Dynamic Security Labels and Noninterference

Lantian Zheng Andrew C. Myers
Computer Science Department
Cornell University, Ithaca, NY 14853
{zlt,andru}@cs.cornell.edu

Abstract matter how it is transformed.

However, security cannot be enforced purely statically.
This paper presents a language in which information flow is |n general, programs interact with an external environment
securely controlled by a type system, yet the security classthat cannot be predicted at compile time, so there must be
of data can vary dynamically. Information flow policies pro- a run-time mechanism that allows security-critical decisions
vide the means to express strong security requirements forto be taken based on dynamic observations of this environ-
data confidentiality and integrity. Recent work on security- ment. For example, it is important to be able to change secu-
typed programming languages has shown that information rity settings on files and database records, and these changes
flow can be analyzed statically, ensuring that programs will should affect how the information from these sources can be
respect the restrictions placed on data. However, real com-ysed. A purely static mechanism cannot enforce this.
puting systems have security policies that vary dynamically To securely control information flow when access rights
and that cannot be determined at the time of program anal-can be changed and determined dynamicalgnamicla-
ysis. For example, a file has associated access permissiongels [15] are needed that can be manipulated and checked at
that cannot be known with certainty until it is opened. Al- run time. However, manipulating labels dynamically makes
though one security-typed programming language has in-it more difficult to enforce a strong notion of information
cluded support for dynamic security labels, there has beensecurity for several reasons. First, changing the label of an
no demonstration that a general mechanism for dynamic la- object may convert sensitive data to public data, directly vio-
bels can securely control information flow. In this paper, we |ating noninterference. Second, label changes (and changes
present an expressive language-based mechanism for reao access rights in general) can be used to convey informa-
soning about dynamic security labels. The mechanism is tion covertly; some restriction has to be imposed to prevent
formally presented in a core language based on the typedcovert channels [27, 22]. Some mandatory access control
lambda calculus; any well-typed program in this language is (MAC) mechanisms support dynamic labels but cannot pre-

provably secure because it satisfies noninterference. ventimplicit flowsarising from control flow paths not taken
at run time [5, 12].
1 Introduction JFlow [14] and its successor, Jif [17] are the only imple-

mented security-typed languages supporting dynamic labels.
Information flow control protects information security by However, although the Jif type system is designed to control
constraining how information is transmitted among objects the new information channels that dynamic labels create, it
and users of various security classes. These security classelas not been proved to enforce secure information flow. Fur-
are expressed dabelsassociated with the information orits ther, the dynamic label mechanism in Jif has limitations that
containers. Denning [6] showed how to use static analysis impair expressiveness and efficiency.
to ensure that programs use information in accordance with In this paper, we propose an expressive language-based
its security class, and this approach has been instantiated irmechanism for securely manipulating information with dy-
a number of languages in which the type system implementsnamic security labels. The mechanism is formalized in a
a similar static analysis (e.g., [25, 10, 30, 19, 3, 21]). These core language (based on the typed lambda calculus) with
type systems are an attractive way to enforce security be-first-class label values, dependent security types and run-
cause they can be shown to enforumninterferencq9], a time label tests. Further, we prove that any well-typed pro-
strong, end-to-end security property. For example, when ap-gram of the core language is secure because it satisfies non-
plied to confidentiality, noninterference ensures that confi- interference. This is the first noninterference proof for a
dential information cannot be released by the program no security-typed language in which general security labels can

be manipulated and tested dynamically, though a noninter-the security class that is the join of the security classes that
ference result has been obtained for a simpler language sup#; and/, denote. For example, i has labell,, andy has
porting the related notion of dynamgcincipals[24]. label?,, then the sunx+y is given the label, LU ¢,,.

Some previous MAC systems have supported dynamic
security classes as part of a downgrading mechanism [23];2.3 Security type systems for information flow
in this work the two mechanisms are considered orthogonal.

While downgrading is important, it is useful to treat it as a Security type systems can be used to enforce security infor-
separate mechanism so that dynamic manipulation of labelsmation flows statically. Information flows in programs may
does not necessarily destroy noninterference. be explicit flows such as assignments,implicit flows[6]

The remainder of this paper is organized as follows. Sec- arising from the control flow of the program. Consider an
tion 2 presents some background on lattice label models@ssignment statementy, which contains an information
and security type systems. Section 3 introduces the coreflow from y to x. Then the typing rule for the assignment
language\ ps.. and uses sampl&ps.. programs to show statement requires thédj T /., which means the security
some important applications of dynamic labels. Section 4 level ofy is lower than the security level of, guaranteeing
describes the type system ®fsg.. and proves the noninter- the information flow fromy to x is secure.

ference result. Section 5 covers related work, and Section 6 One advantage of static analysis is more precise control
concludes. of implicit flows. Consider a simple conditional:

if bthen x = true else x = false

2 Background

o)]) Although there is no direct assignment framto x, this
Static information flow analysis can be formalized as a se- gxpression has an implicit flow from into x. A stan-

curity type system, in which security levels of data are rep- garq technique for controlling implicit flows is to introduce
resented by security type annotations, and information flow 5 program-counter labe[5], written pe, which indicates

control is performed through type checking. the security level of the information that can be learned by
knowing the control flow path taken thus far. In this exam-
2.1 Security classes ple, the branch taken dependsgrso thepc in thethen and

: : : . else clauses will be joined witld,, the label ofb. The type
We assume that security requirements for confidentiality or .
system ensures that any effect of expressitias a label at

integrity are_deflned by associatigcurity classesvith least as restrictive as ifg. In other words, an expressien
users and with the resources that programs access. Thesg

. . : o nn ner ny eff rvabl rs who shoul

security classes form a lattic® We writek C £’ to indi- cannot generate any effects observable to USErs who shou d
) . L not know the current program counter. In this example, the

cate that security clagds is at least as restrictive as another . ; . .)

. ; L : : assignments ta will be permitted only ifpc C /.., which
security clasg:. In this case it is safe to move information

. , - ensureg, C /,.

from security clas$ to £/, because restrictions on the use of
the data are preserved. To control data derived from sources
with classes: and’, the least restrictive security class that 3 The Aps.. language
is at least as restrictive as botrandk’ is assigned. This is

the least upper bound, or join, writtén | &’. The core languag# ps.. is a security-typed lambda calcu-

lus that supports first-class dynamic labels Alsk.., labels
are terms that can be manipulated and checked at run time.
Furthermore, label terms can be used as statically analyzed
Type systems for confidentiality or integrity are concerned type annotations. Syntactic restrictions are imposed on label
with tracking information flows in programs. Types are ex- termsto increase the practicality of type checking, following
tended with securityabelsthat denote security classes. A the approach used by Xi and Pfenningtig) (C) [29].
label ¢ appearing in a program may be simply a constant se- From the computational standpointps.. is fairly ex-
curity classk, or a more complex expression that denotes a pressive, because it supports both first-class functions and
security class. The notatigh T ¢, means that, denotes a state (which together are sufficient to encode recursive func-
security class that is at least as restrictive as that denoted bytions).
4.

Because a given security class may be denoted by differ-3.1 Syntax
ent labels, the relatio generates a lattice @quivalence

classewf labels withLl as thejoin (least upper bound) oper- 1€ Syntax 0\ s is given in Figure 1. We use the name
ator. Two labels/, and/, are equivalent, writtef, ~ s, if k to range over a lattice of label valugs(more precisely, a

¢, C £, andfs C ¢;. The join of two labelst; Li £, denotes join semi-lattice with bottom element), x, y to range over

2.2 Labels

Base Labels k € L
Variables z,y,f € V
Locations m € M
Labels {¢,pc == k| x| b1l
Constraints C o= LC6,C e
Base Types B o=
Security Types T = B
Values voon=
Expressions e u= v | bLilly | eres | le

| let (z,y)=e1 ines

int | label | unit | (z:71)[C]* 72 | Tref | (x:71) ACATEN

z | n|m" | Mz:7)[Cipc.e | ()| k| (z=n[C], v2:7)

| e1:=e2 | refTe | if {1 C {5 then e; else e2

Figure 1: Syntax of\ pge.

variable name®’, andm to range over a space of memory
addressedA.

To make the lattice explicit, we writ€ = k1 C ko
to mean thatk, is at least as restrictive ds in £, and
L |E k = ki U ke to meank is the join ofk; and ks in
L. The least and greatest elementsCofre | and T. Any
non-trivial label lattice contains at least two poidtand H
where H IZ L. Intuitively, the labell. describes what in-
formation is observable bipw-security usersvho are to be
prevented from seeing confidential information. Thosy-
securitydata has a label bounded abovelbyhigh-security
data has a label (such &5 not bounded by..

In Apsec, a label can be either a label valiga variable
x, or the join of two other label§, LI /5. For example[, x,
andL U x are all valid labels, and L = can be interpreted
as a security policy that is as restrictive as bbthndx. The
security typer = 3, is the base typ@ annotated with label
£. The base types include integers, unit, labels, functions,
references and products.

The function typgx : 7y) 79 is a dependent type
sincery, 72, C' andpc may mentionz. The component’ is
a set oflabel constraintseach with the forn?; C /5; they
must be satisfied when the function is invoked. phe&om-
ponent is a lower bound on the memory effects of the func-
tion, and an upper bound on tpe label of the caller. Con-
sequently, a function is not able to leak information about
where it is called. Without the annotationsand pc, this
kind of type is sometimes written &kx: 7.7 [13].

The product typgx : 7)[C] * 72 is also a dependent
type in the sense that occurrencescafan appear inq, 7
andC. The componen€ is a set of label constraints that
any value of the product type must satisfy. 7if does not
containz and C' is empty, the type may be written as the
more familiarm, * 7. Without the annotatior?, this kind of
type is sometimes writteRx : .75 [13].

In Apsee, Values include integers, typed memory lo-
cationsm”, functionsA(z : 7)[C'; pc]. e, the unit value(),
constant label&, and pairs(z = v1[C], v : 7). A function
Az : 7)[C'; pc]. e has one argument with type 7, and the
components” and pc have the same meanings as those in

C'; pc
—_—

function types. The empty constraint &br the toppc can

be omitted. A paifz=v,[C], v2:7) contains two values;
andv,. The second element has typer and may mention
the first element; by the namer. The component’ is a set

of label constraints that the first element of the pair must sat-
isfy. For example, suppose contains the constraintC L,
thenv; C L must be true since inside the pair the value of

is v1.

Expressions include valuesvariablesr, the join of two
labels?¢; U ¢, applicationse; eo, dereference&, assign-
mentse; := ey, referencesxefe, label-test expressions
if /1 C /5 then e; else ey, and product destructors
let (z,y)=v ines.

The label-test expressiarf /1 C /5 then e; else e
is used to examine labels. At run time, if the valueZ/ois
a constant label at least as restrictive as the valug,dhen
ey is evaluated; otherwise;, is evaluated. Consequently,
the constrain?; C /> can be assumed when type-checking
€1.

The product destructdret (z,y) =e; in e5 unpacks the
result ofe;, which is a pair, assigns the first elementtand
the second tg, and then evaluates.

3.2 Operational Semantics

The small-step operational semantics)\gfs.. is given in
Figure 2. LetM represent a memory that is a finite map
from typed locations to closed values, and {et M) be

a machine configuration. Then a small evaluation step is
a transition from(e, M) to another configuratiofe’, M’),
written (e, M) — (e’, M').

It is necessary to restrict the form @f, M) to avoid us-
ing undefined memory locations. Liet(e) represent the set
of memory locations appearing in A memoryM is well-
formed if every address. appears at most oncedom(M),
and for anym™ in dom(M), loc(M (m™)) C dom(M). The
configuration{e, M) is well-formed if M is well-formed,
loc(e) C dom(M), ande contains no free variables. By in-
duction on the derivation ofe, M) — (e’, M’'), we can
prove that if (e, M) is well-formed, then(e/, M’) is also
well-formed.

LEk=Fk Uk

[E1] <I€1|_|]€27 M>I—><k, M>
[E2] ('m"™, M) — (M(m"), M)
m & address-space(M)
[E3] (et v, M) r— (m™, M[m" = o))
[E4] (m” :=v, M) — ((), M[m™ — v])
[E5] ((A(z:7)[Cspcl.e) v, M) — (e[v/z], M)
LEFk Cke
[E6] (if k1 C k2 then eq else ez, M) — (e1, M)
[E7] L=k L ko

(if k1 C k2 then eq else ez, M) —— (e2, M)
[E8] (1let (z,y)=(z=v1[C], v2:7) ine, M) — (e[v2/y][v1/x], M)

(e, M) — (e, M")

(9] (Elel, M) — (B[], M)
E[] w= [le|v[]|[l=e|v=[][![]]|ref"[] | []Ul | kU]
| if [[] C /3 then e; else ey | if ki C [] then ej else ez | let (z,y)=[]ine

Figure 2: Small-step operational semantico\gk..

The notatiore[v/z] indicates capture-avoiding substitu- programs and the external environment. A practical pro-
tion of valuew for variablex in expressiore. Unlike in the gram often needs to access files or communicate through
typed lambda calculug]v/x] may generate a syntactically networks. These activities can be viewed as communication
ill-formed expression ifc appears in type annotations inside through anl/O channelwith a corresponding label consis-

e, andwv is not a label. However, this is not a problem be- tent with the security policy of the entity (such as a file or
cause the type system &f,s.. guarantees that a well-typed network socket) represented by the channel. Because the
expression can only be evaluated to another well-typed andsecurity policy of an external entity may be discovered and
thus well-formed expression. even changed at run time, the precise label of an I/O channel

The notationM (m™) denotes the value of location” is dynamic and operations on a channel cannot be checked
in M, and the notationV/[m™ — v| denotes the memory at compile time.
obtained by assigningtom™ in M.

The evaluation rules are standard. In rule (E3), the nota-3 3.1 Run-time access control
tion address-space(M) represents the set of location names . _ .
in M, that is {m | 37 s.t. m™ € dom(M)}. In rule (E8),v, Implementing run-time access control is one of the most
may mentionz, so substituting, for y in e is performed be- important applications of dynamic label mechanisms. Sup-
fore substituting; for z. The variable name in the product Pose there exists a file that stores one integer, and the ac-
value matches so that no variable substitution is needed C€€ss control policy of the file is unknown at compile time.
when assigning; andwvs to z andy. In rule (E9), E rep- In Apsec, the file can be encoded as a reference of type
resents an evaluation context, a term with a single hole in (¢ : 1abel) * (int, ref) ., wherexz is a dynamic label

redex position, and the Syntax Efspecifies the evaluation consistent with the access control p0|lcy of the file, and the
order. reference component of tyfent, ref), stores the con-

tents of the file. Thus storing an integer of tyjxet i in the

file is equivalent to assigning the integer to the memory ref-
erence component, which requires thas at least as high
As discussed in Section 1, dynamic labels are vital for pre- as H. Since the value of is not known at compile time,
cisely controlling information flows between security-typed the conditionH C z can only be checked at run time, us-

3.3 Examples

ing a label-test expression. The following function stores a ((z : label,)[z C ¢] x int,), ref, where/ is the label

high-security integet in the filew:

Aw:((z:1label,) * (int, ref),), ref, . A(z:inty)[H].
let (z,y)=!lwinif H C z then y := z else ()

Note that thepc label of the function ig{ because the func-
tion body contains a memory effect of labelvhenH C .

It is also important to be able to change file permissions
at run time. The following code changes the access control

policy of the filew to labelz. However, the original con-
tents ofw need to be wiped out to prevent them from being
implicitly declassified, which provides stronger security as-
surance than an ordinary file system.

Aw: ((z:1label) * inty ref) ref . A(z:labely)[L].
AMy:int, ref))[1l].w:= (r=2z, y:int, ref))ref™=0

3.3.2 Multilevel communication channels

Information flows inside a program are controlled by static
type checking. When information is exported outside a pro-
gram through an I/O channel, the receiver might want to
know the exact label of the information, which calls foul-
tilevel communication channelg] unambiguously pairing

the information sent or received with its corresponding se-

curity label. Supporting multilevel channels is one of the
basic requirements for a MAC system [7].

In Apsec, @ multilevel channel can be encoded by a mem-
ory reference of typé(z : 1label,) * int,), ref, which

stores a pair composed of an integer value and its label.

The confidentiality of the integer component is protected by

the label component, since extracting the integer component

from such a pair requires testing the label component:

Az:((z:1label,) * int,), .let (z,y) =z in
if x C L then m*™r := yelse ()

In the above example, the constraint L. must be satisfied
in order to store the integer componentii®t~ . Since the

of the channel, and the constraint_ ¢ guarantees any in-
formation stored in the reference has a security label at most
as high ag. Sending information through a bounded multi-
level channel often needs a run-time check as in the follow-
ing code:

Az:(((z:1labely))[z C €] * inty)) ref) . \w:label,,.
Ay:inty)[Ll]. if w C £then z := (zx=w, y:int,) else ()

The ability to recursively use a variable to construct the
label of its own type provides a useful kind of polymor-
phism, which this example demonstrates. Without recursive
labels, the type of a multilevel channel cannot be constructed
so simply, because selecting a label for the label component
x becomes problematic. Any constant label that is chosen
may be inappropriate; for example, if the label has the label
1 then it may be impossible to compute a suitable label to
supply ase. Another possibility is to provide yet another la-
bel that is to function as the label of but this merely pushes
the problem back by one level. Givingthe typelabel,, is
a neat way to tie off this sequence.

4 Type system and noninterference

This section describes the type system\gf.. and proves
that the type system guarantees that any well-typed program
has the noninterference property.

4.1 Label constraints

Because of dynamic labels, it is not always possible to de-
cide whether the relationshiy T /¢, holds at compile
time; therefore, the label-test expressiafi)(must be used
to query the relationship. However, this dynamic query may
create new information flows; the languages.. and its
type system are designed to statically control these new in-
formation flows.

Although labels are first-class values Mpg.., label
terms have a restricted syntactic form so that any label term

readabi”ty Of the integer Component dependS on the Value Ofcan be used as a type annotation_ Therefore’ Constraints on

z, letting z recursively label itself ensures that all the autho-
rized readers of the integer component caniesid retrieve
the integer value.

Sending an integer through a multilevel channel is im-

label terms are also type-level information that can be used
by the type checker.

Furthermore, iM\ pg.. label terms are purely functional:
they have no side effects and evaluate to the same value in

plemented by pairing the integer and its label and storing the the same context. As a result, any label constraint of the

pair in the reference representing the channel:

Az:(((z:1labely)) * int,), ref) . w:label,,.
AMy:inty)[Ll]. z := (z=w, y:int,)

Like other I/O channels, a multilevel channel may have a

label that is an upper bound of the security levels of the

form ¢, C /5 that is known to hold in a typing context can be
used for type checking in that context. For example, consider
the following code:
Az:label) . \y:(int, ref) . A(z:inty)[H].
if H C z then y:= zelse ()

information that can be sent through the channel. ProductAccording to the semantics of the label-test expression, the

label constraints can be used to specify the label of a mul-

tilevel channel. For example, a bounded multilevel chan-

assignmenyy := z will be executed only ifHf C z holds.
Thus, the constrainff C x can be used to decide whether

nel can be represented by a memory reference with typez := y is secure. In this example, any information stored

E':klgkg i Cly el
] - — - 2 —_— = c - -
[c1] CkkiC ko [c2] CH4 T Ay
[C3] CHLCT [C4 CHLC¢
[C5] CrHeCeUl
CF€1EEQ CFKZEE?:
[co] CH/L Tls
CkH/{ Cls CkilyC Y3
[C7] ChH{ Ul T 4ls
Figure 3: Relabeling rules
[SI] CF‘HSTQ CFTQSTl
CF 1 ref < 1gref
Ckn<n Crkr<mn
Ckpc,Cpe, C,CakCh
S2 : pe pe
[$2] CF(x:11) C1ipen 71 < (m:72) Caipes 75
[S3] C"Tlg’i'g C"T{STé C,Cl}_CQ
Ct (z:m)[C1] x 11 < (z:72)[Ca] * 75
[54] CEB <P CHULLTY

CF(B1)e < (B2)e
Figure 4: Subtyping rules

in z is only accessible to users with security level at least as
high asz. So it is secure to storein y because: is at least
as high ad{.

In general, for each expressienthe type checker keeps
track of the set of constrain€ that are known to be satisfied
whene is executed, and usésin type-checking.

Another common approach for relating type information
to term-level constructs is to use singleton types, types con-

may be treated as data with lalfe] which requireq; C /.

The type system keeps track of the set of label constraints
that can be used to prove relabeling relationships between
labels. LetC + ¢; C {5 denote tha?; T ¢, can be in-
ferred from the set of constrain€s. The inference rules are
shown in Figure 3; they are standard and consistent with the
lattice properties of labels. Rule (C2) shows that all the con-
straints inC' are assumed to be true. The constraint(set
may contain constraints that are inconsistent with the lattice
L, such asd C L. Inconsistent constraint sets are harmless
because they always indicate dead code, such as expression
e1 in“if H C L then e; else ey”.

Since the subtyping relationship depends on the rela-
beling relationship, the subtyping context also needs to in-
clude theC' component. The inference rules for proving
C + 7 < 7, are the rules shown in Figure 4 plus the stan-
dard reflexivity and transitivity rules.

Rules (S1)—(S3) are about subtyping on base types.
These rules demonstrate the expected covariance or con-
travariance. IM pg.., function types contain two additional

componentgc andC', both of which are contravariant. Sup-

C 5 PCq /

pose the function type = (x: 7,) —— 7 is a sub-

Cs 5 PCo /
— Tq.

type of 7' = (x: 72) Then wherever functions
with type 7/ can be called, functions with type can also
be called. This implies two necessary premises. First, wher-
ever(Cs is satisfied(”; is also satisfied. Sino€ is satisfied,
this premise is writterC, C; + Cy, meaning that for any
constraint/; C /5 in C1, we can deriveC, Cy F {1 C ¥5.
Second, the premige:, T pc, is needed because theof a
function type is an upper bound on thewhere the function
is applied.

In rules (S2) and (S3), variabieis bound in the function
and product types. For simplicity, we assume thatoes
not appear inC', sincea-conversion can always be used to
renamex to another fresh variable. This assumption also
applies to the typing rules.

Rule (S4) is used to determine the subtyping on security
types. The premis€ + 3; < [is natural. The other

taining only one value [2]. We have chosen to use dependentPr€MiseC’ - £1 £, guarantees that coercing data from

types because itis the approach used by Jif, and the approacFP 72

does not violate information flow policies.

based on singleton types neither provides more expressive-
ness nor simplifies the type system or the noninterference4.3 Typing

proof in any substantial way. In general, we feel that the

choice between dependent types and singletons is a matte

of taste.

4.2 Subtyping

The subtyping relationship between security types plays an
important role in enforcing information flow security. Given
two security types, = 31,, andr, = 2,,, SUpposer is

a subtype ofry, written ast; < 7. Then any data of type

71 can be treated as data of type Thus, data with label,

The type system of ps.. prevents illegal information flows
ind guarantees that well-typed programs have a noninterfer-
ence property. The typing rules are shown in Figure 5. The
notationlabel(8,) = ¢ is used to obtain the label of a type,
and the notationg = 7 andr C /¢ are abbreviations for
¢ C label(7) andlabel() C ¢, respectively.

The typing context includestgipe assignmerit, a set of
constraints” and the program-counter lalygl. " is a finite
orderedlist of x : 7 pairs in the order that they came into

scope. For a givem, there is at most one pair: 7 in T

[INT] I';C; pckn:inty [UNIT] I';C; pet () :unit
FV(r)=10
[LOC] .
[LABEL] T';C; pck k: label I';C;pckm™ : (tref))
I';C5 pck 4y :labelyy I';C5 peb 4o : labely, .
[JOIN] - 2 [VAR] _wrel
F;C;pc}—élufz:labeleflul/2 I';Cspekax:T
T';Ci;peke:t CkpcCT I';C;5 peke: (Tref)
[REF] I';C; pckrefTe: (T ref) [DEREF] I';C5peHe: T
I';C; pcker: (Tref),
. l. /. / .
ABS Lz:r;Cipebe:r T I';Cipekex:m ChpeUlTT
[] F;C;pcl—)\(at:T’)[C';pc’].e:((m:T’)%T)L [] I';C;pck el :=e2:unit)
F;C;pcl—el:((m:labelg/)%T)g F;C;pc}—elz((azzT')%T)g
I';C; pet £y : 1abelyrig, /a I';C;pckes: 7
C+ pclUl E pc'[ls /)] C+ C'ly) 7] Ct pclUl C pc crc
x € FV(t)UFV({'YUFV(C')UFV (pc x & FV(T)UFV () UFV(C')UFV (pc
(L-APP] (1) (&) () (pc') [APP] ¢ FV(r) () (@) (pc)
I;C5pcker b :T[la/z] UL I';Cipeckerex Tl
I;C; pet vz mi[v/x] Dz:m b7 [;C; peker: ((m:m)[C] * 72)e
T;C; pet valvi /] : To[v1 /7] C+ C'w /7] Tyz:mUly:mUl; C,C'; pckex: T
PROD 'NPACK
[PROD] [';C5 pek (=v1[C'], v2:72) : ((x:711)[C'] * 72) 1 [UNPACK] I;C; pct let (z,y)=e1 ines : 7
[';C; pek £ : 1abely i€ {1,2}
I'; Coli Cheypcli Ul ey T
I;Cipelty Ul ber: T I';Cipecke:t CrFr<7
[IF] [SUB]

I[';C; pck if {1 C {> then ej else ex : 7 LY LIt I';C;pctke:1

Figure 5: Typing rules for tha ps.. language

A variable appearing in a type must be a label variable. check values. Value has types3, if v has base typg. Rule
Therefore, a type is well-formed with respect to type as- (LOC) requires typed locatiom™ contain no label variables
signmentl’, writtenT" = 7, if I" maps all the variables in so thatm™ remains a constant during evaluation. This is
to label types. The definition of well-formed labels it ¢) enforced by the premisgéV (r) = (}, whereFV () denotes
is the same. Considét = xy : 7y,...,2, : 7,. FOr any the set of free variables appearingrin
0 < i < n, the typer; may only mention label variables that Rule (VAR) is standard: variable has typel'(x). Rule
are already in scopet; throughx;. ThereforeI' is well- (JOIN) checks the join of two labels and assigns a result la-
formed if for any0 < i < n, 7; is well-formed with respect bel that is the join of the labels of the operands.
toxy:71,...,2;: 7. FOr example, & : labely,y : int,” Rule (REF) checks memory allocation operations. If the
is well-formed, but % : int,,z : 1abely” is not. A con- pc label is high, the generated memory location must not be
straint/; C /5 is well-formed with respect t&@' if both ¢, observable to low-security users, which is guaranteed by the
and/, are well-formed with respect tB. A typing context premiseC + pc C 7. Rule (DEREF) checks dereference
“T"; C'; pc” is well-formed if I' is well-formed, andpc and expressions. Since some information about a reference can
all the constraints il are well-formed with respect . be learned by knowing its contents, the result of dereferenc-

The typing assertioft'; C'; pc - e : 7 means that with ing a reference with typér ref), has typer U ¢, where
the type assignmeiit, current program-counter label ps, TUL = Berpe if 71S Byr.

As in rule

and the set of constraint satisfied, expressionhas type
7. The assertiol' ; C'; pcF e : Tis well-formed ifl"; C'; pc
is well-formed, and™ + 7.

Rules (INT), (UNIT), (LABEL) and (LOC) are used to

Rule (ASSIGN) checks memory update.
(REF), if the updated memory location has typeref),,
thenC I pc C 7 is required to prevent illegal implicit flows.
In addition, the premis€' - pc U £ C 7 implies another

conditionC' F £ C 7 that is required to protect the confiden-
tiality of the reference that is assigned to. Consider the fol-
lowing code that allows low-security users to learn whether
x C L by observing which ofn; andm, is updated t®):

A(z:1labely)[L]. ((ifz C Lthen mi"** else mi™") := 0)

The code is not well-typed because the conditibh ¢ C 7
does not hold for the assignment expression.

Rule (ABS) checks function values. The body is checked
with the constraint sef”’ and the program-counter lahe{,
so the function can only be called at places whéfés sat-
isfied and thepc label is not more restrictive thai'.

Rule (L-APP) is used to check applications of depen-
dent functions. Expressiom; has a dependent function
type ((z : labely) —2 7),, wherez does appear in
¢, C' pc orr. As a result, rule (L-APP) needs to use
'ty /x], C'[€2/x], pc'[¢2/x] and T[¢2/x], which are well-
formed since/s is a label. That also explains wiy, with
its dependent function type, cannot be applied to an arbi-
trary expressiors: substitutinge, for x in ¢/, C’, pc’ and
7 may generate ill-formed labels or types, and it is generally
unacceptable for the type checker to evaluat® valuew,
and substitute, for x, which would make type-checking
undecidable. The expressiveness\gfs.. is not substan-
tially affected by the restriction that a dependent function
can only be applied to label terms, because the function can
be applied to a variable that receives the result of an arbi-
trary expression. For example, in the following code, the
applicatione; z indirectly appliese; to es:

(Ar:labely.if x C L then ejx else ())es

This works as long as the function enclosing: is not de-
pendent.

In rule (L-APP), the label o, /¢, is at least as restric-
tive as/, preventing the result af, from being leaked. The
premiseC - C'[¢2/x] guarantees that’[¢(5/z] are satisfied
when the function is invoked. The premiéet pc U ¢ C
pc’[¢2/x] ensures that the invocation cannot leak the pro-
gram counter or the function itself through the memory ef-
fects of the function.

Rule (APP) applies when does not appear i6’, pc’ or
7. In this case, the type @f; is just a normal function type,
Soe; can be applied to arbitrary terms.

Rule (PROD) is used to check product values. To check
vg, the occurrences af in vo andr, are both replaced by
v1, sincex is not in the domain of’. If v; is not a label,
thenz cannot appear ift,. Thus, (v /] is always well-
formed no matter whether; is a label or not. Similarly, the
occurrences of in 7, andC’ are also replaced by; when
v1 andC’ are checked.

Rule (UNPACK) checks product destructors straightfor-
wardly. After unpacking the product value, those product
label constraints irC” are in scope and used for checking
€9.

Rule (IF) checks label-test expressions. The constraint
£ C {5 is added into the typing context when checking the
first branche;. When checking the branches, the program-
counter label subsumes the labels/pfand ¢, to protect
them from implicit flows. The resulting type contaifisand
¢}, because the result is influenced by the values ad/s.

Rule (SUB) is the standard subsumption ruler lis a
subtype ofr’ with the constraints irC satisfied, then any
expression of type also has type’.

This type system satisfies the subject reduction property
and the progress property. The proof is standard, so we sim-
ply state the theorems here.

Definition 4.1 (Well-typed memory). A memory M is
well-typed if for any memory locatiom™ in M, M (m7) :
T.

Theorem 4.1 (Subject reduction). Supposepc - e : 7, and
there exists a well-typed memofy such thatle, M) —
(¢!, M'), thenM’ is well-typed, antbc F ¢’ : 7.

Theorem 4.2 (Progress).If pc - e : 7, and M is a well-
typed memory such thde, M) is a well-formed configura-
tion, then eithek is a value or there exists and M’ such
that(e, M) — (¢/, M').

4.4 Noninterference proof

This section outlines a proof that any well-typed program in
Apsec Satisfies the noninterference property. (The full proof
is given in the appendix.) Consider an expression pge..
Suppose: has one free variable, andz : 7 F e : inty,
whereH C 7. Thus, the value of is a high-security input
to e, and the result of is a low-security output. Then nonin-
terference requires that for all value®f typer, evaluating
elv/z] in the same memory must generate the same result,
if the evaluation terminates. For simplicity, we only con-
sider that results are integers because they can be compared
outside the context ofps...

The noninterference property discussed heterisiina-
tion insensitivg21] because:[v/z] is required to generate
the same result only if the evaluation terminates. The type
system of\ ps.. does not attempt to control termination and
timing channels. Control of these channels is largely an or-
thogonal problem. Termination channels can leak at most
one bit per run, so they have often been considered accept-
able (e.g., [6, 25]). Some recent work [1, 20, 31] partially
addresses the control of timing channels.

Let —* denote the transitive closure of the— rela-
tionship. The following theorem formalizes the claim that
the type system of ps.. enforces noninterference:

Theorem 4.3 (Noninterference). Supposer : 7 + ¢ :
inty, and H C 7. Given two arbitrary values; andws
of type 7, and an initial memon/, if (e[v;/x], M) —*
(v, M7y fori € {1,2}, thenv] = v5.

To prove this noninterference theorem, we adapt the el- The appendix details the syntax and semantic extensions
egant proof technique developed by Pottier and Simonet for of \%,,. and proves the key subject reduction theorem of
an ML-like security-typed language [19] (which did nothave \%... The major extension to Pottier's proof technique is
dynamic labels). To show that noninterference holds, it that the bracket construct must also be applied to labels. Be-
is necessary to reason about the executions of two relatedcause types may contain bracketed labels, the projection op-
terms:e[vy /z] ande[v,/x]. We extend\ ps.. with a bracket eration also applies to typing environments.
construct(e; | e2) that represents alternative expressions that
might arise during the evaluation of two programs that dif- 5§ Related Work
fers initially only inv; andv,. Thene[v; /x] ande[vy/x]

can be incorporated into a single terftv; | vo)/z] in the Dynamic information flow control mechanisms [26, 27]
extended languagk;, .., providing a syntactic way to rea- track security labels dynamically and use run-time security
son about two executions. checks to constrain information propagation. These mecha-

Using A%, the noninterference theorem can be proved nisms are transparent to programs, but they cannot prevent
in three steps: illegal implicit flows arising from the control flow paths not

taken at run time.

Various general security models [11, 23, 8] have been
proposed to incorporate dynamic labeling. Unlike noninter-
ference, these models define what it means for a system to
be secure according to a certain relabeling policy, which may
allow downgrading labels.

Using static program analysis to check information flow
was first proposed by Denning and Denning [6]; later work

1. Prove that the evaluation o, . adequately repre-
sents the execution of twhbpg.. terms. Given a\%,g,.
terme, let | e]; and|e]. represent the twa pgs.. terms
encoded by. Further, if M mapsz to aA%,q,, terme,
then| M |; mapsz to |e|; for i € {1,2}. Then we can
formalize the adequacy o4, as the following two
lemmas (their proof is straightforward):

Lemma 4.1 (Soundness)lIf (e, M) — (e', M), phrased the analysis as type checking (e.g., [18]). Noninter-
then(|e|;, | M |;) — (|e'];, [M'];) fori € {1,2}. ference was later developed as a more semantic characteriza-
tion of security [9], followed by many extensions. Volpano,
Lemma 4.2 (Completeness)if (|e];, [M]i) —~ Smith and Irvine [25] first showed that type systems can be
(vi, M) for i € {1,2}, then there exists a configu- seq to enforce noninterference, and proved a version of
ration (v, M) such thate, M) ~—" (v, M’). noninterference theorem for a simple imperative language,

starting a line of research pursuing the noninterference re-
sult for more expressive security-typed languages. Heintze
and Riecke [10] proved the noninterference theorem for the
SLam calculus, a purely functional language. Zdancewic
and Myers [30] investigated a secure calculus with first-class
. continuations and references. Pottier and Simonet [19] con-
e?<ecut|ons are completely captured by bracket EXPreS-sidered an ML-like functional language and introduced the
sions, so the requirement that bra}ckets must have hlgh'proof technigue that is extended in this paper. A more com-
security types ensures that the differences be'Fween theplete survey of language-based information-flow techniques
two executions are unobservable to low-security users. :
. o L can be found in [21, 32].

Intuitively, it is because of the explicit enforcement
of noninterference that the noninterference theorem of
ADpsec €an be reduced to the soundness (subject reduc-

tion) of the type system of%,...

2. Prove that\,, . satisfies subject reduction: the result
of an expression has the same type as the expression
The type system aok%,. explicitly enforces noninter-
ference by requiring that any bracket expressiafes)
has a high-security type. The differences between two

The Jif language [14, 17] extends Java with a type sys-
tem for analyzing information flow, and aims to be a prac-
tical language for developing secure applications. However,
there is not yet a noninterference proof for the type system

3. Prove the noninterference theorem bHs... Be- of Jif, because of its complexity. This work is inspired by
cause(e[v;/z], M) ——* (v}, M!) and e[v;/z] = the dynamic label mechanism of Jif, although the dynamic
le[(v1 | va2)/x]]; for @ € {1,2}, by the com- label mechanism i\ pg.. is more expressive. Jif provides
pleteness lemma there existe’, M’) such that two constructs for run-time label tests: theitch-label
(e[(vy | v2)/x], M) —* (v/, M'). Moreover,|v' |; = statement and thectsFor statement, both of which can be

v) for i € {1,2} by the soundness lemma. To prove encoded using the label-test expression ji... The typ-

the noninterference theorem, we only need to prove ing rules forswitch-label andactsFor are as restrictive
v = v}, thatis, [v']; = |v'|,. By the subject re- as the typing rule of the label-test expression. Thus, the non-

duction theorem oh\?,.., F v’ : intz. By the type interference result foh ps.. provides strong evidence that
system ofAZ.., v’ cannot be a bracket construct be- these dynamic label constructs in Jif are secure.

cause it has a low-security type. Consequentlynust Banerjee and Naumann [4] proved a noninterference re-
be an integen. Then we havév’'|; =n = |v']. sult for a Java-like language with simple access control prim-

itives. Unlike in\pg.., run-time access control in this lan-
guage is separate from the static label mechanism because

it is inspired by Java stack inspection. In their language, g
the label of a method result may depend in limited ways on
the (implicit) security state of its caller; however, it does not o]
seem to be possible in the language to control the flow of in-
formation from an 1/O channel or file based on permissions [3]
discovered at run time.

Concurrent to our work, Tse and Zdancewic proved a
noninterference result for a security-typed lambda calculus [4]
(Arp) With run-time principals [24], which can be used to
construct dynamic labels. Howevetz does not support
references or existential types, which makes it unable to rep- 5]

resent dynamic security policies that may be changed at run
time, such as file permissions. As discussed in Section 1, g)
modeling real systems requires this ability. By comparison,

in Apsec the label stored in a reference may be updated at
run time, and with dependent existential types, we can en- [7]
sure that a piece of data and its label are updated consistently.
Therefore, updating a label dynamically does not declassify
confidential data. In addition, support for references makes 8
ADpsec More powerful thamge computationally.

Other work [29, 28] has used dependent type systems to
specify complex program invariants and to statically catch
program errors considered run-time errors by traditional type
systems. This work also makes a trade-off between expres-
sive power and practical type checking. [10]

(9]

6 Conclusions

[11]
This paper formalizes computation and static checking of
dynamic labels in the type system of a core language..
and proves a noninterference result: well-typed programs
have the noninterference property. The language.. is
the first language supporting general dynamic labels whosel13]
type system provably enforces noninterference.

[12]

[14]

Acknowledgements

The authors would like to thank Greg Morrisett, Steve 1ol
Zdancewic and Amal Ahmed for their insightful sugges-
tions. Steve Chong, Nate Nystrom, and Michael Clarkson [16]
also helped improve the presentation of this work.

This work was supported by the Department of the Navy,
Office of Naval Research, under ONR Grant N00014-01-1- [17]
0968. Any opinions, findings, conclusions, or recommenda-
tions contained in this material are those of the authors and[lg]
do not necessarily reflect views of the Office of Naval Re-
search. This work was also supported by the National Sci-
ence Foundation under grants 0208642 and 0133302, and by
an Alfred P. Sloan Research Fellowship. [19]

10

References

Johan Agat. Transforming out timing leaks. Rroc. 27th ACM
Symp. on Principles of Programming Languages (PQPapes 40—
53, Boston, MA, January 2000.

David Aspinall. Subtyping with singleton types. Gomputer Science
Logic (CSL), Kazimierz, Polangages 1-15. Springer-Verlag, 1994.

Anindya Banerjee and David A. Naumann. Secure information flow
and pointer confinement in a Java-like languagelEIBE Computer
Security Foundations Workshop (CSE\M)ne 2002.

Anindya Banerjee and David A. Naumann. Using access control
for secure information flow in a java-like language. Pmoc. 16th
IEEE Computer Security Foundations Workshqages 155-169,
June 2003.

Dorothy E. Denning. Cryptography and Data SecurityAddison-
Wesley, Reading, Massachusetts, 1982.

Dorothy E. Denning and Peter J. Denning. Certification of programs
for secure information flowComm. of the ACM20(7):504-513, July
1977.

Department of DefenseDepartment of Defense Trusted Computer
System Evaluation CriterjeDOD 5200.28-STD (The Orange Book)
edition, December 1985.

] Simon Foley, Li Gong, and Xiaolei Qian. A security model of dy-

namic labeling providing a tiered approach to verification.|BEE
Symposium on Security and Privagages 142-154, Oakland, CA,
1996. IEEE Computer Society Press.

Joseph A. Goguen and Jose Meseguer. Security policies and security
models. InProc. IEEE Symposium on Security and Privapgges
11-20, April 1982.

Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming
with secrecy and integrity. IRroc. 25th ACM Symp. on Principles of
Programming Languages (POPLpages 365-377, San Diego, Cali-
fornia, January 1998.

John McLean. The algebra of security.IFEE Symposium on Secu-
rity and Privacy pages 2—7, Oakland, California, 1988.

Catherine Meadows. Policies for dynamic upgrading.Database
Security, IV: Status and Prospegcisages 241-250. North Holland,
1991.

John C. Mitchell. Foundations for Programming Languagedhe
MIT Press, Cambridge, Massachusetts, 1996.

Andrew C. Myers. JFlow: Practical mostly-static information flow
control. InProc. 26th ACM Symp. on Principles of Programming
Languages (POPL pages 228-241, San Antonio, TX, January 1999.

Andrew C. Myers and Barbara Liskov. A decentralized model for
information flow control. InProc. 17th ACM Symp. on Operating
System Principles (SOSRrges 129-142, Saint-Malo, France, 1997.

Andrew C. Myers and Barbara Liskov. Protecting privacy using the
decentralized label modeACM Transactions on Software Engineer-
ing and Methodology9(4):410-442, October 2000.

Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,
and Nathaniel Nystrom. Jif: Java information flow. Software release.
Located ahttp://www.cs.cornell.edu/jif, July 2001-2003.

Jens Palsberg and Peter @rbaek. Trust inXrmlculus. InProc.

2nd International Symposium on Static Analysismber 983 in Lec-

ture Notes in Computer Science, pages 314-329. Springer, September
1995.

Francois Pottier and Vincent Simonet. Information flow inference
for ML. In Proc. 29th ACM Symp. on Principles of Programming
Languages (POPL pages 319-330, 2002.

[20] Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforce- (v | void) andm™ — (void | v) represent situations where

ment for distributed programs. Proceedings of the 9th International ;7 js bound within only one of the twa pg.. memories.
Static Analysis Symposiymolume 2477 ofLNCS Madrid, Spain,

September 2002. Springer-Verlag.) _ | (é | g)

[21] Andrei Sabelfeld and Andrew Myers. Language-based information- _ | (v | v) ‘ void
flow security. IEEE Journal on Selected Areas in Communicatjons Co
21(1):5-19, January 2003. e u= ... [(ele)

[22] Ravi S. Sandhu and Sushil Jajodia. Honest databases that can keeprp e pyracket constructs cannot be nested, so the subterms of
secrets. IrProceedings of the 14th National Computer Security Con- . .
ference Washington, DC, 1991. a b2racket constr_uct must beps.. terms orvoid. Given

[23] lan Sutherland, Stanley Perlo, and Rammohan Varadarajan. De- & Abse. expressior, let |e]; and LeJQ_ represent t_he two
ducibility security with dynamic level assignments. Broc. 2nd Apsec terms thate encodes. The projection functions sat-
IEEE Computer Security Foundations Workshdganconia, NH, isfy |_(e1 | e2)]; = e; and are homomorphisms on other

June 1989. expression forms. In additiorie; | e2)[v/x], the capture-

[24] Stephen Tse and Steve Zdancewic. — Run-time principals in free substitution of for « in (e; | e2), must use the corre-
information-flow type systems. IlEEE Symposium on Security and : R : _
Privacy, Oakland, CA, May 2004 sponding projection of in each branchi{e; | es)[v/x] =

(ex[lv]a/a] | ea[v]2/x]).

[25] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type 2
system for secure flow analysisJournal of Computer Security In)‘DSec' labels can be bracket constructs, and types

4(3):167-187, 1996. may contain bracketed labels. Thus, the projection opera-
[26] Clark Weissman. Security controls in the ADEPT-50 time-sharing {ON can be a_pphed to Igbels, types, type assignments, and

system. INAFIPS Conference Proceedingsmlume 35, pages 119- label constraints. Similarly, the projection functions are

133, 1969. homomorphisms on these typing constructs. For example,

[27] John P. L. Woodward. Exploiting the dual nature of sensitivity labels. Lint(L | H)J 1 = inty, and Lx ST, Y T’J 1 =x: |_7—J Ly

In II_EEE_Symposium on Security and Privapgges 23-30, Oakland, LT/J 1.

California, 1987, The following relabeling rule is added to reason about
[28] Hongwei Xi. Imperative programming with dependent typesPio- relabeling relationship between bracketed labels:

ceedings of 15th Symposium on Logic in Computer Sciebapta

Barbara, June 2000. [Cl1F [41]1 C [€2]1 [Cla b [£1]2 T [£2]2
[29] Hongwei Xi and Frank Pfenning. Dependent types in practical pro- ChrHt Ty

gramming. InProc. 26th ACM Symp. on Principles of Programming
Languages (POPL pages 214-227, San Antonio, TX, January 1999.

[30] Steve Zdancewic and Andrew C. Myers. Secure information flow via Since a)\%sec term effectively encodes twdps.. terms,
linear continuationsHigher Order and Symbolic Computatiotb (2— the evaluation of a)\%Sec term can be projected into two

3):209-234, September 2002. . .
[31] Steve zd < and Andrew C. M ob ional determini ADpsec €valuations. An evaluation step of a bracket expres-
eve ancewic an narew C. Myers. servational aeterminism
for concurrent program security. Froc. 16th IEEE Computer Secu- sion (e | e2) is an evaluation step of eitheg or e,. and

rity Foundations Workshappages 29-43, Pacific Grove, California, €1 OF ez can only access the corresponding projection of
June 2003. the memory. Thus, the configuration bf,s,. has an index

[32] Lantian Zheng and Andrew C. Myers. Dynamic security labels and @ € {e, 1,2} that indicates whether the term to be evaluated
noninterference. Technical Report 2004-1924, Cornell University js a subterm of a bracket expression, and if so which branch
Computing and Information Science, 2004. of a bracket the term belongs to. For example, the config-

uration (e, M); means that belongs to the first branch of

A Subject Reduction Proof a bracket, and can only access the first projection bf.

We write “(e, M)" for “ (e, M),", which means: does not
As described in Section 4.4, the noninterference result for pelong to any bracket.

ADpsec 1S proved by extending the language to a new lan-
guage M4, that includes the special bracket construct.
Then the subject reduction property faf,q.. implies the
noninterference property foXps... The appendix details ~ The operational semantics &f,g,.. is shown in Figure 6. It
the syntax and semantic extensions\f,,. and proves the is based on the semantics bhs.. and contains some new

A.2 Operational semantics

key subject reduction theorem. evaluation rules (E10-E14) for manipulating bracket con-
structs. Rules (E2)—(E4) are modified to access the memory
A.l Syntax extensions projection corresponding to indeéx The rest of the rules in

_) _ Figure 2 are adapted t?,¢.. by indexing each configura-
The syntax extensions of7,g,. include the bracket con- tion with i. The following two lemmas state that the opera-
structs and a new valueoid that can have any type. A tional semantics oh%,, is adequate to encode the execu-

ADs.. memory encodes twa ps.. memories, which may tion of two A pg... terms. Their proof is straightforward.
have distinct domains. The bindings of the fornT +—

11

Lemma A.1 (Soundness).If (e, M) — (¢/, M'), then
(le)s, [M];) — (l€']s, [M'];)fori e {1,2}.

Lemma A.2 (Completeness).If (|e];, |[M];) +—*
(vi, M) for i € {1,2}, then there exists a configuration
(v, M’y such thate, M) —* (v, M’).

The type system ok%,. includes all the typing rules in
Figure 5 and has two additional rules, one for typireg.d,
the other for typing bracket constructs.

[VOID] I';C; pckvoid : 7
PJ33[C)slpe)s e s L7y
[T)2;5[Claslpc|a ez : [7]2

HuUupcCpd HCT

[BRACKET]

I;C5pek(e1]e2): 7

A.3 Subject reduction

The proof of subject reduction starts with some lemmas

about projection and substitution.

Lemma A.3 (Label Projection). If C + ¢ C /{5, then
LC]i b [41]i T |£a); fori € {1,2}.

Proof. By induction on the derivation af' - ¢; C ¢5,. [

Lemma A.4 (Constraint Reduction). If T';C,¢; C
lo;pcke:TandCF £y C by, thenl';C; pcke: 7.

Proof. By induction on the derivation of';C,¢; C
ly;pcke:T. O

Lemma A.5 (Projection). If T';C; pc F e : 7, then

LFJl ,LCJZ 7|_ch1 H LEJZ : LTJi, fori e {1,2}

Proof. By induction on the derivation df ; C'; pc - e : T,
and using the label projection lemma. O

Lemma A.6 (Store Access).Leti be in{e,1,2}. Suppose
pct v :7andpck v : 7. Inaddition,i € {1,2} implies

H C 7. Thenpc F read; v : |7];, pc F new; v : 7 and

pc - update; vv’ : 7.

Proof. By the definition of the functionsead, new and
update in Figure 6, by the projection lemma, and rules
(VOID) and (BRACKET). O

Lemma A.7 (Substitution). If z : 7/, T';C;pc - e : T,
andr v : 7'[v/z], thenl'[v/z]; Clv/z]; pcfv/z] F ev/x] :
Tlv/z].

Proof. By induction on the derivation of : 7/,T"; C'; pc -
e:T. O

12

Theorem A.1 (Subject Reduction). Supposepc + e : T,
memory M is well-typed, (e, M); — (¢/, M');, andi €
{1,2} implies H C pc. Thenpc + ¢’ : 7, and M’ is also
well-typed.

Proof. By induction on the derivation ofe, M); +—

(e', M");. Without loss of generality, we assume that the
last step of the derivation gic + e : 7 does not use the
rule (SUB). Here we just show eight cases: (E3), (E5), (E6),
(E8), (E10), (E11), (E14) and (E16). The rest of evaluation
rules are treated similarly.

e Case (E3)ecisref” v, andr is (7’ ref) . Thene' is
m7™ . By (LOC), pc - ¢ : (7' ref),. By Lemma A.6,
pc b new;v : 7. Thus,M[m™ — new,v] is well-typed.

e Case (E5).eis (A(z : 7')[C";pc].€")v. Thenpc +
Az - C";pdl.e : ((z:7"7) CARTAN 71)¢, and
pc b v : 7" and- C”[v/z]. By rules (APP) and
(L-APP), 7 = mi[v/z] U ¢, andpc C pc’[v/z]. By
rules (ABS) and (SUB)x : 7/;C';pc + ¢ : 7,
and- 7" < 7', F pd’ E pcd, andC” = C’. There-
fore, - C'[v/x], andpc C pc’[v/z]. By the substitu-
tion lemma,C’[v/x]; pc'[v/z] F €'[v/z] : 71 [v/x]. By
Lemma A4d,pc[v/z] - €e'[v/x] : T1[v/x]. Sincepc C
pc[v/x] andr[v/z] C 7, we havepc b e'[v/x] : 7.

e Case (E6). By rule (IF)k; C ko;pc k- eq : 7.

LemmaA.4 and = k1 C ko, we havepc ey : 7.

By

e Case (E8)eislet (z,y) =(x=v1[C], v2:72) ine’.
By rule (UNPACK), pc F (z = n[C], v2 : T2) :
((x : 71)[C] * T2)p, andz : 7y ULy : 2 U L;pc b
e’ . 7. By rule (PROD),pc + vy : 7i[vi/x], and
pc b wvolvi/x] : melvi/z], andk Clvi/x]. Using
the substitution lemma twice, we gétjv,/z];pc +
/(v /a)[valor fa) /1] : Tlon/eoslor /2] y). 1tis easy
to show thate'[vy /z][ve[vi/x]/y] = €'[va/y][v1/z].
According to rule (UNPACK)z,y ¢ FV (7). Thus,
Tlv1/x][v2[v1/x]/y] = 7. In addition, we have-
Cv1/x]. Thereforepc - e[vy/x][v2/y] : 7.

e Case (E10).c is (e1 | e2). Without loss of generality,
assumée;, M), — (e}, M’); andes = ¢€,. By rule
(BRACKET), H C pc, and|pc|i F ey : |7]1. HC pe
impliesH T |pc|:. By induction, |pc|; F €} @ |T]1,
andM’ is well-typed. Using rule (BRACKET), we can
getpct (e} | eh) : 7.

e Case (E11).e is (v; | v2)v. By (APP) and (L-APP),

pck (v |v2): ((x:7") G, "¢, andpc - v : 7.
Thenr = 7"[v/z] U ¢. In addition,pc LU ¢ C pc’. By
(BRACKET), H C ¢, which impliesH T pc’. By
Lemma A5, |pcl; b v; : ((z: [7']4) 1 sslpeds,
I_TJi)ijw and |_PCJ¢ - I_’sz : I_T/Jia which lmply

(E2] (!m7, M); — (read; M(m™), M);

m ¢ address-space(M)

[E3] (ret™o, MY: r— (m7, M{m™ o new, 0]);
[E4] (m” ==, M)i — ((), M[m" — update; M(m") v]);
(E10] e
[E11] ((v1 [v2)v, M) — ((v1]v]1 [v2|v]2), M)
[E12] ((vi |v2) = v, M) — {((v1 = |v]1 | v2 == |v]2), M)
[E13] (o1 |v2), M) — {(lv1 | lv2), M)
E14] (if vy C vo then 1 else ez, M) s ((if |v1 1 C [vz]: then |e1]: else |es): |
for— (o]0 oros — (0]) if |v1]2 C |v2]2 then |e1]2 else |ez]2), M)
[E15] (vi Uvz, M) +— ((lvi]a U [vz]a | [oa]2 U [v2]2), M) ifvr = (v][v') or vz = (v] V)
[E16] (Let (z,y) = ((x=v1[C], va:7) | (x=01[C"], vh:7")) ine, M) — (e[(v2 | v3)/y][(v1 | v1) /=], M)

[Auxiliary functions]

newe v = v updatee vv’ =’ reade v = v
new; v = (v | void) update; vv’ = (v’ | [v]2) read; v = |[v]1
news v = (void | v) updates vv’ = ([v]1 | V) reads v = |v]o

Figure 6: Small-step operational semantica\$f;..

|pcli B vi|v]; : |7]i. According to (APP) and (L-
APP), a well-typed application expressiere, can be
type-checked with thec component of the type @f; in
the typing context. Thereforépc’ |; - v;|v]; : [T]:.
Since H C pc, we can apply (BRACKET) to get
pck (vi|v]1 | ve|v]e2) : 7.

e Case (E14).cis if v; C w9 then e; else ey, and
there existg € {1, 2} such that; = (v |v’). Suppose
pc F v; @ labely, for i € {1,2}. Sincewv; is a bracket
construct,H T ¢;. By (IF), bothe; ande, are type-
checked withpc Ui ¢1 U £ in the typing context. Thus,
we can getpc LI /1 LU és F e : 7. By Lemma A.5,
l[pcU &y Ul e : [7]i- H C ¢, impliesH C
|pc U £1 U 42 |;. Applying (BRACKET), we getpc -
(el | Le2) : 7.

e Case (E16). e is let (z,y) = ((x = n[C], ve :
7) | (x =vi[C'], v4 : 7)) in /. Suppose expression
((x =un[C], va:7) | (x =v{[C"], v} : ")) has type
(x:71)[Co] * T2) 1. Itis easy to show that; | v7) and
(v2|vh) have typer; andr, respectively. Then this case
is reduced to case (E8), which is standard.

13

