
Dynamic Security Labels and
Static Information Flow Control

Lantian Zheng Andrew C. Myers
Computer Science Department

Cornell University, Ithaca, NY 14853
{zlt,andru}@cs.cornell.edu

Abstract

This paper presents a language in which information
flow is securely controlled by a type system, yet the se-
curity class of data can vary dynamically. Information
flow policies provide the means to express strong secu-
rity requirements for data confidentiality and integrity.
Recent work on security-typed programming languages
has shown that information flow can be analyzed stat-
ically, ensuring that programs will respect the restric-
tions placed on data. However, real computing systems
have security policies that cannot be determined at the
time of program analysis. For example, a file has as-
sociated access permissions that cannot be known with
certainty until it is opened. Although one security-typed
programming language has included support for dy-
namic security labels, there has been no demonstration
that a general mechanism for dynamic labels can se-
curely control information flow. In this paper, we present
an expressive language-based mechanism for reasoning
about dynamic security labels. The mechanism is for-
mally presented in a core language based on the typed
lambda calculus; any well-typed program in this lan-
guage is secure because it satisfies noninterference.

1. Introduction
Information flow control protects information security
by constraining how information is transmitted among
objects and users of various security classes. These se-
curity classes are expressed as labels associated with the
information or its containers. Denning [8] showed how
to use static analysis to ensure that programs use infor-
mation in accordance with its security class, and this ap-
proach has been instantiated in a number of languages in
which the type system implements a similar static analy-
sis (e.g., [32, 15, 37, 26, 4, 28]). These type systems are
an attractive way to enforce security because they can

be shown to enforce noninterference [13], a strong, end-
to-end security property. For example, when applied to
confidentiality, noninterference ensures that confidential
information cannot be leaked by the program no matter
how it is transformed.

However, security cannot be enforced purely stat-
ically. In general, programs interact with an external
environment that cannot be predicted at compile time,
so there must be a run-time mechanism that allows
security-critical decisions to be taken based on dynamic
observations of this environment. For example, it is im-
portant to be able to change security settings on files
and database records, and these changes should affect
how the information from these sources can be used. A
purely static mechanism cannot enforce this.

To securely control information flow when access
rights can be changed and determined dynamically, dy-
namic labels [22] are needed that can be manipulated
and checked at run time. Dynamic information control
mechanisms [33, 6, 11, 17, 29, 10] support dynamic la-
bels and use run-time label tests to control information
flows. However, these dynamic mechanisms incur large
run-time overhead and generally cannot prevent implicit
flows arising from the control flow paths not taken at
run time [7, 19]. Thus, it is desirable to combine dy-
namic labels and static information flow control: making
dynamic labels and run-time label tests explicit in pro-
grams and using static program analysis to reason about
their security properties.

JFlow [21] and its successor, Jif [24] are the only
implemented security-typed languages supporting dy-
namic labels. However, although the Jif type system is
designed to control the new information channels that
dynamic labels create, it has not been proved to en-
force secure information flow. Further, the dynamic la-
bel mechanism in Jif has limitations that impair expres-
siveness and efficiency.

In this paper, we propose an expressive language-
based mechanism for securely manipulating information

with dynamic security labels. The mechanism is for-
malized in a core language λDSec (based on the typed
lambda calculus) with first-class label values, dependent
security types and run-time label tests. We prove the cor-
rectness of this mechanism by showing that any well-
typed program of the core language satisfies noninter-
ference, which intuitively means that confidential inputs
cannot interfere with outputs observable to attackers. In
this paper, attackers are assumed to be passive in the
sense that they can compromise data confidentiality only
by observing program outputs. With this passive attack
model, if a program satisfies noninterference, then at-
tackers can learn nothing about confidential inputs of the
program. This simple form of noninterference is stan-
dard for security-typed languages, although dynamic la-
bels introduce a subtle complexity: whether an input is
confidential may not be statically determinable.

Some previous MAC systems have supported dy-
namic security classes as part of a downgrading mecha-
nism [30]. While downgrading is important, it is useful
to treat it as a separate mechanism so that dynamic ma-
nipulation of labels does not necessarily destroy nonin-
terference.

This paper is a revised and expanded version of a pa-
per presented at the second international Workshop on
Formal Aspects in Security and Trust [39]. Compared
to that conference version, this paper includes a com-
plete proof that the λDSec type system enforces nonin-
terference. Another improvement is that we demonstrate
the dynamic label mechanisms of λDSec can be applied
in practice by proposing a corresponding extension to
Jif.

The remainder of this paper is organized as follows.
Section 2 presents some background on lattice label
models and security type systems. Section 3 introduces
the core language λDSec and uses sample λDSec pro-
grams to show some important applications of dynamic
labels. Section 4 describes the type system of λDSec .
Section 5 proves that the λDSec type system enforces
noninterference. Section 6 interprets and extends the dy-
namic label mechanism of Jif based on the ideas of
λDSec . Section 7 covers related work, and Section 8 con-
cludes.

2. Background
Static information flow analysis can be formalized as a
security type system, in which security labels of data
are represented by security type annotations, and infor-
mation flow control is performed through type check-
ing.

2.1. Security classes
We assume that security requirements for confidentiality
or integrity are defined by associating security classes
with users and with the resources that programs access.
These security classes form a lattice L. We write k v k′
to indicate that security class k′ is at least as restric-
tive as another security class k. In this case it is safe to
move information from security class k to k′, because
restrictions on the use of the data are preserved. To con-
trol data derived from sources with classes k and k′, the
least restrictive security class that is at least as restric-
tive as both k and k′ is assigned. This is the least upper
bound, or join, written k t k′.

2.2. Labels
Type systems for confidentiality or integrity are con-
cerned with tracking information flows in programs.
Types are extended with security labels that denote se-
curity classes. A label ` appearing in a program may
be simply a constant security class k, or a more com-
plex expression that denotes a security class. The no-
tation `1 v `2 means that `2 denotes a security class
that is at least as restrictive as that denoted by `1. Intu-
itively, data with label `1 can be safely labeled with `2
if `1 v `2 holds. Thus, v is called the relabeling rela-
tion.

Because a given security class may be denoted by dif-
ferent labels, the relation v generates a lattice of equiv-
alence classes of labels with t as the join (least upper
bound) operator. Two labels `1 and `2 are equivalent,
written `1 ≈ `2, if `1 v `2 and `2 v `1. The join of two
labels, `1 t `2, denotes the security class that is the join
of the security classes that `1 and `2 denote. For exam-
ple, if variable x has label `x and variable y has label `y,
then the sum x+y is given the label `x t `y.

2.3. Security type systems for information
flow

Security type systems can be used to enforce security
information flows statically. Information flows in pro-
grams may be explicit flows such as assignments, or im-
plicit flows arising from the control flow of the program.
Consider an assignment statement x:=y, which contains
an information flow from y to x. Then the typing rule for
the assignment statement requires that `y v `x, which
means the security class of y is lower than the security
class of x, guaranteeing the information flow from y to x
is secure. Intuitively, data with label `1 can be safely la-
beled with `2 if `1 v `2 holds. Thus, v is called the re-
labeling relation.

One advantage of static analysis is the ability to con-
trol implicit flows in all possible execution paths. Con-

sider a simple conditional:

if s <= 0 then x := 0 else y := 0

Although there is no direct assignment from s to x or y,
this expression may cause implicit flows from s into x

and y, since the values of x and y depend on s after eval-
uating the expression. A standard technique for control-
ling implicit flows is to introduce a program-counter la-
bel [7], written pc, which indicates the security class of
the information that can be learned by knowing the con-
trol flow path taken thus far. In this example, the branch
taken depends on the value of s, so the pc in the then

and else clauses will be joined with `s, the label of
s. The type system ensures that any effect of expres-
sion e has a label at least as restrictive as its pc. In other
words, an expression e cannot generate any effects ob-
servable to users who should not know the current pro-
gram counter. In this example, the assignment to x will
be permitted only if pc v `x, which ensures `s v `x.
Similarly, `s v `y is also ensured by the static analy-
sis.

Dynamic mechanisms such as the Data Mark Ma-
chine [11] are able to control implicit flows by track-
ing the program counter label pc at run time and check
the constraint pc v `x or pc v `y depending on which
branch is taken. However, the dynamic mechanisms do
not check the label constraints required by the control
flow path not taken at run time. For example, suppose
the value of s is positive, and pc v `y holds while
pc v `x does not hold. Then attackers can infer that
s is positive from the absence of run-time label test fail-
ures.

2.4. Noninterference
In general, the goal of static information flow control is
to enforce noninterference, which intuitively means that
confidential inputs cannot interfere with outputs observ-
able to attackers. Formally, the security class of attack-
ers is represented by a label L. Then any input with a la-
bel H such that H 6v L is confidential (high-security),
and any output with a label less than or equal to L is ob-
servable to attackers and is low-security data.

Suppose expression e is a program. Then the inputs
of e are the values of free variables of e, and the outputs
are simply the result of evaluating e. More formally, the
inputs of e are represented by an input map A, mapping
free variables of e to values, and the notation e[A] de-
notes the expression obtained by substituting every free
variable x of e with A(x). Program e satisfies the non-
interference property if changing the confidential inputs
of e does not affect the outputs observable to attackers,
that is, the following statement holds:

For two arbitrary labels L and H and any two
input maps A1 and A2 of e satisfying

• L 6v H ,
• the label of e is less than or equal to L,

and
• A1 ≈H A2, which means that for any

free variable x of e, if the label of x
is not higher than or equal to H , then
A1(x) = A2(x),

if e[A1] and e[A2] are evaluated to v1 and v2,
then v1 = v2.

The noninterference property discussed here is ter-
mination insensitive [28] because e[A1] and e[A2] are
required to generate the same result only if both eval-
uations terminate. In this work, we do not attempt to
deal with termination and timing channels. Control of
these channels is largely an orthogonal problem. In av-
erage, termination channels can leak at most one bit per
run, so they have often been considered acceptable (e.g.,
[8, 32]). Some recent work [1, 27, 38] partially ad-
dresses the control of timing channels.

3. The λDSec language
The core language λDSec is a security-typed lambda cal-
culus that supports first-class dynamic labels. In λDSec ,
labels are terms that can be manipulated and checked at
run time. Furthermore, label terms can be used as stat-
ically analyzed type annotations. Syntactic restrictions
are imposed on label terms to increase the practicality
of type checking, following the approach used by Xi and
Pfenning in MLΠ

0 (C) [36].

3.1. Syntax
The syntax of λDSec is given in Figure 1. We use the
name k to range over a lattice of security classes L
(more precisely, a join semi-lattice with bottom element
⊥), x, y to range over variable names V , and m to range
over a space of memory addressesM.

To make the lattice explicit, we write L |= k1 v k2

to mean that k2 is at least as restrictive as k1 in L, and
L |= k = k1 t k2 to mean k is the join of k1 and k2 in
L. The bottom element of L is ⊥. Any non-trivial label
lattice contains at least two points L and H where H 6v
L.

In λDSec , a label can be either a security class k, a
variable x, or the join of two other labels `1t`2. For ex-
ample, L, x, and Ltx are all valid labels, and Ltx can
be interpreted as a security policy that is as restrictive
as both L and x. A security class k is also called a la-
bel value, since it can be used as a value at run time. The
security type τ = β` is the base type β annotated with
label `. The base types include integers, unit, labels, ref-
erences, functions and products.

The function type (x : τ1)
C ; pc−−−→ τ2, assigned to a

function with an argument type τ1 and a result type τ2,

Security classes k ∈ L
Variables x, y ∈ V
Locations m ∈ M

Labels `, pc ::= k | x | `1 t `2
Constraints C ::= `1 v `2 , C | ε
Base Types β ::= int | label | unit | τ ref | (x :τ1)

C ; pc−−−→ τ2 | (x :τ1)[C] ∗ τ2
Security Types τ ::= β`

Values v ::= x | n | k | () | mτ | λ(x :τ)[C ; pc]. e | (x=v1[C], v2 :τ)
Expressions e ::= v | `1 t `2 | e1 e2 | !e | e1 := e2 | refτ e | if `1 v `2 then e1 else e2

| let (x, y)=e1 in e2

Figure 1. Syntax of λDSec

is a dependent type since τ1, τ2, C and pc may men-
tion x. The component C is a set of label constraints
each with the form `1 v `2; they must be satisfied when
the function is invoked. An empty C is represented by ε.
The pc component is a lower bound on the memory ef-
fects of the function, and an upper bound on the pc label
of the caller. Consequently, a function is not able to leak
information about where it is called. Without the anno-
tations C and pc, this kind of type is sometimes written
as Πx :τ1.τ2 [20].

The product type (x : τ1)[C] ∗ τ2 is also a dependent
type in the sense that occurrences of x can appear in τ1,
τ2 and C. The component C is a set of label constraints
that any value of the product type must satisfy. If τ2 does
not contain x and C is empty, the type may be written
as the more familiar τ1 ∗ τ2. Without the annotation C,
this kind of type is sometimes written Σx :τ1.τ2 [20].

In λDSec , values include variables x, integers n, label
values k, the unit value (), typed memory locations mτ ,
functions λ(x :τ)[C ; pc]. e and pairs (x=v1[C], v2 :τ).
A function λ(x : τ)[C ; pc]. e has one argument x with
type τ , and the components C and pc have the same
meanings as those in function types. For simplicity, C
can be omitted if it is empty, and the pc component can
be omitted if e has no side effects. A pair (x=v1[C], v2 :
τ) contains two values v1 and v2. The second element v2

has type τ and may mention the first element v1 by the
name x. The component C is a set of label constraints
that the first element of the pair must satisfy. For exam-
ple, suppose C contains the constraint x v L (which
implies v1 is a label value), then v1 v L must be true
since inside the pair the value of x is v1.

Expressions include values v, variables x, the join of
two labels `1 t `2, applications e1 e2, dereferences !e,
assignments e1 := e2, references refτe, label-test ex-
pressions if `1 v `2 then e1 else e2, and product de-
structors let (x, y)=e1 in e2.

The label-test expression if`1 v `2then e1else e2

is used to examine labels. At run time, if the value of `2
is a constant label at least as restrictive as the value of
`1, then e1 is evaluated; otherwise, e2 is evaluated. Con-

sequently, the constraint `1 v `2 can be assumed when
type-checking e1.

The product destructor let (x, y)=e1 in e2 unpacks
the result of e1, which is a pair, substitutes the first ele-
ment for x and the second for y, and then evaluates e2.

From the computational standpoint, λDSec is fairly
expressive, because it supports both first-class functions
and state, which together are sufficient to encode recur-
sive functions. For example, suppose λf(x :τ)[C ; pc]. e
is a recursive function (f may appear in e) with type τf .
Then we can encode the recursive function using the fol-
lowing λDSec code:

λ(x :τ)[C ; pc]. ((λ(y :unit)[C ; pc]. !mτfx)
(mτf := λ(x :τ)[C ; pc]. e[!mτf /f]))

where e[!mτf /f] is the expression obtained by substi-
tuting !mτf for f in e.

3.2. Operational Semantics
The small-step operational semantics of λDSec is given
in Figure 2. Let M represent a memory that is a fi-
nite map from typed locations to closed values, and let
〈e, M〉 be a machine configuration. Then a small evalu-
ation step is a transition from 〈e, M〉 to another config-
uration 〈e′, M ′〉, written 〈e, M〉 7−→ 〈e′, M ′〉.

It is necessary to restrict the form of 〈e, M〉 to avoid
using undefined memory locations. Let loc(e) represent
the set of memory locations appearing in e. A mem-
ory M is well-formed if every address m appears at
most once in dom(M), and for any mτ in dom(M),
loc(M(mτ)) ⊆ dom(M), where M(mτ) denotes the
value of location mτ in M . The configuration 〈e, M〉
is well-formed if M is well-formed, loc(e) ⊆ dom(M),
and e contains no free variables. By induction on the
derivation of 〈e, M〉 7−→ 〈e′, M ′〉, we can prove that
if 〈e, M〉 is well-formed, then 〈e′, M ′〉 is also well-
formed.

The notation e[v/x] indicates capture-avoiding sub-
stitution of value v for variable x in expression e. Un-
like in the typed lambda calculus, e[v/x] may generate

[E1]
L |= k = k1 t k2

〈k1 t k2, M〉 7−→ 〈k, M〉

[E2] 〈!mτ , M〉 7−→ 〈M(mτ), M〉

[E3]
m = newloc(M)

〈refτv, M〉 7−→ 〈mτ , M [mτ 7→ v]〉

[E4] 〈mτ := v, M〉 7−→ 〈(), M [mτ 7→ v]〉

[E5] 〈(λ(x :τ)[C ; pc]. e) v, M〉 7−→ 〈e[v/x], M〉

[E6]
L |= k1 v k2

〈if k1 v k2 then e1 else e2, M〉 7−→ 〈e1, M〉

[E7]
L |= k1 6v k2

〈if k1 v k2 then e1 else e2, M〉 7−→ 〈e2, M〉

[E8] 〈let (x, y)=(x=v1[C], v2 :τ) in e, M〉 7−→ 〈e[v2/y][v1/x], M〉

[E9]
〈e, M〉 7−→ 〈e′, M ′〉

〈E[e], M〉 7−→ 〈E[e′], M ′〉

E[·] ::= [·] e | v [·] | [·] := e | v := [·] | ! [·] | refτ [·] | [·] t `2 | k1 t [·]
| if [·] v `2 then e1 else e2 | if k1 v [·] then e1 else e2 | let (x, y)=[·] in e

Figure 2. Small-step operational semantics of λDSec

a syntactically ill-formed expression if x appears in type
annotations inside e, and v is not a label. However, this
is not a problem because the type system of λDSec guar-
antees that a well-typed expression can only be evalu-
ated to another well-typed and thus well-formed expres-
sion.

The notation M [mτ 7→ v] denotes the memory ob-
tained by assigning v to mτ in M .

The evaluation rules are standard. In rule (E3), the
notation address-space(M) represents the set of loca-
tion names in M , that is, {m | ∃τ s.t. mτ ∈ dom(M)};
the allocator newloc(M) deterministically gen-
erates a fresh memory location m such that
m 6∈ address-space(M), and newloc(M ′) = m if
address-space(M ′) = address-space(M). In rule (E8),
v2 may mention x, so substituting v2 for y in e is per-
formed before substituting v1 for x. For simplic-
ity, the variable name in the product value matches
x so that no variable renaming (alpha conversion)
is needed when substituting v1 and v2 for x and y
in e. In rule (E9), E represents an evaluation con-
text, a term with a single hole (denoted by [·]) in redex
position, and the syntax ofE specifies the evaluation or-
der.

3.3. Examples
As discussed in Section 1, dynamic labels are vi-
tal for precisely controlling information flows between
security-typed programs and the external environ-
ment. A practical program often needs to access
files or communicate through networks. These ac-
tivities can be viewed as communication through
an I/O channel with a corresponding label consis-
tent with the security class of the entity (such as a file
or network socket) represented by the channel. Be-
cause the security class of an external entity may be
discovered and even changed at run time, the pre-
cise label of an I/O channel is dynamic and oper-
ations on a channel cannot be checked at compile
time.

3.3.1. Run-time access control Implementing
run-time access control is one of the most important ap-
plications of dynamic label mechanisms. Suppose
there exists a file that stores one integer, and the ac-
cess control policy of the file is unknown at compile
time. In λDSec , the file can be encoded as a refer-
ence of type (x : label⊥) ∗ (intx ref)⊥, where x
is a dynamic label consistent with the access con-
trol policy of the file, and the reference compo-
nent of type (intx ref)⊥ stores the contents of the

file and can be viewed as modeling the physical ad-
dress of the file on a storage device. Thus storing an
integer of type intH in the file is equivalent to as-
signing the integer to the memory reference com-
ponent, which requires that x is at least as high
as H . Since the value of x is not known at com-
pile time, the condition H v x can only be checked
at run time, using a label-test expression. The follow-
ing function stores a high-security integer z in the file
w:

λ(w : ((x :label⊥) ∗ (intx ref)⊥)⊥ ref⊥).
λ(z :intH)[H]. let (x, y)=!w in

ifH v x then y := z else ()

Note that the pc label of the function is H because the
function body contains a memory effect of label x when
H v x.

It is also important to be able to change file permis-
sions at run time. The following code changes the ac-
cess control policy of the file w to label z. However,
the original contents of w need to be wiped out to pre-
vent them from being implicitly declassified, which pro-
vides stronger security assurance than an ordinary file
system. This is done by replacing the old memory refer-
ence component in the value of w with a new memory
reference storing the initial value 0.

λ(w : ((x :label⊥) ∗ intx ref⊥)⊥ ref⊥).
λ(z :label⊥)[⊥]. (λ(y :intz ref⊥)[⊥].

w := (x=z, y :intx ref⊥)) refintz0

3.3.2. Multilevel communication channels Informa-
tion flows inside a program are controlled by static type
checking. When information is exported outside a pro-
gram through an I/O channel, the receiver might want to
know the exact label of the information, which calls for
multilevel communication channels [9] unambiguously
pairing the information sent or received with its corre-
sponding security label. Supporting multilevel channels
is one of the basic requirements for a MAC system [9].

In λDSec , a multilevel channel can be encoded by a
memory reference of type ((x :labelx) ∗ intx)⊥ ref,
which stores a pair composed of an integer value and
its label. The confidentiality of the integer component is
protected by the label component, since extracting the
integer component from such a pair requires testing the
label component:

λ(z : ((x :labelx) ∗ intx)⊥). let (x, y)=z in
if x v L then mintL := y else ()

In the above example, the constraint x v L must be sat-
isfied in order to store the integer component in mintL .
Since the readability of the integer component depends
on the value of x, letting x recursively label itself en-
sures that all the authorized readers of the integer com-
ponent can test x and retrieve the integer value.

Sending an integer through a multilevel channel is
implemented by pairing the integer and its label and
storing the pair in the reference representing the chan-
nel:

λ(z : (((x :labelx)) ∗ intx)⊥ ref)⊥).
λ(w :labelw). λ(y :intw)[⊥]. z := (x=w, y :intx)

Like other I/O channels, a multilevel channel may have
a label that is an upper bound of the security classes
of the information that can be sent through the chan-
nel. Product label constraints can be used to specify the
label of a multilevel channel. For example, a bounded
multilevel channel can be represented by a memory ref-
erence with type ((x : labelx)[x v `] ∗ intx)⊥ ref,
where ` is the label of the channel, and the constraint
x v ` guarantees any information stored in the refer-
ence has a security label at most as high as `. Sending
information through a bounded multilevel channel of-
ten needs a run-time check as in the following code:

λ(z : (((x :labelx))[x v `] ∗ intx)⊥ ref)⊥).
λ(w :labelw). λ(y :intw)[⊥].
if w v ` then z := (x=w, y :intx) else ()

The ability to recursively use a variable to construct
the label of its own type provides a useful kind of poly-
morphism, which this example demonstrates. Without
recursive labels, the type of a multilevel channel cannot
be constructed so simply, because selecting a label for
the label component x becomes problematic. Any con-
stant label that is chosen may be inappropriate; for ex-
ample, if the label has the label ⊥ then it may be impos-
sible to compute a suitable label to supply as x. Another
possibility is to provide yet another label that is to func-
tion as the label of x, but this merely pushes the prob-
lem back by one level. Giving x the type labelx is a
neat way to tie off this sequence.

4. Type system
This section describes the type system of λDSec , which
is designed to enforce secure information flow.

4.1. Label constraints
Because of dynamic labels, it is not always possible to
decide whether the relationship `1 v `2 holds at com-
pile time; therefore, the label-test expression (if) must
be used to query the relationship. However, this dynamic
query may create new information flows; the language
λDSec and its type system are designed to statically con-
trol these new information flows.

Although labels are first-class values in λDSec , label
terms have a restricted syntactic form so that any label
term can be used as a type annotation. Therefore, con-
straints on label terms are also type-level information
that can be used by the type checker.

[C1]
L |= k1 v k2
C ` k1 v k2

[C2]
`1 v `2 ∈ C
C ` `1 v `2

[C3] C ` ` v > [C4] C ` ⊥ v `

[C5] C ` ` v ` t `′

[C6]
C ` `1 v `2 C ` `2 v `3

C ` `1 v `3

[C7]
C ` `1 v `3 C ` `2 v `3

C ` `1 t `2 v `3

Figure 3. Relabeling rules

Furthermore, in λDSec label terms are purely func-
tional: they have no side effects and evaluate to the same
value in the same context. As a result, any label con-
straint of the form `1 v `2 that is known to hold in a
typing context can be used for type checking in that con-
text. For example, consider the following code:
λ(x :label⊥). λ(y : (intx ref)⊥). λ(z :intH)[H].

ifH v x then y := z else ()

According to the semantics of the label-test expression,
the assignment y := z will be executed only if H v x
holds. Thus, the constraint H v x can be used to de-
cide whether y := z is secure. In this example, any in-
formation stored in z is only accessible to users with se-
curity label at least as high as x. So it is secure to store
z in y because x is at least as high as H .

In general, for each expression e, the type checker
keeps track of the set of constraints C that are known
to be satisfied when e is executed, and uses C in type-
checking e.

4.2. Subtyping
The subtyping relationship between security types plays
an important role in enforcing information flow security.
Given two security types τ1 = β1`1 and τ2 = β2`2 , sup-
pose τ1 is a subtype of τ2, written as τ1 ≤ τ2. Then any
data of type τ1 can be treated as data of type τ2. Thus,
data with label `1 may be treated as data with label `2,
which requires `1 v `2.

The type system keeps track of the set of label con-
straints that can be used to prove relabeling relation-
ships between labels. Let C ` `1 v `2 denote that
`1 v `2 can be inferred from the set of constraints C.
The inference rules are shown in Figure 3; they are stan-
dard and consistent with the lattice properties of labels.
Rule (C2) shows that all the constraints in C are as-
sumed to be true. The constraint set C may contain con-
straints that are inconsistent with the lattice L, such as

[S1]
C ` τ1 ≤ τ2 C ` τ2 ≤ τ1
C ` τ1 ref ≤ τ2 ref

[S2]

C ` τ2 ≤ τ1 C ` τ ′1 ≤ τ ′2
C ` pc2 v pc1 C,C2 ` C1

C ` (x :τ1)
C1 ; pc1−−−−→ τ ′1 ≤ (x :τ2)

C2 ; pc2−−−−→ τ ′2

[S3]
C ` τ1 ≤ τ2 C ` τ ′1 ≤ τ ′2 C,C1 ` C2

C ` (x :τ1)[C1] ∗ τ ′1 ≤ (x :τ2)[C2] ∗ τ ′2

[S4]
C ` β1 ≤ β2 C ` `1 v `2

C ` (β1)`1 ≤ (β2)`2

Figure 4. Subtyping rules

H v L. Inconsistent constraint sets are harmless be-
cause they always indicate dead code, such as expres-
sion e1 in “ifH v L then e1 else e2”.

Since the subtyping relationship depends on the rela-
beling relationship, the subtyping context also needs to
include the C component. The inference rules for prov-
ing C ` τ1 ≤ τ2 are the rules shown in Figure 4 plus
the standard reflexivity and transitivity rules.

Rules (S1)–(S3) are about subtyping on base
types. These rules demonstrate the expected covari-
ance or contravariance. In λDSec , function types con-
tain two additional components pc and C, both
of which are contravariant. Suppose the func-

tion type τ = (x : τ1)
C1 ; pc1−−−−→ τ ′1 is a subtype of

τ ′ = (x : τ2)
C2 ; pc2−−−−→ τ ′2. Then wherever func-

tions with type τ ′ can be called, functions with
type τ can also be called. This implies two neces-
sary premises. First, wherever C2 is satisfied, C1 is
also satisfied. Since C is satisfied, this premise is writ-
ten C,C2 ` C1, meaning that for any constraint `1 v `2
in C1, we can derive C,C2 ` `1 v `2. Second, the
premise pc2 v pc1 is needed because the pc of a func-
tion type is an upper bound on the pc where the function
is applied.

In rules (S2) and (S3), variable x is bound in the func-
tion and product types. For simplicity, we assume that x
does not appear in C, since α-conversion can always be
used to rename x to another fresh variable. This assump-
tion also applies to the typing rules.

Rule (S4) is used to determine the subtyping on se-
curity types. The premise C ` β1 ≤ β2 is natural. The
other premiseC ` `1 v `2 guarantees that coercing data
from τ1 to τ2 does not violate information flow policies.

4.3. Typing
The type system of λDSec prevents illegal information
flows and guarantees that any well-typed program satis-
fies the noninterference property discussed in Section 2.
The typing rules are shown in Figure 5. The notation
label(β`) = ` is used to obtain the label of a type, and
the notations ` v τ and τ v ` are abbreviations for
` v label(τ) and label(τ) v `, respectively.

The typing context includes a type assignment Γ, a
set of constraints C and the program-counter label pc. Γ
is a finite ordered list of x :τ pairs in the order that they
came into scope. For a given x, there is at most one pair
x :τ in Γ.

A variable appearing in a type must be a label vari-
able. Therefore, a type τ is well-formed with respect to
type assignment Γ, written Γ ` τ , if Γ maps all the vari-
ables in τ to label types. The definition of well-formed
labels (Γ ` `) is the same. Consider Γ = x1 :τ1, . . . , xn :
τn. For any 1 ≤ i ≤ n, the type τi may only mention la-
bel variables that are already in scope: x1 through xi.
Therefore, Γ is well-formed if for any 1 ≤ i ≤ n, τi
is well-formed with respect to x1 : τ1, . . . , xi : τi. For
example, “x : labelL, y : intx” is well-formed, but
“y : intx, x : labelL” is not. A constraint `1 v `2 is
well-formed with respect to Γ if both `1 and `2 are well-
formed with respect to Γ. A typing context “Γ ;C ; pc” is
well-formed if Γ is well-formed, and pc and all the con-
straints in C are well-formed with respect to Γ.

The typing assertion Γ ;C ; pc ` e : τ means that
with the type assignment Γ, current program-counter la-
bel as pc, and the set of constraints C satisfied, expres-
sion e has type τ . The assertion Γ ;C ; pc ` e : τ is
well-formed if Γ ;C ; pc is well-formed, and Γ ` τ .

Rules (INT), (UNIT), (LABEL) and (LOC) are used
to check values. Value v has type β⊥ if v has base type
β. Rule (LOC) requires typed locationmτ contain no la-
bel variables so that mτ remains a constant during eval-
uation. This is enforced by the premise FV (τ) = ∅,
where FV (τ) denotes the set of free variables appear-
ing in τ .

Rule (VAR) is standard: variable x has type Γ(x).
Rule (JOIN) checks the join of two labels and assigns a
result label that is the join of the labels of the operands.

Rule (REF) checks memory allocation operations. If
the pc label is high, the generated memory location must
not be observable to low-security users, which is guaran-
teed by the premise C ` pc v τ . Rule (DEREF) checks
dereference expressions. Since some information about
a reference can be learned by knowing its contents, the
result of dereferencing a reference with type (τ ref)`
has type τ t `, where τ t ` = β`′t` if τ is β`′ .

Rule (ASSIGN) checks memory update. As in
rule (REF), if the updated memory location has type

(τ ref)`, then C ` pc v τ is required to pre-
vent illegal implicit flows. In addition, the premise
C ` pc t ` v τ implies another condition C ` ` v τ
that is required to protect the confidentiality of the ref-
erence that is assigned to. Consider the following
code that allows low-security users to learn whether
x v L by observing which of m1 and m2 is up-
dated to 0:
λ(x :labelH)[L].

(if x v L then mintL
1 else mintL

2) := 0

The code is not well-typed because the condition C `
` v τ does not hold for the assignment expression.

Rule (ABS) checks function values. The function
body is checked with the constraint set C ′ and the
program-counter label pc′, so the function can only be
called at places where C ′ is satisfied and the pc label is
not more restrictive than pc′.

Rule (L-APP) is used to check applications of de-
pendent functions. Expression e1 has a dependent func-

tion type ((x : label`′)
C′ ; pc′−−−−→ τ)`, where x does ap-

pear in `′, C ′, pc′ or τ . As a result, rule (L-APP) needs
to use `′[`2/x], C ′[`2/x], pc′[`2/x] and τ [`2/x], which
are well-formed since `2 is a label. That also explains
why e1, with its dependent function type, cannot be ap-
plied to an arbitrary expression e2: substituting e2 for
x in `′, C ′, pc′ and τ may generate ill-formed labels
or types, and it is generally unacceptable for the type
checker to evaluate e2 to value v2 and substitute v2 for
x, which would make type-checking undecidable. The
expressiveness of λDSec is not substantially affected by
the restriction that a dependent function can only be ap-
plied to label terms, because the function can be applied
to a variable that receives the result of an arbitrary ex-
pression. For example, in the following code, the appli-
cation e1x indirectly applies e1 to e2:

(λ(x :label`). if x v L then e1 x else ()) e2

This works as long as the function enclosing e1x is not
dependent.

In rule (L-APP), the label of e1`2 is at least as restric-
tive as `, preventing the result of e1 from being leaked.
The premise C ` C ′[`2/x] guarantees that C ′[`2/x]
are satisfied when the function is invoked. The premise
C ` pc t ` v pc′[`2/x] ensures that the invocation
cannot leak the program counter or the function itself
through the memory effects of the function.

Rule (APP) applies when x does not appear inC ′, pc′

or τ . In this case, the type of e1 is just a normal func-
tion type, so e1 can be applied to arbitrary terms.

Rule (PROD) is used to check product values. To
check v2, the occurrences of x in v2 and τ2 are both re-
placed by v1, since x is not in the domain of Γ. If v1 is
not a label, then x cannot appear in τ2. Thus, τ2[v1/x]
is always well-formed no matter whether v1 is a label or

[INT] Γ ;C ; pc ` n : int⊥ [UNIT] Γ ;C ; pc ` () : unit⊥

[LABEL] Γ ;C ; pc ` k : label⊥ [LOC]
FV (τ) = ∅

Γ ;C ; pc ` mτ : (τ ref)⊥

[JOIN]
Γ ;C ; pc ` `1 : label`′1

Γ ;C ; pc ` `2 : label`′2
Γ ;C ; pc ` `1 t `2 : label`′1t`

′
2

[VAR]
x :τ ∈ Γ

Γ ;C ; pc ` x : τ

[REF]
Γ ;C ; pc ` e : τ C ` pc v τ

Γ ;C ; pc ` refτ e : (τ ref)⊥
[DEREF]

Γ ;C ; pc ` e : (τ ref)`

Γ ;C ; pc `!e : τ t `

[ABS]

Γ, x :τ ′ ;C′ ; pc′ ` e : τ

Γ ;C ; pc ` λ(x :τ ′)[C′ ; pc′]. e : ((x :τ ′)
C′ ; pc′−−−−−→ τ)⊥

[ASSIGN]

Γ ;C ; pc ` e1 : (τ ref)`
Γ ;C ; pc ` e2 : τ C ` pc t ` v τ

Γ ;C ; pc ` e1 := e2 : unit⊥

[L-APP]

Γ ;C ; pc ` e1 : ((x :label`′)
C′ ; pc′−−−−−→ τ)`

Γ ;C ; pc ` `2 : label`′[`2/x]
C ` pc t ` v pc′[`2/x] C ` C′[`2/x]
x ∈ FV (τ) ∪ FV (`′) ∪ FV (C′) ∪ FV (pc′)

Γ ;C ; pc ` e1 `2 : τ [`2/x] t ` [APP]

Γ ;C ; pc ` e1 : ((x :τ ′)
C′ ; pc′−−−−−→ τ)`

Γ ;C ; pc ` e2 : τ ′

C ` pc t ` v pc′ C ` C′
x /∈ FV (τ) ∪ FV (τ ′) ∪ FV (C′) ∪ FV (pc′)

Γ ;C ; pc ` e1 e2 : τ t `

[PROD]

Γ ;C ; pc ` v1 : τ1[v1/x] Γ, x :τ1 ` τ2
Γ ;C ; pc ` v2[v1/x] : τ2[v1/x] C ` C′[v1/x]

Γ ;C ; pc ` (x=v1[C′], v2 :τ2) : ((x :τ1)[C′] ∗ τ2)⊥
[UNPACK]

Γ ;C ; pc ` e1 : ((x :τ1)[C′] ∗ τ2)`
Γ, x :τ1t`, y :τ2t` ; C,C′ ; pc ` e2 : τ

Γ ;C ; pc ` let (x, y)=e1 in e2 : τ

[IF]

Γ ;C ; pc ` `i : label`′i
i ∈ {1, 2}

Γ ; C, `1 v `2 ; pc t `′1 t `′2 ` e1 : τ
Γ ;C ; pc t `′1 t `′2 ` e2 : τ

Γ ;C ; pc ` if `1 v `2 then e1 else e2 : τ t `′1 t `′2
[SUB]

Γ ;C ; pc ` e : τ C ` τ ≤ τ ′

Γ ;C ; pc ` e : τ ′

Figure 5. Typing rules for the λDSec language

not. Similarly, the occurrences of x in τ1 and C ′ are also
replaced by v1 when v1 and C ′ are checked.

Rule (UNPACK) checks product destructors straight-
forwardly. After unpacking the product value, those
product label constraints in C ′ are in scope and used
for checking e2.

Rule (IF) checks label-test expressions. The con-
straint `1 v `2 is added into the typing context
when checking the first branch e1. When check-
ing the branches, the program-counter label subsumes
the labels of `1 and `2 to protect them from im-
plicit flows. The resulting type contains `′1 and `′2 be-
cause the result is influenced by the values of `1 and
`2.

Rule (SUB) is the standard subsumption rule. If τ is
a subtype of τ ′, then any expression of type τ also has
type τ ′.

This type system satisfies the subject reduction prop-
erty and the progress property, as stated in the following
two theorems. Theorem 4.1 is an instantiation of Theo-
rem 5.1, which is proved in Section 5.

Definition 4.1 (Well-typed memory). A memory M
is well-typed if for any memory location mτ in M ,
`M(mτ) : τ .

Theorem 4.1 (Subject reduction). Suppose pc ` e : τ ,
andM is a well-typed memory. If 〈e, M〉 7−→ 〈e′, M ′〉,
then M ′ is well-typed, and pc ` e′ : τ .

Theorem 4.2 (Progress). If pc ` e : τ , and FV (e) =
∅, and M is a well-typed memory such that 〈e, M〉 is
a well-formed configuration, then either e is a value or
there exists e′ and M ′ such that 〈e, M〉 7−→ 〈e′, M ′〉
and FV (e′) = ∅.

Proof. By induction on the derivation of pc ` e : τ . The
base cases are cases (INT), (UNIT), (LABEL), (LOC),
(ABS), (PROD), in which e is a value.

• Case (JOIN). In this case, e is `1 t `2. If `1 is not
a value, then 〈`1, M〉 7−→ 〈`′1, M〉 by induction,
and 〈e, M〉 7−→ 〈`′1 t `2, M〉 by rule (E9). If `1
is a value, and `2 is not a value, then 〈e, M〉 7−→
〈`1 t `′2, M〉 by the same argument. Otherwise, `1
and `2 are both values, then 〈e, M〉 7−→ 〈k, M〉
by rule (E1), where k = `1 t `2.

• Case (VAR). Since FV (e) = ∅, this case cannot
occur.

• Case (REF). e is refτ e1. If e1 is not a value,
then 〈e1, M〉 7−→ 〈e′1, M ′〉 by induction, and
〈refτ e1, M〉 7−→ 〈refτ e′1, M ′〉. If e1 is a value

v, then 〈refτ e1, M〉 7−→ 〈mτ , M [mτ 7→ v]〉 by
rule (E3).

• Case (DEREF). By induction and rule (E2).

• Case (ASSIGN). By induction and rule (E4).

• Cases (L-APP) and (APP). e is e1e2. If e1 or
e2 is not a value, then 〈e, M〉 7−→ 〈e′, M ′〉
by induction and (E9). Otherwise, e1 is
λ(x : τ)[C ; pc]. e′1, and e2 is v. By rule
(E5), 〈e, M〉 7−→ 〈e′1[v/x], M〉. Since
FV (e′1) = FV (e1) ∪ {x} = {x}, we have
FV (e′1[v/x]) = ∅.
• Case (UNPACK). By induction and rule (E8).

• Case (IF). By induction and rules (E6) and (E7).

• Case (SUB). By induction.

5. Noninterference
This section proves that any well-typed program in
λDSec satisfies the noninterference property as dis-
cussed in Section 2. Let 7−→∗ denote the transitive
closure of the 7−→ relationship. The following defi-
nitions and theorem formalize the claim that the type
system of λDSec enforces noninterference. For sim-
plicity, we only consider that results are integers be-
cause they can be compared outside the context of
λDSec .

Definition 5.1 (Well-typed input). An input map A is
well-typed with respect to Γ, written Γ ` A, if for any x
in dom(Γ), we have ` A(x) : Γ(x)[A], where Γ(x)[A]
represents the type obtained by substituting every free
variable y in Γ(x) with A(y).

Definition 5.2 (Input low-equivalence). Two in-
put maps A1 and A2 are equivalent with respect
to Γ and label H , written as Γ ` A1 ≈H A2, if
Γ ` A1, A2, and for any x in dom(Γ), H 6v Γ(x) im-
plies A1(x) = A2(x).

Noninterference Theorem. Suppose H 6v L, and Γ `
e : intL. Given two input maps A1 and A2 such that
Γ ` A1 ≈H A2, if 〈e[Ai], M〉 7−→∗ 〈vi, M ′i〉 for i ∈
{1, 2}, then v1 = v2.

To prove this noninterference theorem, we adapt the
elegant proof technique developed by Pottier and Si-
monet for an ML-like security-typed language [26].
Suppose expression e has only one free variable x. To
show that noninterference holds, it is necessary to rea-
son about the executions of two related terms: e[v1/x]
and e[v2/x]. We extend λDSec with a bracket construct
(e1|e2) that represents alternative expressions that might
arise during the evaluation of two programs that differs
initially only in v1 and v2. Then e[v1/x] and e[v2/x]

can be incorporated into a single term e[(v1 | v2)/x]
in the extended language λ2

DSec , providing a syntactic
way to reason about two executions. We can show that
two λDSec terms only differ at the confidential part if
the two terms can be encoded by a well-typed λ2

DSec

term. Therefore, proving the noninterference theorem
of λDSec can be reduced to proving the subject reduc-
tion theorem of λ2

DSec . The major extension to Pottier’s
proof technique is that the bracket construct must also
be applied to labels. Because types may contain brack-
eted labels, the projection operation also applies to typ-
ing environments.

The rest of this section details the syntax and seman-
tic extensions of λ2

DSec and proves the key subject re-
duction theorem of λ2

DSec and the noninterference theo-
rem of λDSec .

5.1. Syntax extensions
The λ2

DSec language extends λDSec with the bracket
constructs and a new value void that can have any type:

` ::= . . . | (` | `)
v ::= . . . | (v | v) | void
e ::= . . . | (e | e)

where the ellipses represent the terms also belonging to
λDSec . The bracket constructs cannot be nested, so the
subterms of a bracket construct must be λDSec terms or
void. A λ2

DSec memory encodes two λDSec memories,
which may have distinct domains. The bindings of the
form mτ 7→ (v | void) and mτ 7→ (void | v) represent
situations wheremτ is bound within only one of the two
λDSec memories.

Given a λ2
DSec expression e, let bec1 and bec2 rep-

resent the two λDSec terms that e encodes. The pro-
jection functions satisfy b(e1 | e2)ci = ei and are ho-
momorphisms on other expression forms. In addition,
(e1 | e2)[v/x], the capture-free substitution of v for x in
(e1 | e2), must use the corresponding projection of v in
each branch: (e1 |e2)[v/x] = (e1[bvc1/x] |e2[bvc2/x]).

In λ2
DSec , labels can be bracket constructs, and types

may contain bracketed labels. Thus, the projection oper-
ation can be applied to labels, types, type assignments,
and label constraints. Similarly, the projection functions
are homomorphisms on these typing constructs. For ex-
ample, bint(L |H)c1 = intL, and bx : τ, y : τ ′c1 = x :
bτc1, y :bτ ′c1.

The following relabeling rule is added to reason
about relabeling relationship between bracketed labels:

bCc1 ` b`1c1 v b`2c1 bCc2 ` b`1c2 v b`2c2
C ` `1 v `2

5.2. Operational semantics
Since a λ2

DSec term effectively encodes two λDSec

terms, the evaluation of a λ2
DSec term can be pro-

jected into two λDSec evaluations. An evaluation step of
a bracket expression (e1 | e2) is an evaluation step of ei-
ther e1 or e2. and e1 or e2 can only access the cor-
responding projection of the memory. Thus, the con-
figuration of λ2

DSec has an index i ∈ {•, 1, 2} that
indicates whether the term to be evaluated is a sub-
term of a bracket expression, and if so which branch
of a bracket the term belongs to. For example, the con-
figuration 〈e, M〉1 means that e belongs to the first
branch of a bracket, and e can only access the first pro-
jection of M . We write “〈e, M〉” for “〈e, M〉•”, which
means e does not belong to any bracket.

The operational semantics of λ2
DSec is shown in Fig-

ure 6. It is based on the semantics of λDSec and contains
some new evaluation rules (E10–E14) for manipulating
bracket constructs. Rules (E2)–(E4) are modified to ac-
cess the memory projection corresponding to index i.
The rest of the rules in Figure 2 are adapted to λ2

DSec by
indexing each configuration with i. The following two
lemmas state that the operational semantics of λ2

DSec is
adequate to encode the execution of two λDSec terms.

Lemma 5.1 (Soundness). If 〈e, M〉 7−→ 〈e′, M ′〉, then
〈beci, bMci〉 7−→∗ 〈be′ci, bM ′ci〉 for i ∈ {1, 2}.

Proof. By inspection of the evaluation rules.

Lemma 5.2 (Completeness). If 〈beci, bMci〉 7−→∗
〈vi, M ′i〉 for i ∈ {1, 2}, then there exists a configura-
tion 〈v, M ′〉 such that 〈e, M〉 7−→∗ 〈v, M ′〉.

Proof. First, 〈e, M〉 cannot admit an infinite evaluation
sequence. Rules (E11)–(E16) can only be applied for fi-
nite times because each of these rules moves some pair
constructor strictly closer to the term’s root. These rules
are the only rules that leave both projections of a con-
figuration unchanged. Therefore, by Lemma 5.1, an in-
finite evaluation sequence of 〈e, M〉 implies that for
some i ∈ {1, 2}, 〈beci, bMci〉 admits an infinite eval-
uation sequence, which contradicts 〈beci, bMci〉 7−→∗
〈vi, M ′i〉, since the operational semantics of λDSec is
deterministic.

By induction on the structure of e, we can prove
that if 〈e, M〉 is stuck, then 〈beci, bMci〉 for some
i ∈ {1, 2} is also stuck. Therefore, 〈e, M〉 cannot be
stuck, and then it must terminate normally.

5.3. Typing and subject reduction
The type system of λ2

DSec includes all the typing rules
in Figure 5 and has two additional rules, one for typing
void, the other for typing bracket constructs.

[VOID] Γ ;C ; pc ` void : τ

[BRACKET]

bΓc1 ;bCc1 ;bpc′c1 ` e1 : bτc1
bΓc2 ;bCc2 ;bpc′c2 ` e2 : bτc2

H t pc v pc′ H v τ
Γ ;C ; pc ` (e1 | e2) : τ

Before proving the λ2
DSec type system satisfies the

subject reduction property, we first prove some lemmas
about projection and substitution.

Lemma 5.3 (Label Projection). If C ` `1 v `2, then
bCci ` b`1ci v b`2ci for i ∈ {1, 2}.

Proof. By induction on the derivation of C ` `1 v `2.

Lemma 5.4 (Constraint Reduction). If Γ ;C, `1 v
`2 ; pc ` e : τ and C ` `1 v `2, then Γ ;C ; pc ` e : τ .

Proof. By induction on the derivation of Γ ;C, `1 v
`2 ; pc ` e : τ .

Lemma 5.5 (Projection). If Γ ;C ; pc ` e : τ , then
bΓci ;bCci ;bpcci ` beci : bτci, for i ∈ {1, 2}.

Proof. By induction on the derivation of Γ ;C ; pc ` e :
τ , and using the label projection lemma.

Lemma 5.6 (Store Access). Let i be in {•, 1, 2}. Sup-
pose pc ` v : τ and pc ` v′ : τ . In addition,
i ∈ {1, 2} implies H v τ . Then pc ` readi v : bτci,
pc ` newi v : τ and pc ` updatei v v′ : τ .

Proof. By the definition of the functions read, new and
update in Figure 6, by the projection lemma, and rules
(VOID) and (BRACKET).

Lemma 5.7 (Substitution). If x : τ ′,Γ ;C ; pc ` e : τ ,
and ` v : τ ′[v/x], then Γ[v/x] ;C[v/x] ; pc[v/x] `
e[v/x] : τ [v/x].

Proof. By induction on the derivation of
x :τ ′,Γ ;C ; pc ` e : τ .

Theorem 5.1 (Subject reduction). Suppose pc ` e : τ ,
memory M is well-typed, 〈e, M〉i 7−→ 〈e′, M ′〉i, and
i ∈ {1, 2} implies H v pc. Then pc ` e′ : τ , and M ′ is
also well-typed.

Proof. By induction on the derivation of 〈e, M〉i 7−→
〈e′, M ′〉i. Without loss of generality, we assume that
the last step of the derivation of pc ` e : τ does not use
the rule (SUB). Suppose the derivation of pc ` e : τ
ends with using (SUB). Then there exists τ ′ such that
pc ` e : τ ′, and τ ′ ≤ τ , and the derivation of pc ` e : τ ′

does not end with using (SUB). If we can show pc ` e :
τ ′, which satisfies the assumption, then pc ` e : τ by

[E2] 〈!mτ , M〉i 7−→ 〈readiM(mτ), M〉i

[E3]
m = newloc(M)

〈refτv, M〉i 7−→ 〈mτ , M [mτ 7→ newi v]〉i

[E4] 〈mτ := v, M〉i 7−→ 〈(), M [mτ 7→ updateiM(mτ) v]〉i

[E10]
〈ei, M〉i 7−→ 〈e′i, M ′〉i ej = e′j {i, j} = {1, 2}

〈(e1 | e2), M〉 7−→ 〈(e′1 | e′2), M ′〉

[E11] 〈(v1 | v2)v, M〉 7−→ 〈(v1bvc1 | v2bvc2), M〉

[E12] 〈(v1 | v2) := v, M〉 7−→ 〈(v1 := bvc1 | v2 := bvc2), M〉

[E13] 〈!(v1 | v2), M〉 7−→ 〈(!v1 | !v2), M〉

[E14] 〈if v1 v v2 then e1 else e2, M〉 7−→ 〈(if bv1c1 v bv2c1 then be1c1 else be2c1 |
if bv1c2 v bv2c2 then be1c2 else be2c2),M〉

if v1 = (v | v′) or v2 = (v | v′)

[E15] 〈v1 t v2, M〉 7−→ 〈(bv1c1 t bv2c1 | bv1c2 t bv2c2), M〉 if v1 = (v | v′) or v2 = (v | v′)

[E16] 〈let (x, y)=((x=v1[C], v2 :τ) | (x=v′1[C′], v′2 :τ ′)) in e, M〉 7−→ 〈e[(v2 | v′2)/y][(v1 | v′1)/x], M〉

[Auxiliary functions]

new• v = v update• v v
′ = v′ read• v = v

new1 v = (v | void) update1 v v
′ = (v′ | bvc2) read1 v = bvc1

new2 v = (void | v) update2 v v
′ = (bvc1 | v′) read2 v = bvc2

Figure 6. Small-step operational semantics of λ2
DSec

(SUB). Therefore, the assumption does not lose gener-
ality.

Here we just show eight cases: (E3), (E5), (E6), (E8),
(E10), (E11), (E14) and (E16). The rest of evaluation
rules are treated similarly.

• Case (E3). e is refτ
′
v, and τ is (τ ′ ref)⊥. Then

e′ is mτ ′
. By (LOC), pc ` e′ : (τ ′ ref)⊥. By

Lemma 5.6, pc ` newiv : τ ′. Thus, M [mτ ′ 7→
newiv] is well-typed.

• Case (E5). e is (λ(x : τ ′)[C ′ ; pc′]. e′)v. Then pc `
λ(x : τ ′)[C ′ ; pc′]. e′ : ((x : τ ′′)

C′′ ; pc′′−−−−−→ τ1)`, and
pc ` v : τ ′′, and ` C ′′[v/x]. By rules (APP) and
(L-APP), τ = τ1[v/x] t `, and pc v pc′′[v/x]. By
rules (ABS) and (SUB), x : τ ′ ;C ′ ; pc′ ` e′ : τ1,
and ` τ ′′ ≤ τ ′, ` pc′′ v pc′, and C ′′ ` C ′.
Therefore, ` C ′[v/x], and pc v pc′[v/x]. By the
substitution lemma, C ′[v/x] ; pc′[v/x] ` e′[v/x] :
τ1[v/x]. By Lemma 5.4, pc′[v/x] ` e′[v/x] :
τ1[v/x]. Since pc v pc′[v/x] and τ1[v/x] v τ ,
we have pc ` e′[v/x] : τ .

• Case (E6). By rule (IF), k1 v k2 ; pc ` e1 : τ . By
Lemma 5.4 and L |= k1 v k2, we have pc ` e1 :
τ .

• Case (E8). e is let(x, y)=(x=v1[C], v2 :τ2)ine′.
By rule (UNPACK), pc ` (x=v1[C], v2 :τ2) : ((x :
τ1)[C] ∗ τ2)`, and x : τ1 t `, y : τ2 t ` ; pc ` e′ : τ .
By rule (PROD), pc ` v1 : τ1[v1/x], and
pc ` v2[v1/x] : τ2[v1/x], and ` C[v1/x].
Using the substitution lemma twice, we
get C[v1/x] ; pc ` e′[v1/x][v2[v1/x]/y] :
τ [v1/x][v2[v1/x]/y]. It is straightforward to show
that e′[v1/x][v2[v1/x]/y] = e′[v2/y][v1/x]. Ac-
cording to rule (UNPACK), x, y 6∈ FV (τ). Thus,
τ [v1/x][v2[v1/x]/y] = τ . In addition, we have
` C[v1/x]. Therefore, pc ` e[v1/x][v2/y] : τ .

• Case (E10). e is (e1 | e2). Without loss of general-
ity, assume 〈e1, M〉1 7−→ 〈e′1, M ′〉1 and e2 = e′2.
By rule (BRACKET), H v pc, and bpcc1 ` e1 :
bτc1. H v pc implies H v bpcc1. By induction,
bpcc1 ` e′1 : bτc1, and M ′ is well-typed. Using
rule (BRACKET), we can get pc ` (e′1 | e′2) : τ .

• Case (E11). e is (v1 | v2)v. By (APP) and (L-APP),

pc ` (v1 | v2) : ((x : τ ′)
C′ ; pc′−−−−→ τ ′′)`, and

pc ` v : τ ′. Then τ = τ ′′[v/x] t `. In addition,
pc t ` v pc′. By (BRACKET), H v `, which im-
plies H v pc′. By Lemma 5.5, bpcci ` vi : ((x :

bτ ′ci)
bC′ci ;bpc′ci−−−−−−−−→ bτci)b`ci , and bpcci ` bvci :

bτ ′ci, which imply bpcci ` vibvci : bτci. Ac-
cording to (APP) and (L-APP), a well-typed appli-
cation expression e1e2 can be type-checked with
the pc component of the type of e1 in the typ-
ing context. Therefore, bpc′ci ` vibvci : bτci.
Since H v pc′, we can apply (BRACKET) to get
pc ` (v1bvc1 | v2bvc2) : τ .

• Case (E14). e is if v1 v v2 then e1 else e2, and
there exists j ∈ {1, 2} such that vj = (v | v′). Sup-
pose pc ` vi : label`i for i ∈ {1, 2}. Since vj is
a bracket construct, H v `j . By (IF), both e1 and
e2 are type-checked with pc t `1 t `2 in the typ-
ing context. Thus, we can get pc t `1 t `2 ` e : τ .
By Lemma 5.5, bpc t `1 t `2ci ` beci : bτci.
H v `j implies H v bpc t `1 t `2ci. Applying
(BRACKET), we get pc ` (bec1 | bec2) : τ .

• Case (E16). e is let (x, y) = ((x = v1[C], v2 :
τ) | (x = v′1[C ′], v′2 : τ ′)) in e′. Suppose expres-
sion ((x = v1[C], v2 : τ) | (x = v′1[C ′], v′2 : τ ′))
has type (x : τ1)[C0] ∗ τ2)⊥. It is easy to show that
(v1 | v′1) and (v2 | v′2) have type τ1 and τ2 respec-
tively. Then this case is reduced to case (E8), which
is standard.

5.4. Noninterference proof
Theorem 5.2 (Noninterference). Suppose H 6v L, and
Γ ` e : intL. Given two input maps A1 and A2 such
that Γ ` A1 ≈H A2, if 〈e[Ai], M〉 7−→∗ 〈vi, M ′i〉 for
i ∈ {1, 2}, then v1 = v2.

Proof. First, we incorporate A1 and A2 into a λ2
DSec

input map A such that for any x in dom(Γ), A(x) =
A1(x) if A1(x) = A2(x), and A(x) = (A1(x) |A2(x))
if otherwise. Since Γ ` A1 ≈H A2, A(x) is a bracket
construct only if H v Γ(x)[A1] and H v Γ(x)[A2],
or equivalently, H v Γ(x)[A]. Therefore, A is a well-
typed input map with respect to Γ. By Lemma 5.7,
` e[A] : intL.

Because 〈e[Ai], M〉 7−→∗ 〈vi, M ′i〉 and
e[Ai] = be[A]ci for i ∈ {1, 2}, 〈e[(v1|v2)/x], M〉 7−→∗
〈v, M ′〉 by Lemma 5.2. Moreover, ` v : intL by Theo-
rem 5.1. Thus, v is not a bracket value, and bvc1 = bvc2.
By Lemma 5.1, 〈e[Ai], M〉 7−→∗ 〈bvci, bM ′ci〉 for
i ∈ {1, 2}. Since the operational semantics of λDSec is
deterministic, we have v1 = bvc1 and v2 = bvc2, which
imply v1 = v2.

6. Dynamic labels in practice
The simplicity of λDSec helps proving the correctness of
its dynamic label mechanism, but makes λDSec imprac-
tical to use. This section shows that the dynamic label
mechanism of λDSec can be applied to a practical pro-
gramming language such as Jif. First, we show that the
existing dynamic label mechanism of Jif can be inter-
preted using λDSec . Second, we propose an extension to
the dynamic label mechanism of Jif based on λDSec .

6.1. Dynamic labels in Jif
Jif [24] is the only implemented security-typed language
supporting dynamic labels. Jif extends the Java lan-
guage [14] with static information flow control. Jif aims
to provide a usable programming model, in which the
dynamic label mechanism plays an important role.

In Jif, labels can also be used as first-class values,
and a variable of type label may be used as a label
for other values. Jif provides the switch label state-
ment for run-time label tests. For example, the follow-
ing code uses the switch label statement to send a
value through a communication channel with a dynamic
label:

(A) final label{L} x;

Channel{*x} c;

int{H} y;

switch label(y) {

case (int{*x} z) c.send(z);

else throw new UnsafeTransfer();

}

The send operation is secure only if x is a high-security
label, which has to be determined at run time. The nota-
tion *x refers to the label value of x; it can be used as a
label only if x is declared as a final variable, to prevent
assignments from changing the meaning of types that
mention it. In the example, the switch label state-
ment executes the first of the cases whose associated la-
bel is at least as restrictive as that of y. The value of y
is assigned to the corresponding variable (for example,
z). In this example, the first case will be executed only
if H v ∗x, guaranteeing that c is a high-security chan-
nel.

In general, the statement switch label(e){case
(int{`} x) S1; else S2} can be encoded as the fol-
lowing pseudo-code in λDSec :

if `e v ` then (λ(x :int`)[pc]. S1) e else S2

where `e represents the label of e, and pc is an upper
bound to the labels of the effects of S1. By rule (IF),
`1 t `2 v pc needs to hold, where `1 and `2 are the la-
bels of `e and `, respectively. Indeed, the type system of
Jif ensures `1 t `2 v pc.

In Jif, labels are specified using the decentral-
ized label model [23]. These labels may explic-
itly mention principals. For example, a value with
type int{Alice:Bob} is an integer owned by princi-
pal Alice and readable by Alice and Bob. Like la-
bels, principals may also be used as first-class values at
run time. The statement actsFor(p1, p2)S executes
the statement S if the principal p1 can act for the princi-
pal p2. This acts-for relationship between p1 and p2 is
equivalent to {p2:} v {p1:}. Thus the actsFor state-
ment essentially implements a run-time label test, and
can be encoded as:

if {p2:} v {p1:} then S else ()

The Jif type system checks S with a program counter la-
bel pc such that `1t `2 v pc, where `1 and `2 are the la-
bels of p1 and p2, respectively. This is consistent with
the type system of λDSec .

6.2. The Jif-DX language
The original Jif dynamic label mechanism appears to be
sound but has several limitations. First, label checking
of the clauses of a switch label statement does not
fully exploit the label constraint enforced by the run-
time test. Second, Jif supports only one kind of statically
specified label constraints: actsFor constraints, which
give information about principals but are not as power-
ful as general label constraints. Third, in Jif only vari-
ables or fields of the enclosing class declaration can be
used as dynamic labels, but in practice other expressions
may be useful in dynamic labels.

These limitations of Jif make it difficult or awkward
to write some applications that need to manipulate dy-
namic labels. Therefore, we propose the Jif-DX lan-
guage, which extends Jif with a better dynamic label
mechanism, including the label-test statement, method
and field label constraints, and more general label ex-
pressions 1. These new language features are based on
the constructs of λDSec . In particular, the label-test state-
ment resembles the label-test expression of λDSec ; a
method label constraint corresponds to the label con-
straint component of a lambda term; a field label con-
straint corresponds to the label constraint component in
a pair value.

6.2.1. The label-test statement Jif-DX provides the
label-test statement, which is a more flexible way to im-
plement run-time label checks than the switch label

statement. The label-test statement resembles the con-
ditional label-test expression of λDSec , except that the

1 Some of the proposed features have been incorporated into Jif ver-
sion 3.0.

conditional branches are statements instead of expres-
sions: “if (`1<=`2) S1 else S2”. Intuitively, S1 is
executed if `1 v `2 is true at run time; otherwise, S2 is
executed. As in λDSec , `1 v `2 can be assumed to hold
when type-checking S1.

Both the switch label statement and the actsFor
statement in Jif can be encoded with the label-test state-
ment. For example, the statement “actsFor(p1,
p2) S” is equivalent to “if ({p2:} <= {p1:}) S”.

6.2.2. Method label constraints Jif-DX allows gen-
eral label constraints to be specified in method signa-
tures, whereas Jif only provides actsFor constraints.
The following example shows a use of a label constraint
on a method:

(B) class Key[principal p] {

int{} encrypt(label{} lb,

int{*lb} x)

where {*lb} <= {p:} {

...

}

}

The class Key[principal p] represents a key belong-
ing to principal p. The encrypt method takes in a label
lb and an integer x labeled with {*lb}, and attempts to
encrypt x with the key of principal p and return the en-
crypted result as a public integer. This method should
only encrypt the data owned by principal p, because the
result can be decrypted by p. This requirement is cap-
tured by the method label constraint {*lb} v {p:}.
The compiler ensures that the constraint is satisfied
wherever this method is called.

Another way to write this code would be to insert
a run-time check in the method body and make the
method throw an exception if {*lb} v {p:} is not sat-
isfied at run time. This code would incur some unnec-
essary run-time label checks, and the caller would have
to handle the exception somehow. Indeed, one advan-
tage of the method label constraint is its ability to ex-
ploit information available at the caller side to reduce
the number of run-time checks. For example, in the fol-
lowing Jif-DX code the compiler can determine that the
method constraint is satisfied without a run-time check:

(C) Key[Alice]{} k;

int{Alice:Bob} x;

k.encrypt({Alice:Bob}, x);

6.2.3. Field label constraints In Jif-DX, label con-
straints can also be specified on class fields of type
label. The compiler ensures that the field label con-
straints of a class are satisfied whenever a new instance

of the class is created. All fields appearing in a label con-
straint must be final, so field label constraints that are
satisfied when an object is created will hold for the life-
time of the object.

Like method label constraints, field label constraints
can be used to reduce the number of run-time label
checks. For example, sending an integer through a mul-
tilevel communication channel with label ` requires
sending the exact label of the integer through the chan-
nel. The natural way to implement it is to wrap the inte-
ger and its label in an object of the Labeled class and
send the object through the channel.

(D) class Labeled {

public final label{`} lb;

public int{*lb} content;

public Labeled(label{`} x,

int{*x} y) {

lb = x; content = y;

}

}

The label of field lb is `, ensuring that lb itself can be
sent through the channel. But the label of field content

is dynamic, and the constraint {*lb} v ` needs to hold
for field content to be sent safely through the chan-
nel. This constraint can be enforced by a run-time la-
bel check, but it can also be enforced statically by spec-
ifying a field label constraint {*lb} v `, as in the
UBLabeled (“UB” stands for upper bound) class. Send-
ing a UBLabeled object through a channel with label `
is always safe.

(E) class UBLabeled {

public final label{`} lb

where {*lb} <= `;
public int{*lb} content;

public UBLabeled(label{`} x,

int{*x} y)

where {*x} <= ` {

lb = x; content = y;

}

}

6.2.4. Path-expression labels Consider the Labeled

class again, and suppose o is a Labeled object.
Then what is the type of o.content? Accord-
ing to the Labeled class, the precise type would be
int{*o.lb}, which cannot be expressed in Jif be-
cause Jif does not allow path expressions such as o.lb
to appear in labels.

In Jif-DX, a path expression with the type label can
be used in label expressions as long as all the identi-
fiers in the path expression are final, ensuring that the
path expression always has the same value. For exam-
ple, if o is a final variable, then {*o.lb} is a legiti-

mate label, and the following code can be used to ac-
cess o.content while preserving its precise type.

(F) int{*o.lb} y = o.content;

If o were not a final variable, then o.content would
not be well-typed in Jif-DX. But there is an easy
workaround: assign o to a final variable fo and ac-
cess the content field by fo.content, which has a
well-formed type int{*fo.lb}. This workaround is
like unpacking a pair value in λDSec .

6.2.5. Example: bounded dynamic labeling In this
section, we show how to use the new dynamic label
constructs in Jif-DX to implement a MAC mechanism,
which would be much harder and unintuitive to imple-
ment in Jif. The MAC mechanism in the MITRE CMW
system [34] associates two labels with each object: a
floating label and a fixed mandatory label. The floating
label is updated accordingly when the content of the ob-
ject is updated, but is bounded by the fixed mandatory
label in order to prevent the covert channel caused by
label updates. The doubly labeled object can be repre-
sented by a UBLabeled (see code fragment E) object in
Jif-DX, and the policy that the floating label be bounded
by the mandatory label is represented by the field con-
straint {*lb} v `, where {*lb} is the floating label,
and ` is the mandatory label.

The following code shows how to update the label
and access the content of a UBLabeled object. Simple
as it is, this example demonstrates several subtle issues
related to manipulating dynamic labels.

(G) UBLabeled o;

final label{} x, y;

int{*x} data;

...

(1) if ({*x} <= `)
o = new UBLabeled(x, data);

final UBLabeled{} fo = o;

(2) if ({*fo.lb} <= {*y} && {*y} <= `)
o = new UBLabeled(y, fo.content);

(3) int{`} output = fo.content;

int{Alice:} output2;

(4) if ({*fo.lb} <= {Alice:})

output2 = fo.content;

The first label-test statement (1) attempts to update the
content of o, and the constraint {*x}<= ` guarantees the
label of the new value is bounded by the mandatory la-
bel `. The constructor call new UBLabeled(x, data)

is well-typed because of the constraint {*x} v ` en-
forced by the label test.

The second label-test statement (2) attempts
to just update the label field of o to y. The first test
{*fo.lb}<={*y} is necessary for new UBLabeled(y,

fo.content) to be well-typed, because the type of
fo.content (int{*fo.lb}) must be a subtype of
int{*y}. Essentially, the constraint prevents down-
grading the label of the object content. Furthermore,
this example shows that the immutability require-
ment for label fields is not a fundamental limitation
because adding a level of indirection makes it pos-
sible to update o.lb even though the field lb is fi-
nal.

The last two statements (3,4) attempt to ac-
cess o.content. The assignment to output is
well-typed because of the field label constraint
{*fo.lb} v `. The assignment to output2 might ap-
pear secure because a label test is used to ensure the
label of output2 is at least as restrictive as the la-
bel of fo.content. However, there is an implicit
flow from fo.lb to output2 in the label-test state-
ment. The implicit flow is legal only if ` v {Alice:},
which prevents a possible covert channel caused by dy-
namic labeling.

7. Related Work
Dynamic information flow control mechanisms [33, 34]
track security labels dynamically and use run-time secu-
rity checks to constrain information propagation. These
mechanisms are transparent to programs, but they can-
not prevent illegal implicit flows arising from the con-
trol flow paths not taken at run time.

Various general security models [18, 30, 12] have
been proposed to incorporate dynamic labeling. Unlike
noninterference, these models define what it means for
a system to be secure according to a certain relabeling
policy, which may allow downgrading labels.

Using static program analysis to check informa-
tion flow was first proposed by Denning and Den-
ning [8]; later work phrased the analysis as type
checking (e.g., [25]). Noninterference was later de-
veloped as a more semantic characterization of secu-
rity [13], followed by many extensions. Volpano, Smith
and Irvine [32] first showed that type systems can be
used to enforce noninterference, and proved a ver-
sion of noninterference theorem for a simple imperative
language, starting a line of research pursuing the nonin-
terference result for more expressive security-typed lan-
guages. Heintze and Riecke [15] proved the noninterfer-
ence theorem for the SLam calculus, a purely functional
language. Zdancewic and Myers [37] investigated a se-
cure calculus with first-class continuations and refer-
ences. Pottier and Simonet [26] considered an ML-like
functional language and introduced the proof tech-
nique that is extended in this paper. A more complete
survey of language-based information-flow tech-
niques can be found in [28].

One problem with type-based static information flow
analyses is that they tend to be conservative and may
identify information flows that do not exist. For exam-
ple, consider the following code:

if s <= 0 then x := 0 else x := 0

in which x does not depend on s, but most security type
systems still ensure `s v `x. Some recent work [2, 16]
partially addresses this problem by using flow-sensitive
static analyses.

The Jif language [21, 24] extends Java with a type
system for analyzing information flow, and aims to be
a practical language for developing secure applications.
However, there is not yet a noninterference proof for
the type system of Jif, because of its complexity. This
work is inspired by the dynamic label mechanism of
Jif, although the dynamic label mechanism in λDSec is
more expressive. Jif provides two constructs for run-
time label tests: the switch-label statement and the
actsFor statement, both of which can be encoded us-
ing the label-test expression in λDSec . The typing rules
for switch-label and actsFor are as restrictive as the
typing rule of the label-test expression. Thus, the nonin-
terference result for λDSec provides strong evidence that
these dynamic label constructs in Jif are secure.

Banerjee and Naumann [5] proved a noninterference
result for a Java-like language with simple access con-
trol primitives. Unlike in λDSec , run-time access control
in their language is separate from information flow con-
trol in the sense that the result of a run-time access check
does not affect the security of any information flow in a
program.

Concurrent to our work, Tse and Zdancewic proved
a noninterference result for a security-typed lambda
calculus (λRP) with run-time principals [31]. Run-time
principals are closely related to dynamic labels, as la-
bels are composed of principals in the decentralized la-
bel model of Jif. However, λRP does not support refer-
ences or existential types, which makes it unable to rep-
resent dynamic security policies that may be changed at
run time, such as file permissions. As discussed in Sec-
tion 1, modeling real systems requires this ability. By
comparison, in λDSec the label stored in a reference may
be updated at run time, and with dependent existential
types, we can ensure that a piece of data and its label are
updated consistently. In addition, support for references
makes λDSec more powerful than λRP computationally.
The λRP type system uses singleton types (types contain-
ing only one value [3]) for relating type information to
term-level constructs. We have chosen to use dependent
types because it is the approach used by Jif, and the ap-
proach based on singleton types neither provides more
expressiveness nor simplifies the type system or the non-
interference proof in any substantial way. In general, we

feel that the choice between dependent types and single-
tons is a matter of taste.

Other work [36, 35] has used dependent type systems
to specify complex program invariants and to statically
catch program errors considered run-time errors by tra-
ditional type systems. This work also makes a trade-off
between expressive power and practical type checking.

8. Conclusions
This paper formalizes computation and static checking
of dynamic labels in the type system of a core language
λDSec and proves a noninterference result: well-typed
programs have the noninterference property. The lan-
guage λDSec is the first language supporting general dy-
namic labels whose type system is proved to enforce
noninterference. Based on the dynamic label mechanism
of λDSec , we propose an extension to Jif, making it eas-
ier to write programs manipulating dynamic labels effi-
ciently.

An important direction for future work is to investi-
gate the interaction between dynamic labels and para-
metric polymorphism.

Acknowledgements
The authors would like to thank Greg Morrisett, Steve
Zdancewic and Amal Ahmed for their insightful sug-
gestions. Many thanks also to Steve Chong, Nate Nys-
trom, Michael Clarkson, Yin Wang and the anonymous
reviewers, who all provided useful feedback on earlier
drafts of this paper.

This work was supported by the Department of the
Navy, Office of Naval Research, under ONR Grant
N00014-01-1-0968. Any opinions, findings, conclu-
sions, or recommendations contained in this material
are those of the authors and do not necessarily re-
flect views of the Office of Naval Research. This work
was also supported by the National Science Founda-
tion under grants 0208642, 0133302, and 0430161, and
by an Alfred P. Sloan Research Fellowship.

References
[1] Johan Agat. Transforming out timing leaks. In Proc. 27th

ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 40–53, January 2000.

[2] Torben Amtoft and Anindya Banerjee. Information flow
analysis in logical form. In The Eleventh International
Symposium on Static Analysis Proceedings, pages 100–
115, 2004.

[3] David Aspinall. Subtyping with singleton types. In Com-
puter Science Logic (CSL), Kazimierz, Poland, pages 1–
15. Springer-Verlag, 1994.

[4] Anindya Banerjee and David A. Naumann. Secure infor-
mation flow and pointer confinement in a Java-like lan-
guage. In Proc. 15th IEEE Computer Security Founda-
tions Workshop, June 2002.

[5] Anindya Banerjee and David A. Naumann. Using ac-
cess control for secure information flow in a Java-like
language. In Proc. 16th IEEE Computer Security Foun-
dations Workshop, pages 155–169, June 2003.

[6] D. E. Bell and L. J. LaPadula. Secure computer systems:
mathematical foundations and model. Technical Report
M74-244, MITRE Corp., Bedford, MA, 1973.

[7] Dorothy E. Denning. Cryptography and Data Security.
Addison-Wesley, Reading, Massachusetts, 1982.

[8] Dorothy E. Denning and Peter J. Denning. Certification
of programs for secure information flow. Comm. of the
ACM, 20(7):504–513, July 1977.

[9] Department of Defense. Department of Defense Trusted
Computer System Evaluation Criteria, DOD 5200.28-
STD (The Orange Book) edition, December 1985.

[10] Petros Efstathopoulos, Maxwell Krohn, Steve VanDe-
Bogart, Cliff Frey, David Ziegler, Eddie Kohler, David
Mazières, Frans Kaashoek, and Robert Morris. Labels
and event processes in the Asbestos operating system. In
Proc. 20th ACM Symp. on Operating System Principles
(SOSP), October 2005.

[11] J. S. Fenton. Memoryless subsystems. Computing J.,
17(2):143–147, May 1974.

[12] Simon Foley, Li Gong, and Xiaolei Qian. A security
model of dynamic labeling providing a tiered approach
to verification. In IEEE Symposium on Security and Pri-
vacy, pages 142–154, Oakland, CA, 1996. IEEE Com-
puter Society Press.

[13] Joseph A. Goguen and Jose Meseguer. Security policies
and security models. In Proc. IEEE Symp. on Security
and Privacy, pages 11–20, April 1982.

[14] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
The Java Language Specification. Addison Wesley, 2nd
edition, 2000. ISBN 0-201-31008-2.

[15] Nevin Heintze and Jon G. Riecke. The SLam calculus:
Programming with secrecy and integrity. In Proc. 25th
ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 365–377, San Diego, California,
January 1998.

[16] Sebastian Hunt and David Sands. On flow-sensitive se-
curity types. In Proc. 33rd ACM Symposium on Princi-
ples of Programming Languages (POPL), pages 79–90,
January 2006.

[17] M. Douglas McIlroy and James A. Reeds. Multilevel se-
curity in the UNIX tradition. Software—Practice and Ex-
perience, 22(8):673–694, August 1992.

[18] John McLean. The algebra of security. In IEEE Sympo-
sium on Security and Privacy, pages 2–7, Oakland, Cal-
ifornia, 1988.

[19] Catherine Meadows. Policies for dynamic upgrading. In
Database Security, IV: Status and Prospects, pages 241–
250. North Holland, 1991.

[20] John C. Mitchell. Foundations for Programming Lan-
guages. The MIT Press, Cambridge, Massachusetts,
1996.

[21] Andrew C. Myers. JFlow: Practical mostly-static infor-
mation flow control. In Proc. 26th ACM Symposium on

Principles of Programming Languages (POPL), pages
228–241, January 1999.

[22] Andrew C. Myers and Barbara Liskov. A decentralized
model for information flow control. In Proc. 17th ACM
Symp. on Operating System Principles (SOSP), pages
129–142, 1997.

[23] Andrew C. Myers and Barbara Liskov. Protecting
privacy using the decentralized label model. ACM
Transactions on Software Engineering and Methodol-
ogy, 9(4):410–442, October 2000.

[24] Andrew C. Myers, Lantian Zheng, Steve Zdancewic,
Stephen Chong, and Nathaniel Nystrom. Jif
3.0: Java information flow. Software release,
http://www.cs.cornell.edu/jif, July 2006.

[25] Jens Palsberg and Peter Ørbæk. Trust in the λ-calculus.
In Proc. 2nd International Symposium on Static Analy-
sis, number 983 in Lecture Notes in Computer Science,
pages 314–329. Springer, September 1995.

[26] François Pottier and Vincent Simonet. Information flow
inference for ML. In Proc. 29th ACM Symposium on
Principles of Programming Languages (POPL), pages
319–330, 2002.

[27] Andrei Sabelfeld and Heiko Mantel. Static confidential-
ity enforcement for distributed programs. In Proc. 9th In-
ternational Static Analysis Symposium, volume 2477 of
LNCS, Madrid, Spain, September 2002. Springer-Verlag.

[28] Andrei Sabelfeld and Andrew C. Myers. Language-
based information-flow security. IEEE Journal on Se-
lected Areas in Communications, 21(1):5–19, January
2003.

[29] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike
Hibler, David Andersen, and Jay Lepreau. The Flask
security architecture: System support for diverse secu-
rity policies. In Proc. 8th USENIX Security Symp., pages
123–139, August 1999.

[30] Ian Sutherland, Stanley Perlo, and Rammohan Varadara-
jan. Deducibility security with dynamic level assign-
ments. In Proc. 2nd IEEE Computer Security Founda-
tions Workshop, Franconia, NH, June 1989.

[31] Stephen Tse and Steve Zdancewic. Run-time principals
in information-flow type systems. In IEEE Symposium
on Security and Privacy, Oakland, CA, May 2004.

[32] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A
sound type system for secure flow analysis. Journal of
Computer Security, 4(3):167–187, 1996.

[33] Clark Weissman. Security controls in the ADEPT-50
time-sharing system. In AFIPS Conference Proceedings,
volume 35, pages 119–133, 1969.

[34] John P. L. Woodward. Exploiting the dual nature of sen-
sitivity labels. In IEEE Symposium on Security and Pri-
vacy, pages 23–30, Oakland, California, 1987.

[35] Hongwei Xi. Imperative programming with dependent
types. In Proceedings of 15th Symposium on Logic in
Computer Science, Santa Barbara, June 2000.

[36] Hongwei Xi and Frank Pfenning. Dependent types in
practical programming. In Proc. 26th ACM Sympo-
sium on Principles of Programming Languages (POPL),
pages 214–227, San Antonio, TX, January 1999.

[37] Steve Zdancewic and Andrew C. Myers. Secure in-
formation flow via linear continuations. Higher Order
and Symbolic Computation, 15(2–3):209–234, Septem-
ber 2002.

[38] Steve Zdancewic and Andrew C. Myers. Observa-
tional determinism for concurrent program security. In
Proc. 16th IEEE Computer Security Foundations Work-
shop, pages 29–43, June 2003.

[39] Lantian Zheng and Andrew C. Myers. Dynamic security
labels and noninterference. In Proc. 2nd Workshop on
Formal Aspects in Security and Trust, IFIP TC1 WG1.7.
Springer, August 2004.

