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Abstract

This paper explores information flow control in systems in which the security classes of data can vary
dynamically. Information flow policies provide the means to express strong security requirements for
data confidentiality and integrity. Recent work on security-typed programming languages has shown that
information flow can be analyzed statically, ensuring that programs will respect the restrictions placed
on data. However, real computing systems have security policies that vary dynamically and that cannot
be determined at the time of program analysis. For example, a file has associated access permissions
that cannot be known with certainty until it is opened. Although one security-typed programming lan-
guage has included support for dynamic security labels, there has been no examination of whether such
a mechanism can securely control information flow. In this paper, we present an expressive language-
based mechanism for securely manipulating dynamic security labels. The mechanism is presented both
in the context of a Java-like programming language and, more formally, in a core language based on
the typed lambda calculus. This core language is expressive enough to encode previous dynamic label
mechanisms; as importantly, any well-typed program is provably secure because it satisfies noninterfer-
ence.

1 Introduction

Information flow control protects information security by constraining how information is transmitted among
objects and users of various security classes. These security classes are explabstshasociated with

the information or its container®ynamic labelslabels that can be manipulated and checked at run time,

are vital for modeling real systems in which security policies may be changed dynamically. For example, it

is important to be able to change security settings on files and database records, and these changes should
affect how the information from these sources can be used.

However, manipulating labels dynamically makes it difficult to enforce a strong notion of information
security such asoninterferencd8] for several reasons. First, downgrading the label of an object may
convert sensitive data to public data, directly violating noninterference. Second, label changes can be used
to convey information covertly; some restriction has to be imposed to prevent such covert channels [28, 21].
Third, the usual way to control information flow in the presence of dynamic labels is mandatory access
control (MAC), which generally cannot preveantplicit flowsarising from the control flow paths not taken
at run time [4, 12].

Static information flow control techniques, such as those developed by Denning and Denning [5], are
able to analyze all control flow paths and prevent illegal implicit flows. Moreover, static information flow
analysis incurs little run-time overhead. Recently, static information flow analyses have been formalized in
security type systengs.g., [26, 10, 32, 18, 3, 20]) that can provably enforce noninterference. Nevertheless,
in most security-typed languages, security labels are purely static type-level information that cannot be
accessed or tested at run time.



JFlow [14] and its successor, Jif [16] are the only security-typed languages supporting dynamic labels.
However, although the Jif type system is designed to control the new information channels that dynamic la-
bels create, it has not been proved to enforce secure information flow. Further, the dynamic label mechanism
in Jif has limitations that impair expressiveness and efficiency.

In this paper, we propose a new, expressive language-based mechanism for securely manipulating dy-
namic security labels. We show that the mechanism is useful in practice by incorporating it into Jif and
demonstrating that the resulting language, Jif-DX, is more expressive than Jif. Further, we study the sound-
ness of this mechanism by formalizing it in a core language based on the typed lambda calculus and proving
that any well-typed program of the core language is secure because it satisfies noninterference. This is the
first noninterference proof for a security-typed language in which general security labels can be manipulated
and tested dynamically.

While downgrading security classes [24, 15] is an important capability, it is useful to treat it as a separate
mechanism so that labels can be manipulated dynamically while preserving noninterference. However, the
Jif language does support a downgrading mechamighoutresorting to dynamic labels.

The remainder of this paper is organized as follows. Section 2 presents some background on lattice
label models and dynamic labeling. Section 3 introduces the static analysis framework for dynamic labels
and the Jif-DX language. Section 4 formalizes the static analysis of dynamic labels as the type system of
a core languaga ps.. and proves the noninterference result. Section 5 covers related work, and Section 6
concludes.

2 Background
2.1 Security classes

We assume that security requirements for confidentiality or integrity are defined by assoseingy
classeswith users and with the resources that programs access. These security classes form/a \aktice
write £ C £’ to indicate that security clags is at least as restrictive as another security clastn this
case it is safe to move information from security clage k', because restrictions on the use of the data are
preserved. To control data derived from sources with classeslk’, the least restrictive security class that
is at least as restrictive as botrandk’ is assigned. This is the least upper bound, or join, wriktenk’.

2.2 Labels

Type systems for confidentiality or integrity are concerned with tracking information flows in programs.

Types are extended with securlgbelsthat denote security classes. A laBelppearing in a program may

be simply a constant security claksor a more complex expression that denotes a security class. The

notation?; C ¢, means thafs denotes a security class that is at least as restrictive as that dendted by
Because a given security class may be denoted by different labels, the ré&latjenerates a lattice

of equivalence classasf labels withLl as thejoin (least upper bound) operator. Two labéjsand/, are

equivalent, writterf ~ /5, if /1 C {5 andés C ¢1. The join of two labels?; LI /5, denotes the security class

that is the join of the security classes thatind/, denote. For example, if has label, andy has labeV,,

then the sunx+y is given the label, LI Z,,.

2.3 Security type systems for information flow

Security type systems can be used to enforce security information flows statically. Information flows in
programs may be explicit flows such as assignments, or implicit flows [5] arising from the control flow of
the program. Consider an assignment statemgeptwhich contains an information flow frognto x. Then

the typing rule for the assignment statement requires#hat /,, which means the security level gfis

lower than the security level of, guaranteeing the information flow frognto x is secure.



One advantage of static analysis is more precise control of implicit flows. Consider a simple conditional:
if bthen x = true else x = false

After running this expression, the value:ofs equal tob, although there is no direct assignment frorto

x. A standard technique to prevent illegal implicit flows is to introdugecgram-counter label], written

pc, which indicates the security level of the information that can be learned by knowing the control flow
path taken thus far. The type system ensures that any effect of expre$siera label at least as restrictive

as itspc. In other words, expressiancannot generate any effects observable to users who should not know
the current program counter.

2.4 Dynamic labels in Jif

Jif [16] (previously known as JFlow [14]) is the only existing security-typed language that supports dy-
namic labels. Jif extends the Java language [9] with security labels that are basedlecahtalized label
model[15]. These labels may explicitly mention principals. For example, a value withitypfilice:Bob}

is an integer owned by principallice and readable bylice andBob. Jif aims to provide a usable pro-
gramming model, in which the dynamic label mechanism plays an important role.

In Jif, security labels can be used as first-class values, so labels are not purely static type annotations. In
addition, variables of typeabel (label variable3 may be used as a label for other values. Label variables
provide a straightforward way to represent dynamic labels. For example, suppeselabel variable.
Thenxx refers to the label contained #) and{*x?} is a legitimate label in Jif ik is declaredfinal so
that it cannot be assigned after initialization, and the meanings of labels do not change as variables are
assigned. Dynamic labels are treated as unknowfixadlabels by the compiler, so they can be propagated
in static checking. For example, given any two labglsand ¢, such that/; T /s, it is the case that
O U{*x} C /o U {*x}.

Since dynamic labels are generally unknown at compile time, it may be impossible to decide statically
whether?; C ¢, holds. In this case, the conditidin C /5 can only be enforced by examining labels at run
time. For example, suppose a program tries to send an integer through a network channel that is created at
run time and has a dynamic label. The operation is safe only if the label of the channel is at least as high as
the label of the integer; this condition can only be tested at run time.

Jif provides theswitch label statement for run-time label tests. The following code shows how to
implement the above example using theitch label statement:

(A) final label{} x;
Channel{*x} c;
int{Alice:} y;
switch label(y) {
case (int{*x} z) c.send(z);
else throw new UnsafeTransfer();

}

The label of channet is a dynamic labe{*x}. The label ofx is the bottom labe{}, which means the
information abouk is public. Theswitch label statement executes the first of the cases whose associated
label is at least as restrictive as thatyof The value ofy is assigned to the corresponding variable (for
examplez). Thus thesend operation will be executed only ffAlice:} C {*x}, guaranteeing thatis a
secure channel for sendifg

Like labels, principals may also be used as first-class values at run time. The stademsr (p1,
p2) S executes the statemefitif the principalp1 can act for the principgb2. This acts-for relationship
betweerp1 andp2 is equivalent to{p2:} C {p1:}. Thus theactsFor statement essentially implements a
run-time label examination.



3 Static analysis of dynamic labels

This section presents a general framework for static checking of dynamic labels. We propose the language
Jif-DX, which extends Jif with a more expressive dynamic label mechanism based on this framework.

3.1 Static checking framework for dynamic labels

Static checking of dynamic labels must rely on the information about dynamic labels available at com-
pile time. The insight behind the new static checking framework is to represent this informaleivehs
constraintsof the form/¢; C /5. For example, the constraiffilice:} T {*x} indicates that the label
contained inx is at least as restrictive ddlice:}. Thenitis safe to assign a value of laHéllice:} to a
variable of labeK*x}, even though the exact valueofs unknown.

For a security-typed language, static information flow checking is an aspect of type checking, which
ensures that a well-typed expression does not generate illegal information flows. In general, if type-checking
an expression involves dynamic labels, the compiler can reason more accurately about information flow by
exploiting the set of label constraints known to be satisfied whemexecuted. Thus, tracking and using the
label constraints of each expression is the key to improving static checking of dynamic labels. Essentially,
a label constraint is a kind of type constraint, which has been used in bounded polymorphic types, type
inference and dependent type systems [23, 30].

We can classify label constraints into three categories: dynamic constraints, static constraints and im-
plicit constraints. This classification helps identifying various label constraints systematically and provides
hints for new dynamic label constructs.

e Dynamic label constraints
Dynamic label constraintare constraints enforced by testing labels at run time. For example, consider
the switch label statementiswitch label(e) {...case (T{(} y): S...}. If S is executed,
thent. C ¢ (¢, represents the label @) must be satisfied, and thus, the constraint could be used in
type-checkings. However, Jif does not make use of this constraint when statically chesking

e Static label constraints
Static label constraintare constraints enforced statically by the compiler. For example, in Jif, an
actsFor constraint p1 actsFor p2” may be specified in a method signature to prevent the method
from being called unless the compiler can determine that prinpipalts forp2 at the call site [14].
This actsFor constraint is similar to a static label constrafip2:} T {p1:}, though it has some
separate utility in Jif.

One advantage of static constraints is that no run-time cost is incurred because they are enforced
statically. Furthermore, not all the static constraints can be enforced dynamically because some labels
such aglass label parametefid 4] have no run-time representations.

o Implicit label constraints
Implicit label constraintsare not explicitly specified in programs, but can be inferred from programs.
For example, consider the statemefittial label 1b = £". Itis clear that the constraidtx1b} ~
£ holds after the statement is executed. Implicit label constraints can be used to type-check call
expressions. In the following code, the type of expression({Alice:},10) is int{Alice:}
because of an implicit constraifi¥1b} ~ {Alice:} that arises from argument passing.

(B) interface I { int{*1b} m(label{} 1b, int{x1b} x); %}
I{} o;
int{Alice:} y = o.m({Alice:}, 10);

To enable the compiler to generate an implicit label constraint for every actual label argument, Jif
imposes a syntactic restriction on the method argument of Igpel: the actual label argument in
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a call expression must be an expression that can be converted to a label without evaluation. This
restriction does not substantively affect expressiveness. For example, given an arbitrary expression
of type label, the expression.m(e,10) can be rewritten asfinal label t =e; o.m(t,10)”,

wheret can be converted to the labgit}.

3.2 The Jif-DX language

The original Jif dynamic label mechanism appears to be sound but has several limitations. First, label

checking of the clauses ofswitch label statement does not fully exploit the label constraint enforced by

the run-time check. Second, Jif supports only one kind of static label constaitdFor constraints, which

give information about principals but are not as powerful as general label constraints. Third, in Jif only label

variables can be used as dynamic labels, but in practice other expressions may be useful in dynamic labels.
These limitations of Jif make it difficult or awkward to write some applications that need to manipulate

dynamic labels. Therefore, we propose the Jif-DX language, which extends Jif with a better dynamic label

mechanism, including the label-test statement, method and field label constraints, and more general label

expressions.

3.2.1 The label-test statement

Jif-DX provides the label-test statement, which is a more flexible way to implement run-time label checks
than theswitch label statement. The syntax of the label-test statement resembles a ndrstatement,
except that the conditional expression must be a label constraint syntacticafly(#i<={5) S; else
So”. Intuitively, S; is executed iff; C /5 is true at run time; otherwises, is executed. Becaudg C /5
must hold ifS; is executed, this constraint can be assumed to hold when chegkstgtically.

Both theswitch label statement and thectsFor statement in Jif can be encoded with the label-test
statement. For example, the statementtsFor (p1, p2) S”is equivalentto if ({p2:}<={p1:}) 5"

3.2.2 Method label constraints

Jif-DX allows general label constraints to be specified in method signatures, whereas Jif only provides
actsFor constraints. The following example shows a use of a label constraint on a method:

(C) class Keyl[principal pl {
int{} encrypt(label{} 1b, int{*1b} x) where {*1b}<={p:} { ... 1}
}

The clasKey[principal p] represents a key belonging to princigal The encrypt method takes in
a labellb and an integex labeled with{+*1b}, and attempts to encrygtwith the key of principap and
return the encrypted result as a public integer. This method should only encrypt the data owned by principal
p, because the result can be decryptedbyfhis requirement is captured by the method label constraint
{*1b} C {p:}. The compiler ensures that the constraint is satisfied wherever this method is called.
Another way to write this code would be to insert a run-time check in the method body and make the
method throw an exception {ff*x1b} C {p:} is not satisfied at run time. This code would incur some
unnecessary run-time label checks, and the caller would have to handle the exception somehow. Indeed,
one advantage of the method label constraint is its ability to exploit information available at the caller side
to reduce the number of run-time checks. For example, in the following Jif-DX code the compiler can
determine that the method constraint is satisfied without a run-time check:

(D) Keyl[Alicel{} k;
int{Alice:Bob} x;
k.encrypt ({Alice:Bob}, x);



3.2.3 Field label constraints

In Jif-DX, label constraints can also be specified on class fields oftygpel. The compiler ensures that
the field label constraints of a class are satisfied whenever a new instance of the class is created. All fields
appearing in a label constraint must be final, so field label constraints that are satisfied when an object is
created will hold for the lifetime of the object.

Like method label constraints, field label constraints can be used to reduce the number of run-time
label checks. For example, sending an integer througtultilevel communication channfd] with label
¢ requires sending the exact label of the integer through the channel. The natural way to implement it is to
wrap the integer and its label in an object of tl#beled class and send the object through the channel.

(E) class Labeled {
public final label{/(} 1b;
public int{*1b} content;
public Labeled(label{(} x, int{*x} y) { 1b = x; content = y; }
}

The label of fieldlb is ¢, ensuring thatlb itself can be sent through the channel. But the label of field
content is dynamic, and the constraii&1lb} C ¢ needs to hold for fieldontent to be sent safely
through the channel. This constraint can be enforced by a run-time label check, but it can also be enforced
statically by specifying a field label constraif#1b} C ¢, as in theUBLabeled (“UB” stands for upper
bound) class. SendingiLabeled object through a channel with labéls always safe.

(F) class UBLabeled {
public final label{/} 1b where {*1b}<=/;
public int{*1b} content;
public UBLabeled(label{/} x, int{*x} y) where {*x} <=/ {
1b = x; content = y;

¥

3.2.4 Path-expression labels

Consider thé.abeled class again, and supposés aLabeled object. Then what is the type of content?
According to theLabeled class, the precise type would bhet{*o.1b}, which cannot be expressed in Jif
because Jif does not allgwath expressionsuch as .1b to appear in labels.

In Jif-DX, a path expression with the tygabel can be used in label expressions as long as all the
identifiers in the path expression are final, ensuring that the path expression always has the same value. For
example, ifo is a final variable, thed*o.1b} is a legitimate label, and the following code can be used to
access . content While preserving its precise type.

(G) int{*0.1b} y = o.content;

If o were not a final variable, thes. content would not be well-typed in Jif-DX. But there is an easy
workaround: assign to a final variablefo and access theontent field by fo.content, which has a
well-formed typeint{*fo.1b}.

3.2.5 Example: bounded dynamic labeling

In this section, we show how to use the new dynamic label constructs in Jif-DX to implement a MAC
mechanism, which would be much harder and unintuitive to implement in Jif. The MAC mechanism in the
MITRE CMW system [28] associates two labels with each objedtoaing labeland a fixednandatory
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label. The floating label is updated accordingly when the content of the object is updated, but is bounded by
the fixed mandatory label in order to prevent the covert channel caused by label updates. The doubly labeled
object can be represented byBLabeled (see code fragment F) object in Jif-DX, and the policy that the
floating label be bounded by the mandatory label is represented by the field constiaintC ¢, where
{*1b} is the floating label, andis the mandatory label.

The following code shows how to update the label and access the contargioftseled object. Simple
as itis, this example demonstrates several subtle issues related to manipulating dynamic labels.

(H) UBLabeled o;
final label{} x, y;
int{*x} data;

(1) if ({*x}<={¢) o = new UBLabeled(x, data);
final UBLabeled{} fo = o;
(@ if ({*fo.lb}<={*y})
if ({*y}<=/¢) o = new UBLabeled(y, fo.content);

(3) int{/} output = fo.content;
int{Alice:} output2;
(4) if ({*fo.lb} <= {Alice:}) output2 = fo.content;

The first label-test statement (1) attempts to update the contenaafl the constraintxx} <= ¢ guarantees
the label of the new value is bounded by the mandatory lab&€he constructor caliew UBLabeled(x,
data) is well-typed because of the constralmx} C ¢ enforced by the label test.

The second label-test statement (2) attempts to just update the label fieltbof. The first test
{*fo.1b} <= {*y} is necessary faiew UBLabeled(y, fo.content) to be well-typed, because the type
of fo.content (int{*fo.1b}) must be a subtype dalt{*y}. Essentially, the constraint prevents down-
grading the label of the object content. Furthermore, this example shows that the immutability requirement
for label fields is not a fundamental limitation because adding a level of indirection makes it possible to
updateo . 1b even though the fieldb is final.

The last two statements (3,4) attempt to aceesntent. The assignment toutput is well-typed
because of the field label constraif#fo.1b} T ¢. The assignment toutput2 might appear secure
because a label testis used to ensure the lalkeltgfut?2 is at least as restrictive as the labefof content.
However, there is an implicit flow fromio . 1b to output?2 in the label-test statement. The implicit flow is
legal only if ¢ C {Alice:}, which prevents a possible covert channel caused by dynamic labeling.

4 Type system and noninterference

This section formalizes the powerful dynamic label mechanism of Jif-DX and proves its soundness in term
of enforcing noninterference, which means that high-security inputs to a program cannot affect low-security
outputs.

The vehicle for this formal analysis is a core languagg.. focused on modeling the dynamic label
constructs in Jif-DX. Distilling Jif-DX to a simple core language has the advantage that the semantics of the
dynamic label mechanism can be described clearly and formally. Many features of Jif-DX are intentionally
omitted from Apg.., including objects, class inheritance, exceptions, and downgrading; however, these
features are largely orthogonal to the dynamic label mechanism, and their impact on information flow has
been studied in other work [3, 22, 31].



Base Labels k e L
Variables z,y,f € V
Locations m € M
Labels /¢, pc == k| x| l1Ul
Constraints C = (L Clh,C e
Base Types G == int | label | unit | (z:71)[C]*72 | Tref | (z:71) MTQ
Security Types T u= b
Values v = x| n|m | XNe:n)[Cipce | ()| k| (x=0n][C], va:T)
Expressions e = v | liUly | erex|le]| eg:=ey | refTe | if {1 C {5 then e; else e

| let(z,y)=vine

Figure 1: Syntax of pge.

4.1 The)ps.. language

The A pse. language is a security-typed lambda calculus that supports first-class dynamic labels.. |the-
bels are terms so that they can be manipulated and checked at run time. Furthermore, label terms can be used
as type annotations that are analyzed statically. Syntactic restrictions are imposed on label terms to increase
the practicality of type checking, which follows the approach used by Xi and PfennitgifC') [30].

From the computational standpointys.. is fairly expressive, because it supports both first-class func-
tions and state (which together are sufficient to encode recursive functions).

4.1.1 Syntax

The syntax ofA pg.. is given in Figure 1. We use the narheo range over a lattice of label valuésmore
precisely, a join semi-lattice with bottom elemeh}, x, y to range over variable nam&s andm to range
over a space of memory addresgels

To make the lattice explicit, we writé |= k; C k, to mean that is at least as restrictive &s in L,
andL E k = k1 U ko to meank is the join ofky andks in L. The least and greatest elementsCofire
1 andT. We also assumg contains at least the poinfsand H whereH [Z L, but the noninterference
result applies to an arbitrary lattice. The lalieis assumed to describe what information is observable by
low-security usersvho are to be prevented from seeing confidential information. Tlowssecuritydata
has a label bounded above byhigh-securitydata has a label (such &5 not bounded by_.

In Apsec, @ label can be either a label valkga label variable:, or the join of two other label§; LI /5.
For example L, x, andL LI x are all valid labels, and L = can be interpreted as a security policy that is
as restrictive as both andz. The security type = 3, is the base typg annotated with label. The base
types include integers, unit, labels, functions, references and products.

The function type(z : 1) Cir, T9 is a dependent type sinee, C and pc may mentionz. To avoid
recursion,z is not allowed to appear in;. The componen€ is a set oflabel constraintswith the form
¢1 C /45, which must be satisfied when the function is invoked. pbeomponent is a lower bound on the
memory effects of the function, and an upper bound orpthlabel of the caller. Consequently, a function
is not able to leak information about where it is called. Without the annotafioausd pc, this kind of type
is sometimes written asz: 7.7 [13].

The product typéz: 1) [C] * 72 is also a dependent type in the sense that occurreneesasf appear in
9 andC. The component’ is a set of label constraints that any value of the product type must satisfy. If
does not contaim, andC' is empty, the type may be written as the more famitiat ». Without component
C, this kind of type is sometimes written &% : ;.72 [13].



In Apsec, values include integers, typed memory locations:”, functionsA(z : 7)[C'; pc|. e, the unit
value (), constant label&, and pairSz = v [C], v2: 7). A function A\(z: 7)[C'; pc|. e has one argument
with type 7, and the components andpc have the same meanings as those in function types. The empty
constraint seC or the toppc can be omitted. A paitx =v1[C], v2:7) contains two values; andv,. The
second element, has typer and may mention the first element by the name:. The component’ is a
set of label constraints that the first element of the pair must satisfy. For exam@les ifx T L}, then
v1 C L must be true.

Expressions include valuesvariablest, the join of two labeld; LI {5, applications; es, dereferences
le, assignments; := e,, referencesef”e, label-test expressions /1 C /5 then e else e, and product
destructorset (x,y) =v in es.

The label-test expressiaif ¢; C /5 then e] else es is used to examine labels—at run time, if the
value of/¢, is a constant label at least as restrictive as the value,dhene; is evaluated, otherwises is
evaluated. Consequently, the constrdint ¢, can be assumed when type-checking

The product destructdret (z,y) =v in e unpacks the pair, assigns the first element ofto « and the
second tqy, and then evaluates

4.1.2 Encoding Jif-DX constructs

The A\pg.. language is designed to model the dynamic label constructs of Jif-DX. Althaggh is not
object-oriented, first-class functions and products provide some ability to explore issues that arise in a class-
based language (without inheritance).

The label-test statement in Jif-DX can be encoded directly by the label-test expressign.inMethods
in Jif-DX correspond to functions inpg.., and both constructs allow constraints to be specified on the
arguments of typ@abel. Objects in Jif-DX correspond to product valuesips... Just as Jif-DX allows
specifying label constraints on fieldspg.. allows constraints on product components. Riag.. language
provides the product destructor to retrieve the components from a product value. This pattern-matching style
of access not only retrieves the product components, but also preserves constraints.

The following A ps.. expressions and types can be used to represent correspondingly labeled code frag-
ments of Jif-DX in Section 3. Since class declarations in Jif-DX are essentially types, some Jif-DX code
corresponds to types ofps... The Apge. type in (C) shows how to encode the signature of the method
encrypt. The product types in (E) and (F) are used to encodédbeled class and th&BLabeled class,
respectively. The function term in (G) shows how to retrieve the components from a product value and use
the components in some computation represented e function in (H) encodes updatin@BLabeled
object. It takes in three argumentsis a reference of the product type encoding WiBeabeled class;y
is a label;z is an integer labeled with. The function wrapg andz in a product value and assigns the
product value t@, updating the information containeddrand the corresponding label at the same time. A
label-test expression is used to ensure that the product label constraint holds.

(C) (x:1abel)) it N (y:int,) — int

(E) (z:labely) * int,

(F) (z:1labely)[x C 4] % int,

(G) Mo:((z:1labely) *x int,),.let (z,y)=o01ine

(H) Xo:(((x:1labely)[x T ] * int, ), ref) . A\y:1labely. A(z:int,)[/].
if y C ¢ then 0:= (r=y, z:int,) else ()



LEk=k Uk

LE1] Uy Uk, M) — (k, M)

[E2] (Im™, M) — (M(m"), M)

B3 m = newloc(M)

[E3] (ref™v, M) — (m™, M[m™ +— v])

[E4] (m™ = v, M) — ((), M[m" — v])

[E5] (A (z:7)[C;pc).€e) v, M)y — (e[v/x], M)
LEk Cko

[E6] (if k1 C ko then e; else ey, M) —— (ey, M)

[E7] L=k Lk

(if k1 C ko then e; else ey, M) —— (eq, M)
[E8] (let (z,y)=(x=v1[C], va:7) ine, M) — (e[va/y][v1/x], M)

(e, M) — (!, M)
(Ele], M) — (E[¢], M)

[E9]

el vl | Hi=e|vi=[]] 11| ret []] [U& | kU[]

E[] == []
| if []C ¢y then ej else ey | if ky C [] then e; else e

Figure 2: Small-step operational semantics\ pf..

4.1.3 Operational Semantics

The small-step operational semantics\gfs.. is given in Figure 2. Lef\d represent a memory that is a
finite map from typed locations to closed values, anddetM/) be a machine configuration. Then a small
evaluation step is a transition frofa, M) to another configuratiote’, M), written (e, M) — (e’, M').

It is necessary to restrict the form ¢f, M) to avoid using undefined memory locations. led(e)
represent the set of memory locations appearing. il memory M is well-formed if every address:
appears at most oncedom(/), and for anym™ in dom(M), loc(M (m™)) C dom(M ). The configuration
(e, M) is well-formed if M is well-formed, loc(e) C dom(M), ande contains no free variables. By
induction on the derivation ofe, M) —— (¢/, M’), we can prove that ife, M) is well-formed, then
(¢/, M') is also well-formed.

The notatiore[v/x] indicates capture-avoiding substitution of valuer variablex in expressior. The
notationM (m™) denotes the value mappeditd in M, and the notatiod/ [m™ — v]| denotes the memory
obtained by assigningto m” in M.

The evaluation rules are standard. The allocatowloc(M) in rule (E3) generates a fresh memory
locationm such thatn™ ¢ dom(M) for all 7. In rule (E8),v2 may mentionz, so substitutings, for y in
e is performed before substituting for . The variable name in the product value matches that no
variable substitution is needed when assigningnduvs to z andy. In rule (E9),E represents an evaluation
context, a term with a single “hole”, into which a subterm can fit. Rule (E9) says that an evaluation step of
a subterm counts as an evaluation step of the enclosing term. The syriisspetifies the evaluation order
of subterms.

10
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Figure 4: Subtyping rules

4.1.4 Subtyping

The subtyping relationship between security types plays an important role in enforcing information flow
security. Given two security typeg = (31, andm = [2,,, Supposer; is a subtype ofr,, written as
71 < 7. Then any data of type, can be treated as data of type Thus, data with label; may be treated
data with labe¥,, which requireg; C /5.

As described in Section 3.1, the type system keeps track of the set of label constraints that can be used
to prove relabeling relationships between labels. Cet ¢, T /5 denote that; T ¢5 can be inferred
from the set of constraint§'. The inference rules are shown in Figure 3; they are standard and consistent
with the lattice properties of labels. Rule (C2) shows that all the constrairgisare assumed to be true.
The constraint se€ may contain constraints that are inconsistent with the latficsuch asdH T L.
Inconsistent constraint sets are harmless because they always indicate dead code, such as expression
“if H C L then ej else ey".

Since the subtyping relationship depends on the relabeling relationship, the subtyping context also needs
to include theC' component of the typing context. The inference rules for proting =, < m, are the rules
shown in Figure 4 plus the standard reflexivity and transitivity rules.

Rules (S1)—(S3) are about subtyping on base types. These rules demonstrate the expected covariance or

contravariance. Irhpg.., function types contain two additional componeptsand C, both of which are

. . Cy; . Ca;
contravariant. Suppose the function type= (z: 1) ———% 7/ is a subtype of’ = (z: 75) ——2 75,

Then wherever functions with type can be called, functions with typecan also be called. This implies
two necessary premises. First, wheraVeis satisfied(; is also satisfied. This premise is writt€a - C1,
meaning that for any constraifit C /2 in C, we can derive’; - ¢; C ¢5. Second, the premiges, C pc,
is needed because the of a function type is an upper bound on fhewhere the function is applied.

Rule (S4) is used to determine the subtyping on security types. The préhisg; < (3, is natural.
The other premis€' - ¢; C ¢5 guarantees that coercing data fremto 7 does not violate information
flow policies.

11



[INT] I';C; pckn:int [UNIT] [;C; pek () :unit
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[L-APP] [APP]
I;C5pekerbo:Tlla/z] UL I';Cipekerex:TUL
I';Ci;petko:m Iz:m k1 [5C; petv: ((x:m)[C] * 2)e
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PROD PACK
[PROD] [;C; pck (z=v1[C'], v2:712) : ((x:711)[C'] * T2) L [UNPACK] [;C;pck let (z,y)=vine: T
[;C5 pet £ : label, i€ {1,2}
['; C,01Che; pclliUbhb-er:m
" D;CspcllyUlybes: T SUB I';Ci;peke:r  Chr<7
[IF] [';C; pct if £1 C f2 then eg else eo : 7 LK, [ ] I';C;pcke:t
Figure 5: Typing rules for tha ps.. language
4.1.5 Typing

The type system ok ps.. prevents illegal information flows and guarantees that well-typed programs have
a noninterference property. The typing rules are shown in Figure 5. The notabigf3,) = ¢ is used

to obtain the label of a type, and the notatidhs 7 and+ C ¢ are abbreviations fof T label() and
label(T) C ¢, respectively.

The typing context includes gpe assignmenit, a set of constraint§’ and the program-counter label
pe. T'is a finiteorderedlist of = : 7 pairs in the order that they came into scope. For a givehere is at
most one pair:7in T

A variable appearing in a type must be a label variable. Therefore, artigoeell-formed with respect
to type assignmerdt, writtenI" I 7, if I maps all the variables in to label types. The definition of well-
formed labelsT +- /) is the same. Considét = x1:7y,...,z, : 7. FOrany0 < i < n, the typer; may
only mention label variables that are already in scapethroughz; ;. Therefore[' is well-formed if for
any0 < i < n, 7; is well-formed with respectte,: 7, ..., z;_1:7;_1. For example, #:1labely, y:int,”
is well-formed, but % : int,,z : 1label;” is not. A constraint/; C /5 is well-formed with respect td
if both ¢, and/, are well-formed with respect tb. A typing context T';C'; pc” is well-formed if T is
well-formed, andbc and all the constraints i@ are well-formed with respect .

The typing assertiolt ; C'; pc F e : 7 means that with the type assignmé&htcurrent program-counter
label aspc, and the set of constrain€s satisfied, expressionhas typer. The assertiol’; C'; pcke : 7is
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well-formed ifI"; C'; pc is well-formed, and™ F 7.

Rules (INT), (UNIT), (LABEL) and (LOC) are used to check values. Valueas type3, if v has base
type 3. Rule (VAR) is standard: variable has typel’(x). Rule (JOIN) checks the join of two labels and
assigns a result label that is the join of the labels of the operands.

Rule (REF) checks memory allocation operations. Ifph&bel is high, the generated memory location
must not be observable to low-security users, which is guaranteed by the p@ntispc = 7. Rule
(DEREF) checks dereference expressions. Since some information about a reference can be learned by
knowing its contents, the result of dereferencing a reference with (typs=f), has typer U ¢, where
T UL = By it 7is Bp. Rule (ASSIGN) checks memory update. As in rule (REF), if the updated memory
location has typér ref),, thenC - pc C 7 is required to prevent illegal implicit flows. In addition, the
conditionC' - ¢ C 7 protects the reference that is assigned to. Without the condition, the following code
would be well-typed. However, low-security users can learn whetherL by observing which ofrn; and
me is updated td.

Mz :1abelg)[L]. ((if 2 C L then mi™" else my™*) :=0)

Rule (ABS) checks function values. The body is checked with the constraiat setd the program-
counter labepc’, so the function can only be called at places whétés satisfied and thec label is not
more restrictive thapc'.

Rules (L-APP) and (APP) are used to check application expressions. Consider an application expression
e1e2, Wheree; has type((z : labely) ipe, 7)¢. Rule (L-APP) is used when the occurrencescafo

appear inC’, pc or . In this case, the type checker needs to G8ex/z|, pc’[ea/x] or T[ea/z], which

are well-formed only ife; is a label tern¥s. In rule (L-APP), the label oé,/; is at least as restrictive as

¢, preventing the result of, from being leaked. The premige - C’[¢y/xz] guarantees that’[¢2/x] are
satisfied when the function is invoked. The premise- pc LI ¢ T pc[¢2/z] ensures that the invocation
cannot leak the program counter or the function itself through the memory effects of the function. Rule
(APP) applies when: does not appear i@”, pc’ or 7. In this case, the type af; is just a normal function

type, soe; can be applied to arbitrary terms.

Rule (PROD) is used to check product values. To checkhe occurrences af in v, and, are both
replaced byv;. If v; is not a label, then: cannot appear im,. Thus,m2[v;/z] is always well-formed no
matter whethew, is a label or not. Rule (UNPACK) checks product destructors straightforwardly. After
unpacking the product value, those product label constrairnt$ are in scope and used for checking

Rule (IF) checks label-test expressions. The constéaint /- is added into the typing context when
checking the first branck;. When checking the branches, the program-counter label subsumes the labels
of /1 and/s to protect them from implicit flows. The resulting type contafhsind¢/, because the result is
influenced by the values @f and/s.

Rule (SUB) is the standard subsumption ruler I§ a subtype of’ with the constraints i€ satisfied,
then any expression of typealso has type’.

This type system satisfies the subject reduction property and the progress property. The proofis standard,
so we simply state the theorems here.

Definition 4.1 (Well-typed memory). A memory M is well-typed if for any memory locatiom™ in M,
FM(mT):T.

Theorem 4.1 (Subject reduction).Supposec F ¢ : 7, and there exists a well-typed memavy such that
(e, M) — (e, M'), thenM’ is well-typed, anthc + ¢ : .

Theorem 4.2 (Progress)If pc - e : 7, andM is a well-typed memory such thét, M) is a well-formed
configuration, then eitheris a value or there exists and M’ such thate, M) — (e/, M').
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4.2 Noninterference proof

This section outlines a proof that any well-typed progran js.. satisfies the noninterference property.
(The full proof is given in the appendix.) Consider an expression ps... Suppose has one free variable
xz,andz : 7 F e : inty; whereH C 7. Thus, the value of is a high-security input te, and the result of is
a low-security output. Then noninterference requires that for all valwésype 7, evaluatinge[v/x] in the
same memory must generate the same result, if the evaluation terminates. For simplicity, we only consider
that results are integers because they can be compared outside the coRggt of

The noninterference property discussed heterisiination insensitiv§20] because:[v/z] is required
to generate the same result only if the evaluation terminates. The type systesg.ofdoes not attempt
to control termination and timing channels. Control of these channels is largely an orthogonal problem.
Termination channels can leak at most one bit per run, so they have often been considered acceptable (e.g.,
[5, 26]). Some recent work [1, 19, 33] partially addresses the control of timing channels.

Let —* denote the transitive closure of the— relationship. The following theorem formalizes the
claim that the type system ofpgs.. enforces noninterference:

Theorem 4.3 (Noninterference).Supposer : 7 + e : inty, andH C 7. Given two arbitrary values;
andv, of typer, and an initial memory/, if (e[v;/xz], M) —* (vi, M!) for i € {1,2}, thenv| = v}.

To prove this noninterference theorem, we adapt the elegant proof technique developed by Pottier and
Simonet for an ML-like security-typed language [18] (which did not have dynamic labels). To show that
noninterference holds, it is necessary to reason about the executions of two relatedeferms]: and
elva/xz]. We extend\ ps.. with a bracket construgt; | e2) that represents alternative expressions that might
arise during the evaluation of two programs that differs initially only,imndv,. Thene[v, /x] ande[vy/z]
can be incorporated into a single teefifv; | v2)/z] in the extended languagé, .., providing a syntactic
way to reason about two executions.

Using A%, the noninterference theorem can be proved in three steps:

1. Prove that the evaluation of,. . adequately represents the execution of twg.. terms. Given a
)\%Sec terme, let |e]; and |e|2 represent the twa ps.. terms encoded by. Further, if M mapsz
to aA’,, terme, then| M |; mapsz to [e]; for i € {1,2}. Then the adequacy of,¢,. means that
(e, M) —* (v, M") holds in\%, . if and only if (|e|;, | M |;) —* (|v];, M]) fori € {1,2}
holds in\ pgec.

2. Prove that\},,, satisfies subject reduction: the result of an expression has the same type as the
expression. The type system )&%Sec gives the brackete; | e2) a high-security type. Intuitivelys;
ande, are different terms and may produce different results, which must have high-security types and
be unobservable to low-security users because otherwise low-security users can distinguish the two
executions, violating noninterference.

3. Prove the noninterference theorem: Becduge/x|, M) —* (v}, M!) andelv;/z] = [e[(vi|v2)/z]];
fori € {1,2}, we have(e[(v; | v2)/x], M) —* (v', M'), where|v'|; = v} for i € {1,2}. By the
subject reduction theorem, v’ : int, which implies that' is not a bracket construct. Thehmust
be an integen, and|v' |1 = [V |2 = n.

The appendix details the syntax and semantic extensioN$ f and proves the key subject reduction
theorem ofA%¢,.. The major extension to Pottier's proof technique is that the bracket construct must also
be applied to labels. Because types may contain bracketed labels, the projection operation also applies to
typing environments.
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5 Related Work

Dynamic information flow control mechanisms [27, 28] track security labels dynamically and use run-time
security checks to constrain information propagation. These mechanisms are transparent to programs, but
they cannot prevent illegal implicit flows arising from the control flow paths not taken at run time.

Various general security models [11, 24, 7] have been proposed to incorporate dynamic labeling. Unlike
noninterference, these models define what it means for a system to be secure according to a certain relabeling
policy, which may allow downgrading labels.

Using static program analysis to check information flow was first proposed by Denning and Denning [5];
later work phrased the analysis as type checking (e.g., [17]). Noninterference was later developed as a more
semantic characterization of security [8], followed by many extensions. Volpano, Smith and Irvine [26] first
showed that type systems can be used to enforce noninterference, and proved a version of noninterference
theorem for a simple imperative language, starting a line of research pursuing the noninterference result for
more expressive security-typed languages. Heintze and Riecke [10] proved the noninterference theorem for
the SLam calculus, a purely functional language. Zdancewic and Myers [32] investigated a secure calculus
with first-class continuations and references. Pottier and Simonet [18] considered an ML-like functional
language, and demonstrated the innovative proof technique that is used in this paper to reduce the proof of
noninterference to a proof of subject reduction. Banerjee and Naumann [3] proved a noninterference result
for a Java-like language. A more complete survey of language-based information-flow techniques can be
found in [20].

The Jif language [14, 16] extends Java with a type system for analyzing information flow, and aims to be
a practical language for developing secure applications. However, there is not yet a noninterference proof
for the type system of Jif, because of its complexity. This work is inspired by the dynamic label mechanism
of Jif, although the dynamic label mechanism in Jif-DX ansk.. is more expressive.

Concurrent to this work, Tse and Zdancewic proved a noninterference result for a security-typed lambda
calculus fpp) with dynamic principals [25]. Our work is more general in the sense that it can be applied
to label models that do not involve principals. In additioms.. has more computational power thagp
because\ ps.. supports references, which can used to encode recursive functions. The type system of
App Usessingleton type$2] to enforce that every dynamic principal term has a static counterpart, and the
dynamism of security policies is captured by the principal hierarchy and a delegation mechanism. It is not
clear that this approach can be easily generalized to dynamic labels.

Other work [30, 29] has used dependent type systems to specify complex program invariants and to
statically catch program errors considered run-time errors by traditional type systems. This work also makes
a trade-off between expressive power and practical type checking.

6 Conclusions

This paper makes two contributions: first, it presents the Jif-DX language that extends the Jif programming
model with better support for dynamic labels. The extensions proposed in Jif-DX make it easier to write
programs manipulating dynamic labels and can reduce the number of run-time label checks. The key new
elementis a restricted form of label constraints that is expressive enough for implementing run-time security
checks, yet suitable for static type checking. Label constraints also make it possible to encode previous
mandatory access control mechanisms that support dynamically changing labels.

Second, this paper formalizes computation and static checking of dynamic labels in the type system of
a core languag@ ps.. and proves a noninterference result: well-typed programs have the noninterference
property. The languag&ps.. is the first language supporting general dynamic labels whose type system
provably enforces noninterference.

An important direction for future work is to investigate the interaction between dynamic labels and
parametric polymorphism.
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A Subject Reduction Proof

As described in Section 4.2, the noninterference resuli\fgy,.. is proved by extending the language to

a new language\?, . that includes the special bracket construct. Then the subject reduction property
for )\%Sec implies the noninterference property faps... The appendix details the syntax and semantic
extensions of?,._. and proves the key subject reduction theorem.

A.1 Syntax extensions

The syntax extensions Q%Sec include the bracket constructs and a new valoid that can have any type.
A )%, memory encodes twdps.. memories, which may have distinct domains. The bindings of the form
m” — (v |void) andm” — (void | v) represent situations where” is bound within only one of the two
ADSec MEMories.

¢ o= o] (00
oo | (v|v) | void
.

(efe)
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The bracket constructs cannot be nested, so the subterms of a bracket construct Myst berms or
void. Given a>\2DSec expressiore, let [e|; and |e|s represent the twd pgs.. terms thate encodes. The
projection functions satisfy(e; |e2) |; = e; and are homomorphisms on other expression forms. In addition,
(e1 | e2)[v/x], the capture-free substitution offor z in (e; | e2), must use the corresponding projection of
v in each branch(e; | e2)[v/x] = (ei[|v]1/2] | ea]|v]2/x]).

In )\2DSec’ labels can be bracket constructs, and types may contain bracketed labels. Thus, the projection
operation can be applied to labels, types, type assignments, and label constraints. Similarly, the projection
functions are homomorphisms on these typing constructs. For exampley, | )1 = inty, and |z :

Ty =T,y T
The following relabeling rule is added to reason about relabeling relationship between bracketed labels:

ICl1 F 411 E |€2]s [Cla F [41]2 E [£2]2
CH/U{C Yy

Since a\?).,. term effectively encodes twhbpg,. terms, the evaluation of ¥, . term can be projected
into two A ps.. evaluations. An evaluation step of a bracket expresgipfes) is an evaluation step of either
e1 Ores. ande; or e; can only access the corresponding projection of the memaory. Thus, the configuration
of A2, has an index € {e, 1,2} that indicates whether the term to be evaluated is a subterm of a bracket
expression, and if so which branch of a bracket the term belongs to. For example, the configaration
means that belongs to the first branch of a bracket, andan only access the first projection bf. We
write “(e, M)” for “ (e, M),", which means: does not belong to any bracket.

A.2 Operational semantics

The operational semantics #f,... is shown in Figure 6. Itis based on the semantics .. and contains

some new evaluation rules (E10—E14) for manipulating bracket constructs. Rules (E2)—(E4) are modified
to access the memory projection corresponding to indéhe rest of the rules in Figure 2 are adapted to
)\2D5'ec by indexing each configuration with The following two lemmas state that the operational semantics

of A3, is adequate to encode the execution of twg.. terms. Their proof is straightforward.

Lemma A.1 (Soundness)If (e, M) — (¢/, M"), then(|e];, | M |;) — (| €]:, | M'];) fori € {1,2}.

Lemma A.2 (Completeness)If (|e];, | M|;) —* (v;, M) for i € {1, 2}, then there exists a configura-
tion (v, M') such thate, M) —* (v, M').

The type system ok, includes all the typing rules in Figure 5 and has two additional rules, one for
typing void, the other for typing bracket constructs.

[VOID] I';C; pckvoid: 7

IT|1;1Caslpc Ji ke [7]1 [D2;|Cleslpc’]eFea: 7] HUpcCpd HLCT
I';C; pck (e1|e2) : 7

[BRACKET]

A.3 Subject reduction
The proof of subject reduction starts with some lemmas about projection and substitution.

Lemma A.3 (Label Projection). If C ¢, C ¢y, then|C|; - |41]; T |42, fori € {1,2}.

Proof. By induction on the derivation af' - ¢; C 4. ]
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[E2] (Ym7, M); — (read; M(mT), M),

m = newloc(M)

[E3] (ret™v, MYy — (m™, M[m™ — new; o]);

B4 (7 = v, M); — (), M{m" v update; M(m") o]}

(E10] e o |< >MM>> =y 6/2)7{% e

[E11] ((v1 [v2)v, M) — ((vi|v]1 [v2v]2), M)

[E12] ((v1 | v2) == v, M) — ((v1 := [v]1 |v2 := [v]2), M)

[E13] (o1 [v2), M) ¥ ((tv1 [ lvz), M)

E14) (if 01 C vp then 1 else ep, M) — ((if |v1]1 C |va; then |e1]r else [eal; |

1 &
. if |v1]o E |v2]o then |e1]q else |ea]a), M)
if vy = (v|v')orvy = (v|v)

[Auxiliary functions]

newe v = v update, vv' = v’ read, v = v
new; v = (v | void) update; vv’ = (v | |v]2) read; v = |[v];
news v = (void | v) updates vv’ = (|v]q | V) reads v = [v]2

Figure 6: Small-step operational semantics\§f;,.

Lemma A.4 (Constraint Reduction). If I'; C, /1 C ¢s;pc ke : 7andC + £, C ly, thenl’ ;C'; pctke: 7.
Proof. By induction on the derivation df ; C, 41 C ¢y ;pct e : 7. O
Lemma A.5 (Projection). If I'; C'; pc e : 7, then|T'|;;|C|i;|pcli - le)i : |7]4, fori € {1,2}.

Proof. By induction on the derivation df ; C'; pc - e : 7, and using the label projection lemma. O

Lemma A.6 (Store Access).Leti be in{e 1,2}. Supposepc - v : 7 andpc - ¢’ : 7. In addition,
i€ {1,2} impliesH C 7. Thenpc F read; v : |7];, pcF new; v : 7 andpc - update; vv' : 7.

Proof. By the definition of the functionsead, new andupdate in Figure 6, by the projection lemma, and
rules (VOID) and (BRACKET). O

Lemma A.7 (Substitution). If 2 : 7/,T';C;pc F e : 7, and- v : 7/, thenT'[v/z]; C[v/x]; pclv/x] F
elv/z] : T[v/x].

Proof. By induction on the derivation of: 7/, T"; C;pc e : 7. O

Theorem A.1 (Subject Reduction).Supposec + e : 7, memory)M is well-typed,(e, M); — (', M');,
andi € {1,2} impliesH C pc. Thenpct ¢’ : 7, andM’ is also well-typed.
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Proof. By induction on the derivation of, M); — (¢/, M');. Without loss of generality, we assume that
the last step of the derivation gt F ¢ : 7 does not use the rule (SUB). Here we just show seven cases:
(E3), (E5), (E6), (E8), (E10), (E11) and (E14). The rest of evaluation rules are treated similarly.

e Case (E3).c isref™ v, andr is (7’ ref),. Thene' ism™. By (LOC), pc - ¢ : (7' ref),. By
Lemma A.6,pc - new;v : 7. Thus,M|[m™ — new;v] is well-typed.

e Case (E5)eis (A\(z:7")[C";pc].€)v. Thenpc - A(z:7")[C";pc]. € : (x:7") Clipe, 71)¢, and
pc b v : 7", and- C"[v/x]. By rules (APP) and (L-APP), = 7i[v/z] U ¢, andpc C pc’[v/x].
By rules (ABS) and (SUB)z : 7/;C";pcd €' : 7, and- 7/ < 7/, F pd” C pd, andC” = (.
Therefore}- C’'[v/x], andpc C pc’[v/x]. By the substitution lemma;’[v/z]; pcd'[v/x] & €' [v/x] :
71[v/x]. By Lemma A.4,pc'[v/x] - €'[v/x] : m[v/x]. Sincepc C pc[v/x] andr[v/z] C 7, we
havepc b e'[v/x] : 7.

e Case (E6). Byrule (IFf; C ko;pct er : 7. ByLemma A4 andC = k1 C ko, we havepc e : 7.

e Case (E8).cis let (z,y) = (x =v1[C], v2: 72) in €’. By rule (UNPACK),pc - (x =v1[C], va:
72) : ((x:71)[C] * 72)¢, andz: 7y U L,y : 7o U L;pc = € : 7. By rule (PROD),pc - v; : 71, and
pc F vav1/x] : m2vi/x], and- Clvy /z]. Using the substitution lemma twice, we @éfv; /x| ; pc -
e'[v1/x][va[v1/x] /Y] : T[v1/x][v2[v1/2]/y]. Itis easy to show that [vy /z][va[v1 /2] /y] = €' [v2/y][v1/x].
According to rule (UNPACK)z,y ¢ FV (7). Thus,7[v1/z]|[v2]v1/x]/y] = 7. In addition, we have
F Clv1/z]. Thereforepc - e[vy /x][va/y] : T.

e Case (E10)e is (e1 | e2). Without loss of generality, assunie;, M), — (e}, M'); andey = €.
By rule (BRACKET),H C pc, and|pc|i F ey : |7]1. H C pcimpliesH C |pc|;. By induction,
|pcli €y : [7]1, andM’ is well-typed. Using rule (BRACKET), we can gpt + (¢} | €}) : 7.

e Case (E11)cis (v1 | v2)v. By (APP) and (L-APP)pc F (v1 |v2) : ((z:7) S2E% 77),, andpe - v :
7'. Thenr = 7"[v/z]UL. In addition,pcLi¢ C pc’. By (BRACKET), H C ¢, which impliesH C pc'.
By Lemma A5, [pcl; b v; ¢ ((w: [7'];) ~2EP5 121y, and |pe] - v+ [7'];, which
imply |pc|; - vi|v]; : |7]:. According to (APP) and (L-APP), a well-typed application expression
e1es can be type-checked with thee component of the type af; in the typing context. Therefore,
|pc |i b vilv]; : [7]i. SinceH C pc, we can apply (BRACKET) to geic - (vi|v]1 | v2|v]2) : 7.

e Case (E14)eisif vy C vy then e; else ey, and there existg € {1,2} such that; = (v | v').
Supposepc F v; : 1labely, for i € {1,2}. Sincew; is a bracket construct{ T ¢;. By (IF), bothe;
ande,, are type-checked withc LI /1 LI /5 in the typing context. Thus, we can getl /1 L1fs e : 7.
By Lemma A.5,|pcU ¢y U la|; - |e]; : |7];. H T ¢ impliesH T [pcU ¢y U ¥ |;. Applying
(BRACKET), we getpc - (le]1 | [e]2) : T.

O]
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