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ABSTRACT
A long-standing problem in information security is how to specify
and enforce expressive security policies that control information
flow while also permitting information release (i.e., declassifica-
tion) where appropriate. This paper presents security policies for
downgrading and a security type system that incorporates them,
allowing secure downgrading of information through an explicit
declassification operation. Examples are given showing that the
downgrading policy language captures useful aspects of designer
intent. These policies are connected to a semantic security condi-
tion that generalizes noninterference, and the type system is shown
to enforce this security condition.

Categories and Subject Descriptors:K.6.5 [Management of Com-
puting and Information Systems]: Security and Protection

General Terms: Security, Languages

Keywords: Information flow, noninterference, downgrading, de-
classification, security policies.

1. INTRODUCTION
Control of information flow is an unavoidable aspect of enforc-

ing security properties such as confidentiality and integrity. A long-
standing problem is how to specify and enforce expressive policies
for how information may flow. This problem is difficult because
real-world applications release information as part of their intended
function. This paper presents a framework for security policies that
can express the intentional downgrading of information, and a se-
curity type system that incorporates and enforces these policies.

Strong information security properties (which we refer to broadly
asnoninterference[6]) specify an absence of information flow. As
a result, they are too rigid to serve as a useful description of the
security of realistic applications. Noninterference does not provide
a way to distinguish between programs that release information as
intended and programs that can leak information because of either
programming error or vulnerability to attack.

Noninterference does have the attractive quality that it can be
enforced by static analysis, an idea explored by work (e.g., [26, 8,
23, 29, 9, 20, 2, 30]) that augments programming-language types
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with securitylabelsthat capture information flow restrictions. An
interesting question, therefore, is whether useful security properties
can be defined for programs that intentionally release information.
Type systems and program analyses have been defined that not only
attempt to control information flow but also supportdowngrading,
an escape hatch that enables information release by explicitly re-
laxing the security labels of data [17, 13, 31]. While downgrading
seems to be usable in a principled way, it is unclear what security
guarantees hold once it is used.

We call downgrading of confidentiality labelsdeclassification.
When a program declassifies information properly, there is some
reason why it is acceptable for information to be released. Consider
a database system storing confidential salary information. While
individual salaries cannot be securely released, it may be accept-
able to release an average of all salaries because theamountof
information leaked about any individual salary is small. Another
example is an online system for ordering software. In this case,
the information being purchased (that is, the software) is initially
confidential but should be released if the customer has paid for it.

As these examples suggest, the reasons for releasing informa-
tion are diverse, often complex, yet crucial to security. We there-
fore propose a security policy framework that supports application-
specific reasoning about downgrading in programs. Adeclassifica-
tion policyspecifies a sequence of security levels through which a
given data item may move, where each step in the sequence is anno-
tated with a condition that must be satisfied in order to perform the
downgrading. This kind of policy captures simple temporal prop-
erties and can integrate external logics (such as access control) for
reasoning about downgrading steps. We focus on security policies
for declassification, but the same approach applies to other forms
of downgrading, such as for integrity (e.g., [17, 31]).

This new framework has some important and novel properties:

• It is equipped with a semantic security condition that gener-
alizes noninterference (and reduces to it in the absence of
information release). This condition regulates theend-to-
end behavior of a system rather than merely restricting in-
dividual downgrading operations as in intransitive noninter-
ference [22, 18, 21, 11].

• To accommodate domain-specific reasoning about secure in-
formation release, the framework is parameterized with re-
spect to a separate program analysis.

• It is possible to automatically and soundly check whether a
system enforces the security policies for declassification, un-
der the assumption that the application-specific analyses used
to instantiate the framework can also be automatically and
soundly checked.

• The policies are simple and intuitive.



This paper extends a line of work that attempts to control when
and what downgrading is allowed. The new policy framework in-
tegrates work on selective declassification, tied to an underlying
access control mechanism, [14, 13, 19], with work on intransitive
noninterference [22, 18, 21, 11]. Other ways to control information
release include quantifying and limiting information flow (e.g., [12,
7, 25, 4, 10]) and ensuring that information release decisions are
trustworthy [28, 16].

The remainder of the paper is organized as follows. Section 2
presents two examples that motivate the paper. The language of se-
curity policies for declassification is given in Section 3. Section 4
defines a programming languageλdeclassthat incorporates security
policies for declassification. Section 5 presents a semantic security
property of all well-typedλdeclassprograms. The motivating exam-
ples are revisited in Section 6 usingλdeclass. Section 7 offers some
possible extensions, and related work is discussed in more detail in
Section 8. Section 9 concludes. The appendix proves that the type
system ofλdeclasssoundly enforces our semantic security condition.

2. MOTIVATING EXAMPLES
The goal of the security mechanism is to provide assurance to

programmers that their programs release information in accordance
with the overall system security policy. An underlying assumption
is that the program executes as written: an attacker may be able to
change inputs to the system but cannot change the code itself. Thus,
the threat to security arises primarily from programming errors that
are not detected by static analysis of information flow, but might
lead to secrecy or privacy violations when the system is used.

This section contains two examples in which data is declassified.
In the first example, a password checking system, data is suscep-
tible to laundering: information that should remain secret may be
declassified. In the second example, a sealed auction, the correct
data is declassified, but possibly at the wrong time. In both of these
examples, the security labels for the data are not expressive enough
to capture the behavior that the overall system security policies re-
quire. In each system, programming errors might cause security
violations even though the program passes the static information-
flow analysis. It is this problem that we wish to address.

2.1 Password checking
Consider a system where the user must correctly enter a pass-

word before gaining access. Assuming the user can observe whether
access has been granted, the system must release some information
about the password: if the system grants the user access, then the
system has released the information that the password is the same
as the user’s input; if the system denies access, then the user knows
the password and the input differ. Furthermore, suppose the system
contains some secret data that should not be released to the user;
such data could be the passwords of other users, audit logs, or sim-
ilar data. The system must ensure that when it releases information
about the password, it does not also release any information about
the secret data.

The following pseudocode shows an abstraction of such a sys-
tem, wherepwd is the password,secretis the secret data, andguess
is the user’s input. We assume for simplicity that the secret and the
password are integers. The pseudocode uses security types, where
types are labeled with security levels from some security lattice;
the type system ensures that values labeled with a high security
level do not depend on values labeled with low security levels. A
program that type-checks in such a system can be shown to satisfy
noninterference. We assume that the security levelH (for “high
security”) is associated with secret data (including the password),
and the security levelL (for “low security”) is associated with non-

secret data.

1 intH secret:= ...;
2 intH pwd := ...;
3 intH guess:= getUserInput();
4 booleanH test:= (guess=pwd);
5 booleanL result := declassify(test, H  L);

...

Note that the user’s guess is compared to the password (line 4),
and the comparison is explicitly declassified from security levelH
to security levelL (line 5). In a security-typed language setting,
declassifying a value produces a copy of the value with a different
security label.

Although this program is arguably secure, some similar pro-
grams are clearly not. For example, suppose the assignmentpwd :=
secretis inserted between lines 2 and 3. Since bothpwdandsecret
have the security levelH, such an assignment is legitimate. How-
ever, following the declassification at line 5, the user has gained
some information about the secret data, namely, whethersecretis
identical to the user’s guess. Such information release is known
aslaundering: existing declassifications are used to improperly de-
classify data. This example is susceptible to laundering because the
security lattice is not expressive enough to distinguish the security
policy for pwd from that ofsecret, even though the two items of
data are to be used in different ways.

A common workaround to this lack of precision in a security
lattice is to refine the security levels. For example, the security level
H could be divided intoH1 for the password, andH2 for the secret
information that should not be released. However, this approach is
unsatisfactory: the intrinsic meaning of the security levels may be
lost. If two items of data should be treated the same, except that one
item may be declassified while the other may not, then creating new
security levels in an ad-hoc manner loses this connection between
the data items. In addition, in larger systems, where there are many
security levels through which data may be declassified, the ad-hoc
creation of new security levels may become unmanageable.

2.2 Sealed auction
In a sealed auction, each bidder submits a single secret bid in

a sealed envelope. Once all bids are submitted, the envelopes are
opened and the bids compared; the winner is the highest bidder. A
key security property is that no bidder knows any of the other bids
until after all bids have been submitted.

The following security-typed pseudocode shows an abstraction
of a sealed auction protocol with two bidders, Alice and Bob. The
security lattice has a levelA for data that only Alice can read, a
security levelB for data that only Bob can read, and a security
levelpub (“public”) for data that both Alice and Bob can read.

1 intA aliceBid := ...;
2 intB bobBid:= ...;
3 intpub aliceOpenBid:= declassify(aliceBid, A pub);
4 intpub bobOpenBid:= declassify(bobBid, B  pub);
5 /∗ determine winner∗/

...

Note that Alice and Bob first submit their sealed bids (lines 1–2),
and only then are the bids declassified (lines 3–4) and the winner
of the auction is determined.

It is possible that the sealed auction protocol is implemented in-
correctly (maybe through malice or programmer error), and one of
the bids is declassified before both bids are submitted; this would



allow the other bidder to take advantage of incorrectly released in-
formation. For example, in the modified code below, Alice’s bid
is declassified too early, and Bob takes advantage of this to always
win the auction with the lowest possible winning bid.

1 intA aliceBid := ...;
2 intpub aliceOpenBid:= declassify(aliceBid, A pub);
3 intB bobBid:= aliceOpenBid+ 1;
4 intpub bobOpenBid:= declassify(bobBid, B  pub);
5 /∗ determine winner∗/

...

Alice may mistakenly decide that the system is secure, because
she notes that her bid is initially secret and is later declassified; she
may be unaware that the system declassifies her bid inappropriately.

Unlike in the password-checking example, the correct data (Al-
ice’s bid) is declassified but at the wrong time. Even though the
system correctly enforces the specified security policies, it has a
vulnerability because the security lattice cannot express when data
may be declassified.

3. POLICIES FOR DECLASSIFICATION
In this section we presentdeclassification policieswhich can

specify how data should be used prior to declassification, under
what conditions declassification is permitted, and how data should
be treated after declassification. Declassification policies provide
sufficient expressiveness to avoid the vulnerabilities of the exam-
ples of Section 2. Declassification policies are defined indepen-
dently of any mechanism for enforcing them. In Section 4 we
present a language that enforces declassification policies through
a type system, but other enforcement mechanisms are possible, in-
cluding run-time checking.

3.1 Policies
We assume there is some existing security latticeL, such as the

decentralized label model [15]. The elements ofL are used in the
specification of declassification policies, as follows.

If a security policỳ c
 p is enforced on some data, then the data

must be used according to security level` ∈ L, and may be declas-
sified provided conditionc is true at the time of declassification;
after declassification, the security policyp is enforced on the de-
classified data.

Security policies for declassification:

` ∈ L Security levels from security latticeL
p ::= Security policies

` c
 p Declassification policy

` Security level policy
c ::= Conditions

d Primitive conditions
f False
t True
c ∧ c Conjunction
¬c Negation

Conditions are used to express when it is appropriate to declas-
sify data. Primitive conditions are assumed to have a truth value
that may change during the execution of a program. As discussed in
Section 3.2, primitive conditions are in general application-specific,
and thus security policies for declassification are parameterized on
the choice of primitive conditions. A conditionc1 ∧ c2 is true at
a given time only if bothc1 andc2 are true at that time. A con-
dition ¬c is true at a given time only if the conditionc is not true

at that time. The conditionf is never true, and the conditiont is
always true. When reasoning about conditions, we assume that the
axioms and rules of classical propositional logic hold, and thus the
language of conditions is equivalent to classical propositional logic.
We abbreviate¬(¬c∧¬c′) as the disjunctionc∨c′, and abbreviate
¬c ∨ c′ as the implicationc ⇒ c′.

For a given security level̀ ∈ L, the policy` is used for data
that may always be declassified to security level`. The policy` is
recursively equivalent to the policỳ t

 `. The equivalence makes
sense because declassification to the same security level is harmless
and should always be permitted. Note that a syntactic distinction
is made between security levels and declassification policies:` is a
security level, but̀ is a security policy for declassification.

We can define an ordering≤ on policies, wherep ≤ p′ if policy
p′ is at least as restrictive as policyp. Intuitively, given two policies
p = ` c

 p0 andp′ = `′ c′
 p′0, the policyp′ is at least as restrictive

asp if security level`′ is at least as restrictive as security level`,
policy p′0 is at least as restrictive as policyp0, and whenever data
associated withp′ can be declassified top′0, data associated with
p can be declassified top0. This last requirement, that data as-
sociated withp can be declassified whenever data associated with
p′ can, means that the conditionc′ should imply the conditionc,
that is,c′ ⇒ c should be true according to the axioms and rules
of classical propositional logic and the semantics of the primitive
conditions. The ordering≤ is defined as the least relation consis-
tent with the following rules and axioms. We usevL to denote the
lattice ordering of the latticeL.

Ordering ≤ for policies:

` vL `′

p ≤ p′ c′ ⇒ c

` c
 p ≤ `′ c′

 p′
` vL `′

` ≤ `′ ` ≤ ` t
 ` ` t

 ` ≤ `

The relation≤ is not a partial order, as it is not antisymmetric: if
we have two distinct conditionsc andc′ such thatc ⇒ c′ andc′ ⇒
c, then for any security level̀and policyp, we havè c

 p ≤ ` c′
 p

and` c′
 p ≤ ` c

 p; also, for any security level̀, we havè ≤ ` t
 `

and` t
 ` ≤ `.

However, if we define the equivalence relation≡ over policies
such thatp ≡ p′ if and only if p ≤ p′ andp′ ≤ p, and identify all
policies that are equivalent according to≡, then the relation≤ is
well-defined on the resulting structure, and moreover forms a join
semi-lattice, with join operationt. The top element of the join
semi-lattice, which we denote>, is equivalent to the infinitely long
policy >L f

 >L f
 · · · , where>L is the top element of the lattice

L; the top policy> is thus recursively equivalent to>L f
 >. Note

that> is not equivalent to>L. The bottom element of the join
semi-lattice is⊥L, where⊥L is the bottom element ofL.

The join operationt arises naturally from≤, but for clarity we
present it here, usingtL to denote the join operation ofL.

Join operationt for policies:

` tL `′ = `′′ p t p′ = p′′ c′′ = c ∧ c′

(` c
 p) t (`′ c′

 p′) = (`′′ c
′′
 p′′)

` tL `′ = `′′

` t `′ = `′′

In the remainder of the paper, we assume that all policies are
identified up to the equivalence relation≡, and thus the set of poli-
cies under the partial order≤ forms a join semi-lattice.

There is no restriction on the security levels that may appear in a
declassification policy. In particular, if a policy allows information
to be declassified from̀ to `′ (e.g.,` c

 `′), then`′ vL `, ` vL `′,
and` incomparable tò′ are all acceptable.



3.2 Conditions
The conditions of the declassification policies are used to express

when data may be declassified. Since reasons for information re-
lease are highly varied and depend on the application domain, it is
important that the choice and definition of conditions can also be
specific to the application domain. Towards this end, we place very
few restrictions on conditions.

The framework is abstract with respect to the choice of primitive
conditions, and in general they may be specific to the application
domain in which declassification policies are used. The framework
is also abstract with respect to the semantics of primitive condi-
tions; they could, for example, be defined in terms of application-
domain semantics, or as properties of program states. However, as
will be seen in Section 4, when using declassification policies in a
language setting, it is useful to be able to express the semantics of
conditions in terms of the language semantics.

We require that logical implication and conjunction are defined
for conditions, but this is simply to allow the ordering≤ and the
join operationt to be defined. In this presentation we assume the
rules and axioms of classical propositional logic for conditions, but
other logics are possible, as is briefly discussed in Section 7.

Declassification policies as presented here are thus very general.
When used in a particular application domain, the declassification
policy framework would be instantiated through the choice and
meaning of the primitive conditions (and possibly a different logic
over primitive conditions); the results of this paper are applicable
to any such instantiation.

Declassification policies, like intransitive noninterference, can
express what information may flow between security levels. How-
ever, the use of conditions in declassification policies adds temporal
structure that intransitive noninterference is unable to express. De-
classification policies can expresswheninformation is permitted to
flow between security levels.

3.3 Motivating examples
Declassification policies have enough expressive power to avoid

the vulnerabilities of the examples in Section 2.
In the password-checking example, we can use the security pol-

icy H for the secret datasecret, indicating that the secret data must
be used according to the security levelH, and can never be declas-
sified below that security level. By contrast, the security policy for
the password isH cert

 L, indicating that it must be used according
to the security levelH, but that it may be declassified to the policy
L provided the conditioncert is true at the time of declassification,
wherecert is a primitive condition that is true only when certified
and trusted code is executing. Since the security policy for the se-
cret data prevents any declassification below levelH, a system that
enforces these security policies will never declassify the secret data
to levelL, thus preventing laundering. Declassification policies are
expressive enough to differentiate between data that can be declas-
sified, and data that cannot.

The sealed auction example was susceptible to an early declas-
sification of Alice’s sealed bid. Let the primitive conditionbids be
true if and only if both Alice and Bob have submitted their sealed
bids. A suitable security policy for Alice’s bid is thenAbids

 pub,
and similarlyBbids

 pub is suitable for Bob’s bid. With these se-
curity policies, Alice’s bid cannot be declassified before Bob has
submitted his bid, since the conditionbids would not be true at this
time. Declassification policies can express under what conditions
data should be declassified.

4. A LANGUAGE FOR DECLASSIFICATION
In this section we presentλdeclass, a language based on the typed

lambda calculus in which declassification policies are used as labels
for types, and the type system ensures that the security policies as-
sociated with data are enforced. The language is imperative, has a
store, and has an explicit declassification operator. The following
subsections present the syntax ofλdeclass, the small-step operational
semantics, and the static semantics. To increase generality, the type
system ofλdeclassis parameterized on astatic condition analysis—a
static analysis that can determine at which program points the con-
ditions are true. The choice of primitive conditions will influence
which static analyses can be used to instantiate the type system.

4.1 Syntax
The syntax ofλdeclassis given below. Metavariablesx andy range

over variable names, andm andn range over memory locations.
A type βp in λdeclassconsists of a base typeβ annotated with a

declassification policyp. Memory locations are tagged with the
type of the value contained in the location; a locationmτ can only
store values of typeτ . For a functionλx : τ.[p] e of base type
τ p→τ ′, the security policyp is a lower bound on the memory effects
of the function; that is, executing the function bodye will only
allocate or update memory locationsm

βp′ wherep ≤ p′.
λdeclasscontains a declassification operator:declassify(v, `  

`′) is used to declassify the valuev from security level̀ to security
level `′. Declassifying a value produces a copy of the value with a
different security label. The type system ensures that declassifica-
tion can only occur if appropriate conditions are true at the time of
declassification.

Syntax:

v ::= Values
x Variables
n Integers
() Unit
λx : τ.[p] e Abstraction
mτ Memory locations

e ::= Expressions
v Values
e e Application
refτ e Allocation
!e Dereference
e := e Assignment
e; e Sequence
declassify(v, ` `′) Declassification

β ::= Base types
int Integers
unit Unit
τ p→τ ′ Functions
τ ref References

τ ::= Security types
βp Base types with policies

4.2 Operational semantics
The small-step operational semantics ofλdeclassare presented in

Figure 1. A memoryM is a finite map from typed locations to
closed values; thus,M(mτ ) is the value stored in the typed mem-
ory locationmτ . A configuration is a pair of an expressione and a
memoryM , writtenLe, MM. A small evaluation step is a transition
from one configurationLe, MM to another configurationLe′, M ′M,
written Le, MM −→ Le′, M ′M.



It is necessary to restrict the form of configurationsLe, MM to
avoid using undefined memory locations. A memoryM is well-
formed if every addressm appears at most once in dom(M), and
for every mτ ∈ dom(M), we have loc(M(mτ )) ⊆ dom(M),
where loc(e) is the set of typed locations occurring in the expres-
sione. A configurationLe, MM is well-formed ifM is well-formed,
loc(e) ⊆ dom(M), ande contains no free variables.

We usee[v/x] to denote the capture-avoiding substitution of
value v for variablex in the expressione. If M is a memory,
M [mτ 7→ v] denotes the memory obtained by mapping location
mτ to v in M .

The operational semantics ensure thatλdeclassis a deterministic
call-by-value language. Note that thedeclassifyexpression has no
computational effect: when a value is declassified from one secu-
rity level to another, the value is not modified in any way.

4.3 Static semantics
The subtyping relationship<: uses the partial order≤ on poli-

cies, and plays an important role in the enforcement of information
flow security. We writeτ <: τ ′ if security typeτ is a subtype of
security typeτ ′. We overload the<: symbol by defining a subtyp-
ing relationship on base types, writingβ <: β′ if base typeβ is a
subtype of base typeβ′.

Subtyping:

β <: β′

p ≤ p′

βp <: β′p′ β <: β

β <: β′

β′ <: β′′

β <: β′′

p′ ≤ p
τ ′1 <: τ1 τ2 <: τ ′2

τ1
p→τ2 <: τ ′1

p′→τ ′2

Note that ifβp is a subtype ofβ′p′, then the security policyp′

is at least as restrictive as the security policyp. This is consistent
with the usual notion of subtyping [24].

The typing judgmentpc, Γ ` e : τ means that expressione has
typeτ under variable contextΓ and the policypc is a lower bound
on memory effects ofe. The judgment̀ M means that memoryM
is well-typed, that is, every location ofM stores an appropriately
typed value. A configurationLe, MM is well-typed if M is well-
typed andpc, ∅ ` e : τ for somepc andτ . Typing judgments on
values, expressions and memories are defined in Figure 2.

Note that rules (T-ALLOC) and (T-ASSIGN) ensure thatpc is a
lower bound on the memory effects of a well-typed expression. For
a function with base typeτ p→τ ′, p is a lower bound on the memory
effects of the function, and an upper bound on thepc context of the
caller, as evidenced by the rules (T-ABS) and (T-APP).

The rule for declassification (T-DECLASS) has an interesting
and important side-condition: it must be statically provable that the
condition for declassification is true whenever the declassification
occurs. The side-condition ensures that the policy for declassifica-
tion is respected.

The rule (T-DECLASS) is parameterized by a static condition
analysis that can determine at which program points conditions are
true. The choice of an appropriate static condition analysis depends
on the relation of the semantics of conditions to the program se-
mantics, and thus on the choice of primitive conditions (and the
logic over primitive conditions); a suitable analysis might be a type
system, dataflow analysis, or an abstract interpretation, for exam-
ple. Parameterizing the type system on a static condition analysis
means that the results of this paper hold regardless of the choice of
primitive conditions. Section 6 presents the motivating examples
in terms ofλdeclass, and gives some instantiations of the type system
with specific static condition analyses.

λdeclasshas the standard properties of progress and type preserva-
tion (which are not presented or proven here) and is thus sound.

5. SECURITY PROPERTIES
This section presents a semantic security property possessed by

all well-typed programs inλdeclass. This property is reminiscent
of (and generalizes) noninterference, but permits information to be
released through permitted declassifications.

5.1 Equivalence relation≈`

It is first necessary to define what the attacker at security level`
can observe; this is accomplished by defining an equivalence rela-
tion≈` over typed values. Intuitively, given two valuesv andv′ of
the same base typeβ, v ≈` v′ if the two values are indistinguish-
able to an attacker who can only make observations at level` or
lower. Note that a value with security policyp = `′ c′

 p′ is observ-
able at level̀ if and only if `′ vL `, or equivalently,p ≤ ` f

 >.
Figure 3 presents the definition of the equivalence relation.

The relation≈` is a conservative, syntactic notion of equiva-
lence. In particular, if two functions are observable to an attacker
who can only make observations at security level` or lower, then
the two functions must be syntactically identical for the attacker to
regard them as equivalent; the attacker can distinguish two func-
tions that are contextually equivalent, but syntactically different.

We extend≈` to an equivalence relation over memories using
bijections between the memory locations at or below security level
`. For a memoryM , we define dom(M |`) to be the locations ofM
at or below security level̀:

dom(M |`) , {mβp | mβp ∈ dom(M) ∧ p ≤ ` f
 >}

If M1 andM2 are memories, thenM1 ≈` M2 if there exists
a bijection f from dom(M1|`) to dom(M2|`) such thatf pre-
serves types, and moreover iff maps locationmτ in M1 to nτ

in M2, thenM1(m
τ ) ≈` M2(n

τ ) if τ is not a reference type,
andf(M1(m

τ )) = M2(n
τ ) if τ is a reference type. Intuitively,

M1 ≈` M2 if the structure of the observable portion ofM1 (that
is, dom(M1|`)) is the same as the structure of the observable por-
tion of M2, and in addition the non-reference values in the observ-
able portions are indistinguishable. We write[M ]≈` to denote the
equivalence class of memoryM under the equivalence relation≈`.

5.2 Evaluations
Given a well-formed configurationLe0, M0M, an evaluationof

Le0, M0M is a sequence of configurationsLe0, M0M . . . Len, MnM,
such thatLei−1, Mi−1M −→ Lei, MiM for all i ∈ 1..n. An evalua-
tion ispartial if en is not a value.

An evaluation isc-free if no step in the evaluation reduces a term
of the formdeclassify(v, ` `′) with the conditionc true, for any
v, ` and`′. Note that all evaluations aref-free, sincef is never true.

For a given sequence of conditionsc1 . . . ck, an evaluationE is
c1 . . . ck-free if E is c1-free, or if for all evaluationsE1 andE2

such thatE = E1E2 andE1 is not c1-free, thenE2 is c2 . . . ck-
free. Intuitively, an evaluation isc1 . . . ck-free if it does not contain
k declassifications whereci was true at theith declassification.

Given a (partial) evaluationE = Le0, M0M . . . Len, MnM, we de-
fine the memory trace ofE to be the sequenceM0 . . . Mn, and
the ≈`-memory trace ofE, denoted[E]≈` , to be the sequence
[M0]≈` . . . [Mn]≈` .

5.3 Noninterference until conditionsc1, . . . , ck

Noninterference [6] is the security property that secret inputs do
not affect non-secret outputs. The precise definitions of inputs and
outputs lead to slightly different definitions of noninterference. We
assume aλdeclassprogram has a single integer input in the form of a
free variable, and the output of a program evaluation is its memory
trace. Noninterference forλdeclassis then defined as follows.



(β-REDUCTION)

L(λx : τ [p]. e) v, MM −→ Le[v/x], MM

(ALLOCATION)

Lrefτ v, MM −→ Lmτ , M [mτ 7→ v]M
mτ fresh

(DEREF)

L!mτ , MM −→ LM(mτ ), MM

(ASSIGN)

Lmτ := v, MM −→ L(), M [mτ 7→ v]M

(SEQ)

L(); e, MM −→ Le, MM

(DECLASS)

Ldeclassify(v, ` `′), MM −→ Lv, MM

(CONTEXT)
Le, MM −→ Le′, M ′M

LE[e], MM −→ LE[e′], M ′M

Contexts:
E ::= [·] e | v [·] | refτ [·] | ![·] | [·] := e | v := [·] | [·]; e

Figure 1: Operational Semantics

(T-VAR)
Γ(x) = τ

pc, Γ ` x : τ

(T-INT)

pc, Γ ` n : intp

(T-UNIT)

pc, Γ ` () : unitp

(T-LOC)

pc, Γ ` mτ : τ refp

(T-SUB)
pc, Γ ` e : τ τ <: τ ′

pc, Γ ` e : τ ′

(T-DEREF)
pc, Γ ` e : βp refp′

pc, Γ `!e : βp t p′

(T-SEQ)
pc, Γ ` e1 : unitp pc, Γ ` e2 : τ

pc, Γ ` e1; e2 : τ

(T-ABS)
p, Γ[x 7→ τ ] ` e : τ ′

pc, Γ ` λx : τ.[p] e : (τ p→τ ′)p′

(T-APP)

pc, Γ ` e1 : (τ pc′→β′p′)p pc, Γ ` e2 : τ pc ≤ pc′

pc, Γ ` e1 e2 : β′p′ t p

(T-ALLOC)
pc, Γ ` e : βp pc ≤ p

pc, Γ ` refβp e : (βp ref)p′

(T-ASSIGN)
pc, Γ ` e1 : βp refp′ pc, Γ ` e2 : βp pc t p′ ≤ p

pc, Γ ` e1 := e2 : unitp′

(T-MEM)
∀mτ ∈ dom(M). >, ∅ ` M(mτ ) : τ

` M

(T-DECLASS)
pc, Γ ` v : β` c

 `′ c′
 p

pc, Γ ` declassify(v, ` `′) : β`′ c′
 p

conditionc is true wheneverdeclassify(v, ` `′) is
reduced with rule (DECLASS)

Figure 2: Typing judgments

DEFINITION 5.1.: Let e be an expression with free variablex :
intp, and let` ∈ L be a security level. Expressione is noninter-
fering for x at level` if for all integer valuesv1 and v2, and all
memoriesM such thatLe[v1/x], MM and Le[v2/x], MM are well-
formed and well-typed, and for any evaluationsE1 of Le[v1/x], MM
andE2 of Le[v2/x], MM, then[Ei]≈` is a prefix up to stuttering1 of
[Ej ]≈` , where{i, j} = {1, 2}.

Intuitively, a program is noninterfering forx at level` if an at-
tacker who can observe all memory locations at level` or lower
cannot distinguish any two executions of the program with dif-
ferent inputsx. The requirement that one≈`-memory trace is a
prefix of the other up to stuttering implies that the attacker can ob-
serve changes to memory but is unable to measure the time be-
tween changes. Thus our definition of noninterference istiming-
insensitive. It is alsotermination-insensitive: the attacker is unable
to distinguish a program that has terminated from a program that is
still running but hasn’t modified any memory since the last change.

In the presence of declassification, a given programe may not be
noninterfering, even ife is well-typed. For example, the program
ref intL (declassify(x, H  L)) is well-typed (wherex is of type

1Sequences1 is a prefix up to stuttering of sequences2 if s′1 is a
prefix of s′2, wheres′i is the result of removing all consecutively
repeated elements fromsi. For example, the sequenceaabacc is a
prefix up to stuttering ofabbbacd, sinceabac is a prefix ofabacd.

intH t
 L andH 6vL L), but it is not noninterfering forx at levelL,

since an attacker can distinguish evaluations with different values
of x. Therefore a generalization of noninterference is needed.

The propertynoninterference until conditionsc1, . . . , ck is based
on the intuition that an attacker cannot have made any observations
about the input if the following holds:

• The attacker can only make observations about the input after
some data has been declassified to some level` or lower;

• the data is only declassified to level` or lower after a se-
quence ofk declassifications, with conditionci true at the
ith declassification; and

• that sequence of declassifications has not yet occurred.

DEFINITION 5.2.: Let e be an expression with free variablex :
int`1 c1 · · ·

ck−1
 `k

ck p, and let` ∈ L be a security level. Expression
e is noninterfering forx at level ` until conditionsc1, . . . , ck if
for all integer valuesv1 and v2, and all memoriesM such that
Le[v1/x], MM and Le[v2/x], MM are well-formed and well-typed,
and for anyc1 . . . ck-free evaluationsE1 of Le[v1/x], MM andE2

of Le[v2/x], MM then[Ei]≈` is a prefix up to stuttering of[Ej ]≈` ,
where{i, j} = {1, 2}.

EvaluationsE1 and E2 are c1 . . . ck-free, so the sequence of
k declassifications, withci true at theith declassification, cannot



() : unitp1 ≈` () : unitp2

p1 ≤ ` f
 > p2 ≤ ` f

 >
n : intp1 ≈` n : intp2

p1 6≤ ` f
 > p2 6≤ ` f

 >
n1 : intp1 ≈` n2 : intp2

p1 ≤ ` f
 > p2 ≤ ` f

 >
mτ : τ refp1 ≈` mτ : τ refp2

p1 6≤ ` f
 > p2 6≤ ` f

 >
mτ

1 : τ refp1 ≈` mτ
2 : τ refp2

p1 ≤ ` f
 > p2 ≤ ` f

 >
(λx : τ.[p] e) : (τ p→τ ′)p1 ≈`

(λx : τ.[p] e) : (τ p→τ ′)p2

p1 6≤ ` f
 > p2 6≤ ` f

 >
(λx : τ.[p′1] e1) : (τ1

p′1→τ ′1)p1 ≈`

(λy : τ.[p′2] e2) : (τ2
p′2→τ ′2)p2

Figure 3: Equivalence relation≈`

have occured in either evaluation. If the expressione is noninter-
fering for x at level` until conditionsc1, . . . , ck, then an attacker
that can only observe memory at level` or lower is thus unable to
distingush evaluationE1 from evaluationE2.

If the input is never declassified below a certain level, noninter-
ference until conditionsc1, . . . , ck entails noninterference at that
level, as stated by the following theorem:

THEOREM 5.3.: Let e be an expression with free variablex :
int`1 c1 · · ·

ck−1
 `k

f
 p, and let` ∈ L be a security level such that

e is noninterfering forx at level` until conditionsc1, . . . , ck−1, f.
Thene is noninterfering forx at level`.

The type system ofλdeclassensures that well-typed programs are
noninterfering until conditionsc1, . . . , ck, for all appropriate se-
quences of conditionsc1 . . . ck, and appropriate security levels.

THEOREM 5.4.: Let e be an expression such thatpc, ∅[x 7→
int`1 c1 · · ·

ck−1
 `k

ck p] ` e : τ for some security policypc and type
τ , and let ` ∈ L be a security level such that`i 6vL ` for all
i ∈ 1..k. Thene is noninterfering forx at level` until conditions
c1, . . . , ck.

Note that Theorem 5.4 ensures that a well-typede is noninter-
fering until conditionsc1, . . . , ck only at security levels̀ such that
`i 6vL ` for all i ∈ 1..k; the intuition is that if`i vL ` for some
i ∈ 1..k, then the attacker may observe information about the input
before allk declassifications have been performed.

The proof of Theorem 5.4 uses Pottier and Simonet’s proof tech-
nique [20], which extends the language to allow a single expression
to represent two program executions that differ only in their secret
inputs; the proof of Theorem 5.4 is reduced to a type preservation
proof in the extended language. We present the key points of the
proof here, and refer the reader to Appendix A for more details.

The languageλ2
declassextends the languageλdeclasswith a bracket

construct〈e1 | e2〉. The pair〈e1 | e2〉 represents two different ex-
pressions,e1 and e2, that may arise during two different execu-
tions of a program. Thus, the twoλdeclassexpressionse[v1/x] and
e[v2/x] can be represented by the single expressione[〈v1 | v2〉/x]
in λ2

declass. A bracket expression can appear arbitrarily deep within
an expression, but cannot be nested within another bracket expres-
sion. Usingλ2

declass, Theorem 5.4 can be proved in three steps:

1. Prove thatλ2
declassadequately represents the execution of two

λdeclassexpressions. Pottier and Simonet’s definition of ade-
quacy is not suited for our purposes; their extended language
is required to represent two base language evaluations only if
both base language evaluations terminate. Since we need to
reason about partial evaluations, our definition of adequacy
requires that given twoλdeclassevaluations, there is aλ2

declass

evaluation that fully represents at least one of them.

2. Prove type preservation forλ2
declass. A key point of the type

system ofλ2
declassis that if the bracket expression〈e1 | e2〉 has

typeβp′, then bothe1 ande2 have typeβp′, and moreover,
for some fixed policỳ 1

c1 · · · ck−1
 `k

ck p there is somej ∈
1..k such that̀ j

cj
 · · · ck−1

 `k
ck p ≤ p′. This ensures that

for any level` ∈ L such that̀ i 6vL ` for all i ∈ 1..k, no
bracket expression is observable at level`.

3. Prove that type preservation forλ2
declassentails Theorem 5.4.

Let e be an expression that is well-typed under the variable
context containing the single variablex : int`1 c1 · · ·

ck−1
 `k

ck p.
Let ` ∈ L be a security level such that`i 6vL ` for all
i ∈ 1..k. Letv1 andv2 be two integers. LetM0 be a memory
such thatLe[v1/x], M0M andLe[v2/x], M0M are well-formed
and well-typed. Theλ2

declassconfigurationLe[〈v1 | v2〉/x], M0M
represents the twoλdeclassconfigurationsLe[v1/x], M0M and
Le[v2/x], M0M. ConsiderLe[〈v1 | v2〉/x], M0M . . . Len, MnM,
a (partial)c1 . . . ck-free evaluation ofLe[〈v1 | v2〉/x], M0M
(which represents twoc1 . . . ck-free evaluations, one of the
configurationLe[v1/x], M0M and one ofLe[v2/x], M0M). Type
preservation forλ2

declass ensures that a value bound to any
memory location inMn that is observable at security level
` contains no bracket constructs. Thus, the two sequences of
memories from the twoλdeclassevaluations are≈` equivalent
up to stuttering, showing thate is noninterfering forx at level
` until conditionsc1, . . . , ck, as required.

6. MOTIVATING EXAMPLES REVISITED
In this section we reconsider the examples of Section 2 in terms

of the languageλdeclass, and see how the type system of the language
avoids the vulnerabilities mentioned.

6.1 Password checking
Consider the abstraction of the password checking system, writ-

ten inλdeclass, assuming the addition of booleans, equality test==
for integers, and the use oflet x:τ = e in e′ as syntactic sugar for
(λx : τ.[p] e′) e, for some appropriate security policyp.

1 let secret:intH = ... in
2 let pwd:(intHcert

 L) refpub = ... in
3 let guess:intHcert

 L = ... in
4 let test:booleanHcert

 L = (guess== !pwd) in
5 let result:booleanL = declassify(test, H  L) in

...

Recall that the type system ofλdeclassrequires a static condition
analysis to determine that the appropriate conditions for declassi-
fication are true whenever declassification occurs. The primitive
conditioncert is true only when certified and trusted code is run-
ning. Thus, a suitable static condition analysis can simply check if
thedeclassifyexpression occurs in certified and trusted code. Since



line 5 is certified and trusted code (as it is part of the trusted pass-
word checking module),cert is true when thedeclassifyexpression
of line 5 is reduced, and so the program is well-typed.

The type system forλdeclassprevents the value stored in the mem-
ory locationpwd from depending on the value ofsecret. If the as-
signmentpwd := secretwere inserted between lines 2 and 3, type
checking would reject the program, asintH, the type ofsecret, is
not a subtype ofintHcert

 L, the type of the password.
More generally, no laundering of data can be well-typed inλdeclass,

as declassification policies can express what declassifications are
permitted, and the type system ensures these security policies are
enforced. This includes laundering throughimplicit flows of in-
formation, where the control structure of a program is used as an
information channel.

6.2 Sealed auctions
Consider the abstraction of the sealed auction protocol written in

λdeclass, where the primitive conditionbids is true only when both
Alice and Bob’s bids have both been submitted.

1 let aliceBid:intAbids
 pub = ... in

2 let bobBid:intBbids
 pub = ... in

3 let aliceOpenBid:intpub = declassify(aliceBid, A pub) in
4 let bobOpenBid:intpub = declassify(bobBid, B  pub) in
5 /∗ determine winner∗/

...

Unlike the password checking example, the connection between
the semantics of the primitive conditions and the program seman-
tics is non-trivial, and thus a more complex static condition analy-
sis is required. However, for the abstraction of the auction protocol
given above, a relatively simple static condition analysis is suitable.

Note that Alice’s bid is the value of the variablealiceBid and
Bob’s bid is the value of the variablebobBid, and that these values
are immutable after their initialization. Thus, the primitive condi-
tion bids is true at a given program point only if bothaliceBidand
bobBidare in the variable context at that program point. At lines 3
and 4, where Alice and Bob’s bids are declassified, both variables
are in the context, and so the conditionbids is true at these program
points, and the program is well-typed.

If the program were modified by swapping lines 2 and 3 (as in
Section 2), so that Alice’s bid were declassified before Bob’s bid is
submitted, thenbids would not be true at the early declassification
of Alice’s bid: the variablebobBidwould not be in the context. The
modified program would thus fail to type-check. The type system
of λdeclassensures that the condition for declassification must be true
at the time of declassification, and so prevents the inappropriate
early declassification of Alice’s bid.

A fuller and more realistic implementation of the sealed auc-
tion protocol (having, for example, multiple auctions, a statically
unknown number of bidders, and functions for program modular-
ization), would require a correspondingly more complex static con-
dition analysis. Note, however, that the declassification policies for
bids would remain the same; what changes is the relationship of the
primitive condition semantics to the program semantics.

7. EXTENSIONS
There are several possible extensions to the declassification poli-

cies which increase policy expressiveness and allow them to cap-
ture more precisely the intended security behavior of systems.

Other logics for conditions: Classical propositional logic is
used to reason about the conditions for declassification. For a given

p
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c′ : op′
***j*j*j

p′

`
c: op ///o/o/o

`′
c′ : op′

oo o/ o/ o/
c′′: op′′ ///o/o/o p

(a) Trees (b) Arbitrary Rooted Directed Graphs

Figure 4: Examples of extended security policies for operations
other than declassify.

application domain, other logics may be better suited to express
when declassification is permitted; possibilities include first-order
logic, temporal logic, epistemic logic and linear logic. The logic
must define an appropriate form of conjunction and implication for
conditions to support the ordering≤ and join operationt.

For example, consider the sealed auction of Section 2. Tempo-
ral logic can express a suitable condition for when Alice and Bob’s
bids can be declassified:PbidsClosed, wherebidsClosed is true
when the auction bidding stops, and the formulaPbidsClosed is
true when the auction bidding stopped sometime in the past. Stan-
dard model checking techniques provide a sound static condition
analysis that can determine if temporal logic formulas are always
true at the time of declassification, that is, if for all possible execu-
tion paths to the declassification, the formula is true.

The use of more expressive logics may make the comparison of
two security policies (and thus the type checking ofλdeclasspro-
grams) undecidable. In addition, proving that a condition is al-
ways true at the time of declassification, as required by the rule
(T-DECLASS), may become more complex.

Operations other than declassify:Extending the security poli-
cies to other operations than declassification increases their expres-
siveness. Data labeled with an extended policy`c: op

 p must be
treated at security level̀, the operatorop may be applied to the
data provided conditionc is true, and the result of the operation is
labeled with security policyp. The security policỳ c

 p is equiva-
lent to the extended security policy`c: declassify

 p, wheredeclassifyis
the declassify operator.

With multiple operators, there is no reason to restrict the num-
ber of possible operations on data; extended security policies could
form trees, such as in Figure 4(a) or even arbitrary rooted directed
graphs, as in Figure 4(b).

The password example of Section 6.1 could benefit from the
more expressive security policies. The security policy for the pass-
word is H cert

 L, which permits the password in its entirety to be
declassified to security levelL. The introduction of an equality test
operatoreq would allow the policy to be amended toH cert: eq

 L,
which expresses the desirable restriction [25] that only the result of
an equality test of the password can be declassified.2

Further investigation of extended security policies may show them
to be expressive enough to allow the clean treatment of encryption
and decryption as primitive operations. Supposeencis a primitive
encryption operator. Then the security policyH c: enc

 L would allow
the encryption of secret (security levelH) data, and allow the re-
sulting encrypted data to be non-secret (security levelL); the policy
would also remove the possibility of accidental declassification of
unencrypted data, which the policyH c

 L might permit.
Dynamic security policies: The λdeclasstyping rule for declas-

2It is also necessary to ensure that results of computations involv-
ing the password cannot be declassified with equality tests [25],
which would allow the entire password to be leaked in justk equal-
ity tests, wherek is the password size in bits. This can be accom-
plished by adding an operatorarith which represents all arithmetic
operations; the password’s security policy wouldn’t allow any arith-
metic operations on the password, removing this possible channel.



sification (T-DECLASS) requires the static proof that conditionc
is true when the declassification of data labeled` c

 p occurs. This
static proof burden could be removed and a more dynamic approach
to declassification policies taken. Instead, a declassification could
succeed or fail at run time, depending on whether the condition is
true or false at the time of declassification. However, since the run-
time behavior of the program would now depend on the security
policies of data, a new information channel is introduced, and care
must be taken that the desired information flow properties hold re-
gardless of the success or failure of declassifications. Other work
on dynamic security policies [32] addresses these issues.

8. RELATED WORK
Intransitive noninterference[22, 18, 21] is an information flow

property based on noninterference that was introduced to describe
the behavior of systems that need to declassify information. Intran-
sitive noninterference is an intensional property, where in each step
of computation, information only flows between security levels (or
domains) according to some (possibly intransitive) relation.

Declassification policies are compatible with intransitive nonin-
terference. A security policỳ c

 `′ c′
 p can be viewed as a decla-

ration that information may flow from security level` to security
level `′. Alternatively, a security policỳ c

 `′ c′
 p may only be al-

lowed if information is permitted to flow from̀ to `′, according to
some (externally declared) relation. In fact, declassification poli-
cies extend intransitive noninterference with temporal properties:
in each computation step, information flows between levels only if
that flow is permittedand appropriate conditions are true for that
computation step. This additional expressiveness permits security
policies that prevent inappropriate declassifications, such as in the
sealed auction example, which intransitive noninterference by itself
is unable to accomplish.

Intransitive noninterference specifies security policies on secu-
rity domains, that is, how information may flow between domains;
by contrast, declassification policies associate security policies with
data. For example, assumingH, L ∈ L are domains such that
H 6vL L, data labeled with the security policyH c

 L is in the same
domainH as data labeled with the security policyH; however, the
former may be declassified to the domainL, while the latter will
never be declassified to the domainL. Thus, declassification poli-
cies provide additional precision, ensuring that data labeledH will
never be declassified to the domainL, despite the fact that some in-
formation is permitted to flow from domainH toL. This additional
precision could alternatively be seen as a refinement of security do-
mains: the policỳ c

 p represents the subdomain of` that may be
declassified (whenc is true) to the subdomain represented byp.
Viewed in this light, security policies for declassification provide a
structured and intuitive method of refining security domains, based
on what declassifications may be performed in the future.

Recent work by Mantel and Sands [11] places intransitive non-
interference in a language setting, providing a bisimulation-based
security condition for multi-threaded programs that controls where
information can be declassified, and a type system for a language
that enforces this condition.

Robust declassification[28] is a desirable security property for
systems that perform declassification. In brief, a system is robust
if an active attacker (one who can observe and modify the behavior
of the system) cannot learn more about the system (including se-
cret inputs) than could a passive attacker (one who can observe but
not modify the behavior of a system). In a language based setting,
this means that the decision to declassify data must be trusted [27,
16]; this is equivalent to the following condition being true at ev-
ery declassification:control flow and data at this program point

is trusted. By making this a primitive condition and conjoining it
to all declassification conditions in the security policies, robust de-
classification can be expressed inλdeclassusing an appropriate static
condition analysis. The requirement that the decision to declassify
data must be trusted is alluded to in the password checking example
in Section 6.1, through use of the primitive conditioncert, which
is true only if certified and trusted code is executing.

Selective declassification[19] was introduced as part of the de-
centralized label model [14, 15], and requires the owners of data
to authorize all declassifications of that data; which owners are re-
quired to give their authorization for a given declassification de-
pends on what security levels the data is being declassified from
and to. Pottier and Conchon [19] present selective declassification
as a combination of information flow and access control, where a
number of declassification operations are locked at appropriate lev-
els of authority; access control allows only suitably authorized prin-
cipals to unlock the declassification operations, and only unlocked
declassification operations can declassify information. Selective
declassification, like robust declassification, attempts to prevent in-
appropriate declassifications by requiring a certain condition to be
true when declassification occurs:all required owners of the data
have authorized the declassification. Like robust declassification,
such a condition can be incorporated into declassification policies.

Banerjee and Naumann give a type system for a Java-like lan-
guage that uses access control to mediate information release [3].
The type system allows a dependency to be introduced between
dynamically enabled access control permissions in the Java model
and the security level of a method result. The security property
enforced is, however, noninterference.

Ferrari et al. [5] use a form of dynamically-checked declassi-
fication in an object-oriented system throughwaiversto strict in-
formation flow. Waivers are applied dynamically and can mention
specific data objects, thus providing fine-grain control over when
information is declassified. With suitable extensions to the de-
classification policies (specifically dynamic testing of conditions
and possibly a more expressive logic for conditions than classical
propositional logic), we believe that waivers can be represented us-
ing declassification policies.

The languageλdeclassis asecurity-typed language(e.g., [26, 24,
8, 13, 1, 2, 20]), in which types of program variables are annotated
with security policies. The type systems of such language enforce
security properties, typically noninterference.

Other approaches, such asquantitative information flow(e.g.,
[12, 10, 4]) andrelative secrecy[25] seek to measure or bound the
amount of information that is declassified. This work is largely or-
thogonal to declassification policies, which, in the context of this
paper, are concerned only with possibilistic security assurances.
However, the conditions for declassifications could perhaps be use-
ful in specifying or bounding channel capacities.

9. CONCLUSION
We have presented an expressive framework for declassification

security policies, and incorporated them in a security type system.
A security policy for declassification describes a sequence of secu-
rity levels through which a labeled data value may be declassified if
associated conditions are met. Security policies for declassification
are defined independently of any mechanism for enforcing them;
the security type system presented here is one such mechanism.

In the language setting of a security type system, these declas-
sification policies are connected to a semantic security condition
that generalizes noninterference to allow information release only
if the given conditions are satisfied. For generality, we have pa-
rameterized the declassification policy framework on the choice of



conditions, and correspondingly parameterized the type system on
a static condition analysis that connects the semantics of the condi-
tions to the language semantics. Our experience in applying these
policies to various small programs, some of which are given here,
suggests that the policy language is intuitive and usefully restricts
program behavior. Thus, the analysis embodied in the type system
helps to avoid writing insecure programs in the presence of down-
grading. We have also identified a number of possible extensions
that may lead to future work.
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APPENDIX

A. PROOF OF THEOREM 5.4
In this appendix we present the syntax and semantics of the lan-

guageλ2
declass, show that it is adequate to represent the evaluation of

two λdeclassexpressions, and that type preservation holds. Finally,
we prove that type preservation ofλ2

declassimplies Theorem 5.4.

A.1 Syntax and Semantics ofλ2
declass

The languageλ2
declassextends the languageλdeclasswith a bracket

construct〈e1 | e2〉. The pair〈e1 | e2〉 represents two different ex-



pressions,e1 ande2, that may arise in two different executions of a
program. A bracket expression may not be nested inside a bracket
expression, but can otherwise appear nested at arbitrary depth.

In addition to tracking subexpressions that may differ in different
executions of a program, we also need to track how the memories
may differ. Since we have dynamic allocation of memory loca-
tions, the languageλ2

declassincludes a special constant valuevoid;
if memory locationmτ is bound to a value〈void | v〉 or 〈v | void〉,
thenmτ is bound in only one of the two executions.

λ2
declassSyntax:

v ::= values
... λdeclassvalues
〈v | v〉 Pair
void Void

e ::= expressions
... λdeclassexpressions
〈e | e〉 Pair

Given an extended expressione, let the projectionsbec1 andbec2
represent the twoλdeclassexpressions thate encodes. The projec-
tion functions satisfyb〈e1 | e2〉ci = ei and are homomorphisms on
other expression forms. The projection functions are extended to
memories in the following way:bMci maps the memory location
mτ to bM(mτ )ci if and only if bM(mτ )ci is defined and isn’t
void. In addition,〈e1 | e2〉[v/x], the capture-free substitution of
v for x in 〈e1 | e2〉, must use the corresponding projection ofv in
each branch:〈e1 | e2〉[v/x] = 〈e1[bvc1/x] | e2[bvc2/x]〉.

We extend configurations to triplesLe, MMi for an indexi ∈
{•, 1, 2}. The index indicates if the expressione represents a pair
of expressions (•) or the left (1) or right (2) side of a pair of ex-
pressions. A configurationLe, MMi is well-formed if the follow-
ing conditions are true:e does not containvoid; if i ∈ {1, 2}
then e does not contain a bracket construct andLe, bMciM is a
well-formedλdeclassconfiguration; ifi = • thenLbec1, bMc1M and
Lbec2, bMc2M are well-formedλdeclassconfigurations.

The operational semantics ofλ2
declassare presented in Figure 5.

They are based on the semantics ofλdeclass, and contain some new
evaluation rules: (BRACKET), (L IFT-β), (L IFT-ASSIGN), (L IFT-
DEREF), (BRACKET-SEQ). The rules (ALLOCATION), (BRACKET)
and (DEREF) are modified to access the memory projection corre-
sponding to indexi, and the remainingλdeclassrules are adapted to
λ2

declassby indexing each configuration withi. The evaluation con-
texts are the same in both languages.

The typing system forλ2
declasscontains all typing rules ofλdeclass,

with the addition of two new rules, given below. For notational
convenience, we define theH E p (“H protectsp”) as follows.

DEFINITION A.1.: If H is a policy`1
c1 · · · ck−1

 `k
ck p, andp′

is an arbitrary policy, then we writeH E p′ to denote that there
exists aj ∈ 1..k such that̀ j

cj
 · · · ck p ≤ p′. Similarly, we write

H t p′′ E p′ to denote that there exists aj ∈ 1..k such that
(`j

cj
 · · · ck p) t p′′ ≤ p′. Finally, we writeH 5 p if it is not the

case thatH E p.

Typing judgments for λ2
declass:

(T-VOID)

pc, Γ ` void : τ

(T-BRACKET)
H t pc E pc′ H E p

pc′, Γ ` e1 : βp pc′, Γ ` e2 : βp

pc, Γ ` 〈e1 | e2〉 : βp

Note that the typing rule (T-BRACKET) is parameterized with
a security policyH, and ensures thatH t pc protects the memory

effects of both subexpressions, and also thatH protects the security
policy for the type of a bracket expression. This property will be
key in the proof of type preservation.

A configurationLe, MMi is well-typed if M is well-typed and
pc, ∅ ` e : τ for somepc andτ .

For a sequence of conditionsc1 . . . ck, an evaluationLe0, M0M•
. . . Len, MnM• in λ2

declassis c1 . . . ck-free if both projections of the
evaluation arec1 . . . ck-free, i.e., if both evaluationsLbe0c1, bM0c1M
. . . Lbenc1, bMnc1M andLbe0c2, bM0c2M . . . Lbenc2, bMnc2M are
c1 . . . ck-free. Note that for the projections of the evaluations, for
all i ∈ 1..n andj ∈ {1, 2} we haveLbei−1cj , bMi−1cjM −→=

Lbeicj , bMicjM, (where−→= is the reflexive closure of−→) in-
stead ofLbei−1cj , bMi−1cjM −→ Lbeicj , bMicjM; the notion of
c1 . . . ck-freeness can be extended for these evaluations easily.

A.2 Adequacy ofλ2
declass

The extended languageλ2
declass is adequate for reasoning about

the execution of twoλdeclassexpressions. We show that evaluation
of aλ2

declassis both sound (a reduction of a bracket expression corre-
sponds to a reduction of one of its projections) and complete, for a
precise notion of “completeness” that is sufficient for our purposes.

LEMMA A.2. (Soundness): If Le, MM• −→ Le′, M ′M• then
Lbeci, bMciM −→= Lbe′ci, bM ′ciM for i ∈ {1, 2}.

Proof: By induction on the derivationLe, MM• −→ Le′, M ′M•.
The only interesting case is (BRACKET), where we need to ap-
peal to the fact that ifLe, MMi −→ Le′, M ′Mi, thenLe, bMciM −→
Le′, bM ′ciM, which follows from inspection of the rules (ALLOCA-
TION), (BRACKET) and (DEREF).

LEMMA A.3. (Stuck Configurations): If Le, MM• is stuck (i.e.
it cannot be reduced, ande is not a value), thenLbeci, bMciM is
stuck for somei ∈ {1, 2}.

Proof: By induction on the structure ofe.

As mentioned in Section 5.3, Pottier and Simonet’s definition of
adequacy is not suitable for reasoning about partial evaluations. We
define completeness such that if we have twoλdeclassevaluations,
then there is aλ2

declassevaluation that fully represents at least one
of them; this is sufficient for us to later prove that an≈`-memory
trace of one (partial) evaluation is a prefix (up to stuttering) of the
≈`-memory trace of the other.

LEMMA A.4. (Completeness):If Lbeci, bMciM −→∗ Le′i, M ′
iM

for i ∈ {1, 2}, then there exists a configurationLe′, M ′M• such that
Le, MM• −→∗ Le′, M ′M• and eitherLbe′c1, bM ′c1M = Le′1, M ′

1M
or Lbe′c2, bM ′c2M = Le′2, M ′

2M.

Proof: Let Lei
0, M

i
0M . . . Lei

ni
, M i

ni
M where we haveLei

0, M
i
0M =

Lbeci, bMciM and Lei
ni

, M i
ni

M = Le′i, M ′
iM for i ∈ {1, 2}, i.e.,

Lbeci, bMciM −→∗ Le′i, M ′
iM. For evaluationsE = Le0, M0M•

. . . Len, MnM• define the functionfi(E) to be the number of eval-
uation steps that reduced theith projection: fi(E) = |{k | 0 ≤
k ≤ n − 1 ∧ bekci 6= bek+1ci}|. Suppose that we have an eval-
uationE, starting fromLe, MM•. Consider the functiong(E) =
min(n1−f1(E), n2−f2(E)). Clearly ifg(E) is zero, thenE is an
evaluation fromLe, MM• to some configurationLe′, M ′M• such that
eitherLbe′c1, bM ′c1M = Le′1, M ′

1M or Lbe′c2, bM ′c2M = Le′2, M ′
2M,

which suffices to prove the lemma. The proof constructs such an
evaluation, by showing that ifg(E) is not zero, then by Lemma A.3



Operational semantics ofλ2
declass

(ALLOCATION)

Lrefτ v, MMi −→
Lmτ , M [mτ 7→ newi(v)]Mi

mτ fresh

(DEREF)

L!mτ , MMi −→
Lreadi(M(mτ )), MMi

(ASSIGN)

Lmτ := v, MMi −→
L(), M [mτ 7→ updatei(M(mτ ), v)]Mi

(BRACKET)
Lei, MMi −→ Le′i, M ′Mi

e′j = ej {i, j} = {1, 2}
L〈e1 | e2〉, MM• −→ L〈e′1 | e′2〉, M ′M•

(L IFT-DEREF)

L!〈v1 | v2〉, MM• −→
L〈!v1 | !v2〉, MM•

(BRACKET-SEQ)

L〈() | ()〉; e, MM• −→
Le, MM•

(L IFT-β)

L〈v1 | v2〉 v, MM• −→
L〈v1 bvc1 | v2 bvc2〉, MM•

(L IFT-ASSIGN)

L〈v1 | v2〉 := v, MM• −→
L〈v1 := bvc1 | v2 := bvc2〉, MM•

Auxiliary Functions:
new•(v) = v read•(v) = v update•(v, v′) = v′

new1(v) = 〈v | void〉 read1(v) = bvc1 update1(v, v′) = 〈v′ | bvc2〉
new2(v) = 〈void | v〉 read2(v) = bvc2 update2(v, v′) = 〈bvc1 | v′〉

Figure 5: Operational Semantics ofλ2
declass

we can extendE using (BRACKET), to some evaluationE′, such
that fi(E

′) = fi(E) + 1 for somei ∈ {1, 2}, thus eventually
constructing an evaluationE′′ such thatg(E′′) is zero.

A.3 Type Preservation forλ2
declass

The type preservation theorem forλ2
declass is nonstandard, and

assumes that there is some distinguished configurationLe0, M0M•
that the computation started from, and that if we have a reduction
Le, MM• −→ Le′, M ′M•, then there is an evaluation ofLe0, M0M•
ending in the configurationLe, MM•. The type preservation the-
orem needs knowledge of the entire history of the computation,
since the proof of Theorem 5.4 only requires that type preservation
for λ2

declassholds forc1 . . . ck-free evaluations.

THEOREM A.5. (Type Preservation): SupposeH = `1
c1 

· · · ck−1
 `k

ck pH , Le, MMi −→ Le′, M ′Mi, Le, MMi is well-formed
and well-typed,pc, ∅ ` e : τ , ` M and i ∈ {1, 2} implies
H E pc, and i = • implies that the evaluationLe0, M0M• . . .
Le, MM•Le

′, M ′M• is c1 . . . ck-free. Thenpc, ∅ ` e′ : τ , ` M ′,
dom(M) ⊆ dom(M ′) andLe′, M ′Mi is well-formed and well-typed.

Proof: By induction on the derivation ofLe, MMi −→ Le′, M ′Mi.
The most interesting case is declassification, where the expression
e is declassify(v, ` `′) ande′ is v andM ′ = M andτ is β`′ c′

 p.
By (T-DECLASS), pc, ∅ ` v : β` c

 `′ c′
 p. Now we need to show

thatpc, ∅ ` v : β`′ c′
 p. Consider the possible forms ofv. Note that

v cannot be a variable (since the context is empty). Ifv is an integer,
void, unit, location or abstraction, then the appropriate typing rules
for values ((T-INT), (T-VOID), (T-UNIT), (T-LOC) and (T-ABS))
allow a value of base typeβ to be given any policy, including̀′ c′

 p.
If v is a bracket value〈v1 | v2〉, then we knowH E ` c

 `′ c′
 p, that

is, there exists somej ∈ 1..k such that̀ j
cj
 · · · ck−1

 `k
ck pH ≤

` c
 `′ c′
 p. Moreover, sincev is a bracket value,i = •, implying

the evaluation isc1 . . . ck-free; thus, we can show by induction on
k that j must be less thank. Thus`j+1

cj+1
 · · · ck−1

 `k
ck pH ≤

`′ c′
 p andj + 1 is less than or equal tok, and soH E `′ c′

 p as
required.

The type preservation ofλ2
declassimplies Theorem 5.4, which we

are ready to prove, after one additional lemma.

LEMMA A.6.: Let H be an arbitrary policy`1
c1 · · · ck−1

 `k
ck pH . Let mβp be a memory location such thatH 5 p. Let M

be a memory withmβp ∈ dom(M). Let Le, MMi −→
∗ Le′, M ′Mi.

ThenbM ′(m
βp)c1 = bM ′(m

βp)c2 = M ′(m
βp).

Proof: By Theorem A.5 we havemβp ∈ dom(M ′). A value of
type βp is either of the form〈v1 | v2〉 or v3, wherev1, v2, v3 are

of typeβp and do not contain brackets. IfM ′(m
βp) is of the form

〈v1 | v2〉, then by (T-BRACKET) H E p, a contradiction. Therefore
M ′(m

βp) must be of the formv3, and the result holds.

Proof of Theorem 5.4: Let e be aλdeclass expression such that
pc, ∅[x 7→ intH] ` e : τ for some security policypc and type
τ , whereH is the security policỳ1

c1 · · · ck−1
 `k

ck pH . Let ` ∈ L
be an arbitrary security level such that`i 6vL ` for all i ∈ 1..k.
Let v1 andv2 be two integer values. LetM be a memory such that
Le[v1/x], MM and Le[v2/x], MM are well-formed and well-typed.
Consider theλ2

declassconfigurationLe[〈v1 | v2〉/x], MM•. This con-
figuration is well-formed and well-typed, asH E H. Let E1

andE2 be c1 . . . ck-free λdeclassevaluations ofLe[v1/x], MM and
Le[v2/x], MM respectively. By adequacy (Lemma A.4) we have a
c1 . . . ck-freeλ2

declassevaluationLe[〈v1 | v2〉/x], MM• Le1, M1M• . . .
Len, MnM• such thatLbenci, bMnciM is the last configuration ofEi,
for somei ∈ {1, 2}.

Now, let j ∈ 1..n, and letmβp be any memory location in
dom(Mj |`). From the definition of dom(Mj |`) we havep ≤
` f
 >, sop = `′ c′

 p′, for some`′ such that̀ ′ vL `. It cannot
be the case that̀i vL `′ for somei ∈ 1..k, since this would imply
`i vL `, which is a contradiction. SoH 5 p, and by Lemma A.6

the valueMj(m
βp) does not contain a bracket expression.

Thus, for allj ∈ 1..n, we havebMjc1 ≈` bMjc2, and so[Ei]≈`

is a prefix up to stuttering of[Ej ]≈` , where{i, j} = {1, 2} and
Lbenci, bMnciM is the last configuration ofEi. Thuse is noninter-
fering forx at level` until conditionsc1, . . . , ck.


