Security Policies for

Stephen Chong
Department of Computer Science
Cornell University

schong@cs.cornell.edu

ABSTRACT

A long-standing problem in information security is how to specify
and enforce expressive security policies that control information
flow while also permitting information release (i.e., declassifica-
tion) where appropriate. This paper presents security policies for

downgrading and a security type system that incorporates them a

allowing secure downgrading of information through an explicit
declassification operation. Examples are given showing that the
downgrading policy language captures useful aspects of designe
intent. These policies are connected to a semantic security condi-
tion that generalizes noninterference, and the type system is show
to enforce this security condition.

Categories and Subject DescriptorsK.6.5 [Management of Com-
puting and Information Systems]: Security and Protection

General Terms: Security, Languages

Keywords: Information flow, noninterference, downgrading, de-
classification, security policies.

1. INTRODUCTION

Control of information flow is an unavoidable aspect of enforc-
ing security properties such as confidentiality and integrity. A long-
standing problem is how to specify and enforce expressive policies
for how information may flow. This problem is difficult because
real-world applications release information as part of their intended
function. This paper presents a framework for security policies that
can express the intentional downgrading of information, and a se-
curity type system that incorporates and enforces these policies.

Strong information security properties (which we refer to broadly
asnoninterferencg6]) specify an absence of information flow. As
a result, they are too rigid to serve as a useful description of the
security of realistic applications. Noninterference does not provide
a way to distinguish between programs that release information as
intended and programs that can leak information because of either
programming error or vulnerability to attack.

Noninterference does have the attractive quality that it can be
enforced by static analysis, an idea explored by work (e.g., [26, 8,
23, 29, 9, 20, 2, 30]) that augments programming-language types

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’04,0October 25-29, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-961-6/04/00155.00.

n

Downgrading

Andrew C. Myers
Department of Computer Science
Cornell University

andru@cs.cornell.edu

with securitylabelsthat capture information flow restrictions. An
interesting question, therefore, is whether useful security properties
can be defined for programs that intentionally release information.
Type systems and program analyses have been defined that not only
attempt to control information flow but also suppdawngrading

n escape hatch that enables information release by explicitly re-
laxing the security labels of data [17, 13, 31]. While downgrading
seems to be usable in a principled way, it is unclear what security

jguarantees hold once it is used.

We call downgrading of confidentiality labetteclassification
hen a program declassifies information properly, there is some
reason why it is acceptable for information to be released. Consider
a database system storing confidential salary information. While
individual salaries cannot be securely released, it may be accept-
able to release an average of all salaries becausarttoaintof
information leaked about any individual salary is small. Another
example is an online system for ordering software. In this case,
the information being purchased (that is, the software) is initially
confidential but should be released if the customer has paid for it.

As these examples suggest, the reasons for releasing informa-
tion are diverse, often complex, yet crucial to security. We there-
fore propose a security policy framework that supports application-
specific reasoning about downgrading in programsledlassifica-
tion policy specifies a sequence of security levels through which a
given data item may move, where each step in the sequence is anno-
tated with a condition that must be satisfied in order to perform the
downgrading. This kind of policy captures simple temporal prop-
erties and can integrate external logics (such as access control) for
reasoning about downgrading steps. We focus on security policies
for declassification, but the same approach applies to other forms
of downgrading, such as for integrity (e.g., [17, 31]).

This new framework has some important and novel properties:

Y

e Itis equipped with a semantic security condition that gener-
alizes noninterference (and reduces to it in the absence of
information release). This condition regulates #vel-to-
end behavior of a system rather than merely restricting in-
dividual downgrading operations as in intransitive noninter-
ference [22, 18, 21, 11].

To accommodate domain-specific reasoning about secure in-
formation release, the framework is parameterized with re-
spect to a separate program analysis.

It is possible to automatically and soundly check whether a
system enforces the security policies for declassification, un-
der the assumption that the application-specific analyses used
to instantiate the framework can also be automatically and
soundly checked.

e The policies are simple and intuitive.

This paper extends a line of work that attempts to control when secret data.
and what downgrading is allowed. The new policy framework in-
tegrates work on selective declassification, tied to an underlying
access control mechanism, [14, 13, 19], with work on intransitive
noninterference [22, 18, 21, 11]. Other ways to control information
release include quantifying and limiting information flow (e.g., [12,
7, 25, 4, 10]) and ensuring that information release decisions are
trustworthy [28, 16].

The remainder of the paper is organized as follows. Section 2
presents two examples that motivate the paper. The language of se- Note that the user's guess is compared to the password (line 4),
curity policies for declassification is given in Section 3. Section 4 and the comparison is explicitly declassified from security Ié¥el
defines a programming languagg.ciassthat incorporates security to security levelL (line 5). In a security-typed language setting,
policies for declassification. Section 5 presents a semantic securitydeclassifying a value produces a copy of the value with a different
property of all well-typed\geciassprograms. The motivating exam- security label.
ples are revisited in Section 6 uSitgecass Section 7 offers some Although this program is arguably secure, some similar pro-
possible extensions, and related work is discussed in more detail ingrams are clearly not. For example, suppose the assigrpwent=
Section 8. Section 9 concludes. The appendix proves that the typesecretis inserted between lines 2 and 3. Since hmifd andsecret
system of\geciasssoundly enforces our semantic security condition. have the security levell, such an assignment is legitimate. How-

ever, following the declassification at line 5, the user has gained
2. MOTIVATING EXAMPLES some information about the secret data, namely, whetberetis

The goal of the security mechanism is to provide assurance to 'dentical to the user's guess. Such information release is known
programmers that their programs release information in accordance®Slaundering existing declassifications are used to improperly de-
with the overall system security policy. An underlying assumption classify data. This example is susceptible to laundering because the
is that the program executes as written: an attacker may be able tosec_urlty lattice is not expressive enough to distinguish t_he security
change inputs to the system but cannot change the code itself. ThusPolicy for pwd from that ofsecref even though the two items of
the threat to security arises primarily from programming errors that data are to be used in different ways. L _
are not detected by static analysis of information flow, but might =~ A common workaround to this lack of precision in a security
lead to secrecy or privacy violations when the system is used. lattice is to re_flr_1e th(_e security levels. For example, the security level

This section contains two examples in which data is declassified. 1 could be divided intd, for the password, and> for the secret
In the first example, a password checking system, data is Suscep_lnforrr_wttlon that sho_uld_ nqt be relgased. However_, this approach is
tible to laundering: information that should remain secret may be Unsafisfactory: the intrinsic meaning of the security levels may be
declassified. In the second example, a sealed auction, the correc{oSt: If two items of data should be treated the same, except that one
data is declassified, but possibly at the wrong time. In both of these €M may be declassified while the other may not, then creating new
examples, the security labels for the data are not expressive enougt$€cUrty levels in an ad-hoc manner loses this connection between
to capture the behavior that the overall system security policies re- € data items. In addition, in larger systems, where there are many
quire. In each system, programming errors might cause Secwitysecur_lty levels throug_h which data may be declassified, the ad-hoc
violations even though the program passes the static information- Création of new security levels may become unmanageable.
flow analysis. It is this problem that we wish to address. 2.2 Sealed auction

2.1 Password checking In a sealed auction, each bidder submits a single secret bid in

Consider a system where the user must correctly enter a pass@ Seéaled envelope. Once all bids are submitted, the envelopes are
word before gaining access. Assuming the user can observe whethefPened and the bids compared; the winner is the highest bidder. A
access has been granted, the system must release some informatidfey Security property is that no bidder knows any of the other bids
about the password: if the system grants the user access, then thintil after all bids have been submitted. _
system has released the information that the password is the same The following security-typed pseudocode shows an abstraction
as the user's input; if the system denies access, then the user know§ @ sealed auction protocol with two bidders, Alice and Bob. The
the password and the input differ. Furthermore, suppose the systenSecurity lattice has a level for data that only Alice can read, a
contains some secret data that should not be released to the useg€curity levelB for data that only Bob can read, and a security
such data could be the passwords of other users, audit logs, or sim{€vel pub (“public”) for data that both Alice and Bob can read.
ilar data. The system must ensure that when it releases information) .
about the password, it does not also release any information about 1 inta aliceBid:=...;
the secret data. 2 intp bobBid:=...;

The following pseudocode shows an abstraction of such a sys- 3 int,,y, aliceOpenBid= declassiffalice Bid, A ~ pub);
4
5

int iy secret=...;

int pwd:=...;

int ;7 guess= getUserlnpuf);

booleany; test:= (quesspwd);

booleary, result:= declassifytest H ~~ L);

a b wN P

tem, wherepwdis the passwordsecretis the secret data, amiess int,,,,;, bobOpenBid= declassifybobBid, B ~~ pub);

is the user’s input. We assume for simplicity that the secret and the [+ determine winnek/

password are integers. The pseudocode uses security types, where

types are labeled with security levels from some security lattice;

the type system ensures that values labeled with a high security Note that Alice and Bob first submit their sealed bids (lines 1-2),

level do not depend on values labeled with low security levels. A and only then are the bids declassified (lines 3—-4) and the winner
program that type-checks in such a system can be shown to satisfyof the auction is determined.

noninterference. We assume that the security I&vgffor “high It is possible that the sealed auction protocol is implemented in-
security”) is associated with secret data (including the password), correctly (maybe through malice or programmer error), and one of
and the security levdl (for “low security”) is associated with non- the bids is declassified before both bids are submitted; this would

allow the other bidder to take advantage of incorrectly released in- at that time. The conditiofi is never true, and the conditidnis
formation. For example, in the modified code below, Alice’s bid always true. When reasoning about conditions, we assume that the
is declassified too early, and Bob takes advantage of this to alwaysaxioms and rules of classical propositional logic hold, and thus the
win the auction with the lowest possible winning bid. language of conditions is equivalent to classical propositional logic.
We abbreviate-(—c A —c) as the disjunctiom V ¢/, and abbreviate
—cV ¢’ as the implicatior: = ¢'.

For a given security level € L, the policy/ is used for data
that may always be declassified to security IeeThe policy/ is
recursively equivalent to the poligl,£. The equivalence makes
sense because declassification to the same security level is harmless
and should always be permitted. Note that a syntactic distinction

. . . . is made between security levels and declassification poli¢issa
Alice may mistakenly decide that the system is secure, becausesecurity level, but is a security policy for declassification.

she notes that her bid is initially secret anq is Iater'dgclassified_; she We can define an ordering on policies, where < p’ if policy

may b_e unaware thatthe system_declassmes her bid |nappropr|atelyp/ is at least as restrictive as polipy Intuitively, given two policies

_ Lgnhl_«a in the pass,_vx_/ord-checklng examplg, the correct data (Al- © _ .5 po andp’ = €' <, p, the policyp’ is at least as restrictive

ice’s bid) is declassified but at the wrong time. Even though the 5q, it security level? is at least as restrictive as security levgl

system c_qrrectly enforces the ;pecm_ed security policies, it has apolicy pl is at least as restrictive as poligy, and whenever data

vulnerability bege}use the security lattice cannot express when dataassociated withy' can be declassified ta}, data associated with

may be declassified. p can be declassified tp,. This last requirement, that data as-
sociated withp can be declassified whenever data associated with

3. POLICIES FOR DECLASSIFICATION p’ can, means that the conditieh should imply the conditior,

In this section we presemteclassification policiesvhich can that is,¢’ = ¢ should be true according to the axioms and rules
specify how data should be used prior to declassification, under of classical propositional logic and the semantics of the primitive
what conditions declassification is permitted, and how data should conditions. The ordering is defined as the least relation consis-
be treated after declassification. Declassification policies provide tent with the following rules and axioms. We use to denote the
sufficient expressiveness to avoid the vulnerabilities of the exam- lattice ordering of the lattic&.
ples of Section 2. Declassification policies are defined indepen-
dently of any mechanism for enforcing them. In Section 4 we :
present a language that enforces declassification policies through LTl
a type system, but other enforcement mechanisms are possible, in-p <p’ ¢ = ¢
cluding run-time checking.

3.1 Policies

We assume there is some existing security latflceuch as the
decentralized label model [15]. The elements odire used in the
specification of declassification policies, as follows.

If a security policyl% p is enforced on some data, then the data
must be used according to security le¢et £, and may be declas-
sified provided conditiore is true at the time of declassification;
after declassification, the security polipyis enforced on the de-
classified data.

1 int4 aliceBid:=...;

int,,,,, aliceOpenBid= declassifyalice Bid, A ~ pub);
int g bobBid:= aliceOpenBid+ 1;

int,,,.;, bobOpenBid= declassifybobBid, B ~~ pub);

/x determine winnek/

a b wnN

Ordering < for policies:

(Cp
<

CEp <Oy IR AN AN R
1]

The relation< is not a partial order, as it is not antisymmetric: if
we have two distinct conditionsandc’ such that = ¢’ andc’ =
¢, then for any security levefland policyp, we havel Sp < £S5 p
andEEQp < 0.5 p; also, for any security level, we have < £.5,¢
ande.b e < ¢

However, if we define the equivalence relatinover policies
such thap = p’ if and only if p < p’ andp’ < p, and identify all
policies that are equivalent according=g then the relatior< is
well-defined on the resulting structure, and moreover forms a join
semi-lattice, with join operationl. The top element of the join
semi-lattice, which we denof€, is equivalent to the infinitely long

Security policies for declassification:
I

lel Security levels from security latticé . p p X)

p = Security policies policy Tz~ Tz~ - - -, Where T, is the top element of the lattice
£p Declassification policy L£; the top policyT is thus recursively equivalent .. T. Note
) Security level policy that T is not equivalent tol.. The bottom element of the join

- Conditions semi-lattice isL £, where_L . is the bottom element of.

h d Primitive conditions The join operation arises naturally fronx, but for clarity we

f False present it here, using . to denote the join operation df.
t R 'IC':rue_ i Join operation U for policies:
chc onjunction T
—c Neg{ation Lugll =0 pup =p" " =cnd Lugt =10

1] (}g’\f;}p)u(glf;;p/):(gllfgp//) EUKZLN

Conditions are used to express when it is appropriate to declas-
sify data. Primitive conditions are assumed to have a truth value In the remainder of the paper, we assume that all policies are
that may change during the execution of a program. As discussed inidentified up to the equivalence relatien and thus the set of poli-
Section 3.2, primitive conditions are in general application-specific, cies under the partial ordet forms a join semi-lattice.
and thus security policies for declassification are parameterized on There is no restriction on the security levels that may appear in a

the choice of primitive conditions. A condition A c2 is true at
a given time only if bothe; andc, are true at that time. A con-
dition —c is true at a given time only if the conditianis not true

declassification policy. In particular, if a policy allows information
to be declassified frorito ¢’ (e.g.,0-5¢), thent T, 4,4 T ¥,
and/ incomparable td’ are all acceptable.

3.2 Conditions 4. ALANGUAGE FORDECLASSIFICATION

The conditions of the declassification policies are used to express In this section we presenteciass @ language based on the typed
when data may be declassified. Since reasons for information re-lambda calculus in which declassification policies are used as labels
lease are highly varied and depend on the application domain, it is for types, and the type system ensures that the security policies as-
important that the choice and definition of conditions can also be sociated with data are enforced. The language is imperative, has a
specific to the application domain. Towards this end, we place very store, and has an explicit declassification operator. The following
few restrictions on conditions. subsections present the syntax\@fciass the small-step operational

The framework is abstract with respect to the choice of primitive semantics, and the static semantics. To increase generality, the type
conditions, and in general they may be specific to the application system of\geciassiS parameterized onsatic condition analysis-a
domain in which declassification policies are used. The framework static analysis that can determine at which program points the con-
is also abstract with respect to the semantics of primitive condi- ditions are true. The choice of primitive conditions will influence
tions; they could, for example, be defined in terms of application- which static analyses can be used to instantiate the type system.
domain semantics, or as properties of program states. However, as
will be seen in Section 4, when using declassification policies in a 4.1 Syntax

language setting, it is useful to be able to express the semantics of The syntax of\geciasdS given below. Metavariablesandy range

conditions in terms of the language semantics. ~ over variable names, and andn range over memory locations.
We require that logical implication and conjunction are defined A type 3,, in Adeciassconsists of a base typg annotated with a
for conditions, but this is simply to allow the orderingand the declassification policy. Memory locations are tagged with the

join operation_! to be defined. In this presentation we assume the type of the value contained in the location; a locatioh can only

rules and axioms of classical propositional logic for conditions, but store values of type. For a function\z : 7.[p] e of base type

other logics are possible, as is briefly discussed in Section 7. 72,7/, the security policy is a lower bound on the memory effects
Declassification policies as presented here are thus very generalof the function; that is, executing the function boeywill only

When used in a particular application domain, the declassification 4 ,cate or update memory locationg®’ wherep < p'.

policy framework would be instantiated through the choice and Adeciass CONtains a declassification operatchssin,Z -

meaning of the primitive conditions (and possibly a different logic ¢') is used to declassify the valudrom security level to security

over primitivg cond_iti(_)ns); the results of this paper are applicable |oyq /. Declassifying a value produces a copy of the value with a

to any such instantiation. different security label. The type system ensures that declassifica-

Declassifica.tion policies, like intransitive nonint'erference, can tion can only occur if appropriate conditions are true at the time of
express what information may flow between security levels. How- o cjassification.

ever, the use of conditions in declassification policies adds temporal
structure that intransitive noninterference is unable to express. De-

classification policies can expraesteninformation is permitted to .S yntax:)
flow between security levels. v = Values
. . x Variables
3.3 Motivating examples n Integers
Declassification policies have enough expressive power to avoid () Unit
the vulnerabilities of the examples in Section 2. Az T.[ple Abstraction
In the password-checking example, we can use the security pol- ~ m” Memory locations
icy H for the secret datsecret indicating that the secret data must e ::= Expressions
be used according to the security le¥g] and can never be declas- v Values
sified below that security level. By contrast, the security policy for ee Application
the password i$7 “%’ L, indicating that it must be used according ref” e Allocation
to the security leveH, but that it may be declassified to the policy le Dereference
L provided the conditiomert is true at the time of declassification, e:=e Assignment
wherecert is a primitive condition that is true only when certified e e Sequence
and trusted code is executing. Since the security policy for the se- declassifyv, £ ~ (') Declassification
cret data prevents any declassification below lé¥gh system that B = Base types
enforces these security policies will never declassify the secretdata int Integers
to level L, thus preventing laundering. Declassification policies are unit Unit
expressive enough to differentiate between data that can be declas- 727" Functions
sified, and data that cannot. T ref References
The sealed auction example was susceptible to an early declass ::= Security types
sification of Alice’s sealed bid. Let the primitive conditidids be Bp Base types with policies

true if and only if both Alice and Bob have submitted their sealed *

bids. A suitable security policy for Alice’s bid is the#®*pub,

and similarly B%4*pub is suitable for Bob's bid. With these se- 4.2 Operational semantics

curity policies, Alice’s bid cannot be declassified before Bob has The small-step operational semantics\@fcassare presented in

submitted his bid, since the conditiéfs would not be true atthis Figure 1. A memoryM is a finite map from typed locations to

time. Declassification policies can express under what conditions ¢josed values; thus\/ (m™) is the value stored in the typed mem-

data should be declassified. ory locationm”. A configuration is a pair of an expressiernd a
memoryM, written (e, M]). A small evaluation step is a transition
from one configuratiorje, M) to another configuratiode’, M’),
written (e, M) — (€', M').

It is necessary to restrict the form of configuratidfes M) to
avoid using undefined memory locations. A memaidyis well-
formed if every address: appears at most once in dofd), and
for everym”™ € dom(M), we have lo€¢M (m™)) C dom(M),
where loge) is the set of typed locations occurring in the expres-
sione. A configuration(e, M) is well-formed if M is well-formed,
loc(e) C dom(M), ande contains no free variables.

We usee[v/z] to denote the capture-avoiding substitution of
value v for variablez in the expressiore. If M is a memory,
M[m™ — wv] denotes the memory obtained by mapping location
m7” tovin M.

The operational semantics ensure thatassis a deterministic
call-by-value language. Note that tbeclassifyexpression has no
computational effect: when a value is declassified from one secu-
rity level to another, the value is not modified in any way.

4.3 Static semantics

The subtyping relationshig:: uses the partial ordeg on poli-
cies, and plays an important role in the enforcement of information
flow security. We writer <: 7’ if security typer is a subtype of
security typer’. We overload the<: symbol by defining a subtyp-
ing relationship on base types, writiiy<: 3’ if base type3 is a
subtype of base typ#&'.

Subtyping:

I 1
B<p B<:p Y <p
p<yp 3 <: B T Te <:TH

Bp <: By B <:p B<: 38" 1P <21

L

Note that if 3, is a subtype of3',, then the security policy’
is at least as restrictive as the security policyThis is consistent
with the usual notion of subtyping [24].

The typing judgmenpe, T' | e : 7 means that expressienhas
typer under variable context and the policypc is a lower bound
on memory effects of. The judgment- M means that memord/
is well-typed, that is, every location d@ff stores an appropriately
typed value. A configuratioffe, M| is well-typed if M is well-
typed andpc,) e : 7 for somepc andr. Typing judgments on
values, expressions and memories are defined in Figure 2.

Note that rules (T-ALoc) and (T-AsSIGN) ensure thapc is a
lower bound on the memory effects of a well-typed expression. For
a function with base type 2.7/, p is a lower bound on the memory
effects of the function, and an upper bound onptheontext of the
caller, as evidenced by the rules (T84) and (T-APP).

The rule for declassification (THECLASS) has an interesting
and important side-condition: it must be statically provable that the
condition for declassification is true whenever the declassification
occurs. The side-condition ensures that the policy for declassifica-
tion is respected.

The rule (T-DEcLASS) is parameterized by a static condition
analysis that can determine at which program points conditions are

5. SECURITY PROPERTIES

This section presents a semantic security property possessed by
all well-typed programs iM\geclass This property is reminiscent
of (and generalizes) noninterference, but permits information to be
released through permitted declassifications.

5.1 Equivalence relation~,

It is first necessary to define what the attacker at security level
can observe; this is accomplished by defining an equivalence rela-
tion ~, over typed values. Intuitively, given two valuesindv’ of
the same base typg® v ~, v’ if the two values are indistinguish-
able to an attacker who can only make observations at leoel
lower. Note that a value with security poligy= lﬁgp/ is observ-
able at level if and only if ¢ C. ¢, or equivalentlyp < ¢.5,T.
Figure 3 presents the definition of the equivalence relation.

The relation~, is a conservative, syntactic notion of equiva-
lence. In particular, if two functions are observable to an attacker
who can only make observations at security lesel lower, then
the two functions must be syntactically identical for the attacker to
regard them as equivalent; the attacker can distinguish two func-
tions that are contextually equivalent, but syntactically different.

We extend~, to an equivalence relation over memories using
bijections between the memory locations at or below security level
£. For a memonyi\/, we define doriM/|¢) to be the locations af/
at or below security level:

dom(M|£) £ {m”P | m"P € dom(M) Ap < £.LT}

If My and Ms are memories, thetM; =, M if there exists
a bijection f from dom(M;|¢) to dom(M2|¢) such thatf pre-
serves types, and moreover fifmaps locationn” in M; to n”
in M2, thenMy(m™) ~, Mz(n") if 7 is not a reference type,
and f(M1(m™)) = Ma(n") if 7 is a reference type. Intuitively,
M =, M- if the structure of the observable portion &f; (that
is, dom(M,|¢)) is the same as the structure of the observable por-
tion of M5, and in addition the non-reference values in the observ-
able portions are indistinguishable. We wrfifef]~, to denote the
equivalence class of memofy under the equivalence relatiety.

5.2 Evaluations

Given a well-formed configuratiofeo, Mo)), an evaluationof
(eo, Mo) is a sequence of configuratiofey, Mo) . .. (en, M),
such thatle;—1, M;i_1) — (ei, M) for all i € 1..n. An evalua-
tion is partial if e,, is not a value.

An evaluation is:-free if no step in the evaluation reduces a term
of the formdeclassifyv, £ ~ ¢) with the conditionc true, for any
v, ¢ and/?’. Note that all evaluations afefree, sinced is never true.

For a given sequence of conditioas. . . cx, an evaluatiorF is
c1...ci-free if E is ci-free, or if for all evaluationdr; and Es
such thatF = FE; E; and F; is notc;-free, thenEs is ca . . . ci-
free. Intuitively, an evaluation is, . . . ci-free if it does not contain
k declassifications wherg was true at théth declassification.

true. The choice of an appropriate static condition analysis depends Given a (partial) evaluatiot = (eo, Mo) . .. (en, My, we de-

on the relation of the semantics of conditions to the program se-
mantics, and thus on the choice of primitive conditions (and the
logic over primitive conditions); a suitable analysis might be a type
system, dataflow analysis, or an abstract interpretation, for exam-
ple. Parameterizing the type system on a static condition analysis

fine the memory trace oF to be the sequencgl, ... M,, and
the ~,-memory trace ofE, denoted[E]~,, to be the sequence
[Mo)wy - - [Mn],-

5.3 Noninterference until conditionse, ...

s Ck

means that the results of this paper hold regardless of the choice of Noninterference [6] is the security property that secret inputs do

primitive conditions. Section 6 presents the motivating examples
in terms of\deciass and gives some instantiations of the type system
with specific static condition analyses.

not affect non-secret outputs. The precise definitions of inputs and
outputs lead to slightly different definitions of noninterference. We
assume Ageclassprogram has a single integer input in the form of a

Adeclasshas the standard properties of progress and type preservafree variable, and the output of a program evaluation is its memory

tion (which are not presented or proven here) and is thus sound.

trace. Noninterference foYyeciassiS then defined as follows.

I
(B-REDUCTION) (ALLOCATION) (DEREF)

(O 7). 0) 0. M) — (elo/al M) (ref 0, 0M) — (mmo M = o) ™ M i 2y — (), M)

(ASSIGN) (SEQ) (DECLASY)

(m™ :==v, M) — (), M[m™ —]) ((O;e, M) — (e, M) (declassiffv,{ ~ ¢'), M) — (v, M)

(CONTEXT)
e, M) — (&', M) Contexts:
(Ele], M) — (B[], M) Ba=[]elv[][ref" [J|1[]|[]:=elv=[][[]e

| |
Figure 1: Operational Semantics

I
(T-VAR) (T-INT) (T-UNIT) (T-Loc) (T-SuB) (T-DERER)

I(x) =7 pe.,The:7 7<: 7 pe,Tke:p,refy
pe,TFax:7 pe, ' n:int, pe, T'F () : unity, pe,I'=m” : 7 ref, pe,T'te: 7 pc,I'Fle: By
(T-SEQ) (T-ABS) (T-APP) ,
pe,T'Ferzunit, pe,T'kez:T p, Lz —71]Fe:7 pe, T e : (258 y), pe,Thex:t pe<pd

pe,T'Ferses: T pe, TE Xz 7. [ple: (157, pe,Therex: By up
(T-ALLOC) (T-AssIGN) (T-MEM)

pe,I'e: B, pc<p pe,I'l-er: pyrefy pe,I'kFes: G, pclUp’ <p ym”™ € dom(M). T,0 - M(m™) : 7

pe, T = ref? ¢ ; (Bp ref),y pe, ' er := ez : unit,y M

(T-DECLASY)

pe, I v:fesrey conditionc is true whenevedeclassifyv, £ ~ £') is
pe, I+ declassifyv, £ ~ £') : B¢ <,, reduced with rule (BCLASS)
L

Figure 2: Typing judgments

DEFINITION 5.1: Lete be an expression with free variabte: intg t pandH [Z, L), butitis not noninterfering for: at level L,
int,,, and let{ € L be a security level. Expressienis noninter- since an attacker can distinguish evaluations with different values
fering for = at level/ if for all integer valuesv; and v, and all of x. Therefore a generalization of noninterference is needed.
memoriesM such that(e[v:1/z], M]) and (e[v2/x], M) are well- The propertynoninterference until conditions, . . . , ¢ is based
formed and well-typed, and for any evaluatidiisof (e[v1 /z], M) on the intuition that an attacker cannot have made any observations

and E, of (e[vz /], M), then[E;]~, is a prefix up to stutteringof about the input if the following holds:
[Ej]~,, where{i, j} = {1,2}. 11))
e The attacker can only make observations about the input after

Intuitively, a program is noninterfering far at level? if an at- some data has been declassified to some levelower;
tacker who can observe all memory locations at lévet lower e the data is only declassified to levelor lower after a se-
cannot distinguish any two executions of the program with dif- quence ofk declassifications, with conditioa; true at the
ferent inputsz. The requirement that ore,-memory trace is a ith declassification; and

prefix of the other up to stuttering implies that the attacker can ob-
serve changes to memory but is unable to measure the time be-
tween changes. Thus our definition of noninterferendémg-
insensitive It is alsotermination-insensitivethe attacker is unable

to distinguish a program that has terminated from a program that is
still running but hasn’t modified any memory since the last change.

In_the presence of (_je_classification, a given progearray not be (e[or /2], M) and (e[vs /], M) are well-formed and well-typed
noninterfering, even ié is well-typed. For example, the program and for anye, . . . ci.-free evaluationsz; of (e[v: /z], M) and Ex

int . . .
ref" L (declassifyx, H ~ L)) is well-typed (wherer is of type of (e[ve/x], M) then[E;]~, is a prefix up to stuttering df;]~,,

e that sequence of declassifications has not yet occurred.

DEFINITION 5.2: Lete be an expression with free variahte:
intg, o1 ... %k351y, <k, and let! € L be a security level. Expression
e is noninterfering forx at level ¢ until conditionscy, ..., cx if
for all integer valuesv; and v2, and all memories\/ such that

'Sequence; is a prefix up to stuttering of sequenseif s/ is a where{i, j} = {1,2}. 1
prefix of s5, wheres), is the result of removing all consecutively)
repeated elements frosy. For example, the sequeneebacc is a EvaluationsE; and E-> arec; ...ci-free, so the sequence of

prefix up to stuttering ofibbbacd, sinceabac is a prefix ofabacd. k declassifications, witl; true at theith declassification, cannot

P <LLT ppo<e LT

p LLET page LT

p1 <LLT pa <o LT

() :unity, ~¢ () :unit,, n:int,, ~¢ n:int

p1 <LLT pp <t LT

P2 ni : |ntp1 Xy N9 . If‘ltp2

T . ~ T .
m” :Tref, ~p mT:7rref,,

p1 £LLT pp L0 LT

p LLET pog e LT

mi : Tref, ~p m3:Trefy,
|

Az :7.[ple): (T BTy, =~
Az :7.[ple): (TE7")p,

Az :7.[pl]er) : (TlgT{)m e

Ay« 7.[pa] €2) : (1223 72)p,

Figure 3: Equivalence relation=,

have occured in either evaluation. If the expressias noninter-
fering for z at level/ until conditionscy, . . ., ¢k, then an attacker
that can only observe memory at levabr lower is thus unable to
distingush evaluatiof; from evaluationF.

If the input is never declassified below a certain level, noninter-
ference until conditiong, . .., ¢, entails noninterference at that
level, as stated by the following theorem:

THEOREM 5.3: Let e be an expression with free variahile :
intg, ey ... %351, 1, and let? € £ be a security level such that
e is noninterfering forx at level? until conditionsc;, . . ., ck—1,f.
Thene is noninterfering forz at level/.

The type system okgeciassensures that well-typed programs are
noninterfering until conditiong, . .., cx, for all appropriate se-
guences of conditions, . . . c¢x, and appropriate security levels.

THEOREM 5.4: Let e be an expression such that, [z —
intg, e ... %351y, <k, e : 7 for some security policyc and type
7, and let{ € L be a security level such thdt Z, ¢ for all
i € 1..k. Thene is noninterfering forz at level? until conditions
Cly...,Ck.

Note that Theorem 5.4 ensures that a well-typdd noninter-
fering until conditions:y, . . . , ¢, only at security levelg such that
l; e £foralli € 1..k; the intuition is that if¢; T, ¢ for some
i € 1..k, then the attacker may observe information about the input

2. Prove type preservation foR.q.ss A key point of the type
system 0f\JeqiasdlS that if the bracket expressidpy | e2) has
type 3,/, then bothe; andez have types,’, and moreover,
for some fixed policy’s <& - - - “A5" £, X5 p there is somg €
1.k such that/; & - -- %3¢, kp < p’. This ensures that
for any level? € £ such thatt; Z, ¢ foralli € 1.k, no
bracket expression is observable at lefel

3. Prove that type preservation faf.q.s.entails Theorem 5.4.

Let e be an expression that is well-typed under the variable
context containing the single varialle int, c1 ... k51, <k,
Let ¢ € L be a security level such thdt £, ¢ for all

i € 1..k. Letv; andv2 be two integers. Led/, be a memory
such thatle[v:i /z], Mo) and(e[vz/x], Mo) are well-formed
and well-typed. The\3eqasconfigurationfe[(vy | va) /], Mo))
represents the twgeciassconfigurationsle[vi /x|, Mo) and
(e[v2/x], Mo)). Considef(e[(v1 | v2)/x], Mo) - .. (en, My,

a (partial) ¢ . . . ci-free evaluation of(e[(v1 | v2)/x], Mo)
(which represents twe; . .. c,-free evaluations, one of the
configuration(e[vi /z], Mo) and one ofle[v2/x], Mo)). Type
preservation for\i.q.ss€nsures that a value bound to any
memory location inM,, that is observable at security level
£ contains no bracket constructs. Thus, the two sequences of
memories from the twageciass€valuations arez, equivalent

up to stuttering, showing thatis noninterfering for: at level

£ until conditionsc, . . ., ¢k, as required.

before allk declassifications have been performed. 6. MOTIVATING EXAMPLES REVISITED

The proof of Theorem 5.4 uses Pottier and Simonet's proof tech- In this section we reconsider the examples of Section 2 in terms
nique [20], which extends the language to allow a single expression of the languag@eciass and see how the type system of the language
to represent two program executions that differ only in their secret avoids the vulnerabilities mentioned.
inputs; the proof of Theorem 5.4 is reduced to a type preservation .
proof in the extended language. We present the key points of the6'1 Password CheCklng
proof here, and refer the reader to Appendix A for more details. Consider the abstraction of the password checking system, writ-

The language jegassextends the languagiecasswith a bracket ten in Adeclass @ssuming the addition of booleans, equality test
construct(e; | e2). The pair{e; | e2) represents two different ex- for integers, and the use &t 2:7 = e in €’ as syntactic sugar for
pressionsge; and ez, that may arise during two different execu- (Az : 7.[p] ¢) e, for some appropriate security polipy
tions of a program. Thus, the tWXyeciassexpressiong[v, /z] and

e[va /2] can be represented by the single expressjom | v2) /] let secretint 7 = ... in .
in A.qass A bracket expression can appear arbitrarily deep within let pwat (int et) refyyp = ...in
an expression, but cannot be nested within another bracket expres- let guessint greertr, = ... 10N

sion. Using\3ecass Theorem 5.4 can be proved in three steps: let testbooleans ;¢ 1, = (Quess== !pwd) in

let resultbooleary, = declassifytest i ~ L) in

a b~ wWNPRE

1. Prove that. .ssadequately represents the execution of two
Adeclass€Xpressions. Pottier and Simonet's definition of ade-
quacy is not suited for our purposes; their extended language Recall that the type system Qfieciassrequires a static condition
is required to represent two base language evaluations only if analysis to determine that the appropriate conditions for declassi-
both base language evaluations terminate. Since we need tdfication are true whenever declassification occurs. The primitive
reason about partial evaluations, our definition of adequacy conditioncert is true only when certified and trusted code is run-
requires that given twogeciassevaluations, there is A2sciass ning. Thus, a suitable static condition analysis can simply check if
evaluation that fully represents at least one of them. thedeclassifyexpression occurs in certified and trusted code. Since

line 5 is certified and trusted code (as it is part of the trusted pass-

word checking module):ert is true when theeclassifyexpression cop __p ;/cf\ffg Vi i,ﬁ; p
. . . 7 7. on/
of line 5 is reduced, and so the program is well-typed. 2l ctop
The type system fokgeciassprevents the value stored in the mem- diop S p
ory locationpwd from depending on the value eécret If the as- (a) Trees (b) Arbitrary Rooted Directed Graphs

S|gnm_en1pwd = sgcretwere mserted_ between lines 2 and 33 type Figure 4: Examples of extended security policies for operations
checking would reject the program, i 7, the type ofsecret is other than declassify.
not a subtype oiint greert 1, the type of the password.

More generally, no laundering of data can be well-typetiiass
as declassification policies can express what declassifications ar
permitted, and the type system ensures these security policies a
enforced. This includes laundering throughplicit flows of in-
formation, where the control structure of a program is used as an
information channel.

eapplication domain, other logics may be better suited to express
"Svhen declassification is permitted; possibilities include first-order
logic, temporal logic, epistemic logic and linear logic. The logic
must define an appropriate form of conjunction and implication for
conditions to support the orderirg and join operatiom..
6.2 Sealed auctions For _example, consider_the sealed_quction of Sect?on 2. Tempo-
ral logic can express a suitable condition for when Alice and Bob’s
bids can be declassifie@bidsClosed, wherebidsClosed is true
when the auction bidding stops, and the formBladsClosed is
true when the auction bidding stopped sometime in the past. Stan-
dard model checking techniques provide a sound static condition
let aliceBidint 4tidspyp = ... In analysis that can determine if temporal logic formulas are always
true at the time of declassification, that is, if for all possible execu-
tion paths to the declassification, the formula is true.

The use of more expressive logics may make the comparison of
two security policies (and thus the type checking)aéciass pro-
grams) undecidable. In addition, proving that a condition is al-
ways true at the time of declassification, as required by the rule
(T-DECLASS), may become more complex.

Operations other than declassify:Extending the security poli-
cies to other operations than declassification increases their expres-
siveness. Data labeled with an extended polity¥’p must be
treated at security level, the operatoop may be applied to the
data provided condition is true, and the result of the operation is
labeled with security policy. The security policy % p is equiva-
lent to the extended security polié§ ©%2™, wheredeclassifyis
the declassify operator.

With multiple operators, there is no reason to restrict the num-
ber of possible operations on data; extended security policies could
form trees, such as in Figure 4(a) or even arbitrary rooted directed
graphs, as in Figure 4(b).

The password example of Section 6.1 could benefit from the
more expressive security policies. The security policy for the pass-
word is H <% L, which permits the password in its entirety to be
declassified to security levél. The introduction of an equality test
operatoreqwould allow the policy to be amended <25 ®L,
which expresses the desirable restriction [25] that only the result of
an equality test of the password can be declassified.

Further investigation of extended security policies may show them
to be expressive enough to allow the clean treatment of encryption
and decryption as primitive operations. Suppeseis a primitive
encryption operator. Then the security polidy:<'°L would allow
the encryption of secret (security levAl) data, and allow the re-
sulting encrypted data to be non-secret (security 1&ygihe policy
would also remove the possibility of accidental declassification of
unencrypted data, which the poliéy .5 L might permit.

Dynamic security policies: The Ageciasstyping rule for declas-

Consider the abstraction of the sealed auction protocol written in
Adeclass Where the primitive conditiohids is true only when both
Alice and Bob’s bids have both been submitted.

let bobBidint gids = ... In

let aliceOpenBidnt ,,,,;, = declassifyaliceBid A ~ pub) in
let bobOpenBidnt ,,,;, = declassifybobBid B ~ pub) in
/% determine winnex/

A~ wWwN PR

Unlike the password checking example, the connection between
the semantics of the primitive conditions and the program seman-
tics is non-trivial, and thus a more complex static condition analy-
sis is required. However, for the abstraction of the auction protocol
given above, a relatively simple static condition analysis is suitable.

Note that Alice’s bid is the value of the variabédiceBid and
Bob’s bid is the value of the variablobBid and that these values
are immutable after their initialization. Thus, the primitive condi-
tion bids is true at a given program point only if botticeBid and
bobBidare in the variable context at that program point. At lines 3
and 4, where Alice and Bob’s bids are declassified, both variables
are in the context, and so the conditigds is true at these program
points, and the program is well-typed.

If the program were modified by swapping lines 2 and 3 (as in
Section 2), so that Alice’s bid were declassified before Bob's bid is
submitted, themids would not be true at the early declassification
of Alice’s bid: the variabldobBidwould not be in the context. The
modified program would thus fail to type-check. The type system
of Adeclass€nsures that the condition for declassification must be true
at the time of declassification, and so prevents the inappropriate
early declassification of Alice’s bid.

A fuller and more realistic implementation of the sealed auc-
tion protocol (having, for example, multiple auctions, a statically
unknown number of bidders, and functions for program modular-
ization), would require a correspondingly more complex static con-
dition analysis. Note, however, that the declassification policies for
bids would remain the same; what changes is the relationship of the
primitive condition semantics to the program semantics.

7. EXTENSIONS 2|t is also necessary to ensure that results of computations involv-

There are several possible extensions to the declassification poli-inﬁ. tﬂe pafds""l‘l"d tchanno;[_ be declassdifitedbwlith keq(;l.a”ty testsl [25],
cies which increase policy expressiveness and allow them to ca\p-‘i’t\’y Itgst\govlf/h eal}d?\i,; theei)rglsrgv%ar?js;\i,gé inobites e‘?hiz ankjtfggic'om_
ture more precisely the intended security behavior of systems. hjished by adding an operatarith which represents all arithmetic

Other logics for conditions: Classical propositional logic is operations; the password’s security policy wouldn't allow any arith-
used to reason about the conditions for declassification. For a givenmetic operations on the password, removing this possible channel.

sification (T-DECLASS) requires the static proof that conditien is trusted By making this a primitive condition and conjoining it

is true when the declassification of data labede€dp occurs. This to all declassification conditions in the security policies, robust de-
static proof burden could be removed and a more dynamic approachclassification can be expressed\assuUsing an appropriate static

to declassification policies taken. Instead, a declassification could condition analysis. The requirement that the decision to declassify
succeed or fail at run time, depending on whether the condition is data must be trusted is alluded to in the password checking example
true or false at the time of declassification. However, since the run- in Section 6.1, through use of the primitive conditiant, which

time behavior of the program would now depend on the security is true only if certified and trusted code is executing.

policies of data, a new information channel is introduced, and care Selective declassificatidi9] was introduced as part of the de-
must be taken that the desired information flow properties hold re- centralized label model [14, 15], and requires the owners of data
gardless of the success or failure of declassifications. Other work to authorize all declassifications of that data; which owners are re-

on dynamic security policies [32] addresses these issues. quired to give their authorization for a given declassification de-
pends on what security levels the data is being declassified from
8. RELATED WORK and to. Pottier and Conchon [19] present selective declassification

as a combination of information flow and access control, where a

Intransitive noninterferenc{?2, 18, 21] is an information flow number of declassification operations are locked at appropriate lev-
property based on noninterference that was introduced to describe P pprop

the behavior of systems that need to declassify information. Intran- e_ls of authority; access contr_c_)l aII_ows only s_unably authorized prin-
. . . .) . cipals to unlock the declassification operations, and only unlocked
sitive noninterference is an intensional property, where in each step

of computation, information only flows between security levels (or ggg:;z::;:gi:gz (I)irlzgrregé%ns? ;:é}aiiﬁlii;zg] 'g{?éma:fg rse(\e/leer?ttli\;le-
domaing according to some (possibly intransitive) refation. appropriate decllassifications by requirin a’certair?condri)tion to be

Declassification policies are corppatible with intransitive nonin- trﬁz w%en declassification occn)J/rqure ui?ed owners of the data
terference. A security policy.% ¢’ S, p can be viewed as a decla-) -CUrl req g

. have authorized the declassificatiohike robust declassification,
ration that information may flow from security levelto security such a condition can be incorporated into declassification policies
level ¢'. Alternatively, a security policy.% ¢’ <, p may only be al- Baneriee and Naumann i\?e a tvpe svstem for a Javaf)like Ian'-
lowed if information is permitted to flow fromito ¢', according to Lage tr{at LUSES ACCESS cogtrol to)r/r?edi;/te information release [3]
some (externally declared) relation. In fact, declassification poli- 'gl'hegt e system allows a dependency to be introduced between'
cies extend intransitive noninterference with temporal properties: ype sy P y 1o b .

dynamically enabled access control permissions in the Java model

in each computation step, information flows between levels only if and the security level of a method result. The securi ropert
that flow is permittecand appropriate conditions are true for that . Y -) ty property
enforced is, however, noninterference.

computation step. This additional expressiveness permits security Ferrari et al. [5] use a form of dynamically-checked declassi-
policies that prevent inappropriate declassifications, such as inthe, _ . b 8 Y y o
fication in an object-oriented system throughiversto strict in-

sealed auction example, which intransitive noninterference by itself . . . ; .
formation flow. Waivers are applied dynamically and can mention

is unable to accomplish. specific data objects, thus providing fine-grain control over when
Intransitive noninterference specifies security policies on secu- ; P data ool tus providing tine-g i
. : . . . -~ information is declassified. With suitable extensions to the de-
rity domains, that is, how information may flow between domains; classification policies (specifically dynamic testing of conditions
by contrast, declassification policies associate security policies with ton p pectiically dy >ung)
and possibly a more expressive logic for conditions than classical

data. For example, assumirf@, L € £ are domains such that o . . -
H Z; L, data labeled with the security polidy., L is in the same propositional logic), we believe that waivers can be represented us-
! = ing declassification policies.

domainH as data labeled with the security poligl; however, the The languageesassis asecurity-typed languagee.g., [26, 24,

former may be declassified to the domdinwhile the latter will 8,13, 1, 2, 20]), in which types of program variables are annotated

never be declassified to the domdin Thus, declassification poli- with security policies. The tvpe svstems of such lanquage enforce
cies provide additional precision, ensuring that data lab&lexill : Y pol . yPe Sy guag
security properties, typically noninterference.

never be declassified to the domdindespite the fact that some in- Other approaches, such asantitative information flowe.g..

formation is permitted to flow from domaifi to .. This additional .
precision could alternatively be seen as a refinement of security do- [12, 10, 4]). andelat.lve secrgc:{(ZS] segk to measure or bound the
amount of information that is declassified. This work is largely or-

mains. t_he pollcwwp represents the subdomaln&)fnat may be thogonal to declassification policies, which, in the context of this
declassified (whem is true) to the subdomain represented by : Qo ;
paper, are concerned only with possibilistic security assurances.

Viewed in this light, security policies for declassification provide a However, the conditions for declassifications could perhaps be use-
structured and intuitive method of refining security domains, based | . L) " P P
ful in specifying or bounding channel capacities.

on what declassifications may be performed in the future.

Recent work by Mantel and Sands [11] places intransitive non-
interference in a language setting, providing a bisimulation-based 9. CONCLUSION
security condition for multi-threaded programs that controls where ~ We have presented an expressive framework for declassification
information can be declassified, and a type system for a languagesecurity policies, and incorporated them in a security type system.
that enforces this condition. A security policy for declassification describes a sequence of secu-

Robust declassificatiof28] is a desirable security property for rity levels through which a labeled data value may be declassified if
systems that perform declassification. In brief, a system is robust associated conditions are met. Security policies for declassification
if an active attacker (one who can observe and modify the behavior are defined independently of any mechanism for enforcing them;
of the system) cannot learn more about the system (including se-the security type system presented here is one such mechanism.
cret inputs) than could a passive attacker (one who can observe but In the language setting of a security type system, these declas-
not modify the behavior of a system). In a language based setting, sification policies are connected to a semantic security condition
this means that the decision to declassify data must be trusted [27 that generalizes noninterference to allow information release only
16]; this is equivalent to the following condition being true at ev- if the given conditions are satisfied. For generality, we have pa-
ery declassificationcontrol flow and data at this program point rameterized the declassification policy framework on the choice of

conditions, and correspondingly parameterized the type system on[15] A. C. Myers and B. Liskov. Complete, safe information flow with

a static condition analysis that connects the semantics of the condi-

decentralized labels. IAroc. IEEE Symposium on Security and

tions to the language semantics. Our experience in applying these Privacy, pages 186-197, Oakland, CA, USA, May 1998.

policies to various small programs, some of which are given here,
suggests that the policy language is intuitive and usefully restricts
program behavior. Thus, the analysis embodied in the type system[17]
helps to avoid writing insecure programs in the presence of down-
grading. We have also identified a number of possible extensions

that may lead to future work.

Acknowledgments

Thanks to Andrei Sabelfeld and Steve Zdancewic for suggestions
about declassification policies, and Michael Clarkson, Nate Nys-

16] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust

declassification. IfProc. 17th IEEE Computer Security Foundations

Workshop June 2004. to appear.

J. Palsberg and P. @rbaek. Trust in thealculus. InProc. 2nd

International Symposium on Static Analysismber 983 in Lecture

Notes in Computer Science, pages 314—-329. Springer, Sept. 1995.

[18] S. Pinsky. Absorbing covers and intransitive non-interference. In
Proc. IEEE Symposium on Security and Privgegges 102—-113,
1995.

[19] F. Pottier and S. Conchon. Information flow inference for free. In
Proc. 5nd ACM SIGPLAN International Conference on Functional
Programming (ICFP)pages 46-57, 2000.

trom, Riccardo Pucella, Lantian Zheng, and the anonymous review- [20] F. Pottier and V. Simonet. Information flow inference for ML. In

ers for providing helpful feedback. Dave Sands also offered some

useful insights on intransitive noninterference.

This work was supported by the Department of the Navy, Of-
fice of Naval Research, under ONR Grant NO0014-01-1-0968. Any

Proc. 29th ACM Symp. on Principles of Programming Languages
(POPL), pages 319-330, 2002.

[21] A. W. Roscoe and M. H. Goldsmith. What is intransitive
noninterference? IRroc. 12th IEEE Computer Security Foundations
Workshop1999.

opinions, findings, conclusions, or recommendations contained in [22] J. Rushby. Noninterference, transitivity and channel-control security
this material are those of the authors and do not necessarily reflect policies. Technical Report CSL-92-02, SRI, Dec. 1992.
views of the Office of Naval Research. This work was also sup- [23] A. Sabelfeld and D. Sands. Probabilistic noninterference for

ported by the National Science Foundation under grants 0208642

and 0133302, and by an Alfred P. Sloan Research Fellowship.

J[H'J. A@a%lgrgngtl)zmwn%% timing leaks. Proc. 27th ACM Symp. on

Principles of Programming Languages (POPpages 40-53,
Boston, MA, Jan. 2000.

[2] A.Banerjee and D. A. Naumann. Secure information flow and

pointer confinement in a Java-like languagelBEE Computer
Security Foundations Workshop (CSE\)ne 2002.

[3] A.Banerjee and D. A. Naumann. Using access control for secure

information flow in a java-like language. Proc. 16th IEEE
Computer Security Foundations Workshppges 155-169, June
2003.

[4] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate

(5]

[6] J. A. Goguen and J. Meseguer. Security policies and security models.

non-interference. IfProc. 15th IEEE Computer Security Foundations
Workshoppages 1-15, June 2002.

E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Providing
flexibility in information flow control for object-oriented systems. In
Proc. IEEE Symposium on Security and Privgegges 130-140,
Oakland, CA, USA, May 1997.

In Proc. IEEE Symposium on Security and Privaegges 11-20,
Apr. 1982.

[7] J. W. Gray, Ill. Towards a mathematical foundation for information

(8]

(9]

[10]
[11]
[12]

(23]

[14]

flow security. InProc. IEEE Symposium on Security and Privacy
pages 21-34, 1991.

N. Heintze and J. G. Riecke. The SLam calculus: Programming with
secrecy and integrity. IRroc. 25th ACM Symp. on Principles of
Programming Languages (POPLpages 365-377, San Diego,
California, Jan. 1998.

K. Honda and N. Yoshida. A uniform type structure for secure
information flow. InProc. 29th ACM Symp. on Principles of
Programming Languages (POPLlpages 81-92. ACM Press, Jan.
2002.

G. Lowe. Quantifying information flow. IfProc. 15th IEEE

Computer Security Foundations Workshdpne 2002.

H. Mantel and D. Sands. Controlled downgrading based on
intransitive (non)interference. Unpublished draft, 2003.

J. K. Millen. Covert channel capacity. Proc. IEEE Symposium on
Security and PrivacyOakland, CA, 1987.

A. C. Myers. JFlow: Practical mostly-static information flow control.
In Proc. 26th ACM Symp. on Principles of Programming Languages
(POPL), pages 228-241, San Antonio, TX, Jan. 1999.

A. C. Myers and B. Liskov. A decentralized model for information
flow control. InProc. 17th ACM Symp. on Operating System
Principles (SOSR)pages 129-142, Saint-Malo, France, 1997.

multi-threaded programs. Rroc. 13th IEEE Computer Security
Foundations Workshgmpages 200-214. IEEE Computer Society
Press, July 2000.

[24] D. Volpano and G. Smith. A type-based approach to program
security. InProceedings of the 7th International Joint Conference on
the Theory and Practice of Software Developmpages 607-621,
1997.

[25] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In
Proc. 27th ACM Symp. on Principles of Programming Languages
(POPL) pages 268-276, Boston, MA, Jan. 2000.

[26] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure
flow analysis.Journal of Computer Securit$(3):167-187, 1996.

[27] S. Zdancewic. A type system for robust declassification. In
Proceedings of the Nineteenth Conference on the Mathematical
Foundations of Programming Semanti&ectronic Notes in
Theoretical Computer Science, Mar. 2003.

[28] S. Zdancewic and A. C. Myers. Robust declassificatiofrisc. 14th
IEEE Computer Security Foundations Workshpgages 15-23, Cape
Breton, Nova Scotia, Canada, June 2001.

[29] S. Zdancewic and A. C. Myers. Secure information flow and CPS. In
Proc. 10th European Symposium on Programmirajume 2028 of
Lecture Notes in Computer Scienpages 46—61, 2001.

[30] S. Zdancewic and A. C. Myers. Observational determinism for
concurrent program security. Proc. 16th IEEE Computer Security
Foundations Workshgmpages 29-43, Pacific Grove, California, June
2003.

[31] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Untrusted
hosts and confidentiality: Secure program partitioning?ioc. 18th
ACM Symp. on Operating System Principles (SQOg&jes 1-14,
Banff, Canada, Oct. 2001.

[32] L.Zheng and A. C. Myers. Dynamic security labels and
noninterference. Technical Report 2004—-1924, Cornell University
Computing and Information Science, 2004.

APPENDIX
A. PROOF OF THEOREM 5.4

In this appendix we present the syntax and semantics of the lan-
guagel.qass Show that it is adequate to represent the evaluation of
two Ageclass€Xpressions, and that type preservation holds. Finally,
we prove that type preservation M.qassimplies Theorem 5.4.

A.1 Syntax and Semantics of3, .

The languagé Z.qassextends the languagecasswith a bracket
construct(es | e2). The pair{e; | e2) represents two different ex-

pressionse; andez, that may arise in two different executions of a

effects of both subexpressions, and also figirotects the security

program. A bracket expression may not be nested inside a bracketpolicy for the type of a bracket expression. This property will be

expression, but can otherwise appear nested at arbitrary depth.
In addition to tracking subexpressions that may differ in different

key in the proof of type preservation.
A configuration (e, M|, is well-typed if M is well-typed and

executions of a program, we also need to track how the memoriespc, § - e : 7 for somepc andr.

may differ. Since we have dynamic allocation of memory loca-
tions, the languaga’..assincludes a special constant valueid;

if memory locationm™ is bound to a valugvoid | v) or (v | void),
thenm” is bound in only one of the two executions.

2 .
)‘declasssyntax-
| — 1
v = values
Ademassvalues
(v]v) Pair
void Void

expressions

Adeclass€Xpressions
(ele) Pair

L]

Given an extended expressierlet the projectione|; and|e]2
represent the twogeciassexpressions that encodes. The projec-
tion functions satisfy (e1 | e2) |s = e; and are homomorphisms on
other expression forms. The projection functions are extended to
memories in the following way| M |; maps the memory location
m” to [M(m7)]; if and only if |[M(m")]; is defined and isn’t
void. In addition, (e1 | e2)[v/x], the capture-free substitution of
v for z in (e1 | e2), must use the corresponding projectionvah
each branch{e; | e2)[v/x] = (e1[|v]1/z]]| e2[|v]2/x]).

We extend configurations to triplefg, M), for an indexi €
{e,1,2}. The index indicates if the expressiemepresents a pair
of expressionse(or the left (1) or right (2) side of a pair of ex-
pressions. A configuratiofe, M), is well-formed if the follow-
ing conditions are truee does not contairvoid; if i € {1,2}
then e does not contain a bracket construct afed| M |;) is a
well-formedAgeciassconfiguration; ifi = e then(|e]1, | M |1) and
(le]2, | M |2) are well-formed\geciassconfigurations.

The operational semantics 8f.qassare presented in Figure 5.
They are based on the semantics\@fcass and contain some new
evaluation rules: (BACKET), (LIFT-3), (LIFT-ASSIGN), (LIFT-
DEREF), (BRACKET-SEQ). The rules (ALOCATION), (BRACKET)
and (DErReF) are modified to access the memory projection corre-
sponding to index, and the remaininggeciasstules are adapted to
AeciassbY indexing each configuration with The evaluation con-
texts are the same in both languages.

The typing system foAZ.ssscontains all typing rules okgeclass
with the addition of two new rules, given below. For notational
convenience, we define tHé < p (“ H protectsp”) as follows.

DEFINITION A.L: If H is a policyt; % - - - 254, S5 p, andp’
is an arbitrary policy, then we writél < p’ to denote that there
exists aj € 1..k such thatZ; & - - S5p < p’. Similarly, we write
H U p” < p' to denote that there exists a € 1..k such that
(4; 5 - SEp)yup” < p. Finally, we writeH ¢ p if it is not the
case thatd < p. I

Typing judgments for AJecass
I

(T-Voib) (T-BRACKET)
HuUpcdpd H<p
pc/, T'Fe;: Bp pc/, T'Fes: Bp
Ipc,I’}—VOid:T pe,I'F (ex|e2) : By

Note that the typing rule (T-BACKET) is parameterized with
a security policyH, and ensures thdf LI pc protects the memory

For a sequence of conditioms. . . ¢, an evaluatior{eo, Mo)),
oo en, M), in MegassiS ¢1 - - - ci-free if both projections of the
evaluation are; . . . cx-free, i.e., if both evaluation§ eo | 1, | Mo |1)

. (H_enJ17 I_Mnjll) andql_eOJ27 |_M0J2D cee (H_enJZa I_MILJ2D are
c1 .. .ci-free. Note that for the projections of the evaluations, for
alli € 1.n andj < {1,2} we have(]Lei,ljj, I_M¢71JjD —
(leils, [Mi];), (where—~ is the reflexive closure of—) in-
stead of(|ei—1];, |[Mi—1];) — (lei];, | M:];); the notion of
c1 ... cp-freeness can be extended for these evaluations easily.

A2 AdequaCy Ongeclass

The extended languag€eg.ssis adequate for reasoning about
the execution of two\geciassexpressions. We show that evaluation
of a\.qasdS both sound (a reduction of a bracket expression corre-
sponds to a reduction of one of its projections) and complete, for a
precise notion of “completeness” that is sufficient for our purposes.

LEMMA A.2. (Soundness): If (e, M), — (¢', M), then
(lelss IM i) —= (L€')i, [M']3] fori € {1,2}.

Proof: By induction on the derivatiorfe, M), — (€', M’),.
The only interesting case is (BCKET), where we need to ap-
peal to the fact that ife, M), — (e, M’),, then(e, | M |;) —
(e’, | M'];)), which follows from inspection of the rules {(Aoca-
TION), (BRACKET) and (DErEF). I

LEMMA A.3. (Stuck Configurations): If (e, M), is stuck (i.e.
it cannot be reduced, ane is not a value), therf|e];, | M |4) is
stuck for some € {1, 2}.

Proof: By induction on the structure ef il

As mentioned in Section 5.3, Pottier and Simonet’s definition of
adequacy is not suitable for reasoning about partial evaluations. We
define completeness such that if we have twgiassevaluations,
then there is a\3.qass€valuation that fully represents at least one
of them; this is sufficient for us to later prove that =@p-memory
trace of one (partial) evaluation is a prefix (up to stuttering) of the
~¢-memory trace of the other.

LEMMA A.4. (Completeness)If (e, [M]:) —* (e}, M)
fori € {1,2}, then there exists a configuratige’, M), such that
(e, M), —* (e’, M), and either(|e’]1, | M’ |1) = (e, M)
or ([e']2, [M']2) = (e2, Ms).

Proof: Let (ef, M) .. . (ek,, M..) where we havelef, M) =
(lels, [M]s) and (e}, , M) = (ef, M]) for i € {1,2}, i.e.,
(lel:, [M] * (ej, Mj). For evaluationsE = (eo, Mo),

... (en, My), define the functiory; (E) to be the number of eval-
uation steps that reduced thtt projection: f;(E) = [{k | 0 <
kE<n—1A |ek]i # lext+1]i}|- Suppose that we have an eval-
uation E, starting from(e, M),. Consider the functiog(E) =
min(ni— fi(E),n2— f2(E)). Clearly ifg(E) is zero, ther¥ is an
evaluation from(e, M), to some configuratioge’, M’), such that
either([¢' |1, [M 1) = (e}, M{) or (|¢' |2, [M’ |2) = (e, M),
which suffices to prove the lemma. The proof constructs such an
evaluation, by showing thatif(F) is not zero, then by Lemma A.3

—

i)
i)

Operational semantics 0f\3sciass

I(ALLOCATION) (DERER (ASSIGN)
(ref” v, M), — m” fresh (Im™, M), — (m™ :=v, M), —
(m™, Mm™ — new;(v)]), (read(M(m")), M), ((), M[m™ — updatg(M(m"),v)]),
(BRACKET) (LIFT-DERER) (BRACKET-SEQ) (LIFT-8)
(]/62‘7MD qeu M,D'
¢ =¢e {i,j}=1{1,2} ("(vr [v2), M), — KOTO);e, M)y — (o1 [v2) v, M), —
((ex [e2), M), — ((en [e2), M), ((tor [tv2), M), (e, M), ({v1 [v]1|v2 [v]2), M),
(LIFT-AssicN Auxiliary Functions:
(T = o 3] news (v) = v read (v) = v update (v,v') = v’
vriv2) =, Mg = new; (v) = (v|void) read(v) = |v|1 updatg(v,v’) = (v'||v]2)
({1 = [v]1]v2 == [v]2), M), news(v) = (void | v) read(v) = [v]» update (v, ') = {[v]1 | V)

Figure 5: Operational Semantics 0f\3sjass

we can extend? using (BRACKET), to some evaluatiod’, such
that f;(E') = f:(E) + 1 for somei € {1,2}, thus eventually
constructing an evaluatioR” such thay(E") is zero.l

A.3 Type Preservation for \2.q.e

The type preservation theorem fdf.qassiS NONstandard, and
assumes that there is some distinguished configurgtien/o),
that the computation started from, and that if we have a reduction
(e, M), — (€', M’),, then there is an evaluation @fo, Mo,
ending in the configuratione, M)),. The type preservation the-
orem needs knowledge of the entire history of the computation,

LEMMA A.6.: Let H be an arbitrary policyf; & - - - %514y,
Epy. Letm”? be a memory location such thaf ¢ p. Let M
be a memory withn’? € dom(M). Let(e, M), —" (e', M’),.
Then| M’ (m”P) |, = | M'(m”P) |, = M’ (m"P).

Proof: By Theorem A.5 we haven’? ¢ dom(M’). A value of
type 3, is either of the form(v; | ve2) or vs, wherew:, v2, v are
of type 3, and do not contain brackets.M’(mﬂp) is of the form
(v1 | v2), then by (T-BRACKET) H < p, a contradiction. Therefore
M’(m”P) must be of the formys, and the result holddl

since the proof of Theorem 5.4 only requires that type preservation p.oof of Theorem 5.4: Let e be a Adeciass €xpression such that

for Aecassholds fore; . . . ¢, -free evaluations.

THEOREM A.5. (Type Preservation): SupposeH = /1.4
RS 0 kpy, (e, M), — (e, M), (e, M), is well-formed
and well-typedpc,® - e : 7, M andi € {1,2} implies
H < pc, andi e implies that the evaluatiotfeo, Mo), .

(e, M), (e', M), is c1...cp-free. Thempe,® + € : 7, M,
dom(M) C dom(M’) and(e’, M’), is well-formed and well-typed.

Proof: By induction on the derivation ofe, M), — (e’, M’),.

The most interesting case is declassification, where the expression(e,,

e is declassifyv, £ ~~ ¢') ande’ isv andM’ = M andris 8y <, p,
By (T-DECLASS), pc,§ - v : Boe0 <,p. Now we need to show
thatpe, 0 - v : B¢ <, ,. Consider the possnble forms of Note that
v cannotbe a varlable (since the context is emptyy.igfan integer,
void, unit, location or abstraction, then the appropriate typing rules
for values ((T-NT), (T-VoID), (T-UNIT), (T-Loc) and (T- ABS))
allow a value of base typ@to be given any policy, |nclud|ndwp
If v is a bracket valuév, | v2), then we knov\H < szlwp, that
is, there exists somg € 1..k such thatt; < - - 5514, & py <
NS ’SQp. Moreover, sincev is a bracket valuey, = e, implying
the evaluation ig; . . . cx-free; thus, we can show by induction on
k that] must be less thak. Thusf;, I8! - k5 1£kpr <
S.pandj + 1is less than or equal th, and soH < ¢ S.p as
requiredll

The type preservation of...ssimplies Theorem 5.4, which we
are ready to prove, after one additional lemma.

pe, B[z — intg] F e : T for some security policye and type
7, whereH is the security policy; 3 - - - 30, & py. Letl € L
be an arbitrary security level such thatiZ,. ¢ for all i € 1..k.
Letv; andwvs be two integer values. Leét/ be a memory such that
(e[v1/x], M) and (e[v2/x], M) are well-formed and well-typed.
Consider the\Jegassconfiguration(e[(vi | v2)/z], M), . This con-
figuration is well-formed and well-typed, a§ < H. Let Ey
and E; bec; ... cx-free Agecassevaluations of(e[v: /x|, M) and
(e[v2/x], M) respectively. By adequacy (Lemma A.4) we have a
c1 . .. cp-freeAjegasevaluation(e[(v1 | v2) /z], M), (e1, Mi), ...
M,), suchthaf||e, |, | My ;) is the last configuration df;,
for somei € {1, 2}.

Now, letj € 1..n, and letm”” be any memory location in
dom(M |€). From the definition of dorf/;|¢) we havep <
LT, sop = ¢/ <, for somel such that’ T, £. It cannot
be the case thdt C. ¢ for somei € 1..k, since this would imply
¢; T, £, which is a contradiction. Sé/ ﬁ p, and by Lemma A.6

the valueMj(mﬁp) does not contain a bracket expression.

Thus, forallj € 1..n, we have| M; |1 =, | M,]2, and sqE;]~,
is a prefix up to stuttering ofF;]~,, where{s,j} = {1,2} and
(len]ss [Mn]s) is the last configuration af;. Thuse is noninter-
fering for z at level? until conditionscy, ..., cx. il

