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Abstract The classic approach to specifying end-to-end informa-
tion security is based omoninterferenc¢l5], requiring for

Real Computing Systems sometimes need to forget sensﬂxample that sensitive information not affect pUbIlC infor-
tive information. This paper explores the specification and Mation. However, noninterference is not a sufficiently pre-
semantics oinformation erasurgolicies, which impose a  Cise tool for expressing the security requirements of real
strong, end-to-end requirement that information be either Systems. It has often been observed (e.g, [34, 30, 27, 38,
erased or made less accessible. Simple lattice-based infor31, 21, 7, 29, 35, 24, 14]) that noninterference is too restric-
mation flow po"cies’ Corresponding to a noninterference re- tive: real systems need to release some amount of sensitive
quirement, are augmented with the ability to express explicit information. This is usually accomplished by allowing non-
erasure and declassification policies. Examples are giveninterference to be tempered bieclassificationHowever,
of applying this expressive policy language to real Systems_noninterference is sometimes also not restricémugh
The paper gives tools for reasoning about po“cy enforce- sometimes information needs to become more sensitive or
ment either statically or dynamically. Further, the signifi- t0 even to be forgotten completely. This paper explores the
cance of these policies to security is formally explained in meaning of strong information security policies that incor-
terms of trace-based semantic security properties: general-Porate both declassification and erasure.

izations of noninterference that accommodate erasure and Many real-world systems have security requirements re-
declassification. garding the erasure and declassification of information. For

example, consider the following systems:

e Cryptographic devices.Devices and software that de-
. crypt using secret keys are required to explicitly erase
1. Introduction (“zeroize”) secret keys once they are done using them.

e Electronic voting. Ballots of individual voters must
be kept confidential, but the final results of the elec-
tion, calculated from the voters’ ballots, are publicly
released. Other information may need to be erased, es-
pecially if it connects voters to their ballots.

Information flow control is a promising approach for
providing strong, end-to-end security guarantees about the
propagation of information within a system. An important
(and largely overlooked) aspect of information flow is that
real-world systems are often required not to retain certain
information after a specific time or event. In this paper we e Mobile computing. A mobile device such as a laptop

study the problem of describing thisformation erasure computer may operate in environments of varying sen-
We present a security policy framework that can express in- sitivity and vulnerability. When a mobile device leaves
formation erasure policies, and investigate the semantic se-  a secure environment where sensitive information is
curity conditions enjoyed by systems that enforce the poli- accessible (e.g., corporate headquarters, connected to
cies expressible in the framework. the corporate LAN) for a less secure environment, the

mobile device may need to erase sensitive stored infor-
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be prepared to give her credit card details to a merchant This paper does not focus on how to construct sys-
to make a purchase, so long as the merchant erasetems that enforce our framework’s policies; that topic is
those details afterward. left to future work. However, we expect that erasure and

e Medical information systems.Health care providers declassification policies can be enforced through a combi-
hold sensitive patient information, including demo- Nation of static analysis (such as a security type system,
graphic and medical data. In many countries, legisla- €-9- [39, 37, 19, 26, 1, 3, 32]) and run-time mechanisms.

tion controls under what conditions patient informa- 1 he rest of the paper is organized as follows. Section 2
tion may be released, and to whom. introduces a unified framework for erasure and declassifi-

cation security policies, and presents two examples of how

d Al\s these e_xa;mplef_ sugges(tj,. the rea:;‘tons for elrasmg tofhis framework can express real-world information erasure
eclassifying information are diverse, often complex, yet (o, irements. Section 3 gives an ordering relation that en-

;:rucial toksehcuritﬁ. We Lherefori_ prqposi S Sﬁcurity po"% ables analysis of legal information flows in this framework,
dran|1ew<_)fr t_at a OI\.NSt € spdem ication o (I)'t erasure a_?_ together with (and consistent with) a denotational seman-
eclassification policies, and supports application-specific ¢ ¢ captures the meaning of policies. Section 4 dis-
reasoning about the erasure and .dtlaclassmcauon of |r_1forma—cusseS the semantic security conditions enjoyed by systems
tion. In t.h|.s. frameworkerasure ppllClesp90|fywhat poll_c_y that enforce erasure and declassification policies. We dis-
should initially be enforced on information, the conditions cuss related work in Section 5. and conclude in Section 6

underyvhlch the information must pe erased, and (since in-p. s of the main theorems and lemmas are given in ap-
formation may be allowed to exist in a system after erasure pendices

in a restricted form) what policy must be enforced on infor-
mation to allow it to survive erasur®eclassification poli-
cies first presented in [7], specify what policy should ini-
tially be enforced on the information, the conditions under
which the information may be declassified, and the policy ca
that should be enforced on the information after declassifi-
cation.

It is important to note that erasure and declassification
policies govern the use @fformationrather than of théo-
cationswhere information is stored. In particular, if a piece
of data has an erasure policy, it means that not only should
the data itself be erased under the specified conditions, but We assume there is some underlying lattice of security

also any information derived from it should be erased. Thus, |\ a5 2 [10], giving a base vocabulary for expressing era-

erasure pO|IC.IeS describe strong, end-tq-end restrictions ory, e and declassification policies. The lattice orderingon
how information may be used. Information erasure and de-iS written as—

classification can be seen as opposites: As time progresses, There are three kinds of policies, given by the syntax in
declassification permits more information flows in a sys- Figure 1.

tem; by contrast, erasure permits fewer information flows
as time moves forward.

2. Erasure and declassification policies

This section shows how a single policy framework
n incorporate both erasure and declassification poli-
cies, building on lattice-based information flow poli-
cies. It then presents some example policies that capture
real-world information erasure requirements.

2.1. Policies

Much recent work (e.g., [28, 38, 31, 21, 7, 29, 35, 24, L € L Lattice element
14]) has focused on security properties that generalize non<; d Conditions
interference to permit reasoning about declassification; asp: ¢ ::= Policies
this paper shows, many of these security properties have ¢ Lattice-level policy
parallels involving information erasure. We show that some ~ p~5p’ Declassification policy
of these properties are possessed by systems that enforce P i Erasure policy
our framework’s policies.

In our policy framework, erasure and declassification Figure 1. Syntax for policies

are controlled by certaiconditionsunder which erasure
and declassification are respectively required and permitted.

These conditions are inevitably application-specific, so the A lattice-level policy/ is the simplest kind of policy: in-
framework does not specify the logic for expressing these formation labeled with security policgmust be used in ac-
conditions, preserving generality. The framework is general cordance with the security levéle £. The intuition is that
in another sense; although the policies are intended to bet should only affect information at levélor higher.

used for program annotation and analysis, the actual form An erasure policy ¢p’ requires that the policy be en-

of the programming language is not specified. forced on information, and in addition once conditiors



satisfied, policy’ mustalso be enforced on the information. secure environment, it may be necessary to ensure that the
Therefore, once is satisfied, the system must erase the con- mobile device does not contain any sensitive information:
tents of any location affected by the information if that lo- the mobile device needs to erase sensitive information be-

cation is governed by the poligys”p’ (or by any other pol-  fore entering a less secure environment.

icy not at least as restrictive a§. For example, suppose a laptop is used both at corporate
For example, consider an erasure policy” H, where headquarters and on client sites. At corporate headquarters,

H and L are elements of the latticé such thatL C H it is connected to the corporate LAN, and has access to sen-

andL # H. Initially, data labeled with this policy would  sitive documents; at the client site, it may be possible for

be usable at the levél. However, once conditionis satis-  client personnel to use the laptop.

fied, the data must either be erased from the system, or must \when sensitive documents are downloaded onto the lap-
have the policyl enforced on it; either way, the data is no  top at headquarters, a suitable security policy for the docu-
longer usable at level, and indeed, at any levélsuchthat  ments isi "oLAN T, wherenoLAN is true when the lap-
HIZL. o . . top is disconnected from the corporate LAN, is a secu-

A declassification policy%p’ means that the policy rity level for the sensitive documents, afidis a security
must be enforced on that information, but whenever the con-jevel so high that the laptop is not permitted to hold any
dition c is satisfied, the data may be declassified; after de-data at that level. Thus, the sensitive documents must be re-
classification, the policy’ must be enforced on the declas- moved from the laptop at or before the time that the laptop
sified information [7]. N o is disconnected from the LAN. Rather than leave the en-

Conditionsc are used to express when it is permissible to forcement of this policy to the laptop user, the document
declassify information, and when itis necessary to erase in-management system on the laptop could automatically en-
formation. If a condition is false at some point during exe- force this policy, erasing sensitive documents whenever the
cution, then becomes true, and finally returns to false, anylaptop is disconnected from the LAN. An efficient alterna-

information governed by a poligy "p’ during the first pe-  tive to erasing the actual documents would be to encrypt
riod must still be erased wheris false again. And informa-  them and erase the key.

tion that was declassified when the condition was true may
remain declassified whenis false again.
For generality, we do not specify a logic for conditions; 2.3. Example: online transaction
any logic will suffice as long as it is possible to reason about
whether a conditior is satisfied at a given point of a sys- Consider a consumer purchasing a product from a mer-
tem’s execution. In particular, given a traceof a system,  chant over a network. In order to complete the transaction,
then the relation E cis true if and only if the conditiom is the consumer has to provide a credit card number to the
satisfied when the system has produced the tragbus, to  merchant. The merchant promises not to keep any record of
instantiate this generic framework, one must choose an apthe credit card number after the transaction. However, once
propriate language and semantics for conditions, and pro-the consumer has approved the purchase, the merchant must
vide a sound way to check the satisfaction relatiok c. send the credit card number to the bank, whigh keep a
(One must also provide sound procedures for checking cervecord of the credit card number.
tain other assertions that are related to the satisfaction rela- | et A be a security level corresponding to information
tion; more details are found in Section 3.1). For expressive siored by the merchant. Lé8 be a security level corre-
condition languages, the checking of conditions is likely to gnonding to information stored by the bank. Then a suit-
be incomplete. The effect of incompleteness will be just to apje policy for the credit card number (8724 B) <4 B,
make security analysis more conservative. wherepur is a condition that is true once the consumer has
To deVeIOp intuition for the erasure and declassification approved the purchase, add is a Condition that iS true
policies, and to show the expressiveness of the policy frame-py the end of the transaction.
work, we present two examples that highlight real-world Note that the policy M2 B) en” B allows the mer-

uses of information security ppllCles and_ show how such chant to release the credit card details to the bank once the

policies can be represented using our policy framework.  ¢,stomer has approved the purchase, since (as will be made
precise in the following section) information labeled with

2.2. Example: mobile computing policy (MZ4 B) e»4” B is permitted to be relabeled with
the policy B, provided the conditiopur is true at the time

A mobile device, such as a laptop computer, may oper- of relabeling. However, at the end of the transaction, the pol-

ate in several environments of varying sensitivity and vul- icy B should be enforced on the credit card number, mean-

nerability. When a mobile device leaves a secure environ-ing that the bank is allowed to store the number, but the mer-

ment (where sensitive information is accessible) for a lesschant must have removed the number from his system.



Now suppose that we extend the example so that thea time; this should be understood as referring to the time at
consumer can optionally allow the merchant to store which the system has produced the trace
the credit card number, for example, to maintain a cus-  We write [, 7') ¥ ¢ as an abbreviation forr". 7/ =
tomer profile, and save the consumer from needing to7” » 7 = 7” ¥ ¢, andvalid(p, [r,7')) as an abbrevia-
re-enter the credit card number for subsequent pur-tion for V7”. 7/ = 7" = 7 = valid(p, 7). Intuitively,
chases. A suitable policy for the credit card number is if [r,7/) ¥ ¢, thenc is not satisfied by any trace that ex-
now ((M2% B) nd”B)23(M®X B), wherepro is a con-  tendsr and is a strict prefix of’; similarly valid(p, [, 7'))
dition that is true when the consumer has given per- s true ifvalid(p, ") for every tracer” that extends- and
mission for the merchant to maintain a customer pro- is a strict prefix ofr’.
file. Note that if the consumer gives permission, then the  The rule (MF-LATTICE) states that information may
merchant may store the credit card number with a pol- flow from a lattice-level policy/ to a lattice-level policy
icy MZY B, allowing the merchant to send the credit ¢ provided thatt T ¢'. Sincer is not mentioned in the
card number to the bank when the consumer makes a purpremise, such flow is permitted at any time. The rule (MF-
chase; if the consumer does not give permission, then theTrans) makes the< . relationship transitive on policies.
merchant is still required to erase the credit card num-  The declassification rule (MF-ExL) permits informa-
ber by the end of the transaction. tion to flow from a declassification policy.%p’ to policy
p’ at tracer, provided that the condition for declassifica-
tion ¢ is satisfied at trace. This rule captures the intuitive
meaning of declassification policies: declassification may

. . occur when the appropriate condition is satisfied. Note that
We assume that a system contains locations that are govx pprop

. e . . Rule (MF-DecL) permits flow fromp.%p’ to p/, andp’
erneq by var|ous.poI|C|es. As mforr_natlon fI_ows_ betyv_een may permit operations that?,p’ does not.
locations, the policy governing the information implicitly

changes. In this section, we define a relation over policiesScr?:sdeﬁgansi'f'gaté?nm'.gggﬁ(f:;':).r;;grl;go':nag‘;g d?r-om
that characterizes when it is secure to flow from one pol- ! w LIS permissi ! ! W

) ; o o g
icy to another. We then give a semantics for policies, show- tsocﬂeﬂ?]:"cmtoti tr:]etp?ll'(\:ﬁrwp ' tF|r§t, I m:jt bte Fljletirmlt
ing that this “may-flow” relation is sound with respect to ed for information to flow tromy to p, second, at a es

these semantics. We show that the semantics has some i the future, if the conditiom is satisfied at that time, then

H H 1 /
teresting and important properties. Note that the specifica-l{th;lf[.sr;[qgelEzr(;?j'f{tt.ii f(;: ;Tr?:;neat'ggttoezzmgoq;%ﬁ hitcon-
tion of security policies, and the definition of the may-flow diti ! b . Itl' f.' d thl IS W | W lid. that
relation, are independent of any particular mechanism for. tion ¢ being satistied, the polcy 1S alwaysvaid, tha

. . - is, information labeled with policy; does not need to be
enforcing the security policies. . . : . .
erased. The judgmentlid(p, ) describes if a given pol-

icy p is valid at timer. The requirement that is valid be-

3. Semantics

3.1. May-flow relationp <. ¢ tween now and any possible declassification ensures that in-
formation flowing fromg to p-% p’ does not escape any era-
We now define a may-flow relatiop <, ¢ on poli-  Sure requirements thatmay have.

cies that describes permitted information flow. The relation ~ The declassification elimination rule (MF&2L-E) al-

is parameterized by a trace because the declassification lows information to flow from a declassification policy
and erasure of information depends upon the satisfaction ofp~%p’ to the policyp. Intuitively, it is acceptable for infor-
conditions, which in turn depends on system tracemn- mation to flow fromp.% p’ to p, since the policy is strictly
tuitively, if p <, ¢, then information labeled with policy more restrictive than the poligy-%p’, which enforces ev-
may securely flow to a location labeled with poligyvhen erything thap does but also permits declassificatiorpto

the system has produced trace=or this flow to be secure, The rule (MF-DecL-DEcL) describes when informa-
the policyg must be at least as restrictive as the palicthat tion may flow from one declassification polipy% p’ to an-
is, anything thay permits to be done to informatiop per- other, more restrictive declassification policyt. ¢’. The in-

mits as well. The one exception to this principle of increas- tuition is that this happens if is at least as restrictive as
ing restrictiveness is declassification, whose whole purposethe policy¢-4 ¢’ permits declassification only whensp’

is to make policies less restrictive. does (that is, whenever the conditidris satisfied¢ is sat-
Figure 2 shows the inference rules for the<. g rela- isfied too), and whenever declassification is permit{éds

tion. We assume the set of traces is prefix-closed, and writeat least as restrictive as.

7' > 7 if the tracer’ extends trace, and7’ < 7if 7 is a As can be seen by inspection of Figure 2, each of the

prefix of 7. We writer’ = 7 if 7/ extendsr andr’ # 7. For may-flow rules for erasure policies corresponds to a de-
convenience, we sometimes refer to a tracas if it were classification rule. For example, erasure introduction (MF-



(MF-LATTICE) (MF-TRANS) (MF-ERASE-1) (MF-ERASE-E)
LCY p<:p p < p pP<:q P <:q
e<; v p<;p" p<;psp PP <rq

(MF-ERASE-ERASE) (MF-DEcL) (MF-DEcL-)

P<:q qg<:p
V' =71.7"Ec= 7 Edandp <. ¢ TEC V7' = 7.7 E c= ¢ <, p’ andvalid(q, [, 7))
p IV <rq¥q pSp <o pf q <; pSp'
(MF-DECL-E) (MF-DECL-DECL)
P<rq
Vi'=1.7"Ed=1"Ecandp’ <, ¢ valid(p, 7) valid(p,7) TEc
pEp <, p pSp <, ¢-dq valid(¢, ) valid(p&p', 7) valid(p &'p/, 1)

Figure 2. Inference rules for p <, ¢ and valid(p, 7)

at appropriate times falls upon the system that enforces the
policies; in Section 4 we discuss what it means for a non-
deterministic state-transition system to enforce policies.

To soundly check ip <, ¢ holds for any givem, ¢ and
T, it is sufficient for an instantiation of the framework to
provide sound procedures for checking the following asser-

ERASE-I) is analogous to (MF-BcL-E): information may
flow from p to p "p’, sincep &"p’ is strictly more restric-
tive thanp. An erasure policyp ¢"p" enforces everything
thatp does, and in addition requires the information to be
erased at certain times.

Erasure elimination (MF-ERASE-E) is analogous to the

rule for declassification introduction, allowing information tons:
to flow from p &"p’ to ¢ at tracer provided that informa- o (C YV
tion can flow both fronp to ¢, and fromp’ to q at tracer. R

Intuitively, information may flow tog since that informa-

tion would not need to be erased anyway, as information is

allowed to flow fromp’ to ¢. This rule is not completely

analogous to (MF-BcL-1) because it requires that infor-

mation can flow fronp’ to ¢ at tracer. By comparison, the

rule (MF-DecL-I) requires that information must be able Note that due to the definition eflid(p, 7), a sound proce-

to flow fromg top’ at traces”’ in the future such that' F c. dure for checkingyr' = 7. 7/ E ¢ = [r,7') ¥ d can also be

The declassification introduction rule differs because de-used to check'v’ = 7. 7' E ¢ = valid(p, [1, 7).

classification is about flows thatayhappen in the future, What properties does the relatigh exhibit? It is easy

while erasure is about flows thatust nothappen in the fu-  to establish that, for a fixed traece < is a pre-order: transi-

ture; if we used the premiser’ = 7.7 E ¢ = p’ <, ¢ for tive and reflexive. However, it does not form a partial order,

(MF-ERASE-E), this would permit some insecure flows. asitis not antisymmetric. For example, for any traceon-

For example, using the weaker rule, it would be possible dition ¢, and lattice element € £, we have botlf <, £.5¢

to deriveL ¥'H <. L, which is insecure, given the infor- and¢.5¢ <, ¢.

mal meaning of the erasure poliéys” H. The relation<, has a greatest and least element: the top
The rule (MF-ERASE-ERASE) compares two erasure and bottom elements of the lattice denotedT, and L,

e V' =T T'Ec=p<,q
eV 1. 7"Eec=1Ed
eV =17 Ec=[r,7)Ed

policies,p ¢'p’ andq ¥"¢’, and is similar to (MF-ECL-
DEecL). Information may flow fromp ¢"p’ to ¢ ¥"¢’ pro-
vided thatq is at least as restrictive g5 and whenever
p ¢p’ requires information to be erased, so dgésq’ (that
is, whenever is satisfiedd should be too), and whenever
erasure is required; is at least as restrictive as.

There is no erasure rule analogous to (MEdD). This

is because erasure policies specify flows that must not hap-
pen, which is difficult to capture with inference rules of this terms of the observation level of locations to which infor-

respectively.

Property 3.1: For any tracer, the relation<. is a pre-
order. Moreover, for all policie®, we havep <, T, and
J—[, ST D.

3.2. Semantics

style. Instead, the onus of ensuring information is erasedmation can propagate.

In this subsection, we present a semantics for policies, in



We assume that the underlying lattidecan describe
how observable locations are, and proceed to define th
observation level of an arbitrary policy, obs(p). The
observability of a lattice level policy is simply ¢, and

The following theorem shows that the may-flow relation
ep <, ¢ is sound, in the sense that if information may flow
from p to ¢, then[p], 2 [¢]-, that is, information labeled

with policy p at tracer can affect at least as much in the

the observability of declassification and erasure policies isfuture as information labeled with poliaycan. The proof

just the observability of the left subpolicgbs(p-5p') =

obs(p ¥"p’) = obs(p).
Given this notion of observation level, we can define a

of the theorem is given in Appendix A.

Theorem 3.4: For all policiesp, ¢ and tracesr, if p <, ¢

semantics for policies such that the semantics of a policythenﬂpﬂf 2 [4]-

p describes how information initially labelgdmay propa-

The relatiorp <, g tells us that information labeled with

gate, and become (or cease to become) observable at Varbolicyp may flow to a location labeled at timer. How-

ous lattice levels, as the system executes.

Figure 3 gives a semantics for a polipyand tracer,
written [p] -, as a set of pairs of traces and lattice elements
(7', ¢), wheret’ = 7. The semantics captures all the pos-
sible ways that information labeled with poligyjust be-
fore tracer may affect information in the future. More for-
mally, we expect that if information labeledjust before
traceT may propagate to a location labeledat time 7/,
then (7', obs(q)) € [p]--

3.3. Consistency of the semantics

To show that the semantics captures its informal mean

. . : " "Moreover, eachp;
ing precisely (and to prove it), we need some additional con- Ip

ever, in general, we are interested in reasoning not only
about the locationg that information labelegh may flow
'to in a single step, but abouwtl locations that informa-
tion labeledp may propagate to. We extend the relation
p <. ¢ to the relationp <,<, ¢, to allow us to reason
about where information labeledmay propagate from the
time the system has produced the trade the time it has
produced the trace’, wherer’ = 7. Figure 4 presents the
inference rules for the new relation. We have< <, ¢

if there is some sequence of traces..., 7, such that
T=m7 =--- <71, =7, and some sequence of policies
Pos -3 Pn SUCh tha&) = Po S'rl D1 STQ e Srn Pn = (4.

is valid betweerr; andr; 1, which en-
sures that information stored in a location labetgdwill

cepts and properties that relate the semantics, the observeHOt be erased before it can propagate, at trace

tional level, and the may-flow relation.

[, ={(,¢)| 7 =randl C ('}
[p5p'lr = [pl- U{(7",0) € [P']+ | 7" = 7 and7’ & ¢}
b <9'1s = ([pl- N {(",6) € '] | 7' =7

and[r,7") ¥ c}) U
{(7",0) € Ipl+ | [, 7") # c}

Figure 3. Semantics for policies [p]

To begin with, for all policie®, we observe that as time

goes on, there are fewer possible ways in which informa-

tion labeled with policyp may affect information. In partic-
ular, for any policyp and traces and7’ = 7, so long as
information labeled withp does not need to be erased be-
tweenr and7’, then[p]. C [p]-.

Property 3.2: Letp be a policy and- andr’ be traces such
thatt’ = 7. If valid(p, [, 7)), then[p]. C [p]-.

A useful property of the semantics, which will be needed
in later proofs, is that for any given poligy and traces
andr’, the set of lattice level§? | (7/,¢) € [p].} is closed
upward.

Property 3.3: For all policiesp, tracesr and7’ and lattice
levelst, if (7/,£) € [p]., then for all¢’ such that’ C ¢’ we
have(r',¢') € [p]--

7’ = T =T p STjT” p/

p<,q valid(p/, [7",7"))
valid(q,r) p/ <7 q Valid(an/)
p Srj‘r q p STjT’ q

Figure 4. Inference rules forp <, <,/ ¢

There is a strong and simple connection between the re-
lation <, <. and the semantics of policies:

Property 3.5: For all policies p and ¢, and tracesr and
7' =7, it p << g, then[p]; 2 [q]-.

There is also a simple connection between the observ-
ability of a policy and the semantics of that policy.

Property 3.6: For all policiesp and tracesr, if valid(p, 7),
we have(r, obs(p)) € [p]--

We can now state the basic theorem that relates the pol-
icy semantics to the observational level: if information la-
beledp at timer may propagate to a location labelgdt
time 7/, then(7’, obs(q)) € [p].-

Property 3.7: For all policiesp andq and tracesr and '/
such thatr’ = 7, if p <,<, g then(r',0bs(q)) € [p]-.



The above facts allow us to prove some desirable prop-
erties about the <., ¢ relation, with regard to particu-
lar kinds of policies. First, we can show that for any policy
¢ and any policyg such that? <.,/ ¢, then the observa-
tion level of¢ must be at least that éf This implies that in-
formation labeled will never be observable at any lewél
such that IZ ¢'.

Property 3.8: For any lattice element, and for all policies
g and tracesr andr’ > 7, if { <.z, ¢, then{ C obs(g).

The following property says that for an erasure policy
p &'p’, and any policy; that information labeleg@ ¢ p’ can
propagate to, if the information is meant to be erased at
some time, then the observation level of any sydhfter
that time must be in the semantics of begtlandp’. Thus,
for example, given the erasure poliéy ¢, at any time af-
ter 7/ such thatr’ & ¢, the observation level of any loca-
tion that information could have flowed to frofp” ¢’ is at
least/ LI ¢'. Thus, information labeled$” ¢’ is erased when
c is satisfied, after which it is only observable at the level
Lue.

Property 3.9: For any erasure policy ¢"p’, and for all
policies ¢ and tracesT and 7/ > 7, if p ¥p' <.z ¢
and there is some” such thatr’ = 7/ = 7 and7” E ¢,
then(7’,obs(q)) € [p]- N [p']-, for somer” such that
7_// — 7_/// — T.

Finally, for a declassification policy.%p’, and any pol-
icy ¢ that information fromp.%,p’ can propagate to, the ob-
servation level ofy must be in the semantics of eitheor
p’. For example, given the declassification polic§; ¢/, at
any timer’, the observation level of any location that infor-
mation could have flowed to from% ¢’ is bounded below
by either/ or ¢'.

Property 3.10: For any declassification policy.%p’, and
for all policiesq and tracesr and7’ = 7, if pSp’ <<

q then(7',0bs(q)) € [p]- U [p'].~ for somer” such that
" Ec.

4. Security properties

In this section we explore the semantic security prop-
erties of systems that enforce the security policies of Sec-
tion 2. We introduce three new semantic security conditions
related to information erasure: noninterference according to
policy p, noninterference after erasure, and selective era-
sure.

We first present a definition for what it means for a non-
deterministic state-based system tgplodicy enforcing We
then prove that policy-enforcing systems enjoy several se-
mantic security properties: noninterference [15], noninter-
ference according to poligy, and noninterference after era-

of robust declassification [41, 29, 40] and selective declas-
sification [31] relate to policy-enforcing systems.

4.1. Policy-enforcing systems

Let S be a system. LeLg denote thdeasible statesf
S, that is, all states that may occur in some execution of the
systemS. We assume that states are functions from loca-
tions to values, and that all statesiiz have the same do-
main. Let— be thetransition relationof S: for any two
feasible states ands’, s — s’ if and only if S can atomi-
cally transition froms to s'.

Let pol(-) be a function from locations to security poli-
cies; if z is a location angol(z) = p, then the policy is
associated with the locatior) and the syster§ should en-
force the policyp on information stored in location.

The traces of5 are sequences of feasible staégs. . sy
suchthat,_; — s; fori € 1..k. We denote the set of traces
of a systemS by X%, and assume thaty is prefix-closed.

As in Section 3, we use to range over traces.

We call the systens policy enforcingf the system hon-
ors erasure policies, and all information flows that occur in
the system are allowed to occur according to therela-
tion.

In order to honor erasure policies, a system must at least
ensure that at all times, any location that is meant to be
erased at time is set to a special valu¢ at that time. The
value L could represent either a constant, or non-existence
in the system. The judgmenatlid(p, 7), from the previous
section, tells us when a location should be erased: fopany
andr, valid(p, 7) is false if a location labeled with should
be erased at time.

We can formally define what it means for a system to
honor erasure policies, and allow only permitted informa-
tion flows.

Definition 4.1: SystemS is policy enforcingf

(1) for all finite tracessy . . . sg, and for all locations:, if
notvalid(pol(z), sg . . . sk), thens,(xz) = L; and

(2) forall finite tracess . . . sisk11, and all feasible states
s, there exists a feasible statg, , such thats; —
5541, and for all locationse, if spy1(x) # sj (),
then3y. si.(y) # s.(y) andpol(y) <s;...s54, POI(T).

Clause (1) of the definition ensures that the system hon-
ors erasure policies. Clause (2) ensures the system allows
only permitted information flows. Intuitively, if a system is
policy-enforcing, then whenever information flows to a lo-
cationz with policy p,., then information flowed from some
locationy with policy p, and the<. relation permits flow
from p, to p, at that time.

Nondeterministic systems can be policy enforcing. How-
ever, the definition requires that if a locatiens set non-

sure. We also discuss how the semantic security conditionsdeterministically, then only information that is allowed to



flow to pol(x) may influence the nondeterministic choice. p cannot affect the satisfaction, or non-satisfaction, of any
For example, ifz is set to a number chosen randomly be- conditionc in the system.
tween 0 and the value held in locatigrat tracer, then it
better be the case thpsl(y) <, pol(z).
The policy-enforcing definition is possibilistic: clause
(2) requires simply the existence of a suitable stjtg, .
We believe suitably modified forms of the theorems in the
following subsections should hold for a probabilistic defini- For example, if for all conditions and traces, the re-
tion of policy-enforcing systems. lation = F ¢ can be determined by statically examining
The definition of a policy-enforcing system is a strong the code of the system, and the code of the system is la-
requirement. In particular, it ensures that no information is beled with policy L -, then for any conditiort, we have
leaked through timing or termination channels. Timing and pol(x.) = L.; thus, any policy such thap £, 1 . forall
termination channels could be allowed by allowing the tran- r will be condition independent.
sition relation to be reflexive and weakening the require-

Definition 4.2: A policy p is condition-independerif for
all conditionsc that occur in any policy in the image of
pol(-), and for all traces- andr’ > 7, we havep £, <,
pol(x.), wherez, stores the satisfaction of

ment in clause (2) that “there exists a feasible st4te, 4.1.2._ Making systems poli<_:y-enf_orcing.Th_e definition
such thats, — s}, .." to the following: there exists a of _po_llcy-enforcmg systems is of little practical use Wher_1
(possibly infinite) sequence of states ..., s}, with building systems that are intended to enforce the security
s — s, fori € k..(k+n) such that for alf € k..(k+n) poI|C|es. The development of techn.lques to bu[ld and/oryer-
and locationsz, if sy(z) = s,(z) thensy(z) = s\(z) ify that systems enforce the security policies is the subject
and either the sequence is infinite, or for all locationsf of future work. - _ _

sp1(2) # Sy (€) then theredy. s,(y) # s} (x) and Since itis difficult for purely run-time mechanisms to en-

pol(y) <so.. syss POI(T). force strictinformation flow policies [11], we envision static
For ease of exposition, we do not weaken the defini- analysis as the primary method of building policy-enforcing
tion, and assume that policy-enforcing systems do not leakSyStems, for example, a type system similar to those that
any information through timing or termination channels. We aré used in security-typed languages (e.g., [39, 37, 19, 26,
believe that suitably weakened forms of the theorems in1: 3, 32]). However, additional run-time mechanisms, such

the following subsections hold when information may leak &S memory regions [36, 13, 16], to ensure that location life-
through these channels. times are limited appropriately, may prove useful in the en-

.- ) N forcement of erasure policies.
4.1.1. Policies as covert channelsGiven a conditionc

that may occur in a policy, the satisfactioncahay depend The connection between security and the definition of a

on the trace of the system, as evidenced by the relation Policy-enforcing system is notimmediately apparent. How-

7 E cused in Sections 2 and 3. Thus, the policies enforced€Vver, the definition provides the tools needed to prove that

on locations may provide covert storage channels, modu-Policy-enforcing systems satisfy various more intuitive se-

lated by the satisfaction of conditions. For example, infor- mantic security conditions, as discussed in the rest of this

mation labeled with policy % ¢/, for somel IZ ¢/, may flow section.

to a location labeled’ only when the conditior is satis-

fied; if the satisfaction of depends on some sensitive infor- 4.2. Noninterference

mation, observing that the information flow occurred may

reveal it. Noninterference [15] is a semantic security condition
To model the information that may be obtained by ob- which requires that high security inputs do not affect low se-

serving the satisfaction or non-satisfaction of a condition, curity outputs. The precise definitions of input, output, and

we assume that for any conditienoccurring in any pol-  high and low security lead to slightly different definitions

icy in the image ofpol(+), there is a (probably fictitious) of noninterference. In this context, we will assume that the

location z.. that stores the satisfaction ef That is, for system’s input is given in a single location; that the system’s

any tracesy . .. s, We havesy(z.) = true if and only if output is all values stored in the locations during the subse-

S0...Sk E c. The policy thatz, is labeled with,pol(z.), guent execution of the system; and that information is low
describes the information that may be learned by observ-security if it is observable by a given attacker, and high se-
ing whethere is satisfied. curity otherwise.

We define a notion afondition independende describe More precisely, consider an attacker who, for some lat-

when information is independent of the satisfaction of any tice element, is able to observe all and only locations
conditions; this notion will be useful in later subsections such thaiobs(pol(z)) C ¢. A location is regarded as high
discussing semantic security properties. Intuitively, a pol- security if it is not observable by the attacker, and low secu-
icy p is condition-independent if information labeled with rity if itis.



We define arobservational equivalenaelation onXg,
such that for any statee ¥, [s]{ is the equivalence class

though there may be erasure and declassification occurring
in the policy-enforcing systelfi, information stored in a lo-

of states that are indistinguishable to the attacker; that is,cation with policy? will never be observable belodv

[s]5 = [s]% if for all locationsz such thabbs(pol(x)) C ¢,
we haves(z) = s'(z).

Using this notion of observational equivalence, we can

state the definition of noninterference.

Definition 4.3: A systemS is noninterfering at level for
location A if for any two valuesv; andwvs, and any state
such that botlsg = s[h — v1] ands(, = s[h — v9] are fea-
sible, ifsg ... s, is atrace ofS then thereis atrac) ... s},

such thafs;]% = [s}]%.

4.3. Noninterference according to policyp

In this section we present a semantic security condi-
tion that depends upon the poligyof the input location.
The new semantic security condition is callechinterfer-
ence according to policy, and gives a relatively detailed
description of the information flow behavior of a policy-
enforcing system, permitting fine-grained reasoning about
the information flow in different executions of such a sys-

In general, a system that is policy-enforcing may not be tem. Noninterference according to poligyis defined in

noninterfering for all levelg. For example, if for some lo-
cationz, the policypol(z) enforced on is a declassifica-
tion policy ¢’ % ¢ for somel’ [Z ¢, then the system will not
be noninterfering at level. However, for any given loca-
tion h, S will be noninterfering forh at any level such that
g {t | (r,0) € [pol(h)]<}. (We write e to denote the
empty trace.)

Theorem 4.4: If S is a policy-enforcing system, and
is any location such thapol(h) is condition independent,
and ¢ is any lattice element such thatg {¢' | (7,¢') €
[pol(h)]c}, thenS is noninterfering at level for location
h.

The following lemma is key to the proof of this theo-
rem, and links the execution of a policy-enforcing system
with the semantics of policies. The proof can be found in
Appendix B.

Lemma4.5: For a policy-enforcing systemS, and

condition-independent policy;,, let sq...sgsg11 and

sg - .. s, be two traces such that for all locations, if

sk(x) # si.(z) thenp, <.<s,..s, pol(z). Then there ex-
ists ans;, ; such thats; — s;_,, and for all locationsz, if

5k+1($) 7é S;C+1(LL') thenph Sejso...SkJrl pO|(L)

Proof of Theorem 4.4: Let h be a location such thabl(h)

is condition independent, antibe a lattice element such
that? & {¢' | (1,0') € [pol(h)]¢}. Letv; andwvy be two
values, ands a state such that botly = s[h — v4] and
sy = s|[h — v9] are feasible. Lety . .. s, be a trace of.

By induction onk using Lemma 4.5, we can construct
a tracesg ...s;, such that for any locatiorr such that
sk($) 7& S;c(”L)' thenpo'(h) Ssjso...sk pO|(JL)

Let « be any location such that;(z) # s (z), and
thus pol(h) <c<s,...s, Pol(z). By Property 3.7, we have
(sg...sk,obs(pol(z))) € [pol(h)]e. Thus, by Property 3.3,
obs(pol(x)) Z ¢, and sq(s;]5 = [s}]5.1

Note that Theorem 4.4 allows us to conclude thdtig
the policy enforced on locatioh, then.S is noninterfering
for h at any levell’ such that IZ ¢'. This means that even

terms of the semantics of [p]..

Definition 4.6: A system isnoninterfering according to
policy p if for any locationh such thatpol(h) = p, any
two valuesv; andwvs, and any state such that boths, =
slh — wv1] ands, = s[h — vy] are feasible, then for any
tracesy . .. s; there is a tracey, . . . s}, such that for all lat-
tice levelst, if (so ... s, £) & [ple, then[s,]5 = [s,]%.

Policy-enforcing systems are noninterfering according to
policy p, as stated by the following theorem.

Theorem 4.7: If S is a policy-enforcing system, then for
all condition-independent policigs S is noninterfering ac-
cording to policyp.

Proof: Let h be a location such thaiol(h) is condition
independent. Let; and v, be two values, and a state
such that bothsy = s[h — v ands; = s[h —

vo] are feasible. Lesy ... s, be a trace ofS. By induc-
tion on k using Lemma 4.5, we can construct a trace
s( ... s, such that for any location such thats;(z) #

sy (z), thenpol(h) <c<s,..s, pol(z). By Property 3.7,
(s0-...sk,0bs(pol(x))) € [p]e. Thus, for any lattice level

¢ such that(sg ... sk, ¢) ¢ [p]., by Property 3.3, we have
obs(pol(z)) Z ¢, and sq(sx]5 = [s}]5.11

For a given tracer, determining the sef¢ | (7,¢) €
[p].} depends only on the sequences of conditions that are
satisfied at each step of the trace. Thus, we can give an
equivalent statement of noninterference according to pol-
icy p simply in terms of sequences of satisfied conditions.

First, we defineconds(sg . .. sk, p), which takes a trace
sp-...SE and a policyp, and returns a sequence of sets
of conditions, such that théh set consists of the condi-
tions occurring irp that are satisfied by the traeg. .. s;.
More formally, conds(sg . .. sk, p) = Cy...Cy where for
i €0..k,C; = {c| coccursinpandsy...s; F c}. Itturns
out that we can remove any empty sets from the sequence
without any modification to the results.

Figure 5 defines a functiol(p, Cy . . . Cy) that takes a
policy p and a sequence of sets of satisfied conditions, and



returns a lower bound on the sgt | (7, ¢) € [p].}, where
conds(7,p) = Cy ... Cy. The fact thatvl(p, Cy . .. Cy) re-
turns a lower bound is made precise by the following prop-
erty, which would allow an equivalent statement of non-
interference according tp in terms oflvl(p, conds(t, p)),
with no reference to the semanticspoét all.

|V|(£, C() PN Ck) =/
Wl(pSsp’,Co...Cx) = Wl(p,Cq...Cx) N
[ M@, Ci...Ck) | c € Ci}
i(pp',Co...Cx) =
vi(p,Cop...Ck) if Viel.k.c¢C;
Ivi(p,Cop...C) U otherwise
|_|{|v|(p’,CZ-+1 .. Ck) ‘ Vj c€l.ac ¢ CJ}

Figure 5. Definition of Ivl(p,Cy ... C)

Property 4.8: For any policyp and tracer, (7,¢) € [p]. if
and only iflvl(p, conds(7, p)) C Z.

Noninterference according to policy allows fine-
grained reasoning about the end-to-end information flow

behavior of a system, even in the presence of declassifi-
cation and erasure. The equivalent statement of noninter-

ference according tp allows us to reason about the be-

classification[7], and its equivalent for erasure policies,
noninterference after erasure

4.4, Noninterference after erasure

Noninterference until declassification [7] is a security
property that ensures an attacker cannot observe any infor-
mation about a secret input until an appropriate sequence
of declassifications has occurred. In the presence of infor-
mation erasure, there is a corresponding semantic security
condition for erasurenoninterference after erasuréntu-
itively, after an appropriate sequence of erasures have oc-
curred on some input data, an attacker should not be able to
view any information about the input. Unlike noninterfer-
ence until declassification, where more information about
the input becomes available as time progresses, the sys-
tem holdslessinformation about the input as the appropri-
ate erasures occur. Noninterference after erasure provides
a useful security guarantee for privacy and anonymity con-
cerns, where we would like to ensure that certain informa-
tion is not retained by a system.

The definition of noninterference after erasure closely
parallels that of noninterference until declassifica-
tion. We write 7 £ ¢1...¢, when there is a non-
decreasing sequence of natural numbeys..n,, such
thatconds(7,p) = C; ...Cy andc; € C,, fori € 1..m.

Definition 4.9: A system is noninterfering at secu-

havior of a system solely in terms of sequences of satisfiedrity level ¢ after conditionsc; ... c,, for location i such

conditions. For example, consider a policy-enforcing sys-
tem whose input has the polidy % (L ¢ H) for a simple
two point lattice wherd. C H andL # H. By consider-

thatpol(h) _ El cyl(£2 cy‘( .. Ck—2 (Ekfl Ck—y‘,gk) - ),
wherem < k, if for any two valuess; andv,, and any state
s such that botlsg = s[h — v1] ands{, = s[h +— vo] are

ing possible sequences of satisfied conditions, we can makgeasible, ifr; = s, ... s is a trace such that = c; .. .c,,

some strong statements about the information flow be-

havior of the system. Any trace of the system in which
the conditiond is never satisfied will reveal no informa-

tion about the input to an attacker who can observe only Theorem 4.10:

at level L, sincevl(H 4, (L " H),Cy ... C),) = H, where
d ¢ C; for all i € 0..k. This seems a reasonable claim, be-
cause ifd is never satisfied, no declassification of the in-
put may occur. Similarly, we can see that for any trace in
which the conditiond is never satisfied after the condi-
tion ¢ is, no information about the input is available at the
end of the trace to am-attacker. This result is more in-
teresting: despite the fact that information about the input
is declassified and observable at le¥etluring the execu-
tion, by the end of the trace, no information about the input
is available at leveL.

Noninterference according to poligy allows reason-

then there is atrace, = s{,... s, such that = ¢ ...cp
and[si]f = [s;]f-

If S is a policy-enforcing sys-
tem, then for any condition-independent policy
p =4l SV (ly (- -3 (Up—q -3Ly) - -+ ), @any loca-
tion h such thatpol(h) = p, and any security level such
that, ¢y U... U411 Z ¢, form < k, thensS is noninterfer-
ing at security level after conditions:; . . . ¢, for location
h.

Proof: For any trace- suchthat- F ¢; .. . ¢,,,, we have/; U
... Ulmy1 C Ii(p, conds(T, p)). The result follows from
Theorem 4.71

4.5. Robustness

ing about the interaction between declassification and era-
sure, resulting in stronger security guarantees than can be Robust declassification [41, 29, 40] is a semantic secu-

achieved in the absence of information erasure.
Noninterference according to poligygeneralizes a use-
ful semantic security conditiomoninterference until de-
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rity condition that restricts what information an active at-
tacker may obtain from a system that declassifies informa-
tion. In particular, a system is robust if an active attacker



(who can modify low-integrity aspects of the system and ers authorize code, a system needs to ensure that informa-
observe its execution), is unable to learn more than a pastion is erased before control leaves the authorized code. It
sive attacker (who can only observe the system’s execution).is not clear how to characterize selective erasure as a com-

In a language-based setting [40, 29], the robustness conbination of access control and information flow.
dition is enforced by ensuring that the decision to declassify
information (as well as the information to be declassified) is
trusted. This trust requirement can be treated as a declassp. Related work
fication condition in the policy language.

With the introduction of information erasure, it is natu- As far as we are aware, no previous work has addressed
ral to ask whether there is a corresponding “robust erasure”information erasure from an information flow perspective,
semantic security condition? Interestingly, the semantic se-nor considered language-based enforcement of erasure poli-
curity condition is the same: performing modifications to cies. Some work has considered the secure deletion (or non-
low-integrity parts of the system should not reveal more in- deletion) of information from magnetic disks and semicon-
formation to the active attacker than to a passive attacker.ductor devices (e.g., [17, 18, 2]), but this work is not at a
Thus, an active attacker should not be able either to causdanguage-level of abstraction, nor does it consider strong
more information to be declassified, or to prevent the era-end-to-end security properties. Revocation of access rights
sure of information. Therefore, robustness is a more generals a form of erasure for access control; some work has
property that applies to information flow policies in general, investigated automatic revocation based on temporal con-
not just to declassification. In a language-based setting, ro-straints (e.g., [5, 20]).
bustness would be enforced by ensuring that the decision There has however been much recent work on semantic
to erase data is trusted, and cannot be subverted by the akecurity properties that hold in the presence of downgrad-
tacker: any erasure that should occur in the absence of arning of security policies. The most relevant (noninterference
active attacker should also occur in the presence of the atuntil declassification, robust declassification, and selective
tacker. declassification) have already been discussed in Section 4.

Investigating the language-based enforcement of erasure recent paper by Sabelfeld and San@sgrovides a good
policies, and determining suitable conditions on erasure survey of semantic security definitions for systems that per-

policies to ensure robustness remains future work. form declassification, as well as suggesting some guiding
principles for declassification mechanisms.
46 Selectlve declassrflcatlon and erasure Li and Zdancewic [21] pl’esent a framework of Security

policies that enforce the end-to-end semantic security con-

Selective declassificatidB1] was introduced as part of dition relaxed noninterferencelheir security policies ex-
the decentralized label model [27, 28], and requires the Presswhatinformation can be declassified, by specifying
owners of data to authorize all declassifications of that data.functions on secret data whose result is permitted to be non-
Which owners are required to give their authorization for a Secret. Their work is largely orthogonal to the declassifica-
given declassification depends on what security levels thetion policies of this framework, which focus primarily on
data is being declassified from and to. Pottier and Con- expressingvheninformation can be released, rather than on
chon [31] present selective declassification as a combina-fine-grained specifications of what information may be re-
tion of information flow and access control, where a num- |€ased. Supporting reasoning about relaxed noninterference
ber of declassification operations are locked at appropri-Would be an interesting extension to the security policies
ate levels of authority; access control allows only suitably Presented here.
authorized principals to unlock the declassification opera-  Sabelfeld and Myers [35] presetlimited releasga se-
tions, and only unlocked declassification operations can de-mantic security condition that allows reasoning about non-
classify information. Selective declassification, like robust interference in the presence of declassification through “es-
declassification, attempts to prevent inappropriate declassicape hatch” expressions. Like relaxed noninterference, de-
fications by requiring a certain condition to be true when limited release allows a precise specificatiombiatinfor-
declassification occurs. Like robust declassification, such amation may be declassified, by specifying computations on
condition can be incorporated into this policy framework. ~ secret data whose result is non-secret.

In the presence of information erasure, there is a corre- Giacobazzi and Mastroeni [14] generalize noninterfer-
sponding concept of selective erasure: all owners of dataence by making it parametric with respect to what informa-
must give their authorization for theon-erasure of data. tion an attacker can analyze about the input and output of
That is, information that is meant to be erased is only per- a program. As suchabstract noninterferengdike relaxed
mitted to exist provided all owners of that information per- noninterference and delimited release, focusewbat in-
mit its existence. In a language-based setting where own-formation can be declassified.
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Cuppens and Gabillon [9] consider the problem of tem- of this paper. Recent work has generalized decentralized la-
poral downgrading rules in a multi-level database. They bels toowned policieg6]; the security policies of this pa-
present a language, based on a modal first order logic, thaper (instantiated with a base lattice of sets of readers) could
captures the semantics of temporal databases, and permitse used as the policies that are owned by security princi-
the specification of downgrading rules; their downgrading pals.
rules are expressive, permitting the specification of down-  The use of conditions to determine when declassification
grading at a specific time, after a delay, or on a certain eventis permitted and erasure required adds a temporal element
(such as a user explicitly requesting to downgrade the infor-to the information security policies. As such, there is a con-
mation). nection between the policies of this paper and temporal log-

Intransitive noninterference [34, 30, 33] is an informa- ics, such as LTL [23] and CTL [8]. In particular, if informa-
tion flow condition based on noninterference that describestion has a declassification poligys, ¢ enforced on it, then
the behavior of systems that declassify information. While a policy-enforcing system ensures that at all times, if the in-
intransitive noninterference does not address informationformation is declassified fromto ¢, then the conditiom is
erasure, there is a close connection between it and the entrue. (The conditiorr could itself be a temporal logic for-
forcement of thep <. ¢ relationship. In fact, declassifi- mula, if the framework is so instantiated.) Given sufficient
cation policies are an extension of intransitive noninterfer- predicates to reason about declassification, this guarantee
ence with temporal properties: in each computation step, in-could be formally stated in a temporal logic. Similarly, if
formation flows between levels only if that flow is permit- information has an erasure polipy”q enforced on it, then
tedandappropriate conditions are true for that computation a policy-enforcing system ensures that at all times, i
step [7]. true then the information is either removed from the sys-

Recent work by Mantel and Sands [24] places intran- tem, or has botly andg enforced on it. Again, given suffi-
sitive noninterference in a language setting, providing a cient predicates, this guarantee could be formally stated in
bisimulation-based security condition for multi-threaded @ temporal logic. Barthe, D’Argenio and Rezk [4] use the
programs that controls where information can be declassi-technique ofself-compositiorto state noninterference as a
fied, and a type system that enforces this condition. temporal logic formula; the same technigue may allow non-

Some other approaches to reasoning about declassifiinterference according to poligyto be stated as a temporal

cation in an information flow setting, such amantita-  09ic formula.
tive information flow(e.g., [25, 22, 127]) andrelative se-
crecy[38] seek to measure or bound thmountof infor- 6. Conclusion
mation that is declassified. This work is largely orthogonal
to the declassification policies of this paper, which (in this  There has been a great deal of work on enriching in-
context) are concerned only with possibilistic security as- formation flow policies to support information release, but
surances. we are not aware of any prior work on information era-
Zheng and Myers [42] show that noninterference can be sure, even though erasure policies appear to be an impor-
achieved in the presence of dynamic labels. Dynamic la-tant aspect of information security requirements. This paper
bels have a close connection to declassification and erasurgresents a framework for strong erasure policies, including
policies, since the conditions for declassification and era- support for both declassification and erasure.
sure may depend on runtime data. In particular, both con-  The policy language allows the specification of policies
trol the security policies of data at runtime, and may them- that combine lattice levels, declassification, and erasure in
selves depend on runtime data, and thus, both may be usedomplex ways. The may-flow relation supports static or dy-
to modulate covert channels. Most of the semantic securitynamic reasoning about flows of information annotated with
conditions of Section 4 require the policy of the input lo- the policies. We have also given a formal semantics to these
cation to be condition-independent; it should be possible to policies and shown that this semantics is consistent with the
use Zheng and Myers’ techniques for reasoning about andmay-flow relation and a notion of observational level. A for-
controlling information flow from dynamic labels to prove mal definition of what it means for a trace-based system to
noninterference results that hold even when the policy of enforce a policy has been given; this definition then makes
the input location is not condition independent. it possible to show that any policy-enforcing system satis-
Thedecentralized label mod@27, 28] is a security pol-  fies various useful generalizations of noninterference.
icy framework that permits mutually distrusting owners of Basing information security on information flow policies
information to specify who is permitted to read that infor- offers the promise of strong, end-to-end security assurance.
mation; only information owners may declassify the infor- However, information flow policies need to be much more
mation they own. The decentralized labels form a lattice, expressive to capture the security requirements of real sys-
which can be used as the base lattice of the security policiedems. In fact, this work was motivated by an attempt to cap-
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ture the security requirements of a web-based voting sys-[14] R. Giacobazzi and |. Mastroeni. Abstract non-interference:
tem. This paper makes a step toward greater expressiveness,

but much work remains to be done; one obvious next step is

to develop enforcement mechanisms for erasure.
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B. Proof of Lemma 4.5

Let S be a policy-enforcing system ang, be a
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icy enforcing, there is a stat¢ _ , such thats; — s,
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Proof of Theorem 3.4

Proof: By induction on the judgment <.. ¢. The inductive
hypothesis is that for any premise of the fopm<,. ¢’, we
have[p']- 2 [¢'] -

(MF-L ATTICE ), (MF-T RANS). Trivial.

(MF-DECL). Herep

/I C

p '\/‘->q’

and T E c¢. We have

[p" 54l = [p"]- U{(=".0) € [+ | 7" = Tandr" E
¢} 2 [q]+. sincer E c.
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