
Language-Based Information Erasure

Stephen Chong Andrew C. Myers
Department of Computer Science

Cornell University
{schong,andru}@cs.cornell.edu

Abstract

Real computing systems sometimes need to forget sensi-
tive information. This paper explores the specification and
semantics ofinformation erasurepolicies, which impose a
strong, end-to-end requirement that information be either
erased or made less accessible. Simple lattice-based infor-
mation flow policies, corresponding to a noninterference re-
quirement, are augmented with the ability to express explicit
erasure and declassification policies. Examples are given
of applying this expressive policy language to real systems.
The paper gives tools for reasoning about policy enforce-
ment either statically or dynamically. Further, the signifi-
cance of these policies to security is formally explained in
terms of trace-based semantic security properties: general-
izations of noninterference that accommodate erasure and
declassification.

1. Introduction

Information flow control is a promising approach for
providing strong, end-to-end security guarantees about the
propagation of information within a system. An important
(and largely overlooked) aspect of information flow is that
real-world systems are often required not to retain certain
information after a specific time or event. In this paper we
study the problem of describing thisinformation erasure.
We present a security policy framework that can express in-
formation erasure policies, and investigate the semantic se-
curity conditions enjoyed by systems that enforce the poli-
cies expressible in the framework.

This research was supported in part by the Department of the Navy, Of-
fice of Naval Research, ONR Grant N00014-01-1-0968, and by National
Science Foundation grants 0208642, 0133302, and 0430161. Andrew My-
ers is supported by an Alfred P. Sloan Research Fellowship. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Government
purposes, notwithstanding any copyright annotation thereon. The views
and conclusions here are those of the authors and do not necessarily re-
flect the views of these sponsors.

The classic approach to specifying end-to-end informa-
tion security is based onnoninterference[15], requiring for
example that sensitive information not affect public infor-
mation. However, noninterference is not a sufficiently pre-
cise tool for expressing the security requirements of real
systems. It has often been observed (e.g, [34, 30, 27, 38,
31, 21, 7, 29, 35, 24, 14]) that noninterference is too restric-
tive: real systems need to release some amount of sensitive
information. This is usually accomplished by allowing non-
interference to be tempered bydeclassification. However,
noninterference is sometimes also not restrictiveenough:
sometimes information needs to become more sensitive or
to even to be forgotten completely. This paper explores the
meaning of strong information security policies that incor-
porate both declassification and erasure.

Many real-world systems have security requirements re-
garding the erasure and declassification of information. For
example, consider the following systems:

• Cryptographic devices.Devices and software that de-
crypt using secret keys are required to explicitly erase
(“zeroize”) secret keys once they are done using them.

• Electronic voting. Ballots of individual voters must
be kept confidential, but the final results of the elec-
tion, calculated from the voters’ ballots, are publicly
released. Other information may need to be erased, es-
pecially if it connects voters to their ballots.

• Mobile computing. A mobile device such as a laptop
computer may operate in environments of varying sen-
sitivity and vulnerability. When a mobile device leaves
a secure environment where sensitive information is
accessible (e.g., corporate headquarters, connected to
the corporate LAN) for a less secure environment, the
mobile device may need to erase sensitive stored infor-
mation.

• Online transactions.An individual may only be pre-
pared to release sensitive information to a service
provider in order to perform a transaction, if the ser-
vice provider guarantees not to retain the information
after the transaction is complete. For example, she may



be prepared to give her credit card details to a merchant
to make a purchase, so long as the merchant erases
those details afterward.

• Medical information systems.Health care providers
hold sensitive patient information, including demo-
graphic and medical data. In many countries, legisla-
tion controls under what conditions patient informa-
tion may be released, and to whom.

As these examples suggest, the reasons for erasing or
declassifying information are diverse, often complex, yet
crucial to security. We therefore propose a security policy
framework that allows the specification of both erasure and
declassification policies, and supports application-specific
reasoning about the erasure and declassification of informa-
tion. In this framework,erasure policiesspecify what policy
should initially be enforced on information, the conditions
under which the information must be erased, and (since in-
formation may be allowed to exist in a system after erasure
in a restricted form) what policy must be enforced on infor-
mation to allow it to survive erasure.Declassification poli-
cies, first presented in [7], specify what policy should ini-
tially be enforced on the information, the conditions under
which the information may be declassified, and the policy
that should be enforced on the information after declassifi-
cation.

It is important to note that erasure and declassification
policies govern the use ofinformationrather than of thelo-
cationswhere information is stored. In particular, if a piece
of data has an erasure policy, it means that not only should
the data itself be erased under the specified conditions, but
also any information derived from it should be erased. Thus,
erasure policies describe strong, end-to-end restrictions on
how information may be used. Information erasure and de-
classification can be seen as opposites: As time progresses,
declassification permits more information flows in a sys-
tem; by contrast, erasure permits fewer information flows
as time moves forward.

Much recent work (e.g., [28, 38, 31, 21, 7, 29, 35, 24,
14]) has focused on security properties that generalize non-
interference to permit reasoning about declassification; as
this paper shows, many of these security properties have
parallels involving information erasure. We show that some
of these properties are possessed by systems that enforce
our framework’s policies.

In our policy framework, erasure and declassification
are controlled by certainconditionsunder which erasure
and declassification are respectively required and permitted.
These conditions are inevitably application-specific, so the
framework does not specify the logic for expressing these
conditions, preserving generality. The framework is general
in another sense; although the policies are intended to be
used for program annotation and analysis, the actual form
of the programming language is not specified.

This paper does not focus on how to construct sys-
tems that enforce our framework’s policies; that topic is
left to future work. However, we expect that erasure and
declassification policies can be enforced through a combi-
nation of static analysis (such as a security type system,
e.g., [39, 37, 19, 26, 1, 3, 32]) and run-time mechanisms.

The rest of the paper is organized as follows. Section 2
introduces a unified framework for erasure and declassifi-
cation security policies, and presents two examples of how
this framework can express real-world information erasure
requirements. Section 3 gives an ordering relation that en-
ables analysis of legal information flows in this framework,
together with (and consistent with) a denotational seman-
tics that captures the meaning of policies. Section 4 dis-
cusses the semantic security conditions enjoyed by systems
that enforce erasure and declassification policies. We dis-
cuss related work in Section 5, and conclude in Section 6.
Proofs of the main theorems and lemmas are given in ap-
pendices.

2. Erasure and declassification policies

This section shows how a single policy framework
can incorporate both erasure and declassification poli-
cies, building on lattice-based information flow poli-
cies. It then presents some example policies that capture
real-world information erasure requirements.

2.1. Policies

We assume there is some underlying lattice of security
levelsL [10], giving a base vocabulary for expressing era-
sure and declassification policies. The lattice ordering onL
is written asv.

There are three kinds of policies, given by the syntax in
Figure 1.

` ∈ L Lattice element
c, d Conditions
p, q ::= Policies

` Lattice-level policy
p c
 p′ Declassification policy

p c↗p′ Erasure policy

Figure 1. Syntax for policies

A lattice-level policy` is the simplest kind of policy: in-
formation labeled with security policỳmust be used in ac-
cordance with the security level` ∈ L. The intuition is that
it should only affect information at level` or higher.

An erasure policyp c↗p′ requires that the policyp be en-
forced on information, and in addition once conditionc is

2



satisfied, policyp′ mustalso be enforced on the information.
Therefore, oncec is satisfied, the system must erase the con-
tents of any location affected by the information if that lo-
cation is governed by the policyp c↗p′ (or by any other pol-
icy not at least as restrictive asp′).

For example, consider an erasure policyL c↗H, where
H andL are elements of the latticeL such thatL v H
andL 6= H. Initially, data labeled with this policy would
be usable at the levelL. However, once conditionc is satis-
fied, the data must either be erased from the system, or must
have the policyH enforced on it; either way, the data is no
longer usable at levelL, and indeed, at any level` such that
H 6v `.

A declassification policyp c
 p′ means that the policyp

must be enforced on that information, but whenever the con-
dition c is satisfied, the data may be declassified; after de-
classification, the policyp′ must be enforced on the declas-
sified information [7].

Conditionsc are used to express when it is permissible to
declassify information, and when it is necessary to erase in-
formation. If a condition is false at some point during exe-
cution, then becomes true, and finally returns to false, any
information governed by a policyp c↗p′ during the first pe-
riod must still be erased whenc is false again. And informa-
tion that was declassified when the condition was true may
remain declassified whenc is false again.

For generality, we do not specify a logic for conditions;
any logic will suffice as long as it is possible to reason about
whether a conditionc is satisfied at a given point of a sys-
tem’s execution. In particular, given a traceτ of a system,
then the relationτ � c is true if and only if the conditionc is
satisfied when the system has produced the traceτ . Thus, to
instantiate this generic framework, one must choose an ap-
propriate language and semantics for conditions, and pro-
vide a sound way to check the satisfaction relationτ � c.
(One must also provide sound procedures for checking cer-
tain other assertions that are related to the satisfaction rela-
tion; more details are found in Section 3.1). For expressive
condition languages, the checking of conditions is likely to
be incomplete. The effect of incompleteness will be just to
make security analysis more conservative.

To develop intuition for the erasure and declassification
policies, and to show the expressiveness of the policy frame-
work, we present two examples that highlight real-world
uses of information security policies and show how such
policies can be represented using our policy framework.

2.2. Example: mobile computing

A mobile device, such as a laptop computer, may oper-
ate in several environments of varying sensitivity and vul-
nerability. When a mobile device leaves a secure environ-
ment (where sensitive information is accessible) for a less

secure environment, it may be necessary to ensure that the
mobile device does not contain any sensitive information:
the mobile device needs to erase sensitive information be-
fore entering a less secure environment.

For example, suppose a laptop is used both at corporate
headquarters and on client sites. At corporate headquarters,
it is connected to the corporate LAN, and has access to sen-
sitive documents; at the client site, it may be possible for
client personnel to use the laptop.

When sensitive documents are downloaded onto the lap-
top at headquarters, a suitable security policy for the docu-
ments isH noLAN↗>, wherenoLAN is true when the lap-
top is disconnected from the corporate LAN,H is a secu-
rity level for the sensitive documents, and> is a security
level so high that the laptop is not permitted to hold any
data at that level. Thus, the sensitive documents must be re-
moved from the laptop at or before the time that the laptop
is disconnected from the LAN. Rather than leave the en-
forcement of this policy to the laptop user, the document
management system on the laptop could automatically en-
force this policy, erasing sensitive documents whenever the
laptop is disconnected from the LAN. An efficient alterna-
tive to erasing the actual documents would be to encrypt
them and erase the key.

2.3. Example: online transaction

Consider a consumer purchasing a product from a mer-
chant over a network. In order to complete the transaction,
the consumer has to provide a credit card number to the
merchant. The merchant promises not to keep any record of
the credit card number after the transaction. However, once
the consumer has approved the purchase, the merchant must
send the credit card number to the bank, whichwill keep a
record of the credit card number.

Let M be a security level corresponding to information
stored by the merchant. LetB be a security level corre-
sponding to information stored by the bank. Then a suit-
able policy for the credit card number is(M pur

 B) end↗B,
wherepur is a condition that is true once the consumer has
approved the purchase, andend is a condition that is true
by the end of the transaction.

Note that the policy(M pur
 B) end↗B allows the mer-

chant to release the credit card details to the bank once the
customer has approved the purchase, since (as will be made
precise in the following section) information labeled with
policy (M pur

 B) end↗B is permitted to be relabeled with
the policyB, provided the conditionpur is true at the time
of relabeling. However, at the end of the transaction, the pol-
icy B should be enforced on the credit card number, mean-
ing that the bank is allowed to store the number, but the mer-
chant must have removed the number from his system.

3



Now suppose that we extend the example so that the
consumer can optionally allow the merchant to store
the credit card number, for example, to maintain a cus-
tomer profile, and save the consumer from needing to
re-enter the credit card number for subsequent pur-
chases. A suitable policy for the credit card number is
now ((M pur

 B) end↗B)pro (M pur
 B), wherepro is a con-

dition that is true when the consumer has given per-
mission for the merchant to maintain a customer pro-
file. Note that if the consumer gives permission, then the
merchant may store the credit card number with a pol-
icy M pur

 B, allowing the merchant to send the credit
card number to the bank when the consumer makes a pur-
chase; if the consumer does not give permission, then the
merchant is still required to erase the credit card num-
ber by the end of the transaction.

3. Semantics

We assume that a system contains locations that are gov-
erned by various policies. As information flows between
locations, the policy governing the information implicitly
changes. In this section, we define a relation over policies
that characterizes when it is secure to flow from one pol-
icy to another. We then give a semantics for policies, show-
ing that this “may-flow” relation is sound with respect to
these semantics. We show that the semantics has some in-
teresting and important properties. Note that the specifica-
tion of security policies, and the definition of the may-flow
relation, are independent of any particular mechanism for
enforcing the security policies.

3.1. May-flow relation p ≤τ q

We now define a may-flow relationp ≤τ q on poli-
cies that describes permitted information flow. The relation
is parameterized by a traceτ , because the declassification
and erasure of information depends upon the satisfaction of
conditions, which in turn depends on system tracesτ . In-
tuitively, if p ≤τ q, then information labeled with policyp
may securely flow to a location labeled with policyq when
the system has produced traceτ . For this flow to be secure,
the policyq must be at least as restrictive as the policyp, that
is, anything thatq permits to be done to information,p per-
mits as well. The one exception to this principle of increas-
ing restrictiveness is declassification, whose whole purpose
is to make policies less restrictive.

Figure 2 shows the inference rules for thep ≤τ q rela-
tion. We assume the set of traces is prefix-closed, and write
τ ′ � τ if the traceτ ′ extends traceτ , andτ ′ � τ if τ ′ is a
prefix ofτ . We writeτ ′ � τ if τ ′ extendsτ andτ ′ 6= τ . For
convenience, we sometimes refer to a traceτ as if it were

a time; this should be understood as referring to the time at
which the system has produced the traceτ .

We write [τ, τ ′) 2 c as an abbreviation for∀τ ′′. τ ′ �
τ ′′ � τ ⇒ τ ′′ 2 c, andvalid(p, [τ, τ ′)) as an abbrevia-
tion for ∀τ ′′. τ ′ � τ ′′ � τ ⇒ valid(p, τ ′′). Intuitively,
if [τ, τ ′) 2 c, thenc is not satisfied by any trace that ex-
tendsτ and is a strict prefix ofτ ′; similarly valid(p, [τ, τ ′))
is true if valid(p, τ ′′) for every traceτ ′′ that extendsτ and
is a strict prefix ofτ ′.

The rule (MF-LATTICE) states that information may
flow from a lattice-level policỳ to a lattice-level policy
`′ provided that̀ v `′. Sinceτ is not mentioned in the
premise, such flow is permitted at any time. The rule (MF-
TRANS) makes the≤τ relationship transitive on policies.

The declassification rule (MF-DECL) permits informa-
tion to flow from a declassification policyp c

 p′ to policy
p′ at traceτ , provided that the condition for declassifica-
tion c is satisfied at traceτ . This rule captures the intuitive
meaning of declassification policies: declassification may
occur when the appropriate condition is satisfied. Note that
Rule (MF-DECL) permits flow fromp c

 p′ to p′, andp′

may permit operations thatp c
 p′ does not.

The declassification introduction rule (MF-DECL-I) de-
scribes when it is permissible for information to flow from
some policyq to the policyp c

 p′. First, it must be permit-
ted for information to flow fromq to p; second, at all times
in the future, if the conditionc is satisfied at that time, then
it must be permitted for information to flow fromq to p′ at
that time. In addition, at all times between now and the con-
dition c being satisfied, the policyq is alwaysvalid, that
is, information labeled with policyq does not need to be
erased. The judgmentvalid(p, τ) describes if a given pol-
icy p is valid at timeτ . The requirement thatq is valid be-
tween now and any possible declassification ensures that in-
formation flowing fromq to p c

 p′ does not escape any era-
sure requirements thatq may have.

The declassification elimination rule (MF-DECL-E) al-
lows information to flow from a declassification policy
p c
 p′ to the policyp. Intuitively, it is acceptable for infor-

mation to flow fromp c
 p′ to p, since the policyp is strictly

more restrictive than the policyp c
 p′, which enforces ev-

erything thatp does but also permits declassification top′.
The rule (MF-DECL-DECL) describes when informa-

tion may flow from one declassification policyp c
 p′ to an-

other, more restrictive declassification policyq d
 q′. The in-

tuition is that this happens ifq is at least as restrictive asp,
the policyq d

 q′ permits declassification only whenp c
 p′

does (that is, whenever the conditiond is satisfied,c is sat-
isfied too), and whenever declassification is permitted,q′ is
at least as restrictive asp′.

As can be seen by inspection of Figure 2, each of the
may-flow rules for erasure policies corresponds to a de-
classification rule. For example, erasure introduction (MF-

4



(MF-LATTICE)
` v `′

` ≤τ `′

(MF-TRANS)
p ≤τ p′ p′ ≤τ p′′

p ≤τ p′′

(MF-ERASE-I)

p ≤τ p c↗p′

(MF-ERASE-E)
p ≤τ q p′ ≤τ q

p c↗p′ ≤τ q

(MF-ERASE-ERASE)
p ≤τ q

∀τ ′ � τ. τ ′ � c ⇒ τ ′ � d andp′ ≤τ ′ q′

p c↗p′ ≤τ q d↗q′

(MF-DECL)

τ � c

p c
 p′ ≤τ p′

(MF-DECL-I)
q ≤τ p

∀τ ′ � τ. τ ′ � c ⇒ q ≤τ ′ p′ andvalid(q, [τ, τ ′))

q ≤τ p c
 p′

(MF-DECL-E)

p c
 p′ ≤τ p

(MF-DECL-DECL)
p ≤τ q

∀τ ′ � τ. τ ′ � d ⇒ τ ′ � c andp′ ≤τ ′ q′

p c
 p′ ≤τ q d

 q′ valid(`, τ)
valid(p, τ)

valid(p c
 p′, τ)

valid(p, τ) τ 2 c
valid(p c↗p′, τ)

Figure 2. Inference rules for p ≤τ q and valid(p, τ)

ERASE-I) is analogous to (MF-DECL-E): information may
flow from p to p c↗p′, sincep c↗p′ is strictly more restric-
tive thanp. An erasure policyp c↗p′ enforces everything
that p does, and in addition requires the information to be
erased at certain times.

Erasure elimination (MF-ERASE-E) is analogous to the
rule for declassification introduction, allowing information
to flow from p c↗p′ to q at traceτ provided that informa-
tion can flow both fromp to q, and fromp′ to q at traceτ .
Intuitively, information may flow toq since that informa-
tion would not need to be erased anyway, as information is
allowed to flow fromp′ to q. This rule is not completely
analogous to (MF-DECL-I) because it requires that infor-
mation can flow fromp′ to q at traceτ . By comparison, the
rule (MF-DECL-I) requires that information must be able
to flow fromq to p′ at tracesτ ′ in the future such thatτ ′ � c.
The declassification introduction rule differs because de-
classification is about flows thatmayhappen in the future,
while erasure is about flows thatmust nothappen in the fu-
ture; if we used the premise∀τ ′ � τ.τ ′ � c ⇒ p′ ≤τ ′ q for
(MF-ERASE-E), this would permit some insecure flows.
For example, using the weaker rule, it would be possible
to deriveL c↗H ≤τ L, which is insecure, given the infor-
mal meaning of the erasure policyL c↗H.

The rule (MF-ERASE-ERASE) compares two erasure
policies,p c↗p′ and q d↗q′, and is similar to (MF-DECL-
DECL). Information may flow fromp c↗p′ to q d↗q′ pro-
vided thatq is at least as restrictive asp, and whenever
p c↗p′ requires information to be erased, so doesq d↗q′ (that
is, wheneverc is satisfied,d should be too), and whenever
erasure is required,q′ is at least as restrictive asp′.

There is no erasure rule analogous to (MF-DECL). This
is because erasure policies specify flows that must not hap-
pen, which is difficult to capture with inference rules of this
style. Instead, the onus of ensuring information is erased

at appropriate times falls upon the system that enforces the
policies; in Section 4 we discuss what it means for a non-
deterministic state-transition system to enforce policies.

To soundly check ifp ≤τ q holds for any givenp, q and
τ , it is sufficient for an instantiation of the framework to
provide sound procedures for checking the following asser-
tions.

• ` v `′

• τ � c

• ∀τ ′ � τ. τ ′ � c ⇒ p ≤τ ′ q

• ∀τ ′ � τ. τ ′ � c ⇒ τ ′ � d

• ∀τ ′ � τ. τ ′ � c ⇒ [τ, τ ′) 2 d

Note that due to the definition ofvalid(p, τ), a sound proce-
dure for checking∀τ ′ � τ. τ ′ � c ⇒ [τ, τ ′) 2 d can also be
used to check∀τ ′ � τ. τ ′ � c ⇒ valid(p, [τ, τ ′)).

What properties does the relation≤τ exhibit? It is easy
to establish that, for a fixed traceτ ,≤τ is a pre-order: transi-
tive and reflexive. However, it does not form a partial order,
as it is not antisymmetric. For example, for any traceτ , con-
dition c, and lattice element̀∈ L, we have both̀ ≤τ ` c

 `
and` c

 ` ≤τ `.
The relation≤τ has a greatest and least element: the top

and bottom elements of the latticeL, denoted>L and⊥L
respectively.

Property 3.1: For any traceτ , the relation≤τ is a pre-
order. Moreover, for all policiesp, we havep ≤τ >L and
⊥L ≤τ p.

3.2. Semantics

In this subsection, we present a semantics for policies, in
terms of the observation level of locations to which infor-
mation can propagate.

5



We assume that the underlying latticeL can describe
how observable locations are, and proceed to define the
observation level of an arbitrary policyp, obs(p). The
observability of a lattice level policỳ is simply `, and
the observability of declassification and erasure policies is
just the observability of the left subpolicy:obs(p c

 p′) =
obs(p c↗p′) = obs(p).

Given this notion of observation level, we can define a
semantics for policies such that the semantics of a policy
p describes how information initially labeledp may propa-
gate, and become (or cease to become) observable at vari-
ous lattice levels, as the system executes.

Figure 3 gives a semantics for a policyp and traceτ ,
written [[p]]τ , as a set of pairs of traces and lattice elements,
(τ ′, `), whereτ ′ � τ . The semantics captures all the pos-
sible ways that information labeled with policyp just be-
fore traceτ may affect information in the future. More for-
mally, we expect that if information labeledp just before
traceτ may propagate to a location labeledq at time τ ′,
then(τ ′, obs(q)) ∈ [[p]]τ .

3.3. Consistency of the semantics

To show that the semantics captures its informal mean-
ing precisely (and to prove it), we need some additional con-
cepts and properties that relate the semantics, the observa-
tional level, and the may-flow relation.

[[`]]τ = {(τ ′, `′) | τ ′ � τ and` v `′}
[[p c
 p′]]τ = [[p]]τ ∪ {(τ ′′, `) ∈ [[p′]]τ ′ | τ ′ � τ andτ ′ � c}

[[p c↗p′]]τ = ([[p]]τ ∩ {(τ ′′′, `) ∈ [[p′]]τ ′ | τ ′ � τ

and[τ, τ ′) 2 c}) ∪
{(τ ′, `) ∈ [[p]]τ | [τ, τ ′) 2 c}

Figure 3. Semantics for policies [[p]]τ

To begin with, for all policiesp, we observe that as time
goes on, there are fewer possible ways in which informa-
tion labeled with policyp may affect information. In partic-
ular, for any policyp and tracesτ andτ ′ � τ , so long as
information labeled withp does not need to be erased be-
tweenτ andτ ′, then[[p]]τ ′ ⊆ [[p]]τ .

Property 3.2: Letp be a policy andτ andτ ′ be traces such
that τ ′ � τ . If valid(p, [τ, τ ′)), then[[p]]τ ′ ⊆ [[p]]τ .

A useful property of the semantics, which will be needed
in later proofs, is that for any given policyp and tracesτ
andτ ′, the set of lattice levels{` | (τ ′, `) ∈ [[p]]τ} is closed
upward.

Property 3.3: For all policiesp, tracesτ andτ ′ and lattice
levels`, if (τ ′, `) ∈ [[p]]τ , then for all`′ such that̀ v `′ we
have(τ ′, `′) ∈ [[p]]τ .

The following theorem shows that the may-flow relation
p ≤τ q is sound, in the sense that if information may flow
from p to q, then[[p]]τ ⊇ [[q]]τ , that is, information labeled
with policy p at traceτ can affect at least as much in the
future as information labeled with policyq can. The proof
of the theorem is given in Appendix A.

Theorem 3.4: For all policiesp, q and tracesτ , if p ≤τ q
then[[p]]τ ⊇ [[q]]τ .

The relationp ≤τ q tells us that information labeled with
policy p may flow to a location labeledq at timeτ . How-
ever, in general, we are interested in reasoning not only
about the locationsq that information labeledp may flow
to in a single step, but aboutall locations that informa-
tion labeledp may propagate to. We extend the relation
p ≤τ q to the relationp ≤τ�τ ′ q, to allow us to reason
about where information labeledp may propagate from the
time the system has produced the traceτ to the time it has
produced the traceτ ′, whereτ ′ � τ . Figure 4 presents the
inference rules for the new relation. We havep ≤τ�τ ′ q
if there is some sequence of tracesτ1, . . . , τn such that
τ = τ1 � · · · � τn = τ ′, and some sequence of policies
p0, . . . , pn such thatp = p0 ≤τ1 p1 ≤τ2 · · · ≤τn pn = q.
Moreover, eachpi is valid betweenτi andτi+1, which en-
sures that information stored in a location labeledpi will
not be erased before it can propagate, at traceτi+1.

p ≤τ q
valid(q, τ)

p ≤τ�τ q

τ ′ � τ ′′ � τ p ≤τ�τ ′′ p′

valid(p′, [τ ′′, τ ′))
p′ ≤τ ′ q valid(q, τ ′)

p ≤τ�τ ′ q

Figure 4. Inference rules for p ≤τ�τ ′ q

There is a strong and simple connection between the re-
lation≤τ�τ ′ and the semantics of policies:

Property 3.5: For all policies p and q, and tracesτ and
τ ′ � τ , if p ≤τ�τ ′ q, then[[p]]τ ⊇ [[q]]τ ′ .

There is also a simple connection between the observ-
ability of a policy and the semantics of that policy.

Property 3.6: For all policiesp and tracesτ , if valid(p, τ),
we have(τ, obs(p)) ∈ [[p]]τ .

We can now state the basic theorem that relates the pol-
icy semantics to the observational level: if information la-
beledp at timeτ may propagate to a location labeledq at
time τ ′, then(τ ′, obs(q)) ∈ [[p]]τ .

Property 3.7: For all policiesp andq and tracesτ andτ ′

such thatτ ′ � τ , if p ≤τ�τ ′ q then(τ ′, obs(q)) ∈ [[p]]τ .

6



The above facts allow us to prove some desirable prop-
erties about thep ≤τ�τ ′ q relation, with regard to particu-
lar kinds of policies. First, we can show that for any policy
` and any policyq such that̀ ≤τ�τ ′ q, then the observa-
tion level ofq must be at least that of`. This implies that in-
formation labeled̀ will never be observable at any level`′

such that̀ 6v `′.

Property 3.8: For any lattice element̀, and for all policies
q and tracesτ andτ ′ � τ , if ` ≤τ�τ ′ q, then` v obs(q).

The following property says that for an erasure policy
p c↗p′, and any policyq that information labeledp c↗p′ can
propagate to, if the information is meant to be erased at
some time, then the observation level of any suchq after
that time must be in the semantics of bothp andp′. Thus,
for example, given the erasure policy` c↗`′, at any time af-
ter τ ′ such thatτ ′ � c, the observation level of any loca-
tion that information could have flowed to from̀c↗`′ is at
least`t `′. Thus, information labeled̀c↗`′ is erased when
c is satisfied, after which it is only observable at the level
` t `′.

Property 3.9: For any erasure policyp c↗p′, and for all
policies q and tracesτ and τ ′ � τ , if p c↗p′ ≤τ�τ ′ q
and there is someτ ′′ such thatτ ′ � τ ′′ � τ and τ ′′ � c,
then(τ ′, obs(q)) ∈ [[p]]τ ∩ [[p′]]τ ′′′ , for someτ ′′′ such that
τ ′′ � τ ′′′ � τ .

Finally, for a declassification policyp c
 p′, and any pol-

icy q that information fromp c
 p′ can propagate to, the ob-

servation level ofq must be in the semantics of eitherp or
p′. For example, given the declassification policy` c

 `′, at
any timeτ ′, the observation level of any location that infor-
mation could have flowed to from̀ c

 `′ is bounded below
by either` or `′.

Property 3.10: For any declassification policyp c
 p′, and

for all policiesq and tracesτ andτ ′ � τ , if p c
 p′ ≤τ�τ ′

q then(τ ′, obs(q)) ∈ [[p]]τ ∪ [[p′]]τ ′′ for someτ ′′ such that
τ ′′ � c.

4. Security properties

In this section we explore the semantic security prop-
erties of systems that enforce the security policies of Sec-
tion 2. We introduce three new semantic security conditions
related to information erasure: noninterference according to
policy p, noninterference after erasure, and selective era-
sure.

We first present a definition for what it means for a non-
deterministic state-based system to bepolicy enforcing. We
then prove that policy-enforcing systems enjoy several se-
mantic security properties: noninterference [15], noninter-
ference according to policyp, and noninterference after era-
sure. We also discuss how the semantic security conditions

of robust declassification [41, 29, 40] and selective declas-
sification [31] relate to policy-enforcing systems.

4.1. Policy-enforcing systems

Let S be a system. LetΣS denote thefeasible statesof
S, that is, all states that may occur in some execution of the
systemS. We assume that states are functions from loca-
tions to values, and that all states inΣS have the same do-
main. Let→ be thetransition relationof S: for any two
feasible statess ands′, s → s′ if and only if S can atomi-
cally transition froms to s′.

Let pol(·) be a function from locations to security poli-
cies; if x is a location andpol(x) = p, then the policyp is
associated with the locationx, and the systemS should en-
force the policyp on information stored in locationx.

The traces ofS are sequences of feasible statess0 . . . sk

such thatsi−1 → si for i ∈ 1..k. We denote the set of traces
of a systemS by Σ∗

S , and assume thatΣ∗
S is prefix-closed.

As in Section 3, we useτ to range over traces.
We call the systemS policy enforcingif the system hon-

ors erasure policies, and all information flows that occur in
the system are allowed to occur according to the≤τ rela-
tion.

In order to honor erasure policies, a system must at least
ensure that at all timesτ , any location that is meant to be
erased at timeτ is set to a special value⊥ at that time. The
value⊥ could represent either a constant, or non-existence
in the system. The judgmentvalid(p, τ), from the previous
section, tells us when a location should be erased: for anyp
andτ , valid(p, τ) is false if a location labeled withp should
be erased at timeτ .

We can formally define what it means for a system to
honor erasure policies, and allow only permitted informa-
tion flows.

Definition 4.1: SystemS is policy enforcingif

(1) for all finite tracess0 . . . sk, and for all locationsx, if
notvalid(pol(x), s0 . . . sk), thensk(x) = ⊥; and

(2) for all finite tracess0 . . . sksk+1, and all feasible states
s′k there exists a feasible states′k+1 such thats′k →
s′k+1, and for all locationsx, if sk+1(x) 6= s′k+1(x),
then∃y. sk(y) 6= s′k(y) andpol(y) ≤s0...sk+1 pol(x).

Clause (1) of the definition ensures that the system hon-
ors erasure policies. Clause (2) ensures the system allows
only permitted information flows. Intuitively, if a system is
policy-enforcing, then whenever information flows to a lo-
cationx with policy px, then information flowed from some
locationy with policy py and the≤τ relation permits flow
from py to px at that time.

Nondeterministic systems can be policy enforcing. How-
ever, the definition requires that if a locationx is set non-
deterministically, then only information that is allowed to

7



flow to pol(x) may influence the nondeterministic choice.
For example, ifx is set to a number chosen randomly be-
tween 0 and the value held in locationy at traceτ , then it
better be the case thatpol(y) ≤τ pol(x).

The policy-enforcing definition is possibilistic: clause
(2) requires simply the existence of a suitable states′k+1.
We believe suitably modified forms of the theorems in the
following subsections should hold for a probabilistic defini-
tion of policy-enforcing systems.

The definition of a policy-enforcing system is a strong
requirement. In particular, it ensures that no information is
leaked through timing or termination channels. Timing and
termination channels could be allowed by allowing the tran-
sition relation to be reflexive and weakening the require-
ment in clause (2) that “there exists a feasible states′k+1

such thats′k → s′k+1 ...” to the following: there exists a
(possibly infinite) sequence of statess′k, . . . , s′k+n+1 with
s′i → s′i+1 for i ∈ k..(k+n) such that for alli ∈ k..(k+n)
and locationsx, if sk(x) = s′k(x) then sk(x) = s′i(x),
and either the sequence is infinite, or for all locationsx, if
sk+1(x) 6= s′k+n+1(x) then there∃y. sk(y) 6= s′k(x) and
pol(y) ≤s0...sk+1 pol(x).

For ease of exposition, we do not weaken the defini-
tion, and assume that policy-enforcing systems do not leak
any information through timing or termination channels. We
believe that suitably weakened forms of the theorems in
the following subsections hold when information may leak
through these channels.

4.1.1. Policies as covert channels.Given a conditionc
that may occur in a policy, the satisfaction ofc may depend
on the trace of the system,τ , as evidenced by the relation
τ � c used in Sections 2 and 3. Thus, the policies enforced
on locations may provide covert storage channels, modu-
lated by the satisfaction of conditions. For example, infor-
mation labeled with policỳ c

 `′, for somè 6v `′, may flow
to a location labeled̀′ only when the conditionc is satis-
fied; if the satisfaction ofc depends on some sensitive infor-
mation, observing that the information flow occurred may
reveal it.

To model the information that may be obtained by ob-
serving the satisfaction or non-satisfaction of a condition,
we assume that for any conditionc occurring in any pol-
icy in the image ofpol(·), there is a (probably fictitious)
location xc that stores the satisfaction ofc. That is, for
any traces0 . . . sk, we havesk(xc) = true if and only if
s0 . . . sk � c. The policy thatxc is labeled with,pol(xc),
describes the information that may be learned by observ-
ing whetherc is satisfied.

We define a notion ofcondition independenceto describe
when information is independent of the satisfaction of any
conditions; this notion will be useful in later subsections
discussing semantic security properties. Intuitively, a pol-
icy p is condition-independent if information labeled with

p cannot affect the satisfaction, or non-satisfaction, of any
conditionc in the system.

Definition 4.2: A policy p is condition-independentif for
all conditionsc that occur in any policy in the image of
pol(·), and for all tracesτ andτ ′ � τ , we havep 6≤τ�τ ′

pol(xc), wherexc stores the satisfaction ofc.

For example, if for all conditionsc and tracesτ , the re-
lation τ � c can be determined by statically examining
the code of the system, and the code of the system is la-
beled with policy⊥L, then for any conditionc, we have
pol(xc) = ⊥L; thus, any policyp such thatp 6≤τ ⊥L for all
τ will be condition independent.

4.1.2. Making systems policy-enforcing.The definition
of policy-enforcing systems is of little practical use when
building systems that are intended to enforce the security
policies. The development of techniques to build and/or ver-
ify that systems enforce the security policies is the subject
of future work.

Since it is difficult for purely run-time mechanisms to en-
force strict information flow policies [11], we envision static
analysis as the primary method of building policy-enforcing
systems, for example, a type system similar to those that
are used in security-typed languages (e.g., [39, 37, 19, 26,
1, 3, 32]). However, additional run-time mechanisms, such
as memory regions [36, 13, 16], to ensure that location life-
times are limited appropriately, may prove useful in the en-
forcement of erasure policies.

The connection between security and the definition of a
policy-enforcing system is not immediately apparent. How-
ever, the definition provides the tools needed to prove that
policy-enforcing systems satisfy various more intuitive se-
mantic security conditions, as discussed in the rest of this
section.

4.2. Noninterference

Noninterference [15] is a semantic security condition
which requires that high security inputs do not affect low se-
curity outputs. The precise definitions of input, output, and
high and low security lead to slightly different definitions
of noninterference. In this context, we will assume that the
system’s input is given in a single location; that the system’s
output is all values stored in the locations during the subse-
quent execution of the system; and that information is low
security if it is observable by a given attacker, and high se-
curity otherwise.

More precisely, consider an attacker who, for some lat-
tice element̀ , is able to observe all and only locationsx
such thatobs(pol(x)) v `. A location is regarded as high
security if it is not observable by the attacker, and low secu-
rity if it is.

8



We define anobservational equivalencerelation onΣS ,
such that for any states ∈ ΣS , [s]L` is the equivalence class
of states that are indistinguishable to the attacker; that is,
[s]L` = [s′]L` if for all locationsx such thatobs(pol(x)) v `,
we haves(x) = s′(x).

Using this notion of observational equivalence, we can
state the definition of noninterference.

Definition 4.3: A systemS is noninterfering at level̀ for
locationh if for any two valuesv1 andv2, and any states
such that boths0 = s[h 7→ v1] ands′0 = s[h 7→ v2] are fea-
sible, ifs0 . . . sk is a trace ofS then there is a traces′0 . . . s′k
such that[sk]L` = [s′k]L` .

In general, a system that is policy-enforcing may not be
noninterfering for all levels̀. For example, if for some lo-
cationx, the policypol(x) enforced onx is a declassifica-
tion policy `′ c

 ` for some`′ 6v `, then the system will not
be noninterfering at level̀. However, for any given loca-
tion h, S will be noninterfering forh at any level̀ such that
` 6∈ {`′ | (τ, `′) ∈ [[pol(h)]]ε}. (We write ε to denote the
empty trace.)

Theorem 4.4: If S is a policy-enforcing system, andh
is any location such thatpol(h) is condition independent,
and ` is any lattice element such that` 6∈ {`′ | (τ, `′) ∈
[[pol(h)]]ε}, thenS is noninterfering at level̀ for location
h.

The following lemma is key to the proof of this theo-
rem, and links the execution of a policy-enforcing system
with the semantics of policies. The proof can be found in
Appendix B.

Lemma 4.5: For a policy-enforcing systemS, and
condition-independent policyph, let s0 . . . sksk+1 and
s′0 . . . s′k be two traces such that for all locationsx, if
sk(x) 6= s′k(x) thenph ≤ε�s0...sk

pol(x). Then there ex-
ists ans′k+1 such thats′k → s′k+1 and for all locationsx, if
sk+1(x) 6= s′k+1(x) thenph ≤ε�s0...sk+1 pol(x).

Proof of Theorem 4.4: Let h be a location such thatpol(h)
is condition independent, and̀be a lattice element such
that ` 6∈ {`′ | (τ, `′) ∈ [[pol(h)]]ε}. Let v1 andv2 be two
values, ands a state such that boths0 = s[h 7→ v1] and
s′0 = s[h 7→ v2] are feasible. Lets0 . . . sk be a trace ofS.

By induction onk using Lemma 4.5, we can construct
a traces′0 . . . s′k such that for any locationx such that
sk(x) 6= s′k(x), thenpol(h) ≤ε�s0...sk

pol(x).
Let x be any location such thatsk(x) 6= s′k(x), and

thus pol(h) ≤ε�s0...sk
pol(x). By Property 3.7, we have

(s0 . . . sk, obs(pol(x))) ∈ [[pol(h)]]ε. Thus, by Property 3.3,
obs(pol(x)) 6v `, and so[sk]L` = [s′k]L` .

Note that Theorem 4.4 allows us to conclude that if` is
the policy enforced on locationh, thenS is noninterfering
for h at any level̀ ′ such that̀ 6v `′. This means that even

though there may be erasure and declassification occurring
in the policy-enforcing systemS, information stored in a lo-
cation with policy` will never be observable beloẁ.

4.3. Noninterference according to policyp

In this section we present a semantic security condi-
tion that depends upon the policyp of the input location.
The new semantic security condition is callednoninterfer-
ence according to policyp, and gives a relatively detailed
description of the information flow behavior of a policy-
enforcing system, permitting fine-grained reasoning about
the information flow in different executions of such a sys-
tem. Noninterference according to policyp is defined in
terms of the semantics ofp, [[p]]ε.

Definition 4.6: A system isnoninterfering according to
policy p if for any locationh such thatpol(h) = p, any
two valuesv1 andv2, and any states such that boths0 =
s[h 7→ v1] ands′0 = s[h 7→ v2] are feasible, then for any
traces0 . . . sk there is a traces′0 . . . s′k such that for all lat-
tice levels̀ , if (s0 . . . sk, `) /∈ [[p]]ε, then[sk]L` = [s′k]L` .

Policy-enforcing systems are noninterfering according to
policy p, as stated by the following theorem.

Theorem 4.7: If S is a policy-enforcing system, then for
all condition-independent policiesp, S is noninterfering ac-
cording to policyp.

Proof: Let h be a location such thatpol(h) is condition
independent. Letv1 and v2 be two values, ands a state
such that boths0 = s[h 7→ v1] and s′0 = s[h 7→
v2] are feasible. Lets0 . . . sk be a trace ofS. By induc-
tion on k using Lemma 4.5, we can construct a trace
s′0 . . . s′k such that for any locationx such thatsk(x) 6=
s′k(x), then pol(h) ≤ε�s0...sk

pol(x). By Property 3.7,
(s0 . . . sk, obs(pol(x))) ∈ [[p]]ε. Thus, for any lattice level
` such that(s0 . . . sk, `) /∈ [[p]]ε, by Property 3.3, we have
obs(pol(x)) 6v `, and so[sk]L` = [s′k]L` .

For a given traceτ , determining the set{` | (τ, `) ∈
[[p]]ε} depends only on the sequences of conditions that are
satisfied at each step of the trace. Thus, we can give an
equivalent statement of noninterference according to pol-
icy p simply in terms of sequences of satisfied conditions.

First, we defineconds(s0 . . . sk, p), which takes a trace
s0 . . . sk and a policyp, and returns a sequence of sets
of conditions, such that theith set consists of the condi-
tions occurring inp that are satisfied by the traces0 . . . si.
More formally, conds(s0 . . . sk, p) = C0 . . . Ck where for
i ∈ 0..k, Ci = {c | c occurs inp ands0 . . . si � c}. It turns
out that we can remove any empty sets from the sequence
without any modification to the results.

Figure 5 defines a functionlvl(p, C0 . . . Ck) that takes a
policy p and a sequence of sets of satisfied conditions, and

9



returns a lower bound on the set{` | (τ, `) ∈ [[p]]ε}, where
conds(τ, p) = C0 . . . Ck. The fact thatlvl(p, C0 . . . Ck) re-
turns a lower bound is made precise by the following prop-
erty, which would allow an equivalent statement of non-
interference according top in terms oflvl(p, conds(τ, p)),
with no reference to the semantics ofp at all.

lvl(`, C0 . . . Ck) = `

lvl(p c
 p′, C0 . . . Ck) = lvl(p, C0 . . . Ck) ul

{lvl(p′, Ci . . . Ck) | c ∈ Ci}
lvl(p c↗p′, C0 . . . Ck) = lvl(p, C0 . . . Ck) if ∀i ∈ 1..k. c /∈ Ci

lvl(p, C0 . . . Ck) t otherwise⊔
{lvl(p′, Ci+1 . . . Ck) | ∀j ∈ 1..i. c /∈ Cj}

Figure 5. Definition of lvl(p, C0 . . . Ck)

Property 4.8: For any policyp and traceτ , (τ, `) ∈ [[p]]ε if
and only iflvl(p, conds(τ, p)) v `.

Noninterference according to policyp allows fine-
grained reasoning about the end-to-end information flow
behavior of a system, even in the presence of declassifi-
cation and erasure. The equivalent statement of noninter-
ference according top allows us to reason about the be-
havior of a system solely in terms of sequences of satisfied
conditions. For example, consider a policy-enforcing sys-
tem whose input has the policyH d

 (L c↗H) for a simple
two point lattice whereL v H andL 6= H. By consider-
ing possible sequences of satisfied conditions, we can make
some strong statements about the information flow be-
havior of the system. Any trace of the system in which
the conditiond is never satisfied will reveal no informa-
tion about the input to an attacker who can observe only
at levelL, sincelvl(H d

 (L c↗H), C0 . . . Ck) = H, where
d /∈ Ci for all i ∈ 0..k. This seems a reasonable claim, be-
cause ifd is never satisfied, no declassification of the in-
put may occur. Similarly, we can see that for any trace in
which the conditiond is never satisfied after the condi-
tion c is, no information about the input is available at the
end of the trace to anL-attacker. This result is more in-
teresting: despite the fact that information about the input
is declassified and observable at levelL during the execu-
tion, by the end of the trace, no information about the input
is available at levelL.

Noninterference according to policyp allows reason-
ing about the interaction between declassification and era-
sure, resulting in stronger security guarantees than can be
achieved in the absence of information erasure.

Noninterference according to policyp generalizes a use-
ful semantic security conditionnoninterference until de-

classification[7], and its equivalent for erasure policies,
noninterference after erasure.

4.4. Noninterference after erasure

Noninterference until declassification [7] is a security
property that ensures an attacker cannot observe any infor-
mation about a secret input until an appropriate sequence
of declassifications has occurred. In the presence of infor-
mation erasure, there is a corresponding semantic security
condition for erasure:noninterference after erasure. Intu-
itively, after an appropriate sequence of erasures have oc-
curred on some input data, an attacker should not be able to
view any information about the input. Unlike noninterfer-
ence until declassification, where more information about
the input becomes available as time progresses, the sys-
tem holdslessinformation about the input as the appropri-
ate erasures occur. Noninterference after erasure provides
a useful security guarantee for privacy and anonymity con-
cerns, where we would like to ensure that certain informa-
tion is not retained by a system.

The definition of noninterference after erasure closely
parallels that of noninterference until declassifica-
tion. We write τ � c1 . . . cm when there is a non-
decreasing sequence of natural numbersn1 . . . nm such
thatconds(τ, p) = C1 . . . Ck andci ∈ Cni for i ∈ 1..m.

Definition 4.9: A system is noninterfering at secu-
rity level ` after conditionsc1 . . . cm for location h such
thatpol(h) = `1 c1↗(`2 c2↗(· · · ck−2↗(`k−1

ck−1↗`k) · · · ),
wherem < k, if for any two valuesv1 andv2, and any state
s such that boths0 = s[h 7→ v1] ands′0 = s[h 7→ v2] are
feasible, ifτ1 = s0 . . . sk is a trace such thatτ1 � c1 . . . cm

then there is a traceτ2 = s′0 . . . s′k such thatτ2 � c1 . . . cm

and[sk]L` = [s′k]L` .

Theorem 4.10: If S is a policy-enforcing sys-
tem, then for any condition-independent policy
p ≡ `1 c1↗(`2 c2↗(· · · ck−2↗(`k−1

ck−1↗`k) · · · ), any loca-
tion h such thatpol(h) = p, and any security level̀ such
that,`1 t . . .t `m+1 6v `, for m < k, thenS is noninterfer-
ing at security level̀ after conditionsc1 . . . cm for location
h.

Proof: For any traceτ such thatτ � c1 . . . cm, we havè 1t
. . . t `m+1 v lvl(p, conds(τ, p)). The result follows from
Theorem 4.7.

4.5. Robustness

Robust declassification [41, 29, 40] is a semantic secu-
rity condition that restricts what information an active at-
tacker may obtain from a system that declassifies informa-
tion. In particular, a system is robust if an active attacker

10



(who can modify low-integrity aspects of the system and
observe its execution), is unable to learn more than a pas-
sive attacker (who can only observe the system’s execution).

In a language-based setting [40, 29], the robustness con-
dition is enforced by ensuring that the decision to declassify
information (as well as the information to be declassified) is
trusted. This trust requirement can be treated as a declassi-
fication condition in the policy language.

With the introduction of information erasure, it is natu-
ral to ask whether there is a corresponding “robust erasure”
semantic security condition? Interestingly, the semantic se-
curity condition is the same: performing modifications to
low-integrity parts of the system should not reveal more in-
formation to the active attacker than to a passive attacker.
Thus, an active attacker should not be able either to cause
more information to be declassified, or to prevent the era-
sure of information. Therefore, robustness is a more general
property that applies to information flow policies in general,
not just to declassification. In a language-based setting, ro-
bustness would be enforced by ensuring that the decision
to erase data is trusted, and cannot be subverted by the at-
tacker: any erasure that should occur in the absence of an
active attacker should also occur in the presence of the at-
tacker.

Investigating the language-based enforcement of erasure
policies, and determining suitable conditions on erasure
policies to ensure robustness remains future work.

4.6. Selective declassification and erasure

Selective declassification[31] was introduced as part of
the decentralized label model [27, 28], and requires the
owners of data to authorize all declassifications of that data.
Which owners are required to give their authorization for a
given declassification depends on what security levels the
data is being declassified from and to. Pottier and Con-
chon [31] present selective declassification as a combina-
tion of information flow and access control, where a num-
ber of declassification operations are locked at appropri-
ate levels of authority; access control allows only suitably
authorized principals to unlock the declassification opera-
tions, and only unlocked declassification operations can de-
classify information. Selective declassification, like robust
declassification, attempts to prevent inappropriate declassi-
fications by requiring a certain condition to be true when
declassification occurs. Like robust declassification, such a
condition can be incorporated into this policy framework.

In the presence of information erasure, there is a corre-
sponding concept of selective erasure: all owners of data
must give their authorization for thenon-erasure of data.
That is, information that is meant to be erased is only per-
mitted to exist provided all owners of that information per-
mit its existence. In a language-based setting where own-

ers authorize code, a system needs to ensure that informa-
tion is erased before control leaves the authorized code. It
is not clear how to characterize selective erasure as a com-
bination of access control and information flow.

5. Related work

As far as we are aware, no previous work has addressed
information erasure from an information flow perspective,
nor considered language-based enforcement of erasure poli-
cies. Some work has considered the secure deletion (or non-
deletion) of information from magnetic disks and semicon-
ductor devices (e.g., [17, 18, 2]), but this work is not at a
language-level of abstraction, nor does it consider strong
end-to-end security properties. Revocation of access rights
is a form of erasure for access control; some work has
investigated automatic revocation based on temporal con-
straints (e.g., [5, 20]).

There has however been much recent work on semantic
security properties that hold in the presence of downgrad-
ing of security policies. The most relevant (noninterference
until declassification, robust declassification, and selective
declassification) have already been discussed in Section 4.
A recent paper by Sabelfeld and Sands [?] provides a good
survey of semantic security definitions for systems that per-
form declassification, as well as suggesting some guiding
principles for declassification mechanisms.

Li and Zdancewic [21] present a framework of security
policies that enforce the end-to-end semantic security con-
dition relaxed noninterference. Their security policies ex-
presswhat information can be declassified, by specifying
functions on secret data whose result is permitted to be non-
secret. Their work is largely orthogonal to the declassifica-
tion policies of this framework, which focus primarily on
expressingwheninformation can be released, rather than on
fine-grained specifications of what information may be re-
leased. Supporting reasoning about relaxed noninterference
would be an interesting extension to the security policies
presented here.

Sabelfeld and Myers [35] presentdelimited release, a se-
mantic security condition that allows reasoning about non-
interference in the presence of declassification through “es-
cape hatch” expressions. Like relaxed noninterference, de-
limited release allows a precise specification ofwhat infor-
mation may be declassified, by specifying computations on
secret data whose result is non-secret.

Giacobazzi and Mastroeni [14] generalize noninterfer-
ence by making it parametric with respect to what informa-
tion an attacker can analyze about the input and output of
a program. As such,abstract noninterference, like relaxed
noninterference and delimited release, focuses onwhat in-
formation can be declassified.

11



Cuppens and Gabillon [9] consider the problem of tem-
poral downgrading rules in a multi-level database. They
present a language, based on a modal first order logic, that
captures the semantics of temporal databases, and permits
the specification of downgrading rules; their downgrading
rules are expressive, permitting the specification of down-
grading at a specific time, after a delay, or on a certain event
(such as a user explicitly requesting to downgrade the infor-
mation).

Intransitive noninterference [34, 30, 33] is an informa-
tion flow condition based on noninterference that describes
the behavior of systems that declassify information. While
intransitive noninterference does not address information
erasure, there is a close connection between it and the en-
forcement of thep ≤τ q relationship. In fact, declassifi-
cation policies are an extension of intransitive noninterfer-
ence with temporal properties: in each computation step, in-
formation flows between levels only if that flow is permit-
tedandappropriate conditions are true for that computation
step [7].

Recent work by Mantel and Sands [24] places intran-
sitive noninterference in a language setting, providing a
bisimulation-based security condition for multi-threaded
programs that controls where information can be declassi-
fied, and a type system that enforces this condition.

Some other approaches to reasoning about declassifi-
cation in an information flow setting, such asquantita-
tive information flow(e.g., [25, 22, 12,?]) and relative se-
crecy [38] seek to measure or bound theamountof infor-
mation that is declassified. This work is largely orthogonal
to the declassification policies of this paper, which (in this
context) are concerned only with possibilistic security as-
surances.

Zheng and Myers [42] show that noninterference can be
achieved in the presence of dynamic labels. Dynamic la-
bels have a close connection to declassification and erasure
policies, since the conditions for declassification and era-
sure may depend on runtime data. In particular, both con-
trol the security policies of data at runtime, and may them-
selves depend on runtime data, and thus, both may be used
to modulate covert channels. Most of the semantic security
conditions of Section 4 require the policy of the input lo-
cation to be condition-independent; it should be possible to
use Zheng and Myers’ techniques for reasoning about and
controlling information flow from dynamic labels to prove
noninterference results that hold even when the policy of
the input location is not condition independent.

Thedecentralized label model[27, 28] is a security pol-
icy framework that permits mutually distrusting owners of
information to specify who is permitted to read that infor-
mation; only information owners may declassify the infor-
mation they own. The decentralized labels form a lattice,
which can be used as the base lattice of the security policies

of this paper. Recent work has generalized decentralized la-
bels toowned policies[6]; the security policies of this pa-
per (instantiated with a base lattice of sets of readers) could
be used as the policies that are owned by security princi-
pals.

The use of conditions to determine when declassification
is permitted and erasure required adds a temporal element
to the information security policies. As such, there is a con-
nection between the policies of this paper and temporal log-
ics, such as LTL [23] and CTL [8]. In particular, if informa-
tion has a declassification policyp c

 q enforced on it, then
a policy-enforcing system ensures that at all times, if the in-
formation is declassified fromp to q, then the conditionc is
true. (The conditionc could itself be a temporal logic for-
mula, if the framework is so instantiated.) Given sufficient
predicates to reason about declassification, this guarantee
could be formally stated in a temporal logic. Similarly, if
information has an erasure policyp c↗q enforced on it, then
a policy-enforcing system ensures that at all times, ifc is
true then the information is either removed from the sys-
tem, or has bothp andq enforced on it. Again, given suffi-
cient predicates, this guarantee could be formally stated in
a temporal logic. Barthe, D’Argenio and Rezk [4] use the
technique ofself-compositionto state noninterference as a
temporal logic formula; the same technique may allow non-
interference according to policyp to be stated as a temporal
logic formula.

6. Conclusion

There has been a great deal of work on enriching in-
formation flow policies to support information release, but
we are not aware of any prior work on information era-
sure, even though erasure policies appear to be an impor-
tant aspect of information security requirements. This paper
presents a framework for strong erasure policies, including
support for both declassification and erasure.

The policy language allows the specification of policies
that combine lattice levels, declassification, and erasure in
complex ways. The may-flow relation supports static or dy-
namic reasoning about flows of information annotated with
the policies. We have also given a formal semantics to these
policies and shown that this semantics is consistent with the
may-flow relation and a notion of observational level. A for-
mal definition of what it means for a trace-based system to
enforce a policy has been given; this definition then makes
it possible to show that any policy-enforcing system satis-
fies various useful generalizations of noninterference.

Basing information security on information flow policies
offers the promise of strong, end-to-end security assurance.
However, information flow policies need to be much more
expressive to capture the security requirements of real sys-
tems. In fact, this work was motivated by an attempt to cap-

12



ture the security requirements of a web-based voting sys-
tem. This paper makes a step toward greater expressiveness,
but much work remains to be done; one obvious next step is
to develop enforcement mechanisms for erasure.

Acknowledgments

Thanks to Nate Nystrom and the anonymous reviewers
for providing helpful feedback.

References

[1] J. Agat. Transforming out timing leaks. InProc. 27th ACM
Symp. on Principles of Programming Languages (POPL),
pages 40–53, Boston, MA, Jan. 2000.

[2] R. Anderson and M. Kuhn. Low cost attacks on tamper re-
sistant devices. InIWSP: International Workshop on Secu-
rity Protocols, LNCS, 1997.

[3] A. Banerjee and D. A. Naumann. Secure information flow
and pointer confinement in a Java-like language. InIEEE
Computer Security Foundations Workshop (CSFW), June
2002.

[4] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure informa-
tion flow by self-composition. InProc. 17th IEEE Computer
Security Foundations Workshop, pages 100–114, June 2004.

[5] E. Bertino, C. Bettini, and P. Samarati. A temporal authoriza-
tion model. InCCS ’94: Proceedings of the 2nd ACM Con-
ference on Computer and communications security, pages
126–135, 1994.

[6] H. Chen and S. Chong. Owned policies for information se-
curity. In Proc. 17th IEEE Computer Security Foundations
Workshop, June 2004.

[7] S. Chong and A. C. Myers. Security policies for downgrad-
ing. In Proc. 11th ACM Conference on Computer and Com-
munications Security, pages 198–209, Oct. 2004.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications.ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[9] F. Cuppens and A. Gabillon. Modelling a multilevel database
with temporal downgrading functionalities. InProceedings
of the ninth annual IFIP TC11 WG11.3 working conference
on Database security IX : status and prospects, pages 145–
164, 1996.

[10] D. E. Denning. A lattice model of secure information flow.
Comm. of the ACM, 19(5):236–243, 1976.

[11] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow.Comm. of the ACM, 20(7):504–
513, July 1977.

[12] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-
interference. InProc. 15th IEEE Computer Security Founda-
tions Workshop, pages 1–15, June 2002.

[13] D. Gay and A. Aiken. Memory management with explicit re-
gions. InProc. of the ’98 SIGPLAN Conference on Program-
ming Language Design, pages 313–323. ACM Press, 1998.

[14] R. Giacobazzi and I. Mastroeni. Abstract non-interference:
parameterizing non-interference by abstract interpretation.
In POPL31, pages 186–197. ACM Press, 2004.

[15] J. A. Goguen and J. Meseguer. Security policies and security
models. InProc. IEEE Symposium on Security and Privacy,
pages 11–20, Apr. 1982.

[16] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-based memory management in cyclone.
In Proc. of the ’02 SIGPLAN Conference on Programming
Language Design, pages 282–293. ACM Press, 2002.

[17] P. Gutmann. Secure deletion of data from magnetic and
solid-state memory. InThe Sixth USENIX Security Sympo-
sium Proceedings, pages 77–90, 1996.

[18] P. Gutmann. Data remanence in semiconductor devices. In
The Tenth USENIX Security Symposium Proceedings, pages
39–54, 2001.

[19] N. Heintze and J. G. Riecke. The SLam calculus: Program-
ming with secrecy and integrity. InProc. 25th ACM Symp. on
Principles of Programming Languages (POPL), pages 365–
377, San Diego, California, Jan. 1998.

[20] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor. Gen-
eralized temporal role based access control model.IEEE
Transactions on Knowledge and Data Engineering, 17(1),
Jan. 2005.

[21] P. Li and S. Zdancewic. Downgrading policies and relaxed
noninterference. InPOPL32, Long Beach, CA, Jan. 2005.

[22] G. Lowe. Quantifying information flow. InProc. 15th IEEE
Computer Security Foundations Workshop, June 2002.

[23] Z. Manna and A. Pnueli.The Temporal Logic of Reactive
and Concurrent Systems. Springer-Verlag, 1992.

[24] H. Mantel and D. Sands. Controlled Declassification based
on Intransitive Noninterference. InProceedings of the 2nd
ASIAN Symposium on Programming Languages and Sys-
tems, APLAS 2004, LNCS 3303, pages 129–145, Taipei, Tai-
wan, Nov. 2004. Springer-Verlag.

[25] J. K. Millen. Covert channel capacity. InProc. IEEE Sym-
posium on Security and Privacy, Oakland, CA, 1987.

[26] A. C. Myers. JFlow: Practical mostly-static information flow
control. InProc. 26th ACM Symp. on Principles of Program-
ming Languages (POPL), pages 228–241, San Antonio, TX,
Jan. 1999.

[27] A. C. Myers and B. Liskov. A decentralized model for infor-
mation flow control. InProc. 17th ACM Symp. on Operat-
ing System Principles (SOSP), pages 129–142, Saint-Malo,
France, 1997.

[28] A. C. Myers and B. Liskov. Complete, safe information flow
with decentralized labels. InProc. IEEE Symposium on Se-
curity and Privacy, pages 186–197, Oakland, CA, USA, May
1998.

[29] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing ro-
bust declassification. InProc. 17th IEEE Computer Security
Foundations Workshop, pages 172–186, June 2004.

[30] S. Pinsky. Absorbing covers and intransitive non-inter-
ference. InProc. IEEE Symposium on Security and Privacy,
pages 102–113, 1995.

13



[31] F. Pottier and S. Conchon. Information flow inference for
free. InProc. 5nd ACM SIGPLAN International Conference
on Functional Programming (ICFP), pages 46–57, 2000.

[32] F. Pottier and V. Simonet. Information flow inference for
ML. In Proc. 29th ACM Symp. on Principles of Program-
ming Languages (POPL), pages 319–330, 2002.

[33] A. W. Roscoe and M. H. Goldsmith. What is intransitive non-
interference? InProc. 12th IEEE Computer Security Foun-
dations Workshop, 1999.

[34] J. Rushby. Noninterference, transitivity and channel-control
security policies. Technical Report CSL-92-02, SRI, Dec.
1992.

[35] A. Sabelfeld and A. C. Myers. A model for delimited re-
lease. InProceedings of the 2003 International Symposium
on Software Security, number 3233 in Lecture Notes in Com-
puter Science, pages 174–191. Springer-Verlag, 2004.

[36] M. Tofte and J.-P. Talpin. Region-based memory manage-
ment.Information and Computation, 132(2):109–176, 1997.

[37] D. Volpano and G. Smith. A type-based approach to pro-
gram security. InProceedings of the 7th International Joint
Conference on the Theory and Practice of Software Devel-
opment, pages 607–621, 1997.

[38] D. Volpano and G. Smith. Verifying secrets and relative se-
crecy. InProc. 27th ACM Symp. on Principles of Program-
ming Languages (POPL), pages 268–276, Boston, MA, Jan.
2000.

[39] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis.Journal of Computer Security,
4(3):167–187, 1996.

[40] S. Zdancewic. A type system for robust declassification.
In Proceedings of the Nineteenth Conference on the Mathe-
matical Foundations of Programming Semantics, Electronic
Notes in Theoretical Computer Science, Mar. 2003.

[41] S. Zdancewic and A. C. Myers. Robust declassification. In
Proc. 14th IEEE Computer Security Foundations Workshop,
pages 15–23, Cape Breton, Nova Scotia, Canada, June 2001.

[42] L. Zheng and A. C. Myers. Dynamic security labels and non-
interference. InProc. 2nd Workshop on Formal Aspects in
Security and Trust, IFIP TC1 WG1.7. Springer, Aug. 2004.

A. Proof of Theorem 3.4

Proof: By induction on the judgmentp ≤τ q. The inductive
hypothesis is that for any premise of the formp′ ≤τ ′ q′, we
have[[p′]]τ ′ ⊇ [[q′]]τ ′ .
(MF-L ATTICE ), (MF-T RANS). Trivial.
(MF-D ECL ). Here p ≡ p′′ c

 q, and τ � c. We have
[[p′′ c
 q]]τ = [[p′′]]τ ∪ {(τ ′′, `) ∈ [[q]]τ ′ | τ ′ � τ andτ ′ �

c} ⊇ [[q]]τ , sinceτ � c.
(MF-D ECL -I). Hereq ≡ q′ d

 q′′, andp ≤τ q′, andp ≤τ

q′′, and for allτ ′ � τ , if τ ′ � d thenq′′ is valid for all traces
betweenτ andτ ′. We have[[q′ d

 q′′]]τ = [[q′]]τ ∪ {(τ ′′, `) ∈
[[q′′]]τ ′ | τ ′ � τ andτ ′ � d}. By the inductive hypoth-
esis, we have[[p]]τ ⊇ [[q′]]τ , and [[p]]τ ⊇ [[q′′]]τ . Now, if
(τ ′′, `) ∈ [[q′′]]τ ′ for someτ ′ extendingτ such thatτ ′ � d,

then we know thatvalid(q′′, [τ, τ ′)), and thus, by Prop-
erty 3.2 [[q′′]]τ ⊇ [[q′′]]τ ′ . Therefore,[[p]]τ ⊇ [[q′′]]τ ′ , and
so(τ ′′, `) ∈ [[p]]τ , and[[p]]τ ⊇ [[q]]τ as required.
(MF-D ECL -E). Herep ≡ q c

 p′. Clearly,[[p]]τ ⊇ [[q]]τ .
(MF-D ECL -DECL ). Herep ≡ p′ c

 p′′ andq ≡ q′ d
 q′′,

and for allτ ′ � τ , if τ ′ � d thenτ ′ � c andp′′ ≤τ ′ q′′. By
the inductive hypothesis, we have[[p′]]τ ⊇ [[q′]]τ . Also, for
any τ ′ � τ such thatτ ′ � d, we haveτ ′ � c, andp′′ ≤τ ′

q′′, so by the inductive hypothesis,[[p′′]]τ ′ ⊇ [[q′′]]τ ′ . So we
have[[p′ c

 p′′]]τ ⊇ [[q′ d
 q′′]]τ .

(MF-E RASE-E). Here p ≡ p′ c↗p′′, and, by the induc-
tive hypothesis,[[p′]]τ ⊇ [[q]]τ and [[p′′]]τ ⊇ [[q]]τ . Thus
[[p′]]τ ∩ [[p′′]]τ ⊇ [[q]]τ . Since∀tau′′. τ � τ ′′ � τ ⇒ τ ′′ 2 c
is trivially true, we have[[p]]τ ⊇ [[p′]]τ ∩ [[p′′]]τ , so [[p]]τ ⊇
[[q]]τ as required.
(MF-E RASE-I). Hereq ≡ p d↗q′. Clearly,[[p]]τ ⊇ [[q]]τ .
(MF-E RASE-ERASE). Herep ≡ p′ c↗p′′ andq ≡ q′ d↗q′′.
By the inductive hypothesis, we have[[p′]]τ ⊇ [[q′]]τ and for
all τ ′ � τ , if τ ′ � c thenτ ′ � d and[[p′′]]τ ′ ⊇ [[q′′]]τ ′ . Con-
versely, for allτ ′ such thatτ ′ 2 d we haveτ ′ 2 c, and thus
for anyτ ′ such that for allτ ′′, τ ′ � τ ′′ � τ ⇒ τ ′′ 2 d we
have[[p′′]]τ ′ ⊇ [[q′′]]τ ′ . Thus[[p]]τ ⊇ [[q]]τ as required.

B. Proof of Lemma 4.5

Let S be a policy-enforcing system andph be a
condition-independent policy. Lets0 . . . sksk+1 and
s′0 . . . s′k be two traces such that for all locationsx, if
sk(x) 6= s′k(x) thenph ≤ε�s0...sk

pol(x). SinceS is pol-
icy enforcing, there is a states′k+1 such thats′k → s′k+1,
such that for all locationsx, if sk+1(x) 6= s′k+1(x)
then there is a locationy such thatsk(y) 6= s′k(y) and
pol(y) ≤s0...sk+1 pol(x).

Suppose there is some locationx such that
sk+1(x) 6= s′k+1(x) and ph 6≤ε�s0...sk+1 pol(x).
Then there is a locationy such thatsk(y) 6= s′k(y)
and pol(y) ≤s0...sk+1 pol(x). Sinceph is condition in-
dependent, valid(pol(x), s0 . . . sk+1) if and only if
valid(pol(x), s′0 . . . s′k+1), and sincesk+1(x) 6= s′k+1(x),
it must be the case thatvalid(pol(x), s0 . . . sk+1). Sim-
ilarly, it must be the case thatvalid(pol(y), s0 . . . sk).
Therefore,ph ≤ε�s0...sk+1 pol(x), a contradiction.

Therefore, for all locationsx, if sk+1(x) 6= s′k+1(x) then
ph ≤ε�s0...sk+1 pol(x).

14


