
Quantifying Information Flow with Beliefs

Michael R. Clarkson Andrew C. Myers Fred B. Schneider
Department of Computer Science

Cornell University
{clarkson,andru,fbs}@cs.cornell.edu

Abstract

To reason about information flow, a new model is developed that describes
how attacker beliefs change due to the attacker’s observation of the execution of a
probabilistic (or deterministic) program. The model enables compositional reason-
ing about information flow from attacks involving sequences of interactions. The
model also supports a new metric for quantitative information flow that measures
accuracy of an attacker’s beliefs. Applying this new metric reveals inadequacies of
traditional information flow metrics, which are based on reduction of uncertainty.
However, the new metric is sufficiently general that it can be instantiated to mea-
sure either accuracy or uncertainty. The new metric can also be used to reason
about misinformation; deterministic programs are shown to be incapable of pro-
ducing misinformation. Additionally, programs in which nondeterministic choices
are made by insiders, who collude with attackers, can be analyzed.

1 Introduction

Qualitative security properties, such as noninterference [13], typically either prohibit
any flow of information from a high security level to a lower level, or they allow any
information to flow provided it passes through some release mechanism. For a program
whose correctness requires flow from high to low, the former property is too restrictive
and the latter can lead to unbounded leakage of information. Quantitative flow policies,
such as “at mostk bits leak per execution of the program”, allow information flows but
at restricted rates. Such policies are useful when analyzing programs whose nature
requires that some—but not too much—information be leaked. Examples of these pro-
grams include guards, which sit at the boundary between trusted and untrusted systems,
and password checkers.

Quantifying information flow is more difficult than it might seem. Consider a pass-
word checkerPWC that sets an authentication flaga after checking a stored password
p against a (guessed) passwordg supplied by the user.

PWC : if p = g then a := 1 elsea := 0

For simplicity, suppose that the password is eitherA, B, or C. Suppose also that the
user is actually an attacker attempting to discover the password, and he believes the

1

password is overwhelmingly likely to beA but has a minuscule and equally likely
chance to be eitherB or C. (This need not be an arbitrary assumption on the attacker’s
part; perhaps the attacker was told by a usually reliable informant.) If the attacker
experiments by executingPWC and guessingA, he expects to observe thata equals
1 upon termination. Such a confirmation of the attacker’s belief would seem to convey
some small amount of information. But suppose that the informant was wrong: the
real password isC. Then the attacker observes thata is equal to 0 and infers thatA
is not the password. Common sense dictates that his new belief is thatB andC each
have a 50% chance of being the password. The attacker’s belief has greatly changed—
he is surprised to discover the password is notA—so the outcome of this experiment
conveys more information than the previous outcome. Thus, the information conveyed
by executingPWC depends on what the attacker initially believed.

How much information flows fromp to a in each of the above experiments? An-
swers to this question have traditionally been based on change in uncertainty [8, 30,
14, 2, 24, 3, 26]: information flow is measured by the reduction in uncertainty about
secret data. Observe that, in the case where the password isC, the attacker initially is
quite certain (though wrong) about the value of the password and after the experiment
is rather uncertain about the value of the password; the change from “quite certain”
to “rather uncertain” is an increase in uncertainty. So according to a metric based on
reduction in uncertainty, no information flow occurred, which contradicts our intuition.

The problem with metrics based on uncertainty is twofold. First, they do not take
accuracy into account. Accuracy and uncertainty are orthogonal properties of the at-
tacker’s belief—being certain does not make one correct—and as the password check-
ing example illustrates, the amount of information flow depends on accuracy rather
than on uncertainty. Second, uncertainty-based metrics are concerned with some un-
specified agent’s uncertainty rather than an attacker’s. The unspecified agent is able to
observe a probability distribution over secret input values but cannot observe the par-
ticular secret input used in the program execution. If the attacker were the unspecified
agent, then there would be no reason in general to assume that the probability dis-
tribution the attacker uses is correct. Because the attacker’s probability distribution is
therefore subjective, it must be treated as a belief. Beliefs are thus an essential—though
until now uninvestigated—component of information flow.

This paper presents a new way of measuring information flow, based on these in-
sights. Section 2 gives basic representations for beliefs and programs. Section 3 de-
scribes a model of the interaction between attackers and systems; it also describes how
attackers update beliefs by observing execution of programs. Section 4 defines a new
quantitative flow metric, based on information theory, that characterizes the amount
of information flow due to changes in the accuracy of an attacker’s belief. The met-
ric can also be instantiated to measure change in uncertainty, and thus it generalizes
previous information-flow metrics. The model and metric are formulated for use with
any programming model that can be given a denotational semantics compatible with
the representation of beliefs, and Section 5 illustrates with a particular programming
language (while-programs plus probabilistic choice). Section 6 extends the model to
programs in which nondeterministic choices are resolved by insiders, who are allowed
to observe secret values. Section 7 discusses related work, and Section 8 concludes.
This paper revises and expands an earlier version [6] that appeared in CSFW’05.

2

2 Incorporating Beliefs

A belief is a statement an agent makes about the state of the world, accompanied
by some measure of how certain the agent is about the truthfulness of the statement.
Agents will reason about probabilistic programs, so we begin by developing mathe-
matical structures for representing probabilistic programs and beliefs.

2.1 Distributions

A frequency distributionis a functionδ that maps a program state to afrequency, where
a frequency is a non-negative real number. A frequency distribution is essentially an
unnormalized probability distribution over program states; it is easier to define a pro-
gramming language semantics using frequency distributions than using probability dis-
tributions [31].1 Henceforth, we write “distribution” to mean “frequency distribution”.

The set of all program states isState, and the set of all distributions isDist. The
structure ofState is mostly unimportant; it can be instantiated according to the needs
of any particular language or system. For our examples, states map variables to values,
whereVar andVal are both countable sets.

v ∈ Var
σ ∈ State , Var → Val
δ ∈ Dist , State→ R+

We write a state as a list of mappings; for example,(g 7→ A, a 7→ 0) is a state in which
variableg has valueA anda has value0.

Themassin a distributionδ is the sum of frequencies:

‖δ‖ ,
∑

σ δ(σ)

A probability distribution has mass 1, but a frequency distribution may have any non-
negative mass. Apoint massis a probability distribution that maps a single state to 1.
It is denoted by placing a dot over that single state:

σ̇ , λσ′ . if σ′ = σ then1 else0

2.2 Programs

Execution of programS is described by a denotational semantics in which the meaning
[[S]] of S is a function of typeState→ Dist. This semantics describes the frequency
of termination in a given state: if[[S]]σ = δ, then the frequency ofS, when begun

1The distribution notation in this paper is used in lieu of traditional random variable notation. A distribu-
tion is the probability density function associated with a random variable. When defining basic operations,
the random variable notation might look more familiar. In our more advanced definitions, such as belief dis-
tance and program semantics, the distribution notation turns out to be superior because those definitions are
most naturally expressed using the density function. Indeed, in most of the paper, it is the density function
with which we are concerned, and that is why we use the distribution notation throughout.

3

in σ, terminating inσ′ is δ(σ′). This semantics can be lifted to a function of type
Dist → Dist by the following definition:

[[S]]δ ,
∑

σ δ(σ) · [[S]]σ

Thus, the meaning ofS over a distribution of inputs is completely determined by the
meaning ofS given a state as input. By defining programs in terms of how they operate
on distributions we permit analysis of probabilistic programs. Section 5 shows how to
build such a semantics.

Our examples usewhile-programs extended with a probabilistic choice construct.
Let metavariablesS, v, E, andB range over programs, variables, arithmetic expres-
sions, and Boolean expressions, respectively. Evaluation of expressions is assumed
side-effect free, but we do not otherwise prescribe their syntax or semantics. The syn-
tax of the language is:

S ::= skip | v := E | S;S | if B then S elseS
| while B do S | S p8 S

The operational semantics for the deterministic subset of this language is standard.
Probabilistic choiceS1 p 8 S2 executesS1 with probabilityp or S2 with probability
1− p, where0 ≤ p ≤ 1.

2.3 Labels and Projections

We need a way to identify secret data;confidentiality labelsserve this purpose. For
simplicity, assume there are only two labels: a labelL that indicates low-confidentiality
(public) data, and a labelH that indicates high-confidentiality (secret) data. Assume
thatState is a product of two domainsStateL andStateH , which contain the low- and
high-labeled data, respectively. Alow stateis an elementσL ∈ StateL; a high stateis
an elementσH ∈ StateH . The projection of stateσ ∈ State onto StateL is denoted
σ � L; this is the part ofσ visible to the attacker. Projection ontoStateH , the part ofσ
not visible to the attacker, is denotedσ � H.

Each variable in a program is subscripted by a label to indicate the confidentiality of
the information stored in that variable; for example,xL is a variable that contains low
information. For convenience, let variablel be labeledL and variableh be labeledH.
VarL is the set of variables in a program that are labeledL, soStateL = VarL → Val.
The low projectionσ � L of stateσ is:

σ � L , λv ∈ VarL . σ(v)

Statesσ andσ′ arelow-equivalent, writtenσ ≈L σ′, if they have the same low projec-
tion:

σ ≈L σ′ , (σ � L) = (σ′ � L)
Distributions also have projections. Letδ be a distribution andσL a low state. Then

(δ � L)(σL) is the combined frequency of those states whose low projection isσL:2

δ � L , λσL ∈ StateL .
∑

σ′ | (σ′�L) = σL
δ(σ′)

2Formula?x∈D | R P is a quantification in which? is the quantifier (such as∀ or Σ), x is the variable
that is bound inR andP , D is the domain ofx, R is the range, andP is the body. We omitD, R, and even
x when they are clear from context; an omitted range meansR ≡ true.

4

High projection and high equivalence are defined by replacing occurrences ofL with
H in the definitions above.

2.4 Belief Representation

To be usable in our framework, a belief representation must support certain natural
operations. Letb andb′ be beliefs ranging over sets of possible worldsW andW ′,
respectively, where aworld is an elementary outcome about which beliefs can be held.

1. Belief product⊗ combinesb andb′ into a new beliefb⊗b′ about possible worlds
W ×W ′, whereW andW ′ are disjoint.

2. Belief updateb|U is the belief that results whenb is updated to include new
information that the actual world is in a setU ⊆ W of possible worlds.

3. Belief distanceD(b _ b′) is a real numberr ≥ 0 quantifying differences be-
tweenb andb′.

While the results in this paper are, for the most part, independent of any particular
representation, the rest of this paper uses distributions to represent beliefs. High states
are the possible worlds for beliefs, and a belief is a probability distribution over high
states.

b ∈ Belief , StateH → R+ s.t.‖b‖ = 1

Whereas distributions correspond to positive measures, beliefs correspond to proba-
bility measures. Probability measures are well-studied as a belief representation [18],
and they have several advantages here: they are familiar, quantitative, support the op-
erations required above, and admit a programming language semantics (as shown in
Section 5). There is also a nice justification for the numbers they produce: roughly,
b(σ) characterizes the amount of money an attacker should be willing to bet thatσ is
the actual state of the system [18]. Other choices of belief representation could include
belief functions or sets of probability measures [18]. While these are more expressive
than probability measures, it is more complicated to define the required operations for
them.

For belief product⊗, we employ a distribution product⊗ of two distributionsδ1 :
A → R+ andδ2 : B → R+, with A andB disjoint:

δ1 ⊗ δ2 , λ(σ1, σ2) ∈ A×B . δ1(σ1) · δ2(σ2)

It is easy to check that ifb andb′ are beliefs,b⊗ b′ is too.
For belief update|, we usedistribution conditioning:

δ|U , λσ . if σ ∈ U then
δ(σ)∑

σ′∈U δ(σ′)
else0

For belief distanceD we userelative entropy, an information-theoretic metric [20]
for the distance between distributions.

D(b _ b′) ,
∑

σ b′(σ) · log b′(σ)
b(σ)

5

The base of the logarithm inD can be chosen arbitrarily; we use base 2 and writelg to
indicatelog2, making bits the unit of measurement for distance. The relative entropy
of b to b′ is the expected inefficiency (that is, the number of additional bits that must
be sent) of an optimal code that is constructed by assuming an inaccurate distribution
over symbolsb when the real distribution isb′ [7]. Like an analytic metric,D(b _ b′)
is always at least zero andD(b _ b′) equals zero only whenb = b′.3

Relative entropy has the property that ifb′(σ) > 0 andb(σ) = 0, thenD(b _
b′) = ∞. Intuitively, b′ is “infinitely surprising” because it regardsσ as possible
whereasb regardsσ as impossible. To avoid this anomaly, beliefs may be required to
satisfy anadmissibility restriction, which ensures that attackers do not initially believe
that certain states are impossible. For example, a belief might be restricted such that it
never differs by more than a factor ofε from a uniform distribution. Or, the attacker’s
belief may be required to be a maximal entropy distribution [7] with respect to attacker-
specified constraints. Other admissibility restrictions may be substituted for these when
stronger assumptions can be made about attacker beliefs.

3 Experiments

We formalize as anexperimenthow anattacker, an agent that reasons about secret data,
revises his beliefs from interaction with asystem, an agent that executes programs. The
attacker should not learn about the high input to the program but is allowed to observe
(and perhaps influence) low inputs and outputs. Other agents (a system operator, other
users of the system with their own high data, an informant upon which the attacker
relies, etc.) might be involved when an attacker interacts with a system; however, it
suffices to condense all of these to just the attacker and the system.

We are chiefly interested in the programS with which the attacker is interacting,
and we conservatively assume that the attacker knows the source code ofS. For sim-
plicity of presentation, we assume thatS always terminates and that it never modifies
the high state. Section 3.4 discusses how both restrictions can be lifted without signifi-
cant changes.

3.1 Experiment Protocol

Formally, an experimentE is described by a tuple:

E = 〈S, bH , σH , σL〉

whereS is the program,bH is the attacker’s belief,σH is the high projection of the
initial state, andσL is the low projection of the initial state. The protocol for experi-
ments, which uses some notation defined below, is summarized in Figure 1. Here is a
justification for the protocol.

3Unlike an analytic metric,D does not satisfy symmetry or the triangle inequality. However, it seems
unreasonable to assume that either of these properties holds for beliefs, since it can be easier to rule out a
possibility from a belief than to add a new one, or vice-versa.

6

Figure 1 Experiment protocol

An experimentE = 〈S, bH , σH , σL〉 is conducted as follows.

1. The attacker chooses a prebeliefbH about the high state.

2. (a) The system picks a high stateσH .

(b) The attacker picks a low stateσL.

3. The attacker predicts the output distribution:δ′A = [[S]](σ̇L ⊗ bH).

4. The system executes the programS, which produces a stateσ′ ∈ δ′ as output,
whereδ′ = [[S]](σ̇L ⊗ σ̇H). The attacker observes the low projection of the
output state:o = σ′ � L.

5. The attacker infers a postbelief:b′H = (δ′A|o) � H.

An attacker’sprebelief, describing his belief at the beginning of the experiment
(step 1), may be chosen arbitrarily (subject to an admissibility restriction as in Sec-
tion 2.4) or may be informed by previous experiments. In a series of experiments, the
postbelieffrom one experiment typically becomes the prebelief to the next. The at-
tacker might even choose a prebeliefbH that contradicts his true subjective probability
distribution for the state, and this gives our analysis additional power by allowing the
attacker to conduct experiments to answer questions such as “What would happen if I
were to believebH?”.

The system choosesσH (step 2a), the high projection of the initial state, and this
part of the state might remain constant from one experiment to the next or might vary.
For example, Unix passwords do not usually change frequently, but the output dis-
played on an RSA SecurID token changes each minute. We conservatively assume that
the attacker chooses all ofσL (step 2b), the low projection of the initial state.4 This
gives the attacker additional power in controlling execution of the program, which he
can use to attempt to maximize the amount of information flow. The attacker’s choice
of σL is thus likely to be influenced bybH , but for generality, we do not require there
be such a strategy.

Using the semantics ofS along with prebeliefbH as a distribution on high input,
the attacker conducts a “thought experiment” to generate aprediction of the output
distribution (step 3). We define predictionδ′A to correlate the output state with the high
input state:

δ′A = [[S]](σ̇L ⊗ bH)

ProgramS is executed (step 4) only once in each experiment; multiple executions
are modeled by multiple experiments. The meaning ofS given inputsσL andσH is an

4More generally, both the system and the attacker might contribute toσL. But since we are concerned
only with confidentiality—not integrity—of information, we do not need to distinguish which parts are
chosen by what agent.

7

output distributionδ′:
δ′ = [[S]](σ̇L ⊗ σ̇H)

From δ′ the attacker makes anobservation, which is a low projection of an output
state. Probabilistic programs may yield many possible output states, but in a single
execution of the program, only one output state is actually produced. This output state
σ′ is produced with frequencyδ′(σ′). We write:

σ′ ∈ δ′

to denote thatσ′ is in the support of (i.e., has positive frequency according to)δ′. In a
single experiment, the attacker is allowed only a single observation. The observationo
resulting fromσ′ is:

o = σ′ � L

Finally, the attacker incorporates any new inferences that can be made from obser-
vation o by conditioning predictionδ′A. The result is projected toH to produce the
attacker’s postbeliefb′H (step 5):

b′H = (δ′A|o) � H

Here, conditioning operatorδ|o is defined in terms of conditioning operatorδ|U . The
new operator removes all mass in distributionδ that is inconsistent with observationo,
then normalizes the result:

δ|o , δ|{σ′ | σ′ � L = o}
= λσ . if (σ � L) = o then δ(σ)

(δ�L)(o) else0

3.2 Password Checking as an Experiment

Our experiment model allows the informal reasoning in Section 1 to be made precise.
For example, consider the password checker; adding confidentiality labels yields:

PWC : if pH = gL then aL := 1 elseaL := 0

The attacker begins an experiment by choosing prebeliefbH , perhaps as specified in
the column labeledbH of Table 1. Next, the system chooses initial high projectionσH ,
and the attacker chooses initial low projectionσL. In the first experiment in Section 1,
the password wasA, so the system choosesσH = (p 7→ A). Similarly, the attacker
choosesσL = (g 7→ A, a 7→ 0). (The initial value ofa is actually irrelevant, since
it is never used by the program anda is set along all control paths.) Next, the system
executesPWC . Output distributionδ′ is a point mass at the stateσ′ = (p 7→ A, g 7→
A, a 7→ 1); the semantics in Section 5 will validate this intuition. Sinceσ′ is the only
state that can be sampled fromδ′, the attacker’s observationo1 is σ′ � L = (g 7→
A, a 7→ 1).

Finally, the attacker infers a postbelief. He conducts a thought experiment, pre-
dicting an output distributionδ′A = [[PWC]](σ̇L ⊗ bH), given in Table 2. The ellipsis
in the final row of the table indicates that all states not shown have frequency 0. This

8

Table 1Beliefs aboutpH

probability
pH bH b′H1 b′H2

A 0.98 1 0
B 0.01 0 0.5
C 0.01 0 0.5

Table 2Distributions onPWC output

p g a δ′A δ′A|o1 δ′A|o2

A A 0 0 0 0
A A 1 0.98 1 0
B A 0 0.01 0 0.5
B A 1 0 0 0
C A 0 0.01 0 0.5
C A 1 0 0 0

. . . 0 0 0

distribution is intuitively correct: the attacker believes that he has a 98% chance of
being authenticated, whereas 1% of the time he will fail to be authenticated because
the password isB, and another 1% because it isC. The attacker conditions prediction
δ′A on observationo1, obtainingδ′A|o1, also shown in Table 2. Projecting to high yields
the attacker’s postbeliefb′H1, shown in Table 1. This postbelief is what the informal
reasoning in Section 1 suggested: the attacker is certain that the password isA.

The second experiment in Section 1 can also be formalized. In it,bH andσL remain
the same as before, butσH becomes(p 7→ C). Observationo2 is therefore the point
mass at(g 7→ A, a 7→ 0). Predictionδ′A remains unchanged, and conditioned ono2 it
becomesδ′A|o2, shown in Table 2. Projecting to high yields the new postbeliefb′H2 in
Table 1. This postbelief again agrees with the informal reasoning: the attacker believes
that there is a 50% chance each for the password to beB or C.

3.3 Bayesian Belief Revision

The formula the attacker uses to infer a postbelief is an application ofBayesian infer-
ence, which is a standard technique in applied statistics for making inferences when
uncertainty is made explicit through probability models [12]. The attacker therefore
reasons rationally, according to Halpern’s rationality axioms [17], though the literature
on human behavior shows that this is not always the same as human reasoning [21, 22].

Let belief revision operatorB yield the postbelief from an experimentE = 〈S, bH ,
σH , σL〉, given observationo:

B(E , o) , (([[S]](σ̇L ⊗ bH)|o)) � H

9

We writeb′H ∈ B(E) to denote that there exists someo for which b′H = B(E , o).
Recall Bayes’ rule for updating a hypothesisHyp with an observationobs:

Pr(Hyp|obs) =
Pr(Hyp)Pr(obs|Hyp)∑

Hyp′ Pr(Hyp′)Pr(obs|Hyp′)

In our model, the attacker’s hypothesis is about the values of high states, so the domain
of hypotheses isState� H. ThereforePr(Hyp), the probability the attacker ascribes to
a particular hypothesisσH , is modeled bybH(σH). The probabilityPr(obs|Hyp) the
attacker ascribes to an observation given the assumed truth of a hypothesis is modeled
by the program semantics: the probability of an observationo given an assumed high
input σH is ([[S]](σ̇L ⊗ σ̇H) � L)(o). Given experimentE = 〈S, bH , σH , σL〉, instan-
tiating Bayes’ rule on these probability models yields Bayesian inferenceBI (E , o),
which isPr(σH |o):

BI (E , o) =
bH(σH) · ([[S]](σ̇L ⊗ σ̇H) � L)(o)∑

σ′H
bH(σ′H) · ([[S]](σ̇L ⊗ σ̇′H) � L)(o)

With this instantiation, we can show that the experiment protocol leads an attacker to
update his belief according to Bayesian inference.

Theorem 1

B(E , o)(σH) = BI (E , o)

Proof. In Appendix B. �

3.4 Mutable High State and Nontermination

Section 3.1 invokes two simplifying assumptions about programS: it never modifies
high input, and it always terminates. We now dispense with these technical issues.

To eliminate the first assumption, note that ifS were to modify the high state, the
attacker’s predictionδ′A would correlate high outputs with low outputs. However, to
calculate a postbelief (in step 5),δ′A must correlate highinputswith low outputs. So
our experiment protocol requires the high input state be preserved inδ′A. Informally,
we can do this by keeping a copy of the initial high inputs in the program state. This
copy is never modified by the program. Thus, the copy is preserved in the final output
state, and the attacker can again establish a correlation between high inputs and low
outputs. Technical details are given in Appendix A.

To eliminate the second assumption, note that programS must terminate for an at-
tacker to obtain a low state as an observation when executingS. There are two ways to
model the observation in the case of nontermination, depending on whether the attacker
can detect nontermination. If the attacker has an oracle that decides nontermination,
then nontermination can be modeled in the standard denotational style with a state⊥
representing the divergent state. Details of this approach are given in Appendix A. An
attacker that cannot detect nontermination is more difficult to model. At some point

10

during the execution of the program, he may stop waiting for the program to termi-
nate and declare that he has observed nontermination. However, he may be incorrect
in doing so—leading to beliefs about nontermination and instruction timings. The in-
teraction of these beliefs with beliefs about high inputs is complex; we leave this for
future work.

4 Measuring Information Flow

The informal analysis ofPWC in Section 1 suggests that information flow corresponds
to an improvement in the accuracy of an attacker’s belief. We use change in accuracy,
as measured by belief distanceD, to quantify information flow.

4.1 Information Flow from an Outcome

Given an experimentE = 〈S, bH , σH , σL〉, an outcomeis a postbeliefb′H such that
b′H ∈ B(E), whereB is the belief revision operator from Section 3.3. Recall from
Section 2.4 thatD(b _ b′) is the distance from beliefb to beliefb′. The accuracy of
the attacker’s prebeliefbH in experimentE is D(bH _ σ̇H); the accuracy of outcome
b′H , the attacker’s postbelief, isD(b′H _ σ̇H). We define the amount of information
flowQ caused by outcomeb′H of experimentE as the difference of these two quantities:

Q(E , b′H) , D(bH _ σ̇H)−D(b′H _ σ̇H)

Thus the amount of information flowQ is the improvement in the accuracy of the at-
tacker’s belief. This amount can positive or negative; we defer discussion of negative
flow to Section 4.3. SinceD is instantiated with relative entropy, the unit of measure-
ment forQ is (information-theoretic) bits.

With an additional definition from information theory, a more consequential char-
acterization ofQ is possible. LetIδ(F) denote theinformationcontained in eventF
drawn from probability distributionδ:

Iδ(F) , − lg Prδ(F)

Information is sometimes called “surprise” becauseI measures how surprising an
event is; for example, when an event that has probability 1 occurs, no information
(0 bits) is conveyed because the occurrence is completely unsurprising.

For an attacker, the outcome of an experiment involves two unknowns: the initial
high stateσH and the probabilistic choices made by the program. LetδS = [[S]](σ̇L ⊗
σ̇H) � L be the system’s distribution on low outputs, andδA = [[S]](σ̇L⊗bH) � L be the
attacker’s distribution on low outputs.IδA

(o) measures the information contained ino
about both unknowns, butIδS

(o) measures only the probabilistic choices made by the
program.5 For programs that make no probabilistic choices,δA contains information
about only the initial high state, andδS is a point mass at some stateσ such that
σ � L = o. So the amount of informationIδS

(o) is 0. For probabilistic programs,

5The technique used in Section 3.4 for modeling nontermination ensures thatδA andδS are probability
distributions. Thus,IδA

andIδS
are well-defined.

11

IδS
(o) is generally not equal to 0; subtracting it removes all the information contained

in IδA
(o) that is solely about the results of probabilistic choices, leaving information

about high inputs only.
The following theorem states thatQmeasures the information about high inputσH

contained in observationo.

Theorem 2

Q(E , b′H) = IδA
(o)− IδS

(o)

Proof.

Q(E , b′H)

= 〈 Definition ofQ 〉

D(bH _ σ̇H)−D(b′H _ σ̇H)

= 〈 Definitions ofD and point mass〉

− lg bH(σH) + lg b′H(σH)

= 〈 Lemma 2.1 (in Appendix B), properties oflg 〉

− lg PrδA
(o) + lg PrδS

(o)

= 〈 Definition ofI 〉

IδA
(o)− IδS

(o)

�

As an example, consider the experiments involvingPWC in Section 3.2. The first
experimentE1 has the attacker correctly guess the passwordA, so:

E1 = 〈PWC , bH , (p 7→ A), (g 7→ A, a 7→ 0)〉

where Table 1 definesbH and the other beliefs about to be used. Only one outcome,
b′H1, is possible from this experiment. We calculate the amount of flow from this
outcome, lettingσH = (p 7→ A):

Q(E1, b
′
H1) = D(bH _ σ̇H)−D(b′H1 _ σ̇H)

=
∑

σ′H
σ̇H(σ′H) · lg σ̇H(σ′H)

bH(σ′H) −
∑

σ′H
σ̇H(σ′H) · lg σ̇H(σ′H)

b′H1(σ
′
H)

= − lg bH(σH) + lg b′H1(σH)
= 0.0291

This small flow makes sense because the outcome has only confirmed something the
attacker already believed to be almost certainly true. In experimentE2 the attacker
guesses incorrectly:

E2 = 〈PWC , bH , (p 7→ C), (g 7→ A, a 7→ 0)〉

12

Again, only one outcome is possible from this experiment, and calculatingQ(E2, b
′
H2)

yields an information flow of5.6439 bits. This higher information flow makes sense,
because the attacker’s postbelief is much closer to correctly identifying the high state.
The attacker’s prebeliefbH ascribed a0.02 probability to the event[p 6= A], and the
information of an event with probability0.02 is 5.6439. This suggests thatQ is the
right metric for the information about high input contained in the observation.

The information flow of5.6439 bits in experimentE2 might seem surprisingly high.
At most two bits are required to store passwordp in memory, so why does the program
leak more than five bits? Here, the greater leakage occurs because the attacker’s belief
is not uniform. A uniform prebelief (ascribing1/3 probability to each passwordA, B,
andC) would, in a series of experiments, cause the attacker to learn a total oflg 3 ≈ 1.6
bits. However, beliefbH is more erroneous than the uniform belief, so a larger amount
of information is required to correct it.

An uncertainty-based definition for information flow does not produce a reasonable
leakage for this experiment. The attacker’s initial uncertainty aboutp is H(bH) =
0.1614 bits, whereH is the information-theoretic metric ofentropy, or uncertainty, in
a probability distributionδ:

H(δ) , −
∑

σ δ(σ) · lg δ(σ)

In the second experiment, the attacker’s final uncertainty aboutp isH(bH2) = 1. The
reduction in uncertainty is0.1614−1 = −0.8386. An uncertainty-based analysis, such
as Denning’s [8], would interpret this negative quantity as an absence of information
flow. But this is clearly not the case—the attacker’s belief has been guided closer to
reality by the experiment. The uncertainty-based analysis ignores reality by measuring
bH andbH2 against themselves only, instead of against the high stateσH .

4.2 Interpreting Metric Q
According to Theorem 2, metricQ correctly measures the amount of information flow,
in bits. But what does it mean to leak one bit of information? The next theorem states
thatk bits of leakage correspond to ak-fold doubling of the probability that the attacker
ascribes to reality.

Theorem 3 LetE = 〈S, bH , σH , σL〉.

Q(E , b′H) = k ≡ b′H(σH) = 2k · bH(σH)

Proof. In Appendix B. �

Suppose an attacker were to guess what reality is by sampling from his beliefbH ;
the probability he guesses correctly isbH(σH). Thus, by Theorem 3, one bit of leakage
makes the attacker twice as likely to guess correctly. This reveals an interesting anal-
ogy with the uncertainty-based definition. In it, one bit of leakage corresponds to the
attacker becoming twice as certain about the high state, though he may, as the example
in Section 4.1 shows, become certain about the wrong high state. However, one bit of
leakage in our accuracy-based definition corresponds to the attacker becoming twice as
certain about thecorrecthigh state.

13

Figure 2 Effect ofFLIP on postbelief

bH = 〈0.5, 0.5〉
o = (l 7→ 1)

bH = 〈0.5, 0.5〉
o = (l 7→ 0)

bH = 〈0.99, 0.01〉
o = (l 7→ 1)

bH = 〈0.01, 0.99〉
o = (l 7→ 0)

-�

6

?

Less accurate More accurate

More certain

Less certain

III

III IV

Table 3Analysis ofFLIP

Quadrant h I II III IV
bH : 0 0.5 0.5 0.99 0.01

1 0.5 0.5 0.01 0.99
o (l 7→ 0) (l 7→ 1) (l 7→ 1) (l 7→ 0)
b′H : 0 0.99 0.01 0.5 0.5

1 0.01 0.99 0.5 0.5
Increase in accuracy +0.9855 −5.6439 −0.9855 +5.6439
Reduction in uncertainty +0.9192 +0.9192 −0.9192 −0.9192

4.3 Accuracy, Uncertainty, and Misinformation

Accuracy and uncertainty are orthogonal properties of beliefs, as depicted in Figure 2.
The figure shows the change in an attacker’s accuracy and uncertainty when the pro-
gram

FLIP : l := h 0.998 l := ¬h

is analyzed with experimentE = 〈FLIP , bH , (h 7→ 0), (l 7→ 0)〉 and observation
o is generated by the experiment. The notationbH = 〈x, y〉 in Figure 2 means that
bH(h 7→ 0) = x andbH(h 7→ 1) = y.

Usually,FLIP setsl to beh, so the attacker will expect this to be the case. Execu-
tions in which this occurs will cause his postbelief to be more accurate, but may cause
his uncertainty to either increase or decrease, depending on his prebelief; when uncer-
tainty increases, an uncertainty metric would mistakenly say that no flow has occurred.

With probability0.01, FLIP produces an execution that fools the attacker and sets
l to be¬h, causing his belief to become less accurate. The decrease in accuracy results
in misinformation, which is a negative information flow. When the attacker’s prebelief

14

is almost completely accurate, such executions will make him more uncertain. But
when the attacker’s prebelief is uniform, executions that result in misinformation will
make him less uncertain; when uncertainty decreases, an uncertainty metric would
mistakenly say that flow has occurred.

Table 3 concretely demonstrates the orthogonality of accuracy and uncertainty. The
quadrant labels refer to Figure 2. The attacker’s prebeliefbH , observationo, and result-
ing postbeliefb′H are given in the top half of the table. In the bottom half of the table,
increase in accuracy is calculated using information flow metricQ, and reduction in
uncertainty is calculated using the difference in entropyH(bH)−H(b′H). The symme-
tries in the bottom half of the table are a result of the symmetries between prebeliefs
and postbeliefs. Quadrants II and IV, for example, have exchanged these beliefs, which
for both metrics has the effect of negating the amount of information flow.

The probabilistic choice inFLIP is essential for producing misinformation, as
shown by the following theorem. LetDet be the set of syntactically deterministic
programs, i.e., programs that do not contain any probabilistic choice. Because they lack
a source of randomness, these programs cannot decrease the accuracy of an attacker’s
belief.

Theorem 4

S ∈ Det ⇒ ∀E , b′H ∈ B(E) .Q(E , b′H) ≥ 0

Proof. In Appendix B. �

4.4 Emulating Uncertainty

The accuracy metric of Section 4.1 generalizes uncertainty metrics. Informally, this is
because uncertainty metrics recognize only two distributions (belief before and after
execution), whereas our framework recognizes these plus one additional distribution
(reality). By ignoring reality, our framework can produce the same results as many
uncertainty metrics. Here we show how to emulate the metric of Clark, Hunt, and
Malacaria [5]. Their metric states that the amount of information flowL from high
inputHin into low outputLout , given low inputLin , is:

L(Hin , Lin , Lout) , H(Hin |Lin)−H(Hin |Lin , Lout)

whereH is the generalization of the entropy function from Section 4.1 to conditional
entropy [7].6

First, to instantiate our framework to that of Clark et al., we force our framework
to ignore reality by introducing an admissibility restriction (cf. Section 2.4): prebeliefs
must be identical to the system’s chosen high input distribution. This means that prebe-
liefs must be correct; there can be no error in the attacker’s estimate of the probability
distribution on high inputs.

6Their metric more generally allows the measurement of information flow into any subset of the output
variables. The approach we give here can similarly be generalized.

15

Second, we adjust the definition of belief. The uncertainty model of Clark et al.
calculates information flow as an expectation over a probability distribution on both
low and high inputs. We could model this using the techniques about to be introduced
in Sections 4.5 and 4.6, but because of the admissibility restriction just made, it is
equivalent and simpler to allow beliefs to range over low state as well as high state.
As before, we assume that high state remains constant using the copying technique of
Section 3.4. Since beliefs now include low state, we must also apply this technique
to assure that the initial values of low variables are preserved in the state. Let the low
input component of the state be denotedL0. Assume that the attacker’s prebeliefb
ranges overL0 ∪H0, whereas his postbeliefb′ ranges overL0 ∪H0 ∪ L ∪H.

We want to establish that accuracy metricQ yields the same result as uncertainty
metricL for any outcome. Recall thatQ is defined in terms of distance functionD.
Our previous instantiation ofD as relative entropy yielded an accuracy metric. Now
we reinstantiateD using (non-relative) entropy:

D(b _ b′) = H(b � (L ∪ L0 ∪H0))−H(b � (L ∪ L0))

Observe that this instantiation ignores argumentb′, the belief representing reality. This
yields that amount of information flowQ is the same as uncertainty metricL.

Theorem 5

Q(E , b′) = L(Hin , Lin , Lout)

Proof. In Appendix B. �

4.5 Expected Flow for an Experiment

Since an experiment on a probabilistic program can produce many observations, and
therefore many outcomes, it is desirable to characterize expected flow over those out-
comes. So we define expected flowQE over all observations from experimentE :

QE(E) , Eo∈δ′�L[Q(E ,B(E , o))]
=

∑
o (δ′ � L)(o) · Q(E , ([[S]](σ̇L ⊗ bH)|o) � H)

whereδ′ � L = [[S]](σ̇L ⊗ σ̇H) � L gives the distribution on observations;Eσ∈δ[X(σ)]
is the expected value, with respect to distributionδ, of expressionX with free variable
σ; andB is the belief revision operator from Section 3.3.

Expected flow is useful in analyzing probabilistic programs. Consider a faulty
password checker:

FPWC : if p = g then a := 1 elsea := 0;
a := ¬a 0.18 skip

With probability 0.1, FPWC inverts the authentication flag. Can this program be
expected to confound attackers—doesFPWC leak less expected information than
PWC? This question can be answered by comparing the expected flow fromFPWC

16

Table 4Leakage ofPWC andFPWC

E o Q(E ,B(E , o)) QE(E)
E1 (a 7→ 1) 0.0291 0.0291

(a 7→ 0) impossible
EF
1 (a 7→ 1) 0.0258 0.0018

(a 7→ 0) −0.2142
E2 (a 7→ 1) impossible 5.6439

(a 7→ 0) 5.6439
EF
2 (a 7→ 1) −3.1844 2.3421

(a 7→ 0) 2.9561

to the flow ofPWC . Table 4 gives information flows fromFPWC for experiments
EF
1 andEF

2 , which are identical toE1 andE2 from Section 4.1, except that they exe-
cuteFPWC instead ofPWC . Observations(a 7→ 0) and(a 7→ 1) correspond to an
execution where the value ofa is inverted. The flow for the outcomes resulting from
these observations is negative, indicating that the program is giving the attacker mis-
information. Note that, for both pairs of experiments in Table 4, the expected flow of
FPWC is less than the flow ofPWC . We have confirmed that the random corruption
of a makes it more difficult for the attacker to increase the accuracy of his belief.

Expected flow can be conservatively approximated by conditioning on a single dis-
tribution rather than conditioning on many observations. Conditioningδ on δL has
the effect of making the low projection ofδ identical toδL, while leaving the high
projection ofδ|σL unchanged for allσL.

δ|δL , λσ .
δ(σ)

(δ � L)(σ � L)
· δL(σ � L)

A bound on expected flow is then calculated as follows. Given experimentE =
〈S, bH , σH , σL〉, let δ′ be the distribution that results from the system executingS as
in step 4 of the experiment protocol, i.e.,δ′ = [[S]](σ̇L ⊗ σ̇H). In the experiment
protocol, an attacker would observe the low projection of a state fromδ′. But suppose
that the attacker instead observed the low projection ofδ′ itself. (This projection is
the distribution over observations that the attacker would approach if he continued to
repeatE .) Let eH be the postbelief that results from conditioning on this distribution,
as in step 5 of the protocol:eH = (([[S]](σ̇L⊗bH))|(δ′ � L)) � H. Intuitively, eH is the
attacker’s expected postbelief with respect toδ′ � L. The amount of information flow
from expected postbeliefeH then bounds the expected amount of information flow, as
stated in the following theorem.

Theorem 6 Let:

E = 〈S, bH , σH , σL〉
δ′ = [[S]](σ̇L ⊗ σ̇H)

eH = (([[S]](σ̇L ⊗ bH))|(δ′ � L)) � H

17

Then:
QE(E) ≤ Q(E , eH)

Proof. In Appendix B. �

As an example, consider experimentEF
2 . Calculating the attacker’s expected post-

beliefeH in this experiment yieldseH = 〈0.8601, 0.0699, 0.0699〉, using the postbelief
notation from Section 4.3. BoundQ(E , eH) from Theorem 6 is thus6.4264 bits, which
is indeed greater than expected flowQE as calculated in Table 4.

4.6 Expected Flow over All Experiments

Uncertainty-based metrics typically consider the expected information flow over all ex-
periments, rather than the flow in a single experiment. An analysis, like ours, based on
single experiments allows a more expressive language of security properties in which
particular inputs or experiments can be considered. Moreover, our analysis can be
extended to calculate expected flow over all experiments.

Rather than choosing particular high and low input statesσH andσL, the system
and the attacker may choose distributionsδH andδL over high and low states, respec-
tively. These distributions are sampled to produce the initial input state. Taking the
expectation inQE with respect toσH , σL ando then yields the expected flow over all
experiments.

This extension also increases the expressive power of the experiment model. A
distribution over low inputs allows the attacker to use a randomized guessing strategy.
His distribution might also be a function of his belief, though we leave investigation
of such attacker strategies as future work. A distribution over high inputs could be
used, for example, to determine the expected flow of the password checker when users’
choice of passwords can be described by a distribution.

4.7 Maximum Information Flow

System designers are likely to want to limit the maximum possible information flow.
We characterize the maximum amount of information flow that programS can cause in
a single outcome as the maximum amount of flow from any outcome of any experiment
E = 〈S, bH , σH , σL〉 onS:

Qmax(S) , max{Q(E , b′H) | E , b′H ∈ B(E)}

Consider applyingQmax to PWC . Assume thatbH is a uniform distribution, rep-
resenting a lack of belief for any particular password, overk-bit passwords. If the
attacker guesses correctly, then according toQmax, the maximum leakage isk bits.
But if the attacker guesses incorrectly,PWC can leak at mostk− lg(2k− 1) bits in an
outcome; fork > 12 this is less than0.0001 bits.

Uncertainty metrics typically declare that the maximum possible information flow
is lg |StateH |; this is the number of bits necessary to store the high state. This was true
for the example ofk-bit passwords above. However, as experimentE2 from Section 4.1
shows, this declaration is valid only if the attacker’s prebelief is no more inaccurate

18

Table 5Repeated experiments onPWC

Repetition # 1 2
bH : A 0.98 0

B 0.01 0.5
C 0.01 0.5

σL(g) A B
o(a) 0 0
b′H : A 0 0

B 0.5 0
C 0.5 1

Q(E , b′H) 5.6439 1.0

than the uniform distribution. Thus uncertainty metrics make an implicit restriction on
attacker beliefs that our accuracy metric does not.

4.8 Repeated Experiments

Nothing precludes performing a series of experiments. The most interesting case has
the attacker return to step 2b of the experiment protocol in Figure 1 after updating
his belief in step 5; that is, the system keeps the high input to the program constant,
and the attacker is allowed to check new low inputs based on the results of previous
experiments.

Suppose that experimentE2 from Section 4.1 is conducted and repeated withσL =
(g 7→ B). Then the attacker’s belief about the password evolves as shown in Table 5.
Summing the information flow for each experiment yields a total information flow of
6.6439. This total corresponds to whatQ would calculate for a single experiment, if
that experiment changed prebeliefbH to postbeliefb′H2, whereb′H2 is the attacker’s
final postbelief in Table 5:

D(bH _ σ̇H)−D(b′H2 _ σ̇H) = 6.6439− 0
= 6.6439

This example suggests a general theorem stating that the postbelief from a series
of experiments, where the postbelief from one experiment becomes the prebelief to the
next, contains all the information learned during the series. LetEi = 〈S, bHi

, σH , σLi
〉

be theith experiment in the series, and letb′Hi
be the outcome fromEi. Let prebelief

bHi in experimentEi be chosen as postbeliefb′Hi−1
from experimentEi−1. Let bH1 be

the attacker’s prebelief for the entire series. Letn be the length of the series.

Theorem 7

D(bH1 _ σ̇H)−D(b′Hn
_ σ̇H) =

∑
i | 1≤i≤n Q(Ei, b

′
Hi

)

Proof. Immediate by the definition ofQ and arithmetic.�

19

4.9 Number of Experiments

Attackers conduct experiments to refine their beliefs. This suggests another measure-
ment of the security of a program: the number of experiments required for an attacker to
refine his belief to within some distance of reality. For simplicity, assume that program
S is deterministic7, and thus that only one observation is possible from an experiment.
Then belief revisionB (from Section 3.3) can be used as a function from experiments
to postbeliefs. LetA : Belief → StateL be the attacker’sstrategyfor choosing low
inputs based on his beliefs. Define theith iteration ofB asBi:

Bi(S, bH , σH ,A) , B(S, b′H , σH ,A(b′H))
whereb′H = Bi−1(S, bH , σH ,A)

B1(S, bH , σH ,A) , B(S, bH , σH ,A(bH))

Then the number of experimentsN needed to achieve a postbelief within distanceε of
reality is:

N (S, bH , σH ,A) , min{i | D(Bi(S, bH , σH ,A) _ σH) ≤ ε}

As discussed in Section 4.2, when an attacker’s belief isk bits distant from reality,
the probability he ascribes to the correct high state is1/2k. If the attacker were to
“guess” a high state by sampling from his belief, he would therefore guess correctly
with probability1/2ε afterN experiments.

If a metricM onStateH is available, then the attacker may approximate reality by
establishing a high certainty on a state near to the correct high state. For example, if
the high state is a Cartesian coordinate, we may wish to establish the security policy
that the attacker should never have a high degree of certainty on the correct coordinate
nor any coordinates within some Cartesian distance. Letball(σH) be all the high states
within distanceγ of σH :

ball(σH) , {σ′H | M(σ′H _ σH) ≤ γ}

Then the number of experiments needed to achieve some distanceε from some ballγ
around reality is:

N (S, bH , σH ,A) , min{i | σ′H ∈ ball(σH)
∧ D(Bi(S, bH , σH ,A) _ σ′H) ≤ ε}

5 Language Semantics

The last piece required for our framework is a semantics[[S]] in which programs denote
functions that map distributions to distributions. Here we build such a semantics in two
stages. First, we build a simpler semantics that maps states to distributions. Second,
we lift the simpler semantics so that it operates on distributions.

7If programS is probabilistic,B(E) can instead be defined as a random variable giving the probability
with which the attacker holds a postbelief. This allows the definition of theexpectednumber of experiments
to achieve a distance from reality.

20

Figure 3 Semantics of programs in states

[[skip]]σ = σ̇
[[v := E]]σ = σ̇[v 7→ E]
[[S1;S2]]σ = [[S2]]∗([[S1]]σ)

[[if B then S1 elseS2]]σ = if [[B]]σ then[[S1]]σ else[[S2]]σ
[[while B do S]] = fix(λd : State→ Dist .

λσ . if [[B]]σ thend∗([[S]]σ) elseσ̇)
[[S1 p8 S2]]σ = p · [[S1]]σ + (1− p) · [[S2]]σ

Figure 4 Semantics of programs in distributions

[[skip]]δ = δ
[[v := E]]δ = δ[v 7→ E]
[[S1;S2]]δ = [[S2]]([[S1]]δ)

[[if B then S1 elseS2]]δ = [[S1]](δ |B) + [[S2]](δ | ¬B)
[[while B do S]] = fix(λd : Dist → Dist . λδ . d([[S]](δ |B)) + (δ | ¬B))

[[S1 p8 S2]]δ = [[S1]]p · δ + [[S2]](1− p) · δ

Our first task then is to define the semantics[[S]] : State→ Dist. That semantics
is given in Figure 3. We assume a semantics[[E]] : State→ Val that gives meaning
to expressions, and a semantics[[B]] : State → Bool that gives meaning to Boolean
expressions.

The statementsskip andif have essentially the same denotations as in the standard
deterministic case. State updateσ[v 7→ V], whereV ∈ Val, changes the value ofv to
V in σ. The distribution updateδ[v 7→ E] in the denotation of assignment represents
the result of substituting the meaning ofE for v in all the states ofδ:

δ[v 7→ E] , λσ . (
∑

σ′ | σ′[v 7→[[E]]σ′]=σ δ(σ′))

The semantics ofwhile and sequential compositionS1;S2 use lifting operator∗, which
lifts function d : State → Dist to functiond∗ : Dist → Dist, as suggested by Sec-
tion 2.2:

d∗ , λδ .
∑

σ δ(σ) · d(σ)
= λδ . λσ .

∑
σ′ δ(σ′) · d(σ′)(σ)

where the equality follows fromη-reduction, and· and+ are used as pointwise opera-
tors:

p · δ , λσ . p · δ(σ)
δ1 + δ2 , λσ . δ1(σ) + δ2(σ)

Lifted d∗ is thus the expected value (which is a distribution) ofd with respect to distri-
butionδ.

To ensure that the fixed point forwhile exists, we must verify thatDist is a complete
partial order with a bottom element and that[[·]] is continuous. We omit the proof here,

21

as it is a consequence of a theorem proved by Kozen [23]. But we note that a key step
is to strengthen the definition ofDist from Section 2.1 to be{δ | δ ∈ State→ [0, 1] ∧
‖δ‖ ≤ 1}. This makes distributions correspond to subprobability measures, and it
is easy to check that the semantics produces subprobability measures as output. The
bottom element is thenλσ . 0, and the ordering relation on distributions is pointwise.
Note that the definition ofBelief from Section 2.4 remains unchanged, since it did
not depend onDist. Thus beliefs still correspond to probability measures. Anywhere
that the result of the program semantics must be upgraded to a belief (i.e., from a
subprobability to a probability), we rely on the technique of Section 3.4 to handle
nontermination. The most important occurrence of this is in step 5 of the experiment
protocol in Figure 1.

The final program construct is probabilistic choice,S1 p8 S2, where0 ≤ p ≤ 1.
The semantics multiplies the probability of choosing a sideSi with the frequency that
Si produces a particular output stateσ′. Since the same stateσ′ might actually be
produced by both sides of the choice, the frequency of its occurrence is the sum of
the frequency from either side:p · ([[S1]]σ)(σ′) + (1− p) · ([[S2]]σ)(σ′), which can be
simplified to the formula in Figure 3.

To lift the semantics in Figure 3 and define[[S]] : Dist → Dist, we again employ
lifting operator∗:

[[S]]δ , [[S]]∗δ
= λσ .

∑
σ′ δ(σ′) · ([[S]]σ′)(σ)

Interpreting this definition, note there are many statesσ′ in whichS could begin execu-
tion, and all of them could potentially terminate in stateσ. So to compute([[S]]δ)(σ),
we take a weighted average over all input statesσ′. The weights areδ(σ′), which de-
scribes how likelyσ′ is to be used as the input state. Withσ′ as input,S terminates in
stateσ with frequency([[S]]σ′)(σ).

Applying this definition to the semantics in Figure 3 yields[[S]]δ, shown in Figure 4.
This lifted semantics corresponds directly to a semantics given by Kozen [23], which
interprets programs as continuous linear operators on measures. Our semantics uses an
extension of the distribution conditioning operator| to Boolean expressions. Whereas
distribution conditioning produces a normalized distribution, Boolean expression con-
ditioning produces an unnormalized distribution:

δ|B , λσ . if [[B]]σ thenδ(σ) else0

By producing unnormalized distributions as part of the meaning ofif andwhile state-
ments, we track the frequency with which each branch of the statement is chosen.

6 Insider Choice

The experiment protocol in Section 3 involved two agents, the attacker and the system.
Consider a third agent called theinsider, whose goal is to help the attacker learn secret
information. The insider and attacker may initially communicate to establish a strategy
to achieve this goal. Once execution begins, the insider cannot directly communicate

22

with the attacker, but the insider is able to observe and influence the execution of pro-
grams. He can observe both the high and low components of the program state. His
ability to influence execution is modeled by a new programming language construct,
insider choice, denotedS1 8 S2:

S ::= . . . | S1 8 S2

The insider, rather than the system, is the entity who executes this kind of choice. The
insider chooses eitherS1 or S2 and execution continues with the chosen program.

As an example of insider choice, consider programL1 :

L1 : h := h mod 2;
l := 0 8 l := 1

The second line ofL1 allows the insider to choose between two values for variablel.
Since the insider is allowed to observe the high component of the state, he can observe
the parity ofh and choose to setl equal to it, thus leaking the parity ofh.

The insider in this example made a deterministic choice. More generally, insiders
may also make probabilistic choices. For example, an insider could flip a fair coin
then choose the left side on heads or the right side on tails. This can be seen as an
extension of probabilistic choice, in which the probability is a function of the program
state rather than just a constant. Thus insider choice can also represent the behavior of
normal programs without the influence of an insider.

6.1 Insider Functions

Formally, an insider is a functionI ∈ Insider where:

Insider , State→ [0..1]

The value ofI(σ) is the probability with which the left-hand side of the insider choice
is taken. For example, insider functionIL1 leaks the value ofh in programL1 with
probability0.99:

IL1 (σ) = if σ(h) = 0 then0.99 else0.01

In a program with multiple syntactic occurrences of insider choice, a single insider
function can encode different probabilities for each such occurrence, assuming that the
program state encodes the program counter.

Insider functions are able to model a range of powers that an insider might have,
if those powers can be encoded into the program state. For example, suppose that
the operational semantics of the language guarantees that for every variablex, the
previous value ofx (that is, the value that was assigned to it before its current value
was assigned) is preserved in a variablex̀. Then insider functions can make decisions
based on past state by reading previous values. This is similar to the idea ofhistory
variables[1]. In the following program, the insider leaks the initial parity ofh.

LP : h := h mod 2;
h := 0;
l := 0 8 l := 1

23

Figure 5 Insider semantics

[[skip]]Iσ = σ̇
[[v := E]]Iσ = σ̇[v 7→ E]
[[S1;S2]]Iσ = ([[S2]]I)∗([[S1]]Iσ)

[[if B then S1 elseS2]]Iσ = if [[B]]σ then[[S1]]Iσ else[[S2]]Iσ
[[while B do S]]I = fix(λd : State→ Dist .

λσ . if [[B]]σ thend∗([[S]]Iσ) elseσ̇)
[[S1 p8 S2]]Iσ = p · [[S1]]Iσ + (1− p) · [[S2]]Iσ
[[S1 8 S2]]Iσ = I(σ) · [[S1]]Iσ + (1− I(σ)) · [[S2]]Iσ

Figure 6 Insider semantics for distributions

[[skip]]Iδ = δ
[[v := E]]Iδ = δ[v 7→ E]
[[S1;S2]]Iδ = [[S2]]I([[S1]]Iδ)

[[if B then S1 elseS2]]Iδ = [[S1]]I(δ |B) + [[S2]]I(δ | ¬B)
[[while B do S]]I = fix(λd : Dist → Dist .

λδ . d([[S]]I(δ |B)) + (δ | ¬B))
[[S1 p8 S2]]Iδ = [[S1]]Ip · δ + [[S2]]I(1− p) · δ
[[S1 8 S2]]Iδ = [[S1]]II(δ) + [[S2]]II(δ)

The insider function that accomplishes this is:

ILP (σ) = if σ(h̀) = 0 then1 else0

Note that without access to history variableh̀, the insider is unable to leak the initial
parity of h because this information is removed from the state whenh is assigned the
value 0. Similarly, insiders who can predict the values of variables in the future are
modeled by the addition ofprophecy variables[1].

Insiders with limited computational resources can be modeled by further restricting
Insider. For example, suppose that insiders are allowed only polynomial time to make
a choice. Then insider functions could be replaced by polynomially time-bounded
Turing machines, where the input to the machine is the inputσ to the insider function,
and the output of the machine is used as the output of the insider function.

6.2 Semantics and Experiments

Formal semantics[[S]] : Insider → State→ Dist is given in Figure 5. The only place
in the semantics that the insider function is used is in the semantics ofS1 8 S2, and the
semantics never modifies the insider function. Due to this second-class nature of insider
functions, and for improved readability, we use a subscript notation for the insider

24

Figure 7 Experiment protocol with insider

An experimentE = 〈S, bH , σH , σL, I〉 is conducted as follows.

1. The attacker chooses a prebeliefbH about the high state.

2. (a) The system picks a high stateσH .

(b) The attacker picks a low stateσL.

3. The attacker predicts the output distribution:δ′A = [[S]]I(σ̇L ⊗ bH).

4. The system and insider execute the programS, which produces a stateσ′ ∈ δ′

as output, whereδ′ = [[S]]I(σ̇L ⊗ σ̇H). The attacker observes the low projection
of the output state:o = σ′ � L.

5. The attacker infers a postbelief:b′H = (δ′A|o) � H.

functionI in semantics[[S]]I . We can lift the semantics to operate on distributions as
shown in Figure 6. The lifted insider function is defined as:

I(δ) , λσ . I(σ) · δ(σ)
I(δ) , λσ . (1− I(σ)) · δ(σ)

The experiment protocol in Section 3.1 can be extended to include insiders, as
shown in Figure 7. Note that the attacker uses insider functionI when conducting the
thought-experiment. This function thus encodes choices that the insider and attacker
have agreed upon in advance.

6.3 Security Conditions

Observational determinism[29, 32, 40] is a security condition for nondeterministic
systems that generalizes noninterference [13]. We can state a probabilistic generaliza-
tion of observational determinism that is applicable to our insider model. Let the set
of programs satisfying observational determinism be denotedObsDet. A programS
satisfies observational determinism exactly whenS behaves as a function from a low
input state to a low output distribution, with respect to any insider and high input:

ObsDet , {S | ∀I . ∀σL . ∃δL . ∀σH . [[S]]I(σ̇L ⊗ σ̇H) � L = δL}

Observational determinism is equivalent to zero information flow in the insider
model. That is, a programS satisfies observational determinism exactly when all ex-
periments overS leak exactly 0 bits of information.

Theorem 8

S ∈ ObsDet ≡ ∀E , b′H ∈ B(E) .Q(E , b′H) = 0

25

Proof. In Appendix B. �

This theorem provides evidence that observational determinism is the right absolute
security condition for nondeterministic systems. (On the other hand, this theorem also
shows that observational determinism is too strong to be applicable to programs that
require information flow, such asPWC .)

Other nondeterministic security conditions, such as generalized noninterference
(GNI) [25], are already known to allow leakage of information [35]. Our model of
insider choice allows this leakage to be quantified, which further demonstrates the
weakness of such security conditions. A programS satisfies GNI whenS behaves as
a relation on a low input state and low output distributions, with respect to any insider
and high input:

GNI , {S | ∀σL . ∃∆L . ∀σH .
⋃
I

([[S]]I(σ̇L ⊗ σ̇H) � L) = ∆L}

Consider programLH , which can be shown to be inGNI :

LH : l := h 8 (l := 0 8 l := 1)

Using insider functionILH (σ) = 1, this program always leaks the value ofh. Unless
the attacker already has a perfectly accurate belief abouth, this is a positive (and non-
zero) amount of leakage. So even though the program is secure according toGNI , an
insider can refine the program to be insecure. This weakness is known as therefinement
paradox[32]. Insiders therefore introduce a kind of nondeterminism that is not secure
under refinement.

7 Related Work

We believe the work reported herein is the first to address attacker beliefs in quanti-
fying information flow. Perhaps the earliest published connection between informa-
tion theory and information flow is Denning [8], which demonstrates the analysis of
a few particular assignment andif statements by using entropy to calculate leakage.
Millen [30], using deterministic state machines, proves that a system satisfies nonin-
terference exactly when the mutual information between certain inputs and outputs is
zero. He also proposes mutual information as a metric for information flow, but he
does not show how to compute the amount of flow for programs.

Wittbold and Johnson [39] introducenondeducibility on strategies, an extension
of Sutherland’snondeducibility[33]. Wittbold and Johnson observe that if a program
is run multiple times and feedback between runs is allowed, then information can be
leaked by coding schemes across multiple runs. A system that is nondeducible on
strategies has no noiseless communication channels between high input and low output,
even in the presence of feedback. Our insider framework can quantify the leakage due
to strategies that are encodable as insider functions.

The flow model (FM) is a security property first given by McLean [28] and later
given a quantitative formalization by Gray [14], who called it the Applied Flow Model.

26

The FM stipulates that the probability of a low output may depend on previous low
outputs, but not on previous high outputs. Gray formalizes this in the context of prob-
abilistic state machines, and he relates noninterference to the rate of maximum flow
between high and low. Browne [2] develops a novel application of the idea behind
the Turing test to characterize information flow: a system passes Browne’s Turing test
exactly when for all finite lengths of time, the information flow over that time is zero.

Volpano [34] gives a type system that can be used to establish the security of pass-
word checking and one-way functions such as MD5 and SHA1. Noninterference does
not allow such functions to be typed, so this type system is an improvement over pre-
vious type systems. However, the type system does not allow a general analysis of
quantitative information flow. Volpano and Smith [36] give another type system that
enforcesrelative secrecy, which requires that well-typed programs cannot leak confi-
dential data in polynomial time.

Weber [37] definesn-limited security, which allows declassification at a rate that
depends, in part, on the sizen of a buffer shared by the high and low projections of a
state. Lowe [24] defines theinformation flow quantityof a process with two usersH
andL to be the number of behaviors ofH thatL can distinguish. When there aren
such distinguishable behaviors,H can use them to transmitlg n bits toL. These both
measure the size of channels rather than accuracy of belief.

Halpern and Tuttle [19] introduce a framework for reasoning about knowledge and
probability based on three kinds of adversaries: adversaries who make nondeterministic
choices, adversaries who represent the knowledge of the opponent, and adversaries
who control timing. Our insiders can be seen as an instantiation of this framework. The
insider choice and insider function constitute an adversary who makes nondeterministic
choices, and each of the models of the insider’s power in Section 6.1 correspond to
an adversary representing the knowledge of the opponent. Gray and Syverson [15]
apply the Halpern-Tuttle framework to reason about qualitative security of probabilistic
systems. They relate their security condition to probabilistic noninterference [14] and
information theory. Halpern and O’Neill [16] construct a framework for reasoning
about secrecy that generalizes many previous results on qualitative and probabilistic,
but not quantitative, security. Their framework, like ours, uses subjective probability
distributions.

Di Pierro, Hankin, and Wiklicky [9] relax noninterference toapproximate noninter-
ference, where “approximate” is a quantified measure of the similarity of two processes
in a process algebra. Similarity is measured using the supremum norm over the differ-
ence of the probability distributions the processes create on memory. They show how
to interpret this quantity as a probability on an attacker’s ability to distinguish two
processes from a finite number of tests, in the sense of statistical hypothesis testing.
Finally, the paper explores how to build an abstract interpretation that allows approxi-
mation of the confinement of a process. Their more recent work [10] generalizes this
to measuring approximate confinement in probabilistic transition systems.

Clark, Hunt, and Malacaria [4] apply information theory to the analysis ofwhile-
programs. They develop a static analysis that provides bounds on the amount of infor-
mation that can be leaked by a program. The metric for information leakage is based
on conditional entropy; the analysis consists of a dataflow analysis, which computes a
use-def graph, accompanied by a set of syntax-directed inference rules, which calculate

27

leakage bounds. In other work [3], the same authors investigate other leakage metrics,
settling on conditional mutual information as an appropriate metric for measuring flow
in probabilistic languages; they do not consider relative entropy. Mutual information
is always at least 0, so unlike relative entropy it cannot represent misinformation. As
noted in Section 4.4, this uncertainty-based definition requires a strong admissibility
restriction: the attacker’s prebelief must be the same distribution from which the sys-
tem generates the high input. Malacaria [?] extends this line of work by classifying
the rate of leakage of loops. His basic definition of amount of leakage is equivalent
to [4], so it is an instance of our own definition, as shown in Section 4.4. For the same
reason, Malacaria’s model is no more precise than our own model [6]. Rate of leakage
could be defined in our own model, using Malacaria’s techniques, much like the other
parameters of leakage given in Section 4.

McIver and Morgan [26] calculate the channel capacity of a program using condi-
tional entropy. They adddemonic nondeterminismas well as probabilistic choice to the
language ofwhile-programs, and they show that the perfect security (0 bits of leakage)
of a program is determined by the behavior of its deterministic refinements. They also
consider restricting the power of the demon making the nondeterministic choices, such
that it can see all data, or just low data, or no data.

Evfimievski, Gehrke, and Srikant [11] quantifyprivacy breachesin data mining. In
their framework, randomized operators are applied to confidential data before the data
is released. A privacy breach occurs when release of the randomized data causes a large
change in an attacker’s probability distribution on a property of the confidential data.
They use Bayesian reasoning, based on observation of randomized data, to update the
attacker’s distribution. Their distributions are similar to our beliefs, but have the same
strong admissibility restriction as Clark et al. [4]. They also show that relative entropy
can be used to bound the maximum privacy breach for a randomized operator.

8 Conclusion

This paper presents a model for incorporating attacker beliefs into analysis of quanti-
tative information flow. Our theory reveals that uncertainty, the traditional metric for
information flow, is inadequate: it cannot satisfactorily explain even the simple exam-
ple of password checking. Information flows when an attacker’s belief becomes more
accurate, but an uncertainty metric can mistakenly measure a flow of zero or less. In-
versely, misinformation flows when an attacker’s belief becomes less accurate, but an
uncertainty metric can mistakenly measure a positive information flow. Hence, in the
presence of beliefs, accuracy is the correct metric for information flow.

We have shown how to use an accuracy metric to calculate exact, expected, and
maximum information flow; other parameters of information flow, such as variance,
median, and rate, could be defined in the same way. We have demonstrated that our
metric generalizes uncertainty metrics. Our formal model of experiments enables pre-
cise, compositional reasoning about attackers’ actions and beliefs. We have instantiated
this model with a probabilistic semantics and have shown that probabilistic choice is
essential to producing misinformation. We have also extended the model to enable
analysis of information flow due to insiders, who collude with attackers.

28

Acknowledgments

Sigmund Cherem, Stephen Chong, Sebastian Hunt, Jed Liu, Carroll Morgan, Michael
Mislove, Kevin O’Neill, Nathaniel Nystrom, Riccardo Pucella, Lantian Zheng, and the
anonymous referees forJCSandCSFW’05provided helpful comments on this work.

This work was supported by the Department of the Navy, Office of Naval Research,
ONR Grant N00014-01-1-0968; Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, grant F9550-06-0019; National Science Foundation grants
0208642, 0133302, 0430161; AF-TRUST (Air Force Team for Research in Ubiqui-
tous Secure Technology for GIG/NCES), which receives support from the DAF Air
Force Office of Scientific Research (FA9550-06-1-0244), National Science Foundation
(CCF-0424422), Cisco, British Telecom, ESCHER, HP, IBM, iCAST, Intel, Microsoft,
ORNL, Pirelli, Qualcomm, Sun, Symantec, Telecom Italia, and United Technologies;
and a grant from Intel Corporation. Michael Clarkson was supported by a National
Science Foundation Graduate Research Fellowship; Andrew Myers was supported by
an Alfred P. Sloan Research Fellowship. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either express or implied, of these organizations or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.

References

[1] Martı́n Abadi and Leslie Lamport. The existence of refinement mappings.Theo-
retical Computer Science, 82(2):253–284, 1991.

[2] Randy Browne. The Turing test and non-information flow. InProc. IEEE Symp.
on Security and Privacy, pages 375–385, Oakland, CA, 1991.

[3] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantified interference:
Information theory and information flow. Presented at Workshop on Issues in the
Theory of Security (WITS’04), April 2004.

[4] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantified interference for
a while language.Electronic Notes in Theoretical Computer Science, 112:149–
166, Jan 2005.

[5] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative informa-
tion flow, relations and polymorphic types.Journal of Logic and Computation,
18(2):181–199, 2005.

[6] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Belief in in-
formation flow. InProc. 18th IEEE Computer Security Foundations Workshop,
pages 31–45, Aix-en-Provence, France, June 2005.

[7] Thomas M. Cover and Joy A. Thomas.Elements of Information Theory. John
Wiley & Sons, 1991.

29

[8] Dorothy Denning.Cryptography and Data Security. Addison-Wesley, 1982.

[9] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Approximate non-
interference.Journal of Computer Security, 12(1):37–81, 2004.

[10] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Measuring the con-
finement of probabilistic systems.Theoretical Computer Science, 340(1):3–56,
2005.

[11] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting
privacy breaches in privacy preserving data mining. InProc. ACM Symp. on
Principles of Database Systems, pages 211–222, San Diego, CA, 2003.

[12] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.Bayesian
Data Analysis. Chapman and Hall/CRC, 2004.

[13] Joseph A. Goguen and Jose Meseguer. Security policies and security models. In
Proc. IEEE Symp. on Security and Privacy, pages 11–20, April 1982.

[14] James W. Gray, III. Toward a mathematical foundation for information flow se-
curity. In Proc. IEEE Symp. on Security and Privacy, pages 21–35, Oakland, CA,
1991.

[15] James W. Gray, III and Paul F. Syverson. A logical approach to multilevel security
of probabilistic systems.Distributed Computing, 11(2):73–90, 1998.

[16] Joseph Halpern and Kevin O’Neill. Secrecy in multiagent systems. InProc.
15th IEEE Computer Security Foundations Workshop, pages 32–46, Cape Breton,
Nova Scotia, Canada, 2002.

[17] Joseph Halpern and Kevin O’Neill. Anonymity and information hiding in mul-
tiagent systems. InProc. 16th IEEE Computer Security Foundations Workshop,
pages 75–88, Pacific Grove, CA, 2003.

[18] Joseph Y. Halpern.Reasoning about Uncertainty. MIT Press, Cambridge, Mas-
sachusetts, 2003.

[19] Joseph Y. Halpern and Mark R. Tuttle. Knowledge, probability, and adversaries.
Journal of the ACM, 40(4):917–962, 1993.

[20] Gareth A. Jones and J. Mary Jones.Information and Coding Theory. Springer,
2000.

[21] Daniel Kahneman and Amos Tversky. Subjective probability: A judgment of
representativeness.Cognitive Psychology, 3:430–454, 1972.

[22] Johnathan J. Koehler. The base rate fallacy reconsidered: Descriptive, norma-
tive, and methodological challenges.Behavioral and Brain Sciences, 19(1):1–53,
1996.

30

[23] Dexter Kozen. Semantics of probabilistic programs.Journal of Computer and
System Sciences, 22:328–350, 1981.

[24] Gavin Lowe. Quantifying information flow. InProc. 15th IEEE Computer Se-
curity Foundations Workshop, pages 18–31, Cape Breton, Nova Scotia, Canada,
2002.

[25] Daryl McCullough. Specifications for multi-level security and a hook-up prop-
erty. InProc. IEEE Symp. on Security and Privacy, Oakland, CA, 1987.

[26] Annabelle McIver and Carroll Morgan. A probabilistic approach to informa-
tion hiding. InProgramming Methodology, chapter 20, pages 441–460. Springer,
2003.

[27] Annabelle McIver and Carroll Morgan.Abstraction, Refinement and Proof for
Probabilistic Systems. Springer, 2004.

[28] John McLean. Security models and information flow. InProc. IEEE Symp. on
Security and Privacy, pages 180–189, Oakland, CA, 1990.

[29] John McLean. Proving noninterference and functional correctness using traces.
Journal of Computer Security, 1(1), 1992.

[30] Jonathan Millen. Covert channel capacity. InProc. IEEE Symp. on Security and
Privacy, pages 60–66, Oakland, CA, 1987.

[31] Lyle Harold Ramshaw.Formalizing the Analysis of Algorithms. PhD thesis,
Stanford University, 1979. Available as technical report, XEROX PARC, 1981.

[32] A. W. Roscoe. CSP and determinism in security modelling. InProc. IEEE Symp.
on Security and Privacy, pages 114–127, Oakland, CA, 1995.

[33] David Sutherland. A model of information. InProceedings of the 9th National
Computer Security Conference, pages 175–183, Sep 1986.

[34] Dennis Volpano. Secure introduction of one-way functions. InProc. 13th
IEEE Computer Security Foundations Workshop, pages 246–254, Cambridge,
UK, 2000.

[35] Dennis Volpano and Geoffrey Smith. Confinement properties for programming
languages.SIGACT News, 29(3):33–42, Sep 1998.

[36] Dennis Volpano and Geoffrey Smith. Verifying secrets and relative secrecy. In
Proc. 27th ACM Symp. on Principles of Programming Languages, pages 268–
276, Boston, MA, 2000.

[37] Douglas G. Weber. Quantitative hook-up security for covert channel analysis. In
Proc. First IEEE Computer Security Foundations Workshop, pages 58–71, Fran-
conia, NH, 1988.

31

[38] Glynn Winskel. The Formal Semantics of Programming Languages: An Intro-
duction. MIT Press, Cambridge, Massachusetts, 1993.

[39] J. Todd Wittbold and Dale Johnson. Information flow in nondeterministic sys-
tems. InProc. IEEE Symp. on Security and Privacy, pages 144–161, Oakland,
CA, 1990.

[40] Steve Zdancewic and Andrew C. Myers. Observational determinism for con-
current program security. InProc. 16th IEEE Computer Security Foundations
Workshop, pages 29–43, Pacific Grove, CA, 2003.

A Relaxing Restrictions on Programs

Mutable high inputs. To allow mutable high inputs, as discussed in Section 3.4, let
the notationb0

H mean the same distribution asbH , except that each state of its domain
has a 0 as a superscript. So, ifbH ascribes probabilityp to the stateσ, thenb0

H ascribes
probabilityp to the stateσ0. We assume thatS cannot modify states with a superscript
0. In the case that states map variables to values, this could be achieved by definingσ0

to be the same state asσ, but with the superscript 0 attached to variables; for example,
if σ(v) = 1 thenσ0(v0) = 1. Note thatS cannot modifyσ0 if did not originally
contain any variables with superscripts.

Using this notation, the belief revision operator is extended toB!, which allowsS
to modify the high state in experimentE = 〈S, bH , σH , σL〉:

B!(E , o) , (([[S]](σ̇L ⊗ bH ⊗ b0
H)|o)) � H0

In this definition, the high input state is preserved by introducing the product withb0
H ,

and the attacker’s postbelief about the input is recovered by restricting toH0, the high
input state with the superscript 0.

Nontermination. To allow nonterminating programs, letState⊥ , State∪{⊥}, and
⊥ � L , ⊥. Nontermination is now allowed as an observation, leading to an extended
belief revision operatorB!⊥:

B!⊥(E , o) , (out⊥(S, σ̇L ⊗ bH ⊗ b0
H)|o) � H0

Observationo is now produced from output distributionδ′ = out⊥(S, σ̇L⊗σ̇H). Func-
tion out⊥(S, δ) produces a distribution which yields the frequency thatS terminates,
or fails to terminate, on input distributionδ:

out⊥(S, δ) , λσ : State⊥ . if σ = ⊥
then‖δ‖ − ‖[[S]]δ‖
else([[S]]δ)(σ)

If S does not terminate on some input states inδ, then output distribution[[S]]δ will
contain less mass thanδ; otherwise,‖δ‖ = ‖[[S]]δ‖. Missing mass corresponds to
nontermination [31, 27], soout⊥ maps the missing mass to⊥.

32

B Proofs

Theorem 1 Let E = 〈S, bH , σH , σL〉.

B(E , o)(σH) = BI (E , o)

Proof.

BI (E , o)

= 〈 Definition ofBI 〉
bH(σH) · ([[S]](σ̇L ⊗ σ̇H) � L)(o)∑

σ′H
bH(σ′H) · ([[S]](σ̇L ⊗ σ̇′H) � L)(o)

= 〈 Definition of δ � L, apply distribution too 〉
bH(σH) · (

∑
σ | σ�L=o ([[S]](σ̇L ⊗ σ̇H)(σ))∑

σ′H
bH(σ′H) · (

∑
σ | σ�L=o ([[S]](σ̇L ⊗ σ̇′H)(σ))

= 〈 Lemma 1.1〉
bH(σH) · (

∑
σ | σ�L=o ([[S]](σ̇L ⊗ σ̇H)(σ))∑

σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Distributivity, one-point rule〉∑
σ | σ�L=o ∧ σ�H=σH

∑
σ′H

bH(σH)·[[S]](σ̇L⊗σ̇H)(σ)∑
σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Lemma 1.1〉∑
σ | σ�L=o ∧ σ�H=σH

[[S]](σ̇L ⊗ bH)(σ)∑
σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Distributivity 〉∑
σ | σ�L=o ∧ σ�H=σH

[[S]](σ̇L⊗bH)(σ)∑
σ′ | σ′�L=o [[S]](σ̇L⊗bH)(σ′)

= 〈 Definition of δ � L 〉∑
σ | σ�H=σH

(([[S]](σ̇L ⊗ bH))|o)(σ)

= 〈 Definition of δ � H, applying distribution toσH 〉

((([[S]](σ̇L ⊗ bH))|o) � H)(σH)

= 〈 Definition ofB(E , o) 〉

B(E , o)(σH)

�

Lemma 1.1 Let σ � L = o.

[[S]](σ̇L ⊗ bH)(σ) =
∑

σH
bH(σH) · [[S]](σ̇L ⊗ σ̇H)(σ)

Proof.

33

[[S]](σ̇L ⊗ bH)(σ)

= 〈 Definition of [[S]]δ 〉∑
σ′ (σ̇L ⊗ bH)(σ′) · ([[S]]σ′)(σ)

= 〈 Definition of point mass〉∑
σ′ | σ′�L=σL

bH(σ′ � H) · ([[S]]σ′)(σ)

= 〈 Let σ = σL ∪ σH , nesting, one-point rule〉∑
σH

bH(σH) · [[S]](σ̇L ⊗ σ̇H)(σ)

�

Lemma 2.1

b′H(σH) = bH(σH) · δS(o)
δA(o)

Proof.

b′H(σH)

= 〈 Definition of b′H in experiment protocol〉

(([[S]](σ̇L ⊗ bH)|o) � H)(σH)

= 〈 Definition of δ � H 〉∑
σ | σ�H=σH

([[S]](σ̇L ⊗ bH)|o)(σ)

= 〈 Definition of δ|o 〉∑
σ | σ�H=σH ∧ σ�L=o

[[S]](σ̇L ⊗ bH)(σ)
([[S]](σ̇L ⊗ bH) � L)(o)

= 〈 One-point rule:σ = o ∪ σH 〉
[[S]](σ̇L ⊗ bH)(o ∪ σH)
([[S]](σ̇L ⊗ bH) � L)(o)

= 〈 Definition of δA 〉
1

δA(o) · [[S]](σ̇L ⊗ bH)(o ∪ σH)

= 〈 Definition of [[S]]δ 〉
1

δA(o) ·
∑

σ′ (σ̇L ⊗ bH)(σ′) · ([[S]]σ′)(o ∪ σH)

34

= 〈 Definition of⊗, point mass〉
1

δA(o) ·
∑

σ′ | σ′�L=σL
bH(σ′ � H) · ([[S]](σ̇L ⊗ (σ̇′ � H)))(o ∪ σH)

= 〈 High input is immutable〉
1

δA(o) ·
∑

σ′ | σ′�L=σL ∧ σ′�H=σH
bH(σ′ � H)

· ([[S]](σ̇L ⊗ (σ̇′ � H)))(o ∪ σH)

= 〈 One-point rule:σ′ = σL ∪ σH 〉
1

δA(o) · bH(σH) · ([[S]](σ̇L ⊗ σ̇′H))(o ∪ σH)

= 〈 High input is immutable, Definition ofδ � L 〉
1

δA(o) · bH(σH) · (([[S]](σ̇L ⊗ σ̇′H)) � L)(o)

= 〈 Definition of δS 〉

bH(σH) · δS(o)
δA(o)

Note that the immutability of high input can be dispensed with using the technique
of Section 3.4.
�

Theorem 3 Let E = 〈S, bH , σH , σL〉. Then:

Q(E , b′H) = k ≡ b′H(σH) = 2k · bH(σH)

Proof.

Q(E , b′H) = k

≡ 〈 Definition ofQ 〉

D(bH _ σ̇H)−D(b′H _ σ̇H) = k

≡ 〈 Definition ofD 〉

−(lg bh(σH)− lg b′H(σH)) = k

≡ 〈 Arithmetic, properties oflog 〉

b′H(σH) = 2k · bH(σH)

�

Theorem 4

S ∈ Det ⇒ ∀E , b′H ∈ B(E) .Q(E , b′H) ≥ 0

Proof. AssumeS ∈ Det and letE , b′H be arbitrary.

35

Q(E , b′H) ≥ 0

≡ 〈 Definition ofQ, arithmetic〉

D(bH _ σ̇H) ≥ D(b′H _ σ̇H)

≡ 〈 Definition ofD, arithmetic〉

lg b(σH) ≤ lg b′(σH)

≡ 〈 Lemma 4.1,lg is monotonic on(0, 1], admissibility ofb 〉

true

�

Lemma 4.1 AssumeS ∈ Det and letE , b′H be arbitrary. Then:

b(σH) ≤ b′(σH)

Proof. Let o be the observation producingb′. It is straightforward to check that
if S ∈ Det, then[[S]]σ is the point mass atσ′, whereσ′ is the state produced by the
standard denotational semantics ofwhile programs, such as Winskel’s [38]. So the
output of[[S]](σL ∪ σH) is the point mass ato ∪ σH .

b′(σH)

= 〈 Definition of b′ 〉

([[S]](σ̇L ⊗ bH)|o � H)(σH)

= 〈 Definition of � H, application toσH , one-point rule〉∑
σ′L

([[S]](σ̇L ⊗ bH)|o)(σ′L ∪ σH)

= 〈 Definition of |, one-point rule〉
[[S]](σ̇L⊗bH)(o∪σH)
([[S]](σ̇L⊗bH)�L)(o)

= 〈 High input is immutable〉
b(σH)·[[S]](σ̇L⊗bH)(o∪σH)

([[S]](σ̇L⊗bH)�L)(o)

= 〈 Output ofS is a point mass as argued above, letx be the denominator〉
b(σH)·1

x

36

≥ 〈 Admissibility of b impliesx ∈ (0, 1], arithmetic〉

b(σH)

�

Theorem 5

Q(E , b′) = L(Hin , Lin , Lout)

Proof.

Q(E , b′)

= 〈 Definition ofQ 〉

D(b _ σ̇H)−D(b′ _ σ̇H)

= 〈 Definition ofD 〉

H(b � (L ∪ L0 ∪H0))−H(b � (L ∪ L0))

− (H(b′ � (L ∪ L0 ∪H0))−H(b′ � (L ∪ L0)))

= 〈 Definition of domain ofb 〉

H(b � (L0 ∪H0))−H(b � L0)

− (H(b′ � (L ∪ L0 ∪H0))−H(b′ � (L ∪ L0)))

= 〈 Hin = H0, Lin = L0, Lout = L;

admissibility restriction makesb′ an output distribution〉

H(Hin , Lin)−H(Lin)− (H(Hin , Lin , Lout)−H(Lin , Lout)

= 〈 Definition of conditional entropy〉

H(Hin |Lin)−H(Hin |Lin , Lout)

= 〈 Definition ofL 〉

L(Hin , Lin , Lout)

�

Theorem 6 Given experimentE = 〈S, bH , σH , σL〉, let:

δ′ = [[S]](σ̇L ⊗ σ̇H)
eH = (([[S]](σ̇L ⊗ bH))|(δ′ � L)) � H

Then:
QE(E) ≤ Q(E , eH)

Proof.

37

QE(E)

= 〈 Definition ofQE 〉

Eo∈δ′�L[Q(E ,B(E , o))]

= 〈 Definition ofQ, let b′H = B(E , o)〉) 〉

Eo∈δ′�L[D(bH _ σ̇H)−D(b′H _ σ̇H)]

= 〈 Linearity ofE 〉

D(bH _ σ̇H)− Eo∈δ′�L[D(b′H _ σ̇H)]

≤ 〈 Jensen’s inequality and convexity ofD, see [7]〉

D(bH _ σ̇H)−D(Eo∈δ′�L[b′H] _ σ̇H)

= 〈 Lemma 6.1〉

D(bH _ σ̇H)−D(eH _ σ̇H)

= 〈 Definition ofQ 〉

Q(E , eH)

�

Lemma 6.1 Let E , δ′, eH be defined as in Theorem 6. Letb′H = B(E , o), where
o ∈ δ′ � L. Then:

Eo∈δ′�L[b′H] = eH

Proof. (by extensionality)

Eo∈δ′�L[b′H](σH)

= 〈 Definitions ofE, b′H 〉

(
∑

o (δ′ � L)(o) · B(E , o)(σH)

= 〈 Definition ofB(E , o) 〉∑
o (δ′ � L)(o) · ((([[S]](σ̇L ⊗ bH))|o) � H)(σH)

= 〈 Definition of δ � H, applying distribution toσH 〉∑
o (δ′ � L)(o) · (

∑
σ′ | σ′�H=σH

(([[S]](σ̇L ⊗ bH))|o)(σ′))

= 〈 Definition of δ|o, applying distribution toσ′ 〉

38

∑
o (δ′ � L)(o) · (

∑
σ′ | σ′�H=σH ∧ σ′�L=o

([[S]](σ̇L ⊗ bH))(σ′)
([[S]](σ̇L ⊗ bH) � L)(o))

= 〈 One-point rule〉∑
o (δ′ � L)(o) · ([[S]](σ̇L ⊗ bH))(o ∪ σH)

([[S]](σ̇L ⊗ bH) � L)(o)
= 〈 Definition of δ � L, applied too 〉∑

o (δ′ � L)(o) · ([[S]](σ̇L ⊗ bH))(o ∪ σH)∑
σ′ | σ′�L=o [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Let σ = o ∪ σH , change of dummy:o := σ, definition of≈L 〉∑
σ | σ�H=σH

(δ′ � L)(o) · ([[S]](σ̇L ⊗ bH))(σ)∑
σ′ | σ′≈Lσ [[S]](σ̇L ⊗ bH)(σ′)

= 〈 Definition of δ|δL, applied toσ 〉∑
σ | σ�H=σH

([[S]](σ̇L ⊗ bH)|(δ′ � L))(σ)

= 〈 Definition of δ � H, applied toσH 〉

(([[S]](σ̇L ⊗ bH)|(δ′ � L)) � H)(σH)

= 〈 Definition ofeH 〉

eH(σH)

�

Theorem 8

S ∈ ObsDet ≡ ∀E , b′H ∈ B(E) .Q(E , b′H) = 0

Proof. By mutual implication.

(⇒) AssumeS ∈ ObsDet. Let E = 〈S, σL, σH , bH , I〉 andb′H ∈ B(E) be arbitrary.

Q(E , b′H) = 0

≡ 〈 Definition ofQ, arithmetic〉

D(bH _ σH) = D(b′H _ σH)

≡ 〈 Definition ofD, arithmetic〉

bH(σH) = b′H(σH)

≡ 〈 Lemma 8.2〉

39

true

This concludes the forward direction (⇒) of the proof.

(⇐) By contrapositive. AssumeS 6∈ ObsDet. We need to show:

∃E = 〈S, σL, σH , bH , I〉, b′H ∈ B(E) .Q(E , b′H 6= 0

We calculate:

S 6∈ ObsDet

≡ 〈 Definition ofObsDet〉

¬∀I, σL∃δL∀σH . [[S]]I(σ̇L ⊗ σ̇H) � L = δL

≡ 〈 Predicate calculus, change of dummy〉

∃Ĩ , σ̃L∀δ̃L∃σ̃H . [[S]]Ĩ(˙̃σL ⊗ ˙̃σH) � L 6= δ̃L (8.1)

Make the following definitions:

I = Ĩ
σL = σ̃L

σ′H = arbitrary
δ′ = [[S]]I(σ̇L ⊗ σ̇′H)
δ′L = δ′ � L

σH = theσ̃H guaranteed by formula (8.1) wheñδL = δ′L
δ = [[S]]I(σ̇L ⊗ σ̇H)

δL = δ � L

And let bH be the belief mappingσH to 1/2 andσ′H to 1/2.
We have now defined all the variables in experimentE , but we need to defineb′H ∈

B(E). To that end, we calculate the attacker’s predictionδA:

δA

= 〈 Definition of prediction〉

[[S]]I(σ̇L ⊗ bH)

= 〈 Definition of [[S]]δ 〉

1/2 · [[S]](σ̇L ⊗ σ̇H) + 1/2 · [[S]](σ̇L ⊗ σ̇′H)

= 〈 Definition of δ,δ′ 〉

40

1/2 · (δ + δ′)

To defineb′H , we also need an observationo. Note that, by formula (8.1),δL 6= δ′L,
so there is some low stateσ′L such thatδL(σ′L) 6= δ′L(σ′L). Assume, without loss of
generality, thatδL(σ′L) > δ′L(σ′L). Leto beσ′L. But in order foro to be an observation,
it must be thato ∈ [[S]](σ̇L ⊗ σ̇H), which implies that[[S]](σ̇L ⊗ σ̇H)(o) > 0. This is
guaranteed by the fact thatδL(o) > δ′L(o), and thatδ′L(o) ≥ 0.

We can now calculateb′H :

b′H

= 〈 Definition of b′H experiment protocol〉

δA|o � H

= 〈 Definition of δA 〉

1/2 · (δ + δ′)|o � H

With all these definitions, we can prove the desired result:

Q(E , b′H) 6= 0

≡ 〈 Definition ofQ, arithmetic〉

D(bH _ σH) 6= D(b′H _ σH)

≡ 〈 Definition ofD, arithmetic〉

bH(σH) 6= b′H(σH)

≡ 〈 Lemma 8.4〉

true

�

Lemma 8.1

S ∈ ObsDet ⇒ ∀I . ∀σL . ∃δL . ∀δH . ‖δH‖ = 1 ⇒ [[S]]I(σ̇L ⊗ σ̇H) � L = δL

Proof. AssumeS ∈ ObsDet. Let I, σL be arbitrary. LetδL be the distribution
guaranteed to exist by the definition ofObsDet. Let δH be arbitrary with‖δH‖ = 1.

[[S]]I(σ̇L ⊗ σ̇H) � L

= 〈 Definition of [[S]]δ 〉

(
∑

σH
δH(σH) · [[S]]I(σL ∪ σH)) � L

41

= 〈 � L distributes over+, · 〉∑
σH

δH(σH) · [[S]]I(σL ∪ σH) � L

= 〈 S ∈ ObsDet, definition ofδL 〉∑
σH

δH(σH) · δL

= 〈 Distributivity, definition of‖δ‖ 〉

δL · ‖δH‖

= 〈 Assumed‖δH‖ = 1 〉

δL

�

Lemma 8.2 AssumeS ∈ ObsDet. Let E = 〈S, σL, σH , bH , I〉 andb′H ∈ B(E) be
arbitrary. Then:

bH = b′H

Proof. Let δA = [[S]]I(σ̇L ⊗ bH). Let o ∈ [[S]]I(σ̇L ⊗ σ̇H) � L.

b′H

= 〈 Definition of b′H in experiment protocol〉

(δA|o) � H

= 〈 Definition of � H 〉

λσH .
∑

σ′ | σ′�H=σH
(δA|o)(σ′)

= 〈 Definition of δ|o 〉

λσH .
∑

σ′ | σ′�H=σH
if (σ′ � L) = o then δA(σ′)

(δA�L)(o) else0

= 〈 Lemma 8.1〉

λσH .
∑

σ′ | σ′�H=σH
if (σ′ � L) = o then δA(σ′)

δL(o) else0

= 〈 One-point rule〉

λσH . δA(o∪σH)
δL(o)

= 〈 Lemma 8.3〉

42

λσH . bH(σH)·δL(o)
δL(o)

= 〈 Arithmetic,η-reduction〉

bH

�

Lemma 8.3 Assume the definitions in Lemma 8.2 and its proof. Then:

δA(o ∪ σH) = bH(σH) · δL(o)

Proof.

δA(o ∪ σH)

= 〈 Definition of δA 〉

[[S]]I(σ̇L ⊗ bH)(o ∪ σH)

= 〈 Definition of [[S]]δ 〉∑
σ′ (σ̇L ⊗ bH)(σ′) · ([[S]]Iσ′)(o ∪ σH)

= 〈 Definition of⊗, one-point rule〉∑
σ′H

bH(σ′H) · ([[S]]I(σL ∪ σ′H))(o ∪ σH)

= 〈 Immutable high input, one-point rule〉

bH(σH) · ([[S]]I(σL ∪ σH))(o ∪ σH)

= 〈 Immutable high input, definition of� L 〉

bH(σH) · (([[S]]I(σL ∪ σH)) � L)(o)

= 〈 S ∈ ObsDet, definition ofδL 〉

bH(σH) · δL(o)

�

Lemma 8.4 Assume the definitions in the contrapositive proof of Theorem 8. Then:

bH(σH) 6= b′H(σH)

Proof. First we calculateb′H(σH):

43

b′H(σH)

= 〈 Definition of b′H 〉

(δA|o � H)(σH)

= 〈 Calculation ofδA in Theorem 8〉

(1/2 · (δ + δ′)|o � H)(σH)

= 〈 Definition of δ � H, one-point rule,D defined below〉∑
σL

(1/2 · (δ + δ′)|o)(σL ∪ σH)/D

= 〈 Definition of δ|o, one-point rule〉

1/2 · (δ + δ′)(o ∪ σH)/D

= 〈 Definition of+ for distributions〉

1/2 · (δ(o ∪ σH) + δ′(o ∪ σ′H))/D

= 〈 Definition of δ′, immutability of H input〉

1/2 · δ(o ∪ σH)/D

whereD = 1/2 · (δ(o∪σH)+ δ′(o∪σ′H)). Similarly, we can calculateb′H(σ′H) =
1/2 · δ(o ∪ σ′H)/D. Also, we calculateδL(o):

δL(o)

= 〈 Definition of δL and projection〉∑
σH

δ(o ∪ σH)

= 〈 Definition of δ, immutability of high input, one-point rule〉

δ(o ∪ σH)

Similarly, δ′L(o) = δ′(o∪σ′H). By the definition ofo we haveδL(o) 6= δ′L(o), thus
δ(o ∪ σH) 6= δ′(o ∪ σ′H). Thus:

b′H(σ′H)

= 〈 Calculated value ofb′H(σ′H) 〉

1/2 · δ(o ∪ σ′H)/D

6= 〈 Above inequality〉

1/2 · δ(o ∪ σH)/D

44

= 〈 Calculated value ofb′H(σH) 〉

b′H(σH)

Finally, note that by the immutability of high input, the only high states with non-
zero mass inb′H areσH andσ′H . If b′H(σH) = 1/2, then because the mass in a belief
must sum to1, we would be forced to concludeb′H(σ′H) = 1/2. But this would
contradict the previous calculation. Sob′H(σH) 6= 1/2. Thus, sincebH(σH) = 1/2,
we concludebH(σH) 6= b′H(σH).
�

45

