memoriesM; and M, we have(My, c[d@]) =4 (M, c[d])
(which, in particular, implieshd; =4 Ms). We need to
show (M, cla’]) ~a (Ms,c[a’]) for all a’. If ¢[e] has the

b evaluates to the same value, sawe, under
both M; and M, i.e., the execution of the condi-
tional reduces to the same branch in both mem-
ories. We have (M;,cld@) — (M, ci[ai])
and (M, cld]) — (M, ci[a1]) as well as
(My,cla’]) — (M, ei[d}]) and (Mp, cfa’]) —
<M2,Cl[a/1]>. As <M1,C[5L]> ~A <M2,C[J]> we have
(My,c1]ai]) =a (Ma,cqi[ai]). By the induction hy-
pothesis(My, ¢1[al]) ~4 (Ma,ci[d}]). This implies
<M1;C[a/]> A <M27C[a/]>'

If Vars(b) € Le¢, i.e., a high-confidentiality vari-
able occurs i, then we observe that there are no holes
in the program, implying|d] = c[cf’], which is a vac-
uous case.

while b do c;[@] The case wheVars(b) € L¢ is handled

in the same way as for conditionals. Wurs(b) € H;
then no declassification may occunidnile b do ¢ [d’]
by the definition of the type system and attacks. By



Theorem 1, the proof ighile b do ¢ [a/] satisfies non-
interference, which completes the proof. The remain-
ing case isVars(b) C Lo N Hy. Expressiorh evalu-
ates to the same value under bdth and M. If this
value isfalsethen both(Ay, c[a’]) and (M, c[d’]) ter-
minate in one step with no change to the memaoiigs
and M, yielding (M, c[a’]) ~ 4 (Ms, c[d’]).

If, on the other hand, the value bfis true then for
(Mj,while b do ¢1[d]) =4 (Ms,while bdo cl[”]>
it is necessary thatM, c;[d]) =4 (Mg,cl[ ). B
the induction hypothesis, we havé/, c;[a }>
(My, ¢ [a’]). If either (M, ¢1[a’]) or (Ma, ¢y [a’]) dl-
verges then the top-level loop also diverges under
(or My), implying (M, c[a’]) =4 (M, c[a’]). If both
configurations terminate, then there exist sanfieand
M2 0that<M1,C1[ ]> »u Ml, <M2,C1[ /]> »u Mé, and
M =4 MjJ. Note that the value df is the same un-
der M7 and M. If this value isfalse then the proof
is finished. Otherwise, we need to further unwind the
loop.

Applying Proposition 4 twice, we infer
(My,e1]d]) I Ny and({Ms, cq[d]) |} No for someN;
and N, so thatM] (v) = Ny (v) and M (v) = Na(v)
for all high-integrity variablesy. This, in particu-
lar, implies thatb evaluates tarue in both N; and
Nos.

Becaus€ My, c[d]) =4 (Ma,cla]) andNy =4 Na,
by Proposition 3 we havéM, ¢ [@]) =4 (M2, c1]ad])
and thereford Ny, c[d]) =a (Na,c[d]) (because[d]
corresponds to unwinding the loop).

Note that we have mimicked dda] iteration by a
cla’] iteration (with the possibility that the latter might
diverge due to an internal loop caused by low-integrity
computation). During this iteration we have preserved
the invariant that the executions for baill, and M,
give low-confidentiality indistinguishable traces (for
eachc,[@] and ¢;[a’]), and low-confidentiality high-
integrity data in the final states of all traces is the same
regardless of the memory; or M>) and the com-
mand ¢;[a] or ¢1]a ’]). By finitely repeating this con-
struction (with the possibility of finishing the proof at
each step due to an internal Ioop(gi[cf’]), we reach
the state wheh evaluates tdalsg which corresponds
to the termination of the top-level loop for both[a]
andc, [']. That(My, c[a]) ~4 (Mo, c[a’]) we receive
by concatenating low-assignment traces from each it-
eration. O

Appendix B

This appendix extends the proof of robustness to showtion 8, Vit;

that the type system with the rule femdorse guaran-
tees qualified robustness. The proof structure is as in Ap-

pendix A. We lift the proof technique to a possibilistic set-
ting by reasoning about the existence of individual traces
that originate from a given configuration and possess de-
sired properties. In parentheses, we provide references to
the respective propositions and definitions for the non-
qualified version of robustness.

Proposition 6 (2). An A-attack underT" (i) does not
have occurrences of assignments to high-integrity vari-
ables (such thatT'(v) € Hj); and (ii) satisfies (possibilis-
tic) noninterference under.

Propositon 7 (3). If T, pc F c1;¢o and
<M1, C1; C2> = A <M2761; 62> then <]\417 Cl> A <M2, Cl>.
If t, € Tr((My,c1)) (@ssuming; terminates inV;) and
to € Tr((Ma,cq)) (@ssuming, terminates inN,) so that
t1 ~4 to then<N1,CQ> A <N2,CQ>.

Proposmon 8 (4). If Hy # 0 andT, pc I c[e] for attacks
@ anda’ so that and(}M, c[a]) always terminates then for
anyt' € Tr((M,cla’])) so thatt’ terminates there exists
t € Tr((M,c[a])) so thatt ~, t’ for all such/ that{ € H;.

Proposition 9 (5). If ', pc + c and (M;,¢) =4 (M, c)
for someM; and M, then for any valueval and variable
v so that'(v) € Ly we have(M],c) =4 (M}, c) where
M{ = M;[v — val] and M}, = Ms[v — val].

Theorem 5. If T, pc = c[e] thenc[s] satisfies qualified ro-
bust declassification.

Proof. If H; = () then declassification is disallowed by
the typing rules, and the theorem follows form Theorem 4.
In the rest of the proof we assunt; # 0. Induction
on the structure of[¢]. Suppose that for somdad] and
memoriesM; and M, we have(My, c[d@]) =4 (M, c[d))
(which, in particular, impliesM; =4 Ms). We need to
show (M, c[a’]) ~a (Ms,cla]) for all a’. If ¢[s] has the
form skip or v := e then the command has no holes,
implying c[d] cla’], which is a vacuous case because
~ 4 C= 4. Note that this case covers (trusted) assignments
with declassify andendorse in the right-hand side. The
casec[e] = [e] is straightforward because by Proposition 6
attacka’ satisfies noninterference.

Considering structural cases d@], the most interesting
case is sequential compositiati®] = c;[e1]; cz[e2] where
the vectors' is split into two vectorse; and e;. We only
show this case as the rest of the cases can be reconstructed
straightforwardly from the proof of Theorem 3.

The premise of the theorem states that
(M, e1]aq]; calaz]) Xy £M27cl_[a_i];02[a_§]>.
We need to show (My,ci[a)];cz[ab]) g
(My,c1[d}); ea[ah)), i.e., by unfolding  Defini-

€ Tr((My,ci]d];coldh)). 3ty €

Tr({Ms, ¢y [al} ) [a2]>). t1 ~4 to along with the symmet-
ric condition whereM; and M, are swapped (which is



proved analogously). We assume thaterminates (other-
wise the case is vacuous). .

Supposet; = it/ wheret] € Tr({(Mi,ci]a}])),
<M1,c1[a71]> terminates with¢] in some stateM;, and
tf € Tr((M{,cﬂaéD). By Proposition 7 we deduce
(My,c1]ai]) =a (Ma,c1[d1]). By the induction hypothe-
sis we obtair1<M17c1[aZ]> g (M, cq [a71]>. In particular,
3ty € Tr((Ma, c1[d)]). 1) ~a t).

If ¢} diverges, then we have found the necessartit
is simplyt}) to finish the proof. In the remaining case both
tracest] andt}, terminate and} ~4 t,. This means that
there exist somé/; and M} so that(M, ¢ [a71]> I My,
corresponding to tracd, <M1701[a71]> |} M}, correspond-
ing to tracets,, andM; =4 M.

Applying  Proposition 8 twice, there exist
uy € Tr((My,cla))) andu), € Tr({(Ms,c[d])) where
t) ~¢ u) andt, ~,p uf for all such? that¢ € H;. This
leads tou} ~4 uh. We assumény,ci[ai]) | N, corre-
sponding to trace} and(Ms, ¢1[a1]) |} N2, corresponding
to traceus, for someN; and N,.

As uy =4 wh and (M, cl@)) =a (Mo, cld])
we have (Ni,cqf[da]) =a (Na2,c2]az]) by Propo-
sition 7. The application of Proposition 9 vyields
(M7, ealaz]) ma (M, cofaz]) By the induction hy-
pothesis we have(M!, csal]) ~a (M}, cslal]).
Connecting the traces for; and cp, we construct
to € Tr((Mg,cl[aZ];cz[azD) such thatt; ~4 to, imply-
ing (My, c1[al]; eafas]) ma (M, er]al]; eafas)). O



