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Abstract

This paper presents a language in which information flow is
securely controlled by a type system, yet the security class
of data can vary dynamically. Information flow policies pro-
vide the means to express strong security requirements for
data confidentiality and integrity. Recent work on security-
typed programming languages has shown that information
flow can be analyzed statically, ensuring that programs will
respect the restrictions placed on data. However, real com-
puting systems have security policies that vary dynamically
and that cannot be determined at the time of program anal-
ysis. For example, a file has associated access permissions
that cannot be known with certainty until it is opened. Al-
though one security-typed programming language has in-
cluded support for dynamic security labels, there has been
no demonstration that a general mechanism for dynamic la-
bels can securely control information flow. In this paper, we
present an expressive language-based mechanism for rea-
soning about dynamic security labels. The mechanism is
formally presented in a core language based on the typed
lambda calculus; any well-typed program in this language is
provably secure because it satisfies noninterference.

1 Introduction

Information flow control protects information security by
constraining how information is transmitted among objects
and users of various security classes. These security classes
are expressed aslabelsassociated with the information or its
containers. Denning [6] showed how to use static analysis
to ensure that programs use information in accordance with
its security class, and this approach has been instantiated in
a number of languages in which the type system implements
a similar static analysis (e.g., [25, 10, 30, 19, 3, 21]). These
type systems are an attractive way to enforce security be-
cause they can be shown to enforcenoninterference[9], a
strong, end-to-end security property. For example, when ap-
plied to confidentiality, noninterference ensures that confi-
dential information cannot be released by the program no

matter how it is transformed.
However, security cannot be enforced purely statically.

In general, programs interact with an external environment
that cannot be predicted at compile time, so there must be
a run-time mechanism that allows security-critical decisions
to be taken based on dynamic observations of this environ-
ment. For example, it is important to be able to change secu-
rity settings on files and database records, and these changes
should affect how the information from these sources can be
used. A purely static mechanism cannot enforce this.

To securely control information flow when access rights
can be changed and determined dynamically,dynamicla-
bels [15] are needed that can be manipulated and checked at
run time. However, manipulating labels dynamically makes
it more difficult to enforce a strong notion of information
security for several reasons. First, changing the label of an
object may convert sensitive data to public data, directly vio-
lating noninterference. Second, label changes (and changes
to access rights in general) can be used to convey informa-
tion covertly; some restriction has to be imposed to prevent
covert channels [27, 22]. Some mandatory access control
(MAC) mechanisms support dynamic labels but cannot pre-
vent implicit flowsarising from control flow paths not taken
at run time [5, 12].

JFlow [14] and its successor, Jif [17] are the only imple-
mented security-typed languages supporting dynamic labels.
However, although the Jif type system is designed to control
the new information channels that dynamic labels create, it
has not been proved to enforce secure information flow. Fur-
ther, the dynamic label mechanism in Jif has limitations that
impair expressiveness and efficiency.

In this paper, we propose an expressive language-based
mechanism for securely manipulating information with dy-
namic security labels. The mechanism is formalized in a
core language (based on the typed lambda calculus) with
first-class label values, dependent security types and run-
time label tests. Further, we prove that any well-typed pro-
gram of the core language is secure because it satisfies non-
interference. This is the first noninterference proof for a
security-typed language in which general security labels can



be manipulated and tested dynamically, though a noninter-
ference result has been obtained for a simpler language sup-
porting the related notion of dynamicprincipals[24].

Some previous MAC systems have supported dynamic
security classes as part of a downgrading mechanism [23];
in this work the two mechanisms are considered orthogonal.
While downgrading is important, it is useful to treat it as a
separate mechanism so that dynamic manipulation of labels
does not necessarily destroy noninterference.

The remainder of this paper is organized as follows. Sec-
tion 2 presents some background on lattice label models
and security type systems. Section 3 introduces the core
languageλDSec and uses sampleλDSec programs to show
some important applications of dynamic labels. Section 4
describes the type system ofλDSec and proves the noninter-
ference result. Section 5 covers related work, and Section 6
concludes.

2 Background

Static information flow analysis can be formalized as a se-
curity type system, in which security levels of data are rep-
resented by security type annotations, and information flow
control is performed through type checking.

2.1 Security classes

We assume that security requirements for confidentiality or
integrity are defined by associatingsecurity classeswith
users and with the resources that programs access. These
security classes form a latticeL. We writek v k′ to indi-
cate that security classk′ is at least as restrictive as another
security classk. In this case it is safe to move information
from security classk to k′, because restrictions on the use of
the data are preserved. To control data derived from sources
with classesk andk′, the least restrictive security class that
is at least as restrictive as bothk andk′ is assigned. This is
the least upper bound, or join, writtenk t k′.

2.2 Labels

Type systems for confidentiality or integrity are concerned
with tracking information flows in programs. Types are ex-
tended with securitylabels that denote security classes. A
label` appearing in a program may be simply a constant se-
curity classk, or a more complex expression that denotes a
security class. The notatioǹ1 v `2 means that̀2 denotes a
security class that is at least as restrictive as that denoted by
`1.

Because a given security class may be denoted by differ-
ent labels, the relationv generates a lattice ofequivalence
classesof labels witht as thejoin (least upper bound) oper-
ator. Two labels̀ 1 and`2 are equivalent, writteǹ1 ≈ `2, if
`1 v `2 and`2 v `1. The join of two labels,̀1 t `2, denotes

the security class that is the join of the security classes that
`1 and`2 denote. For example, ifx has label̀ x andy has
label`y, then the sumx+y is given the label̀x t `y.

2.3 Security type systems for information flow

Security type systems can be used to enforce security infor-
mation flows statically. Information flows in programs may
be explicit flows such as assignments, orimplicit flows [6]
arising from the control flow of the program. Consider an
assignment statementx=y, which contains an information
flow from y to x. Then the typing rule for the assignment
statement requires that`y v `x, which means the security
level of y is lower than the security level ofx, guaranteeing
the information flow fromy to x is secure.

One advantage of static analysis is more precise control
of implicit flows. Consider a simple conditional:

if b then x = true else x = false

Although there is no direct assignment fromb to x, this
expression has an implicit flow fromb into x. A stan-
dard technique for controlling implicit flows is to introduce
a program-counter label[5], written pc, which indicates
the security level of the information that can be learned by
knowing the control flow path taken thus far. In this exam-
ple, the branch taken depends onb, so thepc in thethen and
else clauses will be joined with̀b, the label ofb. The type
system ensures that any effect of expressione has a label at
least as restrictive as itspc. In other words, an expressione
cannot generate any effects observable to users who should
not know the current program counter. In this example, the
assignments tox will be permitted only ifpc v `x, which
ensures̀ b v `x.

3 TheλDSec language

The core languageλDSec is a security-typed lambda calcu-
lus that supports first-class dynamic labels. InλDSec , labels
are terms that can be manipulated and checked at run time.
Furthermore, label terms can be used as statically analyzed
type annotations. Syntactic restrictions are imposed on label
terms to increase the practicality of type checking, following
the approach used by Xi and Pfenning inMLΠ

0 (C) [29].
From the computational standpoint,λDSec is fairly ex-

pressive, because it supports both first-class functions and
state (which together are sufficient to encode recursive func-
tions).

3.1 Syntax

The syntax ofλDSec is given in Figure 1. We use the name
k to range over a lattice of label valuesL (more precisely, a
join semi-lattice with bottom element⊥), x, y to range over
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Base Labels k ∈ L
Variables x, y, f ∈ V
Locations m ∈ M

Labels `, pc ::= k | x | `1 t `2
Constraints C ::= `1 v `2 , C | ε

Base Types β ::= int | label | unit | (x :τ1)[C] ∗ τ2 | τ ref | (x :τ1)
C ; pc−−−→ τ2

Security Types τ ::= β`

Values v ::= x | n | mτ | λ(x :τ)[C ; pc]. e | () | k | (x=v1[C], v2 :τ)
Expressions e ::= v | `1 t `2 | e1 e2 | !e | e1 := e2 | refτe | if `1 v `2 then e1 else e2

| let (x, y)=e1 in e2

Figure 1: Syntax ofλDSec

variable namesV, andm to range over a space of memory
addressesM.

To make the lattice explicit, we writeL |= k1 v k2

to mean thatk2 is at least as restrictive ask1 in L, and
L |= k = k1 t k2 to meank is the join ofk1 andk2 in
L. The least and greatest elements ofL are⊥ and>. Any
non-trivial label lattice contains at least two pointsL andH
whereH 6v L. Intuitively, the labelL describes what in-
formation is observable bylow-security userswho are to be
prevented from seeing confidential information. Thus,low-
securitydata has a label bounded above byL; high-security
data has a label (such asH) not bounded byL.

In λDSec , a label can be either a label valuek, a variable
x, or the join of two other labels̀1 t `2. For example,L, x,
andL t x are all valid labels, andL t x can be interpreted
as a security policy that is as restrictive as bothL andx. The
security typeτ = β` is the base typeβ annotated with label
`. The base types include integers, unit, labels, functions,
references and products.

The function type(x : τ1)
C ; pc−−−→ τ2 is a dependent type

sinceτ1, τ2, C andpc may mentionx. The componentC is
a set oflabel constraintseach with the form̀ 1 v `2; they
must be satisfied when the function is invoked. Thepc com-
ponent is a lower bound on the memory effects of the func-
tion, and an upper bound on thepc label of the caller. Con-
sequently, a function is not able to leak information about
where it is called. Without the annotationsC andpc, this
kind of type is sometimes written asΠx :τ1.τ2 [13].

The product type(x : τ1)[C] ∗ τ2 is also a dependent
type in the sense that occurrences ofx can appear inτ1, τ2

andC. The componentC is a set of label constraints that
any value of the product type must satisfy. Ifτ2 does not
containx andC is empty, the type may be written as the
more familiarτ1 ∗ τ2. Without the annotationC, this kind of
type is sometimes writtenΣx :τ1.τ2 [13].

In λDSec , values include integersn, typed memory lo-
cationsmτ , functionsλ(x : τ)[C ; pc]. e, the unit value(),
constant labelsk, and pairs(x = v1[C], v2 : τ). A function
λ(x : τ)[C ; pc]. e has one argumentx with type τ , and the
componentsC andpc have the same meanings as those in

function types. The empty constraint setC or the toppc can
be omitted. A pair(x=v1[C], v2 :τ) contains two valuesv1

andv2. The second elementv2 has typeτ and may mention
the first elementv1 by the namex. The componentC is a set
of label constraints that the first element of the pair must sat-
isfy. For example, supposeC contains the constraintx v L,
thenv1 v L must be true since inside the pair the value ofx
is v1.

Expressions include valuesv, variablesx, the join of two
labels`1 t `2, applicationse1 e2, dereferences!e, assign-
mentse1 := e2, referencesrefτe, label-test expressions
if `1 v `2 then e1 else e2, and product destructors
let (x, y)=v in e2.

The label-test expressionif `1 v `2 then e1 else e2

is used to examine labels. At run time, if the value of`2 is
a constant label at least as restrictive as the value of`1, then
e1 is evaluated; otherwise,e2 is evaluated. Consequently,
the constraint̀ 1 v `2 can be assumed when type-checking
e1.

The product destructorlet (x, y)=e1 in e2 unpacks the
result ofe1, which is a pair, assigns the first element tox and
the second toy, and then evaluatese2.

3.2 Operational Semantics

The small-step operational semantics ofλDSec is given in
Figure 2. LetM represent a memory that is a finite map
from typed locations to closed values, and let〈e, M〉 be
a machine configuration. Then a small evaluation step is
a transition from〈e, M〉 to another configuration〈e′, M ′〉,
written 〈e, M〉 7−→ 〈e′, M ′〉.

It is necessary to restrict the form of〈e, M〉 to avoid us-
ing undefined memory locations. Letloc(e) represent the set
of memory locations appearing ine. A memoryM is well-
formed if every addressm appears at most once indom(M),
and for anymτ in dom(M), loc(M(mτ )) ⊆ dom(M). The
configuration〈e, M〉 is well-formed if M is well-formed,
loc(e) ⊆ dom(M), ande contains no free variables. By in-
duction on the derivation of〈e, M〉 7−→ 〈e′, M ′〉, we can
prove that if〈e, M〉 is well-formed, then〈e′, M ′〉 is also
well-formed.
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[E1 ]
L |= k = k1 t k2

〈k1 t k2, M〉 7−→ 〈k, M〉

[E2 ] 〈!mτ , M〉 7−→ 〈M(mτ ), M〉

[E3 ]
m 6∈ address-space(M)

〈refτv, M〉 7−→ 〈mτ , M [mτ 7→ v]〉

[E4 ] 〈mτ := v, M〉 7−→ 〈(), M [mτ 7→ v]〉

[E5 ] 〈(λ(x :τ)[C ; pc]. e) v, M〉 7−→ 〈e[v/x], M〉

[E6 ]
L |= k1 v k2

〈if k1 v k2 then e1 else e2, M〉 7−→ 〈e1, M〉

[E7 ]
L |= k1 6v k2

〈if k1 v k2 then e1 else e2, M〉 7−→ 〈e2, M〉

[E8 ] 〈let (x, y)=(x=v1[C], v2 :τ) in e, M〉 7−→ 〈e[v2/y][v1/x], M〉

[E9 ]
〈e, M〉 7−→ 〈e′, M ′〉

〈E[e], M〉 7−→ 〈E[e′], M ′〉

E[·] ::= [·] e | v [·] | [·] := e | v := [·] | ! [·] | refτ [·] | [·] t `2 | k1 t [·]
| if [·] v `2 then e1 else e2 | if k1 v [·] then e1 else e2 | let (x, y)=[·] in e

Figure 2: Small-step operational semantics ofλDSec

The notatione[v/x] indicates capture-avoiding substitu-
tion of valuev for variablex in expressione. Unlike in the
typed lambda calculus,e[v/x] may generate a syntactically
ill-formed expression ifx appears in type annotations inside
e, andv is not a label. However, this is not a problem be-
cause the type system ofλDSec guarantees that a well-typed
expression can only be evaluated to another well-typed and
thus well-formed expression.

The notationM(mτ ) denotes the value of locationmτ

in M , and the notationM [mτ 7→ v] denotes the memory
obtained by assigningv to mτ in M .

The evaluation rules are standard. In rule (E3), the nota-
tion address-space(M) represents the set of location names
in M , that is,{m | ∃τ s.t. mτ ∈ dom(M)}. In rule (E8),v2

may mentionx, so substitutingv2 for y in e is performed be-
fore substitutingv1 for x. The variable name in the product
value matchesx so that no variable substitution is needed
when assigningv1 andv2 to x andy. In rule (E9),E rep-
resents an evaluation context, a term with a single hole in
redex position, and the syntax ofE specifies the evaluation
order.

3.3 Examples

As discussed in Section 1, dynamic labels are vital for pre-
cisely controlling information flows between security-typed

programs and the external environment. A practical pro-
gram often needs to access files or communicate through
networks. These activities can be viewed as communication
through anI/O channelwith a corresponding label consis-
tent with the security policy of the entity (such as a file or
network socket) represented by the channel. Because the
security policy of an external entity may be discovered and
even changed at run time, the precise label of an I/O channel
is dynamic and operations on a channel cannot be checked
at compile time.

3.3.1 Run-time access control

Implementing run-time access control is one of the most
important applications of dynamic label mechanisms. Sup-
pose there exists a file that stores one integer, and the ac-
cess control policy of the file is unknown at compile time.
In λDSec , the file can be encoded as a reference of type
(x : label⊥) ∗ (intx ref)⊥, wherex is a dynamic label
consistent with the access control policy of the file, and the
reference component of type(intx ref)⊥ stores the con-
tents of the file. Thus storing an integer of typeintH in the
file is equivalent to assigning the integer to the memory ref-
erence component, which requires thatx is at least as high
asH. Since the value ofx is not known at compile time,
the conditionH v x can only be checked at run time, us-
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ing a label-test expression. The following function stores a
high-security integerz in the filew:

λw : ((x :label⊥) ∗ (intx ref)⊥)⊥ ref⊥. λ(z :intH)[H].
let (x, y)=!w in if H v x then y := z else ()

Note that thepc label of the function isH because the func-
tion body contains a memory effect of labelx whenH v x.

It is also important to be able to change file permissions
at run time. The following code changes the access control
policy of the filew to labelz. However, the original con-
tents ofw need to be wiped out to prevent them from being
implicitly declassified, which provides stronger security as-
surance than an ordinary file system.

λw : ((x :label⊥) ∗ intx ref⊥)⊥ ref⊥. λ(z :label⊥)[⊥].
(λ(y :intz ref⊥)[⊥]. w := (x=z, y :intx ref⊥))refintz0

3.3.2 Multilevel communication channels

Information flows inside a program are controlled by static
type checking. When information is exported outside a pro-
gram through an I/O channel, the receiver might want to
know the exact label of the information, which calls formul-
tilevel communication channels[7] unambiguously pairing
the information sent or received with its corresponding se-
curity label. Supporting multilevel channels is one of the
basic requirements for a MAC system [7].

In λDSec , a multilevel channel can be encoded by a mem-
ory reference of type((x : labelx) ∗ intx)⊥ ref, which
stores a pair composed of an integer value and its label.
The confidentiality of the integer component is protected by
the label component, since extracting the integer component
from such a pair requires testing the label component:

λz : ((x :labelx) ∗ intx)⊥. let (x, y)=z in
if x v L then mintL := y else ()

In the above example, the constraintx v L must be satisfied
in order to store the integer component inmintL . Since the
readability of the integer component depends on the value of
x, lettingx recursively label itself ensures that all the autho-
rized readers of the integer component can testx and retrieve
the integer value.

Sending an integer through a multilevel channel is im-
plemented by pairing the integer and its label and storing the
pair in the reference representing the channel:

λz : (((x :labelx)) ∗ intx)⊥ ref)⊥. λw :labelw.
λ(y :intw)[⊥]. z := (x=w, y :intx)

Like other I/O channels, a multilevel channel may have a
label that is an upper bound of the security levels of the
information that can be sent through the channel. Product
label constraints can be used to specify the label of a mul-
tilevel channel. For example, a bounded multilevel chan-
nel can be represented by a memory reference with type

((x : labelx)[x v `] ∗ intx)⊥ ref, where` is the label
of the channel, and the constraintx v ` guarantees any in-
formation stored in the reference has a security label at most
as high as̀ . Sending information through a bounded multi-
level channel often needs a run-time check as in the follow-
ing code:

λz : (((x :labelx))[x v `] ∗ intx)⊥ ref)⊥. λw :labelw.
λ(y :intw)[⊥]. if w v ` then z := (x=w, y :intx) else ()

The ability to recursively use a variable to construct the
label of its own type provides a useful kind of polymor-
phism, which this example demonstrates. Without recursive
labels, the type of a multilevel channel cannot be constructed
so simply, because selecting a label for the label component
x becomes problematic. Any constant label that is chosen
may be inappropriate; for example, if the label has the label
⊥ then it may be impossible to compute a suitable label to
supply asx. Another possibility is to provide yet another la-
bel that is to function as the label ofx, but this merely pushes
the problem back by one level. Givingx the typelabelx is
a neat way to tie off this sequence.

4 Type system and noninterference

This section describes the type system ofλDSec and proves
that the type system guarantees that any well-typed program
has the noninterference property.

4.1 Label constraints

Because of dynamic labels, it is not always possible to de-
cide whether the relationship̀1 v `2 holds at compile
time; therefore, the label-test expression (if) must be used
to query the relationship. However, this dynamic query may
create new information flows; the languageλDSec and its
type system are designed to statically control these new in-
formation flows.

Although labels are first-class values inλDSec , label
terms have a restricted syntactic form so that any label term
can be used as a type annotation. Therefore, constraints on
label terms are also type-level information that can be used
by the type checker.

Furthermore, inλDSec label terms are purely functional:
they have no side effects and evaluate to the same value in
the same context. As a result, any label constraint of the
form `1 v `2 that is known to hold in a typing context can be
used for type checking in that context. For example, consider
the following code:

λx :label⊥. λy : (intx ref)⊥. λ(z :intH)[H].
if H v x then y := z else ()

According to the semantics of the label-test expression, the
assignmenty := z will be executed only ifH v x holds.
Thus, the constraintH v x can be used to decide whether
z := y is secure. In this example, any information stored
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[C1 ]
L |= k1 v k2

C ` k1 v k2
[C2 ]

`1 v `2 ∈ C

C ` `1 v `2

[C3] C ` ` v > [C4] C ` ⊥ v `

[C5] C ` ` v ` t `′

[C6 ]
C ` `1 v `2 C ` `2 v `3

C ` `1 v `3

[C7 ]
C ` `1 v `3 C ` `2 v `3

C ` `1 t `2 v `3

Figure 3: Relabeling rules

[S1 ]
C ` τ1 ≤ τ2 C ` τ2 ≤ τ1

C ` τ1 ref ≤ τ2 ref

[S2 ]

C ` τ2 ≤ τ1 C ` τ ′1 ≤ τ ′2
C ` pc2 v pc1 C, C2 ` C1

C ` (x :τ1)
C1 ; pc1−−−−→ τ ′1 ≤ (x :τ2)

C2 ; pc2−−−−→ τ ′2

[S3 ]
C ` τ1 ≤ τ2 C ` τ ′1 ≤ τ ′2 C, C1 ` C2

C ` (x :τ1)[C1] ∗ τ ′1 ≤ (x :τ2)[C2] ∗ τ ′2

[S4 ]
C ` β1 ≤ β2 C ` `1 v `2

C ` (β1)`1 ≤ (β2)`2

Figure 4: Subtyping rules

in z is only accessible to users with security level at least as
high asx. So it is secure to storez in y becausex is at least
as high asH.

In general, for each expressione, the type checker keeps
track of the set of constraintsC that are known to be satisfied
whene is executed, and usesC in type-checkinge.

Another common approach for relating type information
to term-level constructs is to use singleton types, types con-
taining only one value [2]. We have chosen to use dependent
types because it is the approach used by Jif, and the approach
based on singleton types neither provides more expressive-
ness nor simplifies the type system or the noninterference
proof in any substantial way. In general, we feel that the
choice between dependent types and singletons is a matter
of taste.

4.2 Subtyping

The subtyping relationship between security types plays an
important role in enforcing information flow security. Given
two security typesτ1 = β1`1 andτ2 = β2`2 , supposeτ1 is
a subtype ofτ2, written asτ1 ≤ τ2. Then any data of type
τ1 can be treated as data of typeτ2. Thus, data with label̀1

may be treated as data with label`2, which requires̀1 v `2.
The type system keeps track of the set of label constraints

that can be used to prove relabeling relationships between
labels. LetC ` `1 v `2 denote that̀ 1 v `2 can be in-
ferred from the set of constraintsC. The inference rules are
shown in Figure 3; they are standard and consistent with the
lattice properties of labels. Rule (C2) shows that all the con-
straints inC are assumed to be true. The constraint setC
may contain constraints that are inconsistent with the lattice
L, such asH v L. Inconsistent constraint sets are harmless
because they always indicate dead code, such as expression
e1 in “if H v L then e1 else e2”.

Since the subtyping relationship depends on the rela-
beling relationship, the subtyping context also needs to in-
clude theC component. The inference rules for proving
C ` τ1 ≤ τ2 are the rules shown in Figure 4 plus the stan-
dard reflexivity and transitivity rules.

Rules (S1)–(S3) are about subtyping on base types.
These rules demonstrate the expected covariance or con-
travariance. InλDSec , function types contain two additional
componentspc andC, both of which are contravariant. Sup-

pose the function typeτ = (x : τ1)
C1 ; pc1−−−−→ τ ′1 is a sub-

type of τ ′ = (x : τ2)
C2 ; pc2−−−−→ τ ′2. Then wherever functions

with type τ ′ can be called, functions with typeτ can also
be called. This implies two necessary premises. First, wher-
everC2 is satisfied,C1 is also satisfied. SinceC is satisfied,
this premise is writtenC,C2 ` C1, meaning that for any
constraint̀ 1 v `2 in C1, we can deriveC,C2 ` `1 v `2.
Second, the premisepc2 v pc1 is needed because thepc of a
function type is an upper bound on thepc where the function
is applied.

In rules (S2) and (S3), variablex is bound in the function
and product types. For simplicity, we assume thatx does
not appear inC, sinceα-conversion can always be used to
renamex to another fresh variable. This assumption also
applies to the typing rules.

Rule (S4) is used to determine the subtyping on security
types. The premiseC ` β1 ≤ β2 is natural. The other
premiseC ` `1 v `2 guarantees that coercing data fromτ1

to τ2 does not violate information flow policies.

4.3 Typing

The type system ofλDSec prevents illegal information flows
and guarantees that well-typed programs have a noninterfer-
ence property. The typing rules are shown in Figure 5. The
notationlabel(β`) = ` is used to obtain the label of a type,
and the notations̀ v τ and τ v ` are abbreviations for
` v label(τ) andlabel(τ) v `, respectively.

The typing context includes atype assignmentΓ, a set of
constraintsC and the program-counter labelpc. Γ is a finite
ordered list of x : τ pairs in the order that they came into
scope. For a givenx, there is at most one pairx :τ in Γ.
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[INT] Γ ; C ; pc ` n : int⊥ [UNIT] Γ ; C ; pc ` () : unit⊥

[LABEL] Γ ; C ; pc ` k : label⊥
[LOC ]

FV (τ) = ∅
Γ ; C ; pc ` mτ : (τ ref)⊥

[JOIN ]
Γ ; C ; pc ` `1 : label`′1

Γ ; C ; pc ` `2 : label`′2

Γ ; C ; pc ` `1 t `2 : label`′1t`′2

[VAR ]
x :τ ∈ Γ

Γ ; C ; pc ` x : τ

[REF ]
Γ ; C ; pc ` e : τ C ` pc v τ

Γ ; C ; pc ` refτe : (τ ref)⊥
[DEREF ]

Γ ; C ; pc ` e : (τ ref)`

Γ ; C ; pc `!e : τ t `

[ABS ]
Γ, x :τ ′ ; C′ ; pc′ ` e : τ

Γ ; C ; pc ` λ(x :τ ′)[C′ ; pc′]. e : ((x :τ ′)
C′ ; pc′−−−−→ τ)⊥

[ASSIGN ]

Γ ; C ; pc ` e1 : (τ ref)`

Γ ; C ; pc ` e2 : τ C ` pc t ` v τ

Γ ; C ; pc ` e1 := e2 : unit⊥

[L-APP ]

Γ ; C ; pc ` e1 : ((x :label`′)
C′ ; pc′−−−−→ τ)`

Γ ; C ; pc ` `2 : label`′[`2/x]

C ` pc t ` v pc′[`2/x] C ` C′[`2/x]
x ∈ FV (τ) ∪ FV (`′) ∪ FV (C′) ∪ FV (pc′)

Γ ; C ; pc ` e1 `2 : τ [`2/x] t `
[APP ]

Γ ; C ; pc ` e1 : ((x :τ ′)
C′ ; pc′−−−−→ τ)`

Γ ; C ; pc ` e2 : τ ′

C ` pc t ` v pc′ C ` C′

x /∈ FV (τ) ∪ FV (τ ′) ∪ FV (C′) ∪ FV (pc′)

Γ ; C ; pc ` e1 e2 : τ t `

[PROD ]

Γ ; C ; pc ` v1 : τ1[v1/x] Γ, x :τ1 ` τ2

Γ ; C ; pc ` v2[v1/x] : τ2[v1/x] C ` C′[v1/x]

Γ ; C ; pc ` (x=v1[C
′], v2 :τ2) : ((x :τ1)[C

′] ∗ τ2)⊥
[UNPACK ]

Γ ; C ; pc ` e1 : ((x :τ1)[C
′] ∗ τ2)`

Γ, x :τ1t`, y :τ2t` ; C, C′ ; pc ` e2 : τ

Γ ; C ; pc ` let (x, y)=e1 in e2 : τ

[IF ]

Γ ; C ; pc ` `i : label`′i
i ∈ {1, 2}

Γ ; C, `1 v `2 ; pc t `′1 t `′2 ` e1 : τ
Γ ; C ; pc t `′1 t `′2 ` e2 : τ

Γ ; C ; pc ` if `1 v `2 then e1 else e2 : τ t `′1 t `′2
[SUB ]

Γ ; C ; pc ` e : τ C ` τ ≤ τ ′

Γ ; C ; pc ` e : τ ′

Figure 5: Typing rules for theλDSec language

A variable appearing in a type must be a label variable.
Therefore, a typeτ is well-formed with respect to type as-
signmentΓ, written Γ ` τ , if Γ maps all the variables inτ
to label types. The definition of well-formed labels (Γ ` `)
is the same. ConsiderΓ = x1 : τ1, . . . , xn : τn. For any
0 ≤ i ≤ n, the typeτi may only mention label variables that
are already in scope:x1 throughxi. Therefore,Γ is well-
formed if for any0 ≤ i ≤ n, τi is well-formed with respect
to x1 : τ1, . . . , xi : τi. For example, “x : labelL, y : intx”
is well-formed, but “y : intx, x : labelL” is not. A con-
straint`1 v `2 is well-formed with respect toΓ if both `1
and`2 are well-formed with respect toΓ. A typing context
“Γ ;C ; pc” is well-formed if Γ is well-formed, andpc and
all the constraints inC are well-formed with respect toΓ.

The typing assertionΓ ;C ; pc ` e : τ means that with
the type assignmentΓ, current program-counter label aspc,
and the set of constraintsC satisfied, expressione has type
τ . The assertionΓ ;C ; pc ` e : τ is well-formed ifΓ ;C ; pc
is well-formed, andΓ ` τ .

Rules (INT), (UNIT), (LABEL) and (LOC) are used to

check values. Valuev has typeβ⊥ if v has base typeβ. Rule
(LOC) requires typed locationmτ contain no label variables
so thatmτ remains a constant during evaluation. This is
enforced by the premiseFV (τ) = ∅, whereFV (τ) denotes
the set of free variables appearing inτ .

Rule (VAR) is standard: variablex has typeΓ(x). Rule
(JOIN) checks the join of two labels and assigns a result la-
bel that is the join of the labels of the operands.

Rule (REF) checks memory allocation operations. If the
pc label is high, the generated memory location must not be
observable to low-security users, which is guaranteed by the
premiseC ` pc v τ . Rule (DEREF) checks dereference
expressions. Since some information about a reference can
be learned by knowing its contents, the result of dereferenc-
ing a reference with type(τ ref)` has typeτ t `, where
τ t ` = β`′t` if τ is β`′ .

Rule (ASSIGN) checks memory update. As in rule
(REF), if the updated memory location has type(τ ref)`,
thenC ` pc v τ is required to prevent illegal implicit flows.
In addition, the premiseC ` pc t ` v τ implies another
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conditionC ` ` v τ that is required to protect the confiden-
tiality of the reference that is assigned to. Consider the fol-
lowing code that allows low-security users to learn whether
x v L by observing which ofm1 andm2 is updated to0:

λ(x :labelH)[L]. ((ifx v LthenmintL
1 elsemintL

2 ) := 0)

The code is not well-typed because the conditionC ` ` v τ
does not hold for the assignment expression.

Rule (ABS) checks function values. The body is checked
with the constraint setC ′ and the program-counter labelpc′,
so the function can only be called at places whereC ′ is sat-
isfied and thepc label is not more restrictive thanpc′.

Rule (L-APP) is used to check applications of depen-
dent functions. Expressione1 has a dependent function

type ((x : label`′)
C′ ; pc′−−−−→ τ)`, wherex does appear in

`′, C ′, pc′ or τ . As a result, rule (L-APP) needs to use
`′[`2/x], C ′[`2/x], pc′[`2/x] and τ [`2/x], which are well-
formed sincè 2 is a label. That also explains whye1, with
its dependent function type, cannot be applied to an arbi-
trary expressione2: substitutinge2 for x in `′, C ′, pc′ and
τ may generate ill-formed labels or types, and it is generally
unacceptable for the type checker to evaluatee2 to valuev2

and substitutev2 for x, which would make type-checking
undecidable. The expressiveness ofλDSec is not substan-
tially affected by the restriction that a dependent function
can only be applied to label terms, because the function can
be applied to a variable that receives the result of an arbi-
trary expression. For example, in the following code, the
applicatione1x indirectly appliese1 to e2:

(λx :label`. if x v L then e1x else ())e2

This works as long as the function enclosinge1x is not de-
pendent.

In rule (L-APP), the label ofe1`2 is at least as restric-
tive as`, preventing the result ofe1 from being leaked. The
premiseC ` C ′[`2/x] guarantees thatC ′[`2/x] are satisfied
when the function is invoked. The premiseC ` pc t ` v
pc′[`2/x] ensures that the invocation cannot leak the pro-
gram counter or the function itself through the memory ef-
fects of the function.

Rule (APP) applies whenx does not appear inC ′, pc′ or
τ . In this case, the type ofe1 is just a normal function type,
soe1 can be applied to arbitrary terms.

Rule (PROD) is used to check product values. To check
v2, the occurrences ofx in v2 andτ2 are both replaced by
v1, sincex is not in the domain ofΓ. If v1 is not a label,
thenx cannot appear inτ2. Thus,τ2[v1/x] is always well-
formed no matter whetherv1 is a label or not. Similarly, the
occurrences ofx in τ1 andC ′ are also replaced byv1 when
v1 andC ′ are checked.

Rule (UNPACK) checks product destructors straightfor-
wardly. After unpacking the product value, those product
label constraints inC ′ are in scope and used for checking
e2.

Rule (IF) checks label-test expressions. The constraint
`1 v `2 is added into the typing context when checking the
first branche1. When checking the branches, the program-
counter label subsumes the labels of`1 and `2 to protect
them from implicit flows. The resulting type contains`′1 and
`′2 because the result is influenced by the values of`1 and`2.

Rule (SUB) is the standard subsumption rule. Ifτ is a
subtype ofτ ′ with the constraints inC satisfied, then any
expression of typeτ also has typeτ ′.

This type system satisfies the subject reduction property
and the progress property. The proof is standard, so we sim-
ply state the theorems here.

Definition 4.1 (Well-typed memory). A memory M is
well-typed if for any memory locationmτ in M ,` M(mτ ) :
τ .

Theorem 4.1 (Subject reduction).Supposepc ` e : τ , and
there exists a well-typed memoryM such that〈e, M〉 7−→
〈e′, M ′〉, thenM ′ is well-typed, andpc ` e′ : τ .

Theorem 4.2 (Progress).If pc ` e : τ , andM is a well-
typed memory such that〈e, M〉 is a well-formed configura-
tion, then eithere is a value or there existse′ andM ′ such
that〈e, M〉 7−→ 〈e′, M ′〉.

4.4 Noninterference proof

This section outlines a proof that any well-typed program in
λDSec satisfies the noninterference property. (The full proof
is given in the appendix.) Consider an expressione in λDSec .
Supposee has one free variablex, andx : τ ` e : intL

whereH v τ . Thus, the value ofx is a high-security input
to e, and the result ofe is a low-security output. Then nonin-
terference requires that for all valuesv of typeτ , evaluating
e[v/x] in the same memory must generate the same result,
if the evaluation terminates. For simplicity, we only con-
sider that results are integers because they can be compared
outside the context ofλDSec .

The noninterference property discussed here istermina-
tion insensitive[21] becausee[v/x] is required to generate
the same result only if the evaluation terminates. The type
system ofλDSec does not attempt to control termination and
timing channels. Control of these channels is largely an or-
thogonal problem. Termination channels can leak at most
one bit per run, so they have often been considered accept-
able (e.g., [6, 25]). Some recent work [1, 20, 31] partially
addresses the control of timing channels.

Let 7−→∗ denote the transitive closure of the7−→ rela-
tionship. The following theorem formalizes the claim that
the type system ofλDSec enforces noninterference:

Theorem 4.3 (Noninterference). Supposex : τ ` e :
intL, andH v τ . Given two arbitrary valuesv1 andv2

of type τ , and an initial memoryM , if 〈e[vi/x], M〉 7−→∗

〈v′i, M ′
i〉 for i ∈ {1, 2}, thenv′1 = v′2.
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To prove this noninterference theorem, we adapt the el-
egant proof technique developed by Pottier and Simonet for
an ML-like security-typed language [19] (which did not have
dynamic labels). To show that noninterference holds, it
is necessary to reason about the executions of two related
terms:e[v1/x] ande[v2/x]. We extendλDSec with a bracket
construct(e1 |e2) that represents alternative expressions that
might arise during the evaluation of two programs that dif-
fers initially only in v1 andv2. Thene[v1/x] ande[v2/x]
can be incorporated into a single terme[(v1 | v2)/x] in the
extended languageλ2

DSec , providing a syntactic way to rea-
son about two executions.

Usingλ2
DSec , the noninterference theorem can be proved

in three steps:

1. Prove that the evaluation ofλ2
DSec adequately repre-

sents the execution of twoλDSec terms. Given aλ2
DSec

terme, let bec1 andbec2 represent the twoλDSec terms
encoded bye. Further, ifM mapsx to aλ2

DSec terme,
thenbMci mapsx to beci for i ∈ {1, 2}. Then we can
formalize the adequacy ofλ2

DSec as the following two
lemmas (their proof is straightforward):

Lemma 4.1 (Soundness).If 〈e, M〉 7−→ 〈e′, M ′〉,
then〈beci, bMci〉 7−→ 〈be′ci, bM ′ci〉 for i ∈ {1, 2}.

Lemma 4.2 (Completeness).If 〈beci, bMci〉 7−→∗

〈vi, M ′
i〉 for i ∈ {1, 2}, then there exists a configu-

ration〈v, M ′〉 such that〈e, M〉 7−→∗ 〈v, M ′〉.

2. Prove thatλ2
DSec satisfies subject reduction: the result

of an expression has the same type as the expression.
The type system ofλ2

DSec explicitly enforces noninter-
ference by requiring that any bracket expression(e1|e2)
has a high-security type. The differences between two
executions are completely captured by bracket expres-
sions, so the requirement that brackets must have high-
security types ensures that the differences between the
two executions are unobservable to low-security users.
Intuitively, it is because of the explicit enforcement
of noninterference that the noninterference theorem of
λDSec can be reduced to the soundness (subject reduc-
tion) of the type system ofλ2

DSec .

3. Prove the noninterference theorem ofλDSec : Be-
cause〈e[vi/x], M〉 7−→∗ 〈v′i, M ′

i〉 and e[vi/x] =
be[(v1 | v2)/x]ci for i ∈ {1, 2}, by the com-
pleteness lemma there exists〈v′, M ′〉 such that
〈e[(v1 | v2)/x], M〉 7−→∗ 〈v′, M ′〉. Moreover,bv′ci =
v′i for i ∈ {1, 2} by the soundness lemma. To prove
the noninterference theorem, we only need to prove
v′1 = v′2, that is,bv′c1 = bv′c2. By the subject re-
duction theorem ofλ2

DSec , ` v′ : intL. By the type
system ofλ2

DSec , v′ cannot be a bracket construct be-
cause it has a low-security type. Consequently,v′ must
be an integern. Then we havebv′c1 = n = bv′c2.

The appendix details the syntax and semantic extensions
of λ2

DSec and proves the key subject reduction theorem of
λ2
DSec . The major extension to Pottier’s proof technique is

that the bracket construct must also be applied to labels. Be-
cause types may contain bracketed labels, the projection op-
eration also applies to typing environments.

5 Related Work

Dynamic information flow control mechanisms [26, 27]
track security labels dynamically and use run-time security
checks to constrain information propagation. These mecha-
nisms are transparent to programs, but they cannot prevent
illegal implicit flows arising from the control flow paths not
taken at run time.

Various general security models [11, 23, 8] have been
proposed to incorporate dynamic labeling. Unlike noninter-
ference, these models define what it means for a system to
be secure according to a certain relabeling policy, which may
allow downgrading labels.

Using static program analysis to check information flow
was first proposed by Denning and Denning [6]; later work
phrased the analysis as type checking (e.g., [18]). Noninter-
ference was later developed as a more semantic characteriza-
tion of security [9], followed by many extensions. Volpano,
Smith and Irvine [25] first showed that type systems can be
used to enforce noninterference, and proved a version of
noninterference theorem for a simple imperative language,
starting a line of research pursuing the noninterference re-
sult for more expressive security-typed languages. Heintze
and Riecke [10] proved the noninterference theorem for the
SLam calculus, a purely functional language. Zdancewic
and Myers [30] investigated a secure calculus with first-class
continuations and references. Pottier and Simonet [19] con-
sidered an ML-like functional language and introduced the
proof technique that is extended in this paper. A more com-
plete survey of language-based information-flow techniques
can be found in [21, 32].

The Jif language [14, 17] extends Java with a type sys-
tem for analyzing information flow, and aims to be a prac-
tical language for developing secure applications. However,
there is not yet a noninterference proof for the type system
of Jif, because of its complexity. This work is inspired by
the dynamic label mechanism of Jif, although the dynamic
label mechanism inλDSec is more expressive. Jif provides
two constructs for run-time label tests: theswitch-label
statement and theactsFor statement, both of which can be
encoded using the label-test expression inλDSec . The typ-
ing rules forswitch-label andactsFor are as restrictive
as the typing rule of the label-test expression. Thus, the non-
interference result forλDSec provides strong evidence that
these dynamic label constructs in Jif are secure.

Banerjee and Naumann [4] proved a noninterference re-
sult for a Java-like language with simple access control prim-
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itives. Unlike inλDSec , run-time access control in this lan-
guage is separate from the static label mechanism because
it is inspired by Java stack inspection. In their language,
the label of a method result may depend in limited ways on
the (implicit) security state of its caller; however, it does not
seem to be possible in the language to control the flow of in-
formation from an I/O channel or file based on permissions
discovered at run time.

Concurrent to our work, Tse and Zdancewic proved a
noninterference result for a security-typed lambda calculus
(λRP) with run-time principals [24], which can be used to
construct dynamic labels. However,λRP does not support
references or existential types, which makes it unable to rep-
resent dynamic security policies that may be changed at run
time, such as file permissions. As discussed in Section 1,
modeling real systems requires this ability. By comparison,
in λDSec the label stored in a reference may be updated at
run time, and with dependent existential types, we can en-
sure that a piece of data and its label are updated consistently.
Therefore, updating a label dynamically does not declassify
confidential data. In addition, support for references makes
λDSec more powerful thanλRP computationally.

Other work [29, 28] has used dependent type systems to
specify complex program invariants and to statically catch
program errors considered run-time errors by traditional type
systems. This work also makes a trade-off between expres-
sive power and practical type checking.

6 Conclusions

This paper formalizes computation and static checking of
dynamic labels in the type system of a core languageλDSec

and proves a noninterference result: well-typed programs
have the noninterference property. The languageλDSec is
the first language supporting general dynamic labels whose
type system provably enforces noninterference.
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A Subject Reduction Proof

As described in Section 4.4, the noninterference result for
λDSec is proved by extending the language to a new lan-
guageλ2

DSec that includes the special bracket construct.
Then the subject reduction property forλ2

DSec implies the
noninterference property forλDSec . The appendix details
the syntax and semantic extensions ofλ2

DSec and proves the
key subject reduction theorem.

A.1 Syntax extensions

The syntax extensions ofλ2
DSec include the bracket con-

structs and a new valuevoid that can have any type. A
λ2
DSec memory encodes twoλDSec memories, which may

have distinct domains. The bindings of the formmτ 7→

(v | void) andmτ 7→ (void | v) represent situations where
mτ is bound within only one of the twoλDSec memories.

` ::= . . . | (` | `)
v ::= . . . | (v | v) | void
e ::= . . . | (e | e)

The bracket constructs cannot be nested, so the subterms of
a bracket construct must beλDSec terms orvoid. Given
a λ2

DSec expressione, let bec1 and bec2 represent the two
λDSec terms thate encodes. The projection functions sat-
isfy b(e1 | e2)ci = ei and are homomorphisms on other
expression forms. In addition,(e1 | e2)[v/x], the capture-
free substitution ofv for x in (e1 | e2), must use the corre-
sponding projection ofv in each branch:(e1 | e2)[v/x] =
(e1[bvc1/x] | e2[bvc2/x]).

In λ2
DSec , labels can be bracket constructs, and types

may contain bracketed labels. Thus, the projection opera-
tion can be applied to labels, types, type assignments, and
label constraints. Similarly, the projection functions are
homomorphisms on these typing constructs. For example,
bint(L | H)c1 = intL, andbx : τ, y : τ ′c1 = x : bτc1, y :
bτ ′c1.

The following relabeling rule is added to reason about
relabeling relationship between bracketed labels:

bCc1 ` b`1c1 v b`2c1 bCc2 ` b`1c2 v b`2c2
C ` `1 v `2

Since aλ2
DSec term effectively encodes twoλDSec terms,

the evaluation of aλ2
DSec term can be projected into two

λDSec evaluations. An evaluation step of a bracket expres-
sion (e1 | e2) is an evaluation step of eithere1 or e2. and
e1 or e2 can only access the corresponding projection of
the memory. Thus, the configuration ofλ2

DSec has an index
i ∈ {•, 1, 2} that indicates whether the term to be evaluated
is a subterm of a bracket expression, and if so which branch
of a bracket the term belongs to. For example, the config-
uration〈e, M〉1 means thate belongs to the first branch of
a bracket, ande can only access the first projection ofM .
We write “〈e, M〉” for “ 〈e, M〉•”, which meanse does not
belong to any bracket.

A.2 Operational semantics

The operational semantics ofλ2
DSec is shown in Figure 6. It

is based on the semantics ofλDSec and contains some new
evaluation rules (E10–E14) for manipulating bracket con-
structs. Rules (E2)–(E4) are modified to access the memory
projection corresponding to indexi. The rest of the rules in
Figure 2 are adapted toλ2

DSec by indexing each configura-
tion with i. The following two lemmas state that the opera-
tional semantics ofλ2

DSec is adequate to encode the execu-
tion of twoλDSec terms. Their proof is straightforward.
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Lemma A.1 (Soundness).If 〈e, M〉 7−→ 〈e′, M ′〉, then
〈beci, bMci〉 7−→ 〈be′ci, bM ′ci〉 for i ∈ {1, 2}.

Lemma A.2 (Completeness). If 〈beci, bMci〉 7−→∗

〈vi, M ′
i〉 for i ∈ {1, 2}, then there exists a configuration

〈v, M ′〉 such that〈e, M〉 7−→∗ 〈v, M ′〉.

The type system ofλ2
DSec includes all the typing rules in

Figure 5 and has two additional rules, one for typingvoid,
the other for typing bracket constructs.

[VOID] Γ ; C ; pc ` void : τ

[BRACKET ]

bΓc1 ;bCc1 ;bpc′c1 ` e1 : bτc1
bΓc2 ;bCc2 ;bpc′c2 ` e2 : bτc2

H t pc v pc′ H v τ

Γ ; C ; pc ` (e1 | e2) : τ

A.3 Subject reduction

The proof of subject reduction starts with some lemmas
about projection and substitution.

Lemma A.3 (Label Projection). If C ` `1 v `2, then
bCci ` b`1ci v b`2ci for i ∈ {1, 2}.

Proof. By induction on the derivation ofC ` `1 v `2.

Lemma A.4 (Constraint Reduction). If Γ ;C, `1 v
`2 ; pc ` e : τ andC ` `1 v `2, thenΓ ;C ; pc ` e : τ .

Proof. By induction on the derivation ofΓ ;C, `1 v
`2 ; pc ` e : τ .

Lemma A.5 (Projection). If Γ ;C ; pc ` e : τ , then
bΓci ;bCci ;bpcci ` beci : bτci, for i ∈ {1, 2}.

Proof. By induction on the derivation ofΓ ;C ; pc ` e : τ ,
and using the label projection lemma.

Lemma A.6 (Store Access).Let i be in{•, 1, 2}. Suppose
pc ` v : τ andpc ` v′ : τ . In addition,i ∈ {1, 2} implies
H v τ . Thenpc ` readi v : bτci, pc ` newi v : τ and
pc ` updatei vv′ : τ .

Proof. By the definition of the functionsread, new and
update in Figure 6, by the projection lemma, and rules
(VOID) and (BRACKET).

Lemma A.7 (Substitution). If x : τ ′,Γ ;C ; pc ` e : τ ,
and` v : τ ′[v/x], thenΓ[v/x] ; C[v/x] ; pc[v/x] ` e[v/x] :
τ [v/x].

Proof. By induction on the derivation ofx : τ ′,Γ ;C ; pc `
e : τ .

Theorem A.1 (Subject Reduction). Supposepc ` e : τ ,
memoryM is well-typed,〈e, M〉i 7−→ 〈e′, M ′〉i, andi ∈
{1, 2} impliesH v pc. Thenpc ` e′ : τ , andM ′ is also
well-typed.

Proof. By induction on the derivation of〈e, M〉i 7−→
〈e′, M ′〉i. Without loss of generality, we assume that the
last step of the derivation ofpc ` e : τ does not use the
rule (SUB). Here we just show eight cases: (E3), (E5), (E6),
(E8), (E10), (E11), (E14) and (E16). The rest of evaluation
rules are treated similarly.

• Case (E3).e is refτ ′
v, andτ is (τ ′ ref)⊥. Thene′ is

mτ ′
. By (LOC), pc ` e′ : (τ ′ ref)⊥. By Lemma A.6,

pc ` newiv : τ ′. Thus,M [mτ ′ 7→ newiv] is well-typed.

• Case (E5). e is (λ(x : τ ′)[C ′ ; pc′]. e′)v. Thenpc `
λ(x : τ ′)[C ′ ; pc′]. e′ : ((x : τ ′′)

C′′ ; pc′′−−−−−→ τ1)`, and
pc ` v : τ ′′, and` C ′′[v/x]. By rules (APP) and
(L-APP), τ = τ1[v/x] t `, andpc v pc′′[v/x]. By
rules (ABS) and (SUB),x : τ ′ ;C ′ ; pc′ ` e′ : τ1,
and` τ ′′ ≤ τ ′, ` pc′′ v pc′, andC ′′ ` C ′. There-
fore, ` C ′[v/x], andpc v pc′[v/x]. By the substitu-
tion lemma,C ′[v/x] ; pc′[v/x] ` e′[v/x] : τ1[v/x]. By
Lemma A.4,pc′[v/x] ` e′[v/x] : τ1[v/x]. Sincepc v
pc′[v/x] andτ1[v/x] v τ , we havepc ` e′[v/x] : τ .

• Case (E6). By rule (IF),k1 v k2 ; pc ` e1 : τ . By
Lemma A.4 andL |= k1 v k2, we havepc ` e1 : τ .

• Case (E8).e is let (x, y) = (x = v1[C], v2 : τ2) in e′.
By rule (UNPACK), pc ` (x = v1[C], v2 : τ2) :
((x : τ1)[C] ∗ τ2)`, andx : τ1 t `, y : τ2 t ` ; pc `
e′ : τ . By rule (PROD),pc ` v1 : τ1[v1/x], and
pc ` v2[v1/x] : τ2[v1/x], and ` C[v1/x]. Using
the substitution lemma twice, we getC[v1/x] ; pc `
e′[v1/x][v2[v1/x]/y] : τ [v1/x][v2[v1/x]/y]. It is easy
to show thate′[v1/x][v2[v1/x]/y] = e′[v2/y][v1/x].
According to rule (UNPACK),x, y 6∈ FV (τ). Thus,
τ [v1/x][v2[v1/x]/y] = τ . In addition, we havè
C[v1/x]. Therefore,pc ` e[v1/x][v2/y] : τ .

• Case (E10).e is (e1 | e2). Without loss of generality,
assume〈e1, M〉1 7−→ 〈e′1, M ′〉1 ande2 = e′2. By rule
(BRACKET), H v pc, andbpcc1 ` e1 : bτc1. H v pc
impliesH v bpcc1. By induction,bpcc1 ` e′1 : bτc1,
andM ′ is well-typed. Using rule (BRACKET), we can
getpc ` (e′1 | e′2) : τ .

• Case (E11).e is (v1 | v2)v. By (APP) and (L-APP),

pc ` (v1 | v2) : ((x : τ ′)
C′ ; pc′−−−−→ τ ′′)`, andpc ` v : τ ′.

Thenτ = τ ′′[v/x] t `. In addition,pc t ` v pc′. By
(BRACKET), H v `, which impliesH v pc′. By

Lemma A.5,bpcci ` vi : ((x : bτ ′ci)
bC′ci ;bpc′ci−−−−−−−−→

bτci)b`ci
, and bpcci ` bvci : bτ ′ci, which imply
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[E2] 〈!mτ , M〉i 7−→ 〈readi M(mτ ), M〉i

[E3 ]
m 6∈ address-space(M)

〈refτv, M〉i 7−→ 〈mτ , M [mτ 7→ newi v]〉i

[E4] 〈mτ := v, M〉i 7−→ 〈(), M [mτ 7→ updatei M(mτ ) v]〉i

[E10 ]
〈ei, M〉i 7−→ 〈e′i, M ′〉i ej = e′j {i, j} = {1, 2}

〈(e1 | e2), M〉 7−→ 〈(e′1 | e′2), M ′〉

[E11] 〈(v1 | v2)v, M〉 7−→ 〈(v1bvc1 | v2bvc2), M〉

[E12] 〈(v1 | v2) := v, M〉 7−→ 〈(v1 := bvc1 | v2 := bvc2), M〉

[E13] 〈!(v1 | v2), M〉 7−→ 〈(!v1 | !v2), M〉

[E14] 〈if v1 v v2 then e1 else e2, M〉 7−→ 〈(if bv1c1 v bv2c1 then be1c1 else be2c1 |
if bv1c2 v bv2c2 then be1c2 else be2c2), M〉

if v1 = (v | v′) or v2 = (v | v′)

[E15] 〈v1 t v2, M〉 7−→ 〈(bv1c1 t bv2c1 | bv1c2 t bv2c2), M〉 if v1 = (v | v′) or v2 = (v | v′)

[E16] 〈let (x, y)=((x=v1[C], v2 :τ) | (x=v′1[C
′], v′2 :τ ′)) in e, M〉 7−→ 〈e[(v2 | v′2)/y][(v1 | v′1)/x], M〉

[Auxiliary functions]

new• v = v update• vv′ = v′ read• v = v
new1 v = (v | void) update1 vv′ = (v′ | bvc2) read1 v = bvc1
new2 v = (void | v) update2 vv′ = (bvc1 | v′) read2 v = bvc2

Figure 6: Small-step operational semantics ofλ2
DSec

bpcci ` vibvci : bτci. According to (APP) and (L-
APP), a well-typed application expressione1e2 can be
type-checked with thepc component of the type ofe1 in
the typing context. Therefore,bpc′ci ` vibvci : bτci.
Since H v pc′, we can apply (BRACKET) to get
pc ` (v1bvc1 | v2bvc2) : τ .

• Case (E14).e is if v1 v v2 then e1 else e2, and
there existsj ∈ {1, 2} such thatvj = (v | v′). Suppose
pc ` vi : label`i for i ∈ {1, 2}. Sincevj is a bracket
construct,H v `j . By (IF), bothe1 ande2 are type-
checked withpc t `1 t `2 in the typing context. Thus,
we can getpc t `1 t `2 ` e : τ . By Lemma A.5,
bpc t `1 t `2ci ` beci : bτci. H v `j impliesH v
bpc t `1 t `2ci. Applying (BRACKET), we getpc `
(bec1 | bec2) : τ .

• Case (E16). e is let (x, y) = ((x = v1[C], v2 :
τ) | (x = v′1[C

′], v′2 : τ ′)) in e′. Suppose expression
((x = v1[C], v2 : τ) | (x = v′1[C

′], v′2 : τ ′)) has type
(x :τ1)[C0] ∗ τ2)⊥. It is easy to show that(v1 | v′1) and
(v2 |v′2) have typeτ1 andτ2 respectively. Then this case
is reduced to case (E8), which is standard.
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