
MAKING DISTRIBUTED COMPUTATION

SECURE BY CONSTRUCTION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Lantian Zheng

January 2007

c© 2007 Lantian Zheng

ALL RIGHTS RESERVED

MAKING DISTRIBUTED COMPUTATION SECURE BY CONSTRUCTION

Lantian Zheng, Ph.D.

Cornell University 2007

This thesis introduces new techniques to build distributed applications that are secure

by construction, satisfying strong, end-to-end policies for confidentiality, integrity and

availability. The new techniques are designed to solve the problem of how to spec-

ify, analyze and enforce end-to-end availability policies in distributed settings, without

jeopardizing the enforcement of confidentiality and integrity policies. This thesis also

presents a correctness proof for these techniques.

BIOGRAPHICAL SKETCH

Lantian Zheng is a graduate student at the Computer Science Department of Cornell

University. Lantian received his B.S. degree from Peking University and his M.S. degree

from Cornell University.

iii

To my parents

iv

ACKNOWLEDGEMENTS

I have many people to thank for helping me complete this thesis. First and foremost is

my advisor, Andrew Myers. I have learned a great deal from Andrew over the years.

Without his guidance this thesis could not have been written.

I also owe a large debt to the other members of my thesis committee: Fred Schneider

and Levent Orman. They provided invaluable advice in a timely fashion. I particularly

want to thank Fred for his insightful feedback on drafts of this work.

I wish to express warm thanks to Steve Zdancewic, Nate Nystrom and Stephen

Chong, who were my collaborators on the Jif/split project. Many of the ideas in this

thesis were born out of the project.

Thanks go to Michael Clarkson for his feedback on early drafts of this thesis. Over

the years, I have benefited from technical discussions with Andrei Sabelfeld, Lorenzo

Alvisi, Heiko Mantel, Greg Morrisett, Wei Wei, Yong Yao, Jed Liu, Michael George,

Krishnaprasad Vikram and Xin Qi. I would also like to thank Lidong Zhou for introduc-

ing me to the idea of quorum system.

I wish to thank my parents for all of their support during my never-ending education.

And thanks to Yuan for providing much-needed distractions.

v

TABLE OF CONTENTS

1 Introduction 1
1.1 Security by construction .3

1.1.1 Example . 3
1.1.2 Secure program partitioning and replication6
1.1.3 What is new . 7

1.2 Enforcing availability policies . 8
1.3 Proving correctness .9
1.4 Limitations .11
1.5 Outline .12

2 Universal decentralized label model 13
2.1 Security properties, labels and policies13
2.2 Dependency analysis and noninterference15
2.3 Universal decentralized label model18

2.3.1 Owned labels .18
2.3.2 Decentralized labels .21
2.3.3 Comparing labels .22
2.3.4 Information security labels .24

2.4 Example .26
2.5 Related work .27

3 The Aimp language 30
3.1 Syntax .30
3.2 Operational semantics .31
3.3 Examples .33
3.4 Type system .34
3.5 Security by type checking .39

3.5.1 Noninterference properties .39
3.5.2 The Aimp* language .44
3.5.3 Noninterference proof .57

3.6 Related work .59

4 Secure distributed computation 62
4.1 System model .62
4.2 Reactors .64

4.2.1 Example .67
4.3 Dynamic label checking .68
4.4 Replication and message synthesis .72

4.4.1 Analyzing security assurances of message synthesizers73
4.4.2 Label threshold synthesizer .76

4.5 Using quorum systems .78

vi

4.5.1 Tracking timestamps .79
4.5.2 Quorum read .80
4.5.3 Quorum write .81

4.6 Multi-level timestamps .82
4.7 Example .83
4.8 Related work .85

5 The DSR language 88
5.1 Syntax .88
5.2 Operational semantics .90
5.3 Type system .96

5.3.1 Subtyping .97
5.3.2 Typing .98
5.3.3 Subject reduction .101
5.3.4 Preventing races .105

5.4 Noninterference .107
5.4.1 ζ-Consistency .109
5.4.2 The DSR* language .113
5.4.3 Noninterference proof .124

5.5 Related work .129

6 Security by construction 130
6.1 Splitter .130

6.1.1 Statement labels .131
6.1.2 Secure distribution schemes133

6.2 Aimp/DSR translator .135
6.2.1 Remote memory accesses .135
6.2.2 Translation rules .136

6.3 Example .142
6.4 Typing preservation .144
6.5 Semantics preservation .147
6.6 Related work .160

7 Conclusions 162

Bibliography 164

vii

LIST OF FIGURES

1.1 Distributed implementations of the bidding application4
1.2 Bidding program . 6
1.3 Security by construction .7
1.4 Trustworthiness by construction .10

3.1 Operational semantics for Aimp .32
3.2 Examples .33
3.3 Bidding example .34
3.4 Typing rules for Aimp .36
3.5 The operational semantics of Aimp*46

4.1 System model .63
4.2 A distributed program .68
4.3 Linear entry creation .71
4.4 Replication example .73
4.5 Quorum replication and timestamps84

5.1 Syntax of the DSR language .89
5.2 Operational semantics of DSR with respect toΓ andP 91
5.3 Subtyping rules .97
5.4 Typing rules of DSR .99
5.5 ζ-Equivalence relation .108
5.6 The operational semantics of DSR*116
5.7 Typing rules of DSR* .120

6.1 Rules for inferring statement labels132
6.2 Aimp/DSR Translation rules .137
6.3 The target DSR code of the bidding example143

viii

Chapter 1

Introduction
Distributed computing systems are ubiquitous, yet it is currently difficult to make strong

statements about the security provided by a distributed system as a whole, especially if

some of the participants in a distributed computation do not trust other participants or the

computing software and hardware they provide. Distributed systems serving mutually

distrusting principals include clinical and financial information systems, business-to-

business transactions, and joint military information systems.

This thesis proposes a unified approach (within a common framework of program

analysis and transformation) to building distributed programs that enforceend-to-end

confidentiality, integrity and availability policies, in a system with untrusted hosts.

Informally, an end-to-end confidentiality policy of datad specifies who can learn

aboutd; an end-to-end integrity policy ofd specifies who can affectd; an end-to-end

availability policy ofd specifies who can maked unavailable (d is availableif the issuer

of an authorized access request tod will eventually get the value ofd). These policies

regulate the behaviors of the whole system and can be viewed as an application of the

end-to-end principle [74] to specifying security policies.

End-to-end confidentiality and integrity policies are also known as information flow

policies, since they impose restrictions on how information is propagated throughout the

system. Dynamic information flow control mechanisms, including mandatory access

control (MAC) [9, 19], use run-time checks to ensure that information does not flow to

a place protected by a weaker confidentiality policy or a stronger integrity policy. Al-

though widely used in practice, those dynamic mechanisms suffer from high run-time

overheads and covert exception channels associated with run-time security checks. Fur-

ther, these dynamic mechanisms abort the programs that fail a run-time check, making

it difficult to enforce availability policies. Denning [18] showed how to use static pro-

1

gram analysis to ensure that programs do not violate its information flow policies, and

this approach has been instantiated in a number of languages in which the type system

implements a similar static analysis (e.g., [88, 34, 102, 70, 7, 73]). Although static in-

formation flow control does not have the shortcomings of those dynamic mechanisms, it

remains a challenge to develop asoundstatic analysis for distributed programs running

in a system with untrusted hosts.

End-to-end availability policies specify availability requirements in terms of which

principal can make the concerned data unavailable. The expressiveness of availabil-

ity policies thus depends on the expressiveness of principals, which can represent not

only users but also hardware, attacks or defense mechanisms, as shown in the following

examples:

• power: the main power supply of a system, whose failure may bring down the

entire system.

• hostset(n): a host set containingn hosts. This principal can be used to specify

the minimum number (n in this case) of host failures needed to bring down a

system. This is a common way of specifying availability requirements [75].

• puzzle: the puzzle generated by a puzzle-based defense mechanism [41] for DoS

attacks. This principal can be used to specify the availability requirement that the

system tolerates DoS attacks from attackers who cannot feasibly solve the puzzle.

Intuitively, end-to-end availability policies prevent attackers from making data unavail-

able. However, these policies do not ensure data to be available eventually. For example,

a system may contain an infinite loop (such as an event handler), and any output to be

produced after the loop will not be available, even if there are no attacks. A theoreti-

cal implication is that enforcing such availability policies does not require solving the

halting problem [38].

2

1.1 Security by construction

Following the idea of static information flow control, a straightforward approach to

building a secure distributed program is to develop a static program analysis that can

determine whether a distributed program enforces its security policies. However, this

analytic approachis not appealing for distributed systems composed of hosts that are

heterogeneously trusted by different principals. In such a system, the distribution of

data and computation depends on thetrust configuration, that is, the trust relationship

between principals and hosts. For example, Alice’s confidential data can only be dis-

tributed to hosts that are trusted by Alice to protect data confidentiality. Such security

concerns may be orthogonal to application logic, increasing the burden of software de-

velopment. In addition, with this approach, programmers have to figure out how to adapt

a program to changing trust configurations, and thus the burden of software maintenance

is also increased.

This thesis pursues aconstructive approach, which allows programmers to write

high-level source program as if the program would be run on a single trusted host, and

uses a compiler to translate the source program into a secure distributed program with

respect to a given trust configuration. Programmers can thus focus on the application

logic. Moreover, if the trust configuration changes, a mere recompilation of the source

code with respect to the new configuration will generate a new secure distributed pro-

gram.

1.1.1 Example

The advantages of the constructive approach can be illustrated by a simple example.

Suppose Alice tries to bid for something from Bob, and Bob has three items that satisfy

Alice’s requirement and offers a price for each item. The offers are stored in an ordered

3

hA hB

hP

1. bid, cc#

2. charge(cc#,bid)

3. done

4. offer#

(A)

hA hB

hT hP

1. bid, cc# 1. offers

2. charge(cc#,bid)

3. done

4. offer#

(B)

hA hB

hP

1. bid, acct

1. offers

2. charge(acct,bid)

2. charge(acct,bid)

(C)

hA hB

hT hP

1. bid,acct
1. bid,acct

1. offers

1. offers

2. charge(acct,bid)

2. charge(acct,bid)

(D)

Figure 1.1: Distributed implementations of the bidding application

list, and Alice is forced to accept the first offer in the list that is lower than or equal to

her bid. During the transaction, Alice and Bob should not be able to update the bid or

the offers, and they should not be able to abort the transaction alone.

Using the analytic approach

Figure 1.1 shows several distributed implementations of the application. For simplicity,

only network messages are shown, which are labeled with sequence numbers indicating

their order of occurrence. The computations done at each local host are described below:

(A) HosthA (a host fully controlled and trusted by Alice) sends Alice’s credit card

number and bid to hosthB (a host fully controlled and trusted by Bob). ThenhB

compares the bid with Bob’s offers and sends a payment request to hosthP , which

handles charging Alice’s credit card account. OncehB gets a response fromhP ,

it sends the offer number tohA. This implementation corresponds to the common

4

scenario in which Alice places the bid on a web site managed by Bob.

There are several security problems with this implementation. First, Alice may

not trusthB to keep her credit card number confidential. Second, Bob has the full

control ofhB, and is able to change the bid and the offers, or simply abort the

transaction.

(B) Suppose hosthT is trusted by both Alice and Bob. ThenhA andhB can send

all the data tohT , which compares Alice’s bid with Bob’s offers and sends the

payment request tohP . This implementation relies on the existence of a host fully

trusted by all the participating principals.

(C) Suppose the system is composed of onlyhA, hB andhP . There are still ways

to improve security over implementation (A). First, Alice’s credit card number is

simply a reference to Alice’s payment account, and it is possible to use a public

identifier acct as the account reference, such as the email address in the Pay-

Pal service. Second, the data (including the bid and the offers) and computation

can be replicated onhA andhB, which both send the payment request tohP . If

the requests fromhA andhB are not the same,hP can detect that some host is

compromised and abort the transaction. Therefore, Alice or Bob cannot modify

the bid and the offers without being detected. The main problem with this im-

plementation is that eitherhA andhB can send a fabricated request and cause the

transaction to be aborted.

(D) Suppose Alice and Bob do not fully trusthT . Instead, they trust that at most one

host amonghA, hB andhT might fail. Then Alice and Bob would be satisfied with

the security assurance of this implementation, in which the data and computation

is also replicated onhA, hB andhT , and hosthP accepts the payment request if

the request comes from bothhA andhB or fromhT .

5

1 t := 0; a := -1;

2 while (t < 3) do

3 if (bid >= offer[t]) then acct := acct - bid; a := t; break;

4 else t := t + 1;

5 result := a;

Figure 1.2: Bidding program

As Figure 1.1 shows, determining how to securely distribute and replicate data and

computation may be subtle and error-prone. Further, if the corresponding trust config-

uration changes, a distributed program may need to undergo significant modification to

adapt to the new configuration. For example, in (B), ifhT is detected to be compro-

mised, and there are no other hosts trusted by both Alice and Bob, then the program

needs to be redesigned.

Using the constructive approach

Although the implementations in Figure 1.1 are different, they all try to perform the

same computation, which can be described by the sequential program shown in Fig-

ure 1.2. Using the constructive approach, this simple program is all that needs to be

written by programmers.

As Figure 1.3 shows, given the source program and a trust configuration, a compiler

generates a secure distributed program or report an error when there are not enough

trusted hosts in the system. With this approach, programmers can focus on application

logic, since the trust configuration of the system is transparent to them. Further, only

recompilation is needed to cope with changing trust configurations.

1.1.2 Secure program partitioning and replication

Earlier work on the Jif/split system [104, 105] explored the constructive approach, us-

ing end-to-end confidentiality and integrity policies to guide automatic partitioning and

6

t := 0; a := -1;
while (t ≤ 3) do
if (bid≥ offer[t]) then
acct:= acct- bid;
a := t; break;

elset := t + 1;
result:= a;

Alice trusts hA and hT ; Bob
trustshB andhT ; Alice andBob
trusthP to beavailable

Compiler

hA hB

hT hP

1. bid 1. offers

2. charge(acct,bid)

3. done

4. offer#

Alice trustshA; Bob trustshB ;
Alice and Bob trust hP to be
available, and they believe that
at mostonehostamonghA, hB

andhT would fail

hA hB

hT hP

1. bid,acct

1. bid,acct

1. offers

1. offers

2. charge(acct,bid)

2. charge(acct,bid)

Alice trusts hA and hT ; Bob
trustshB andhT ; Alice andBob
trusthP to beavailable

Error: trustconfigurationtooweak

Figure 1.3: Security by construction

replication of code and data onto a distributed system.

In the Jif/split system, source programs are written in Jif [62, 65], which extends

Java with type-based static information flow control. The Jif/split compiler translates

a source program into a distributed Java program that enforces the information flow

policies specified as type annotations in the source.

1.1.3 What is new

The Jif/split system demonstrates the feasibility of the constructive approach to building

secure distributed programs. However, the Jif/split system does not support end-to-end

availability policies, and there is no correctness proof for the translation algorithm of

the Jif/split compiler, partially because of the complexity of the Jif language.

In comparison to the work on the Jif/split system, this thesis makes two major contri-

7

butions. First, this thesis proposes a way of analyzing and enforcing availability policies,

based on the idea of static information flow control. Second, this thesis formalizes the

core part of the Jif/split translation, extends it with support for availability, and proves

the correctness of the translation.

1.2 Enforcing availability policies

Although availability is often considered one of the three key aspects of information

security (along with confidentiality and integrity), availability assurance has been largely

divorced from other security concerns. This thesis starts to bridge the gap by providing a

unified way of specifying, analyzing and enforcing end-to-end confidentiality, integrity

and availability policies.

End-to-end confidentiality and integrity policies can be enforced by ensuring that the

system obey noninterference [31]. In general, an end-to-end availability policy on some

datad specifies that principalsp1, . . . , pn can maked unavailable, and such a policy

can also be enforced by a form of noninterference: principals other thanp1, . . . , pn do

not interfere with the availability ofd. This suggests that the idea of static information

flow control can be applied to availability too. This thesis introduces a sequential lan-

guage Aimp with a security type system that ensures a well-typed program satisfies the

noninterference properties that enforce the end-to-end policies (including availability

policies) specified as type annotations.

An interesting challenge in designing the Aimp type system is to analyze the depen-

dencies between integrity and availability. Consider the code in Figure 1.2. Attackers

can make the outputresult unavailable by compromising the integrity oft (making

t always less than 3). Intuitively, the integrity policy oft needs to be as strong as the

availability policy ofresult. To enable comparing an integrity policy with an availabil-

ity policy, this thesis proposes a universal label model, in which confidentiality, integrity

8

and availability labels have the same form and the same interpretation.

To enforce availability policies in a distributed setting, this thesis presents the DSR

(Distributed Secure Reactors) language for describing distributed, concurrent computa-

tion on replicated hosts. The DSR language makes the following specific contributions

related to enforcing availability policies:

• The DSR language supports quorum replication [30, 35], which is extended to be

guided by explicit security policies. Voting replicas can enforce both integrity and

availability policies.

• A novel timestamp scheme is used to coordinate concurrent computations running

on different replicas, without introducing covert channels.

Applying the constructive approach, this thesis presents a translation from Aimp to

DSR, which generates a secure distributed DSR program from an Aimp program and a

trust configuration. The translation automatically figures out how to replicate data and

code in quorum systems to enforce integrity and availability policies.

1.3 Proving correctness

In Aimp and DSR, security policies are explicitly defined usinglabels that annotate

data items, computations, hosts and principals with security levels. In a system with

mutually distrusted principals, attackers are treated as principals that have the power

to affect certain behaviors of the system. The power of attackers is represented by a

label lA. A label is low-securityif it is lower than or equal tolA, andhigh-security

otherwise. Intuitively, the policies specified by labels require that attackers cannot learn

information about data with high-confidentiality labels, affect data with high-integrity

labels, or make data with high-availability labels unavailable. Thus, a system is secure

if the following three noninterference [31] properties are satisfied:

9

S

P

[[S]] = P

Construction Proving thetrustworthinessof P

Aimp

DSR

S is well-typed

P is well-typed

S satisfiesNIA

P satisfiesNIC

P satisfiesNII

P satisfiesNIAP preserves the high-
integrity semanticsand
availability of S

(1)

(2)
(3)

(3)

(4)

(5)

(5)

Figure 1.4: Trustworthiness by construction

• Confidentiality noninterference (NIC): attackers cannot infer high-confidentiality

data, or high-confidentiality inputs cannot interfere with low-confidentiality out-

puts that are observable to attackers.

• Integrity noninterference (NII): attackers cannot affect high-integrity data.

• Availability noninterference (NIA): attackers cannot affect the availability of data

with high-availability labels.

With these concepts, our goal is to prove that the Aimp-DSR translation generates dis-

tributed programs that satisfyNIC , NII , andNIA.

Figure 1.4 shows the proof strategy. A well-typed programS in Aimp is translated

into a DSR programP , and the translation is denoted by[[S]] = P . The proof thatP

satisfies the noninterference properties is done in the following steps.

(1) We show that the type system of Aimp ensures that a well-typed program satisfies

the noninterference properties. SinceS is well-typed,S satisfiesNIA.

(2) We show that the translation preserves sound typing. Thus,P is well-typed be-

causeS is well-typed.

(3) We show that the type system of DSR enforces the confidentiality and integrity

10

noninterference properties. Therefore,P satisfiesNIC andNII , becauseP is well-

typed.

(4) We show thatP always produces the same high-integrity outputs asS despite at-

tacks from low-integrity hosts, andP can achieve the same level of availability

asS. In other words, ifS produces a high-availability output, thenP also pro-

duces that output, although the output may be different if it is low-integrity. The

proof relies on the fact thatP satisfiesNII , which means attackers cannot affect

the high-integrity outputs even if they can compromise some low-integrity hosts

and launch attacks from them.

(5) We show thatP satisfiesNIA, based on thatP can achieve the same availability

asS, andS satisfiesNIA.

1.4 Limitations

The Aimp/DSR instantiation of the constructive approach to building secure distributed

programs has a few limitations. First, source language Aimp is a sequential language

and cannot be used to express concurrent computation. However, many useful applica-

tions, including the bidding example in Figure 1.2, are sequential.

Second, the DSR type system does not deal with timing channels. Since Aimp is

sequential, a target DSR program generated from an Aimp program does not cause

race conditions and internal timing channels [103]. Attackers may still be able to infer

confidential information by timing the network messages they can observe. However,

this kind of timing channels is more noisy than internal timing channels, and it is largely

an orthogonal issue, partially addressed by ongoing work [3, 72].

Third, in a distributed system, attackers can cause certain execution paths to diverge

(going into an infinite loop or getting stuck) by compromising some hosts, and create

11

termination channels. This issue is also not addressed in this thesis, partly because

termination channels generally have low bandwidth.

Finally, in this thesis, the formal notion of availability glosses over another aspect of

availability: timeliness. How soon does an output have to occur in order to be considered

to be available? For real-time services, there may be hard time bounds beyond which

a late output is useless. Reasoning about how long it takes to generate an output adds

considerable complexity, and this is left for future work.

1.5 Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the universal

label model for specifying end-to-end security policies. Chapter 3 describes source lan-

guage Aimp. Chapter 4 describes the features and mechanisms in DSR, which support

performing secure distributed computation. Chapter 5 presents the formal semantics of

DSR and proves the type system of DSR enforces confidentiality and integrity noninter-

ference properties. Chapter 6 presents a translation from Aimp to DSR, and prove that

the translation generates secure distributed programs. Chapter 7 concludes.

12

Chapter 2

Universal decentralized label model
A label model describes how to specify and analyzesecurity labels, which are associated

with data to describe the security levels of data and help characterize the restrictions on

data generation and uses. Formally, a label model is a set of labelsL with a partial

order relation≤. For example,{public, secret} with ≤ being{(public, public),

(public, secret), (secret, secret)} forms a simple confidentiality label model, in

whichsecret represents a higher confidentiality level thanpublic.

The decentralized label model(DLM) [64] allows different users to specify their

own information flow policies in a security label. The DLM is suitable for a system with

mutual distrust, in which different users might have different security requirements.

This chapter introduces a universal DLM, which extends the DLM with support for

specifying and analyzing availability labels. The universal DLM is composed of a set of

decentralized labels, each of which can be used as a confidentiality, integrity or avail-

ability label. This is possible due to a uniform semantics for decentralized labels, which

interprets a label as a security assumption. Besides simplicity, the major benefit of the

universal DLM is to support analyzing interactions between integrity and availability.

2.1 Security properties, labels and policies

This thesis focuses on the three core security properties on information: confidentiality,

integrity and availability. In the security literature, the three properties (especially in-

tegrity and availability) have many different meanings [69, 12]. In this thesis, a security

propertyρ, which may represent the confidentiality, integrity or availability of datad, is

written and interpreted as follows:

• confidentiality(d), meaning that attackers cannot learn about datad,

13

• integrity(d), meaning that attackers cannot affect the value ofd, or

• availability(d), meaning that attackers cannot maked unavailable.

A security property is often treated as a predicate on the set of all traces of a system.

For example, Zakinthinos and Lee [100] define a security (confidentiality) property as

a predicate that a system satisfies if and only if for any traceτ of the system, the set

of traces that attackers cannot distinguish fromτ satisfy another specific predicate. In

particular, their work shows that a noninterference property can be defined as such a

predicate. The security properties considered in this thesis are also closely related to the

notion of noninterference. Intuitively, a system enforcesconfidentiality(d) if and only if

the value ofd does not interfere with any data observable to attackers; a system enforces

integrity(d) andavailability(d) if and only if attackers cannot interfere with the value

and availability ofd, respectively. Therefore, a security propertyρ can also be viewed

as a predicate on the set of all traces of a system.

Security assumptions as labels

It is infeasible to enforce a security property if attackers have unconstrained power, and

security rests on assumptions that constrain the power of attackers. For example, secu-

rity commonly depends on a trusted computing base (TCB), which is assumed immune

to attacks. Furthermore, security assumptions help define the restrictions on the use of

data. For example, consider enforcingconfidentiality(d) under the assumption that user

root is trusted, which says thatroot is not controlled by attackers. According to the

assumption,root may be allowed to learn aboutd, but not other principals. Defining

the restrictions on the use of data is also the purpose of security labels. Thus, it is nat-

ural to specify security assumptions as labels. Formally, if a labell is associated with

propertyρ, then the semantics ofl, written as[[l]], describes the security assumptions for

enforcingρ.

14

Security policies

A label l specified on propertyρ defines asecurity policy〈ρ : l〉, which is enforced by a

systemS if and only if S satisfiesρ under the assumption[[l]], or more formally,[[l]] ⇒

ρ(S), whereρ(S) denotes thatS satisfiesρ, and⇒ means “implies”. For example,

〈confidentiality(d) : l〉 is a confidentiality policy ond, and it is enforced if attackers

cannot learn aboutd under the assumption[[l]]. Enforcing the policy〈ρ : l〉 is also

called “enforcingl on ρ”, or simply “enforcing l” if there is no ambiguity aboutρ.

For brevity, in a logical proposition, we writeρ for ρ(S) if it is clear which system is

under consideration. For example,[[l]] ⇒ ρ(S) can be written as[[l]] ⇒ ρ if there is no

ambiguity aboutS.

In this thesis, a system is consideredsecureif it does not violate any policy of the

form 〈ρ : l〉 specified on its data.

2.2 Dependency analysis and noninterference

A computing system processes inputs and produces outputs, creating dependencies be-

tween security properties of those inputs and outputs. Such dependencies capture the

system vulnerabilities that can be exploited by attackers to compromise security proper-

ties. For example, consider a system running the following pseudo-code:

while (i > 0) skip;

o := i;

This program assigns the inputi to the outputo if the value ofi is not positive. Oth-

erwise, the program diverges and the output is unavailable. Thus, the availability ofo

depends on the integrity ofi. An attacker can try to exploit this dependency: makingo

unavailable by affecting the value ofi to make it positive.

15

In a systemS, propertyρ dependsonρ1 ∨ . . .∨ ρn, writtenρ1 ∨ . . .∨ ρn ; ρ, if the

proposition¬(ρ1(S) ∨ . . . ∨ ρn(S)) ⇒ ¬ρ(S) holds, that is, if all propertiesρ1 through

ρn arenotsatisfied inS, thenρ is notsatisfied inS. In general, the dependencies caused

by a system can be identified by statically analyzing the code of a system. For example,

by analyzing the code of the above system, we know that the value ofo is computed

using the value ofi, and the availability ofo is affected by the value ofi. Therefore, the

system causes the following dependencies:

confidentiality(o) ; confidentiality(i)

integrity(i) ; integrity(o)

availability(i) ; availability(o)

integrity(i) ; availability(o)

We assume that an attacker can interact with a system only by affecting the inputs

and observing the outputs. The interactions between attackers and inputs/outputs of a

system always mean that some security properties are compromised: if attackers can

observe an output, then the confidentiality of the output is compromised; if attackers

can affect the value of an input, then the integrity of the input is compromised; and

if attackers can affect the availability of an input, then the availability of the input is

compromised.

In addition, we assume that a policy is enforced in a system if the enforcement of

the policy is affected not by the system, but by the external environment. In particular, a

system cannot affect how its inputs are generated and how its outputs are used, and thus

the integrity and availability policies on inputs, and the confidentiality policies on out-

puts are assumed to be enforced. This is called thesafe environmentassumption. Based

on this assumption, we have the following theorem, which gives a sufficient condition

for ensuring that a system is secure.

Theorem 2.2.1 (Dependency).Let lρ be the label specified on propertyρ. A system is

16

secure if it satisfies the following condition:

∀ρ, ρ1, . . . , ρn. (ρ1 ∨ . . . ∨ ρn ; ρ) ⇒ ([[lρ]] ⇒ [[lρ1]] ∨ . . . ∨ [[lρn]]) (DP)

Proof. Suppose, by way of contradiction, that the system is not secure and violates a

policy 〈ρ : lρ〉. Then[[lρ]] ⇒ ρ does not hold, which implies[[lρ]] ∧ ¬ρ. Since[[lρ]] holds,

by the safe environment assumption, attackers cannot compromiseρ directly without

exploiting the system. Therefore,ρ is compromised because of some interactions be-

tween attackers and the system. As discussed above, those interactions mean that a set

of propertiesρ1, . . . , ρn are compromised directly, and for alli in {1, . . . , n}, the en-

forcement of policy〈ρi : lρi
〉 is not affected by the system. By the safe environment

assumption,〈ρi : lρi
〉 is enforced, and[[lρi

]] does not hold for alli ∈ {1, . . . , n}. Since

ρ is compromised due to those interactions, we have¬ρ1 ∧ . . . ∧ ¬ρ1 ⇒ ¬ρ, that is,

ρ1 ∨ . . .∨ ρn ; ρ. By DP, we have[[lρ]] ⇒ [[lρ1]]∨ . . .∨ [[lρn]], which contradicts the fact

that [[lρ]] holds, and[[lρi
]] does not hold fori ∈ {1, . . . , n}.

By Theorem 2.2.1, a system is secure if it satisfies the following condition that is

equivalent to DP:

∀ρ1, . . . , ρn, ρ. ([[lρ)]] 6⇒ [[lρ1]] ∨ . . . ∨ [[lρn]]) ⇒ ρ1 ∨ . . . ∨ ρn 6; ρ (NI)

The condition NI says thatρ does not depend onρ1 ∨ . . . ∨ ρn, unless their labels

satisfy [[lρ]] ⇒
∨

1≤i≤n[[lρi
]]. The notion of independence between properties is often

formalized a noninterference [31] property. In practice, DP helps construct a program

dependency analysis and identify the label constraints that need to be verified, while

NI is often used as a semantic security condition in proving the correctness of an en-

forcement mechanism. For both conditions, we only need to reason about the label

constraints of the form[[l]] ⇒ [[l1]] ∨ . . . ∨ [[ln]] and the dependencies between security

properties. In particular, we do not need to directly reason whether[[l]] ⇒ ρ holds.

17

2.3 Universal decentralized label model

In the security model discussed in Section 2.1, a security label is interpreted as a secu-

rity assumption, regardless of what kind of security property that the label is specified

on. As a result, it is possible to construct a universal label model applicable to confiden-

tiality, integrity and availability simultaneously. This is desirable because it allows us

to compare labels specified on different kinds of properties. For example, we can com-

pare an integrity label with an availability label, and reason about dependencies between

integrity and availability.

This section extends the DLM to make it universally applicable to confidentiality,

integrity and availability. And a uniform semantics for labels is presented.

2.3.1 Owned labels

The DLM is designed to let users specify and manage their own confidentiality and

integrity labels. Thus, it is necessary to be able to identify the owner of a label. To

achieve this ability, the DLM is built onowned labels, in which label owners are spec-

ified explicitly. An owned labelO has the formu : p, where user principalu is the

owner of the label, andp is a principal, representing the system entities thatu considers

non-compromised (not falling under the control of attackers).

This section describes the syntax and semantics of owned labels. The formalization

borrows some ideas from the access control calculus [1] designed by Abadi, Burrows,

Lampson and Plotkin.

Principals

Formally, principals are specified using the following syntax:

Principals u, p ::= a | ∗ | p1∧p2 | p1∨p2

18

The meta-variablea is an abstract name representing an atomic entity that may affect

the behavior of a system. For example,a may be used to represent a user, a host, the

power supply or other system components. Principal∗ is a top principal whoacts for

every principal. In general, principalp1 acts for principalp2, written asp1 � p2, if p1

can act with the full authority ofp2, or in other words, any behavior byp1 can be viewed

as a behavior byp2. The� relation is reflexive and transitive.

Another useful relation between principals is thespeaks-forrelation [1]: p1 speaks

for p2 if any claim made byp1 can be viewed as a claim made byp2. Intuitively, the

acts-for relation is stronger than the speaks-for relation, since making a claim is just one

kind of behaviors that a principal may perform.

It is possible to construct more complex principals using conjunction and disjunction

operators [1]:∧ and∨. The composite principalp1∧p2 is the principal with exactly the

authority of bothp1 andp2. Any behavior by bothp1 andp2 is viewed as a behavior by

p1∧p2, and vice versa. It is clear thatp1∧p2 is the least upper bound ofp1 andp2 with

respect to the� ordering. More concretely,p1∧p2 acts forp1 andp2; and if principalp

acts forp1 andp2, thenp also acts forp1∧p2.

Another constructor∨ is used to construct a group (disjunction): any behavior by

p1 or p2 is considered a behavior ofp1∨p2, and vice versa. There are other meaning-

ful principal constructors such as “a as R” (the principala in roleR) [1, 25], and¬a

(thenegativeprincipal ofa), which represents the principal who has all the authorities

that a does not have. The negative principal can be used to specify theseparation of

duties[14]. Suppose datad can be read only by principala, and datad′ only by ¬a.

Then no principal other than the top principal can read bothd andd′. This thesis only

considers the conjunctive and disjunctive connectors because these two connectors are

sufficient for specifying expressive end-to-end policies.

We assume that a principal is either compromised or non-compromised. A compro-

19

mised principal is controlled by attackers, while a non-compromised principal is not.

More formally, letA be the principal representing all the attackers. Then a principalp is

compromised if and only ifA � p.

Semantics

The owned labelu :p explicitly expresses the assumption byu thatp is non-compromised.

As the label owner, useru is able to affect the implications of this label by making claims

about the acts-for relations or whether other principals are non-compromised. For ex-

ample,u may claimp′ � p. Then labelu :p also implies thatp′ is non-compromised. In

general, labelu : p conveys an implicit assumption thatu is honest, meaning that every

claim made byu is true.

Note that a non-compromised principal is not necessarily honest. Furthermore, we

do not assume that a compromised principal is dishonest because the assumption is not

essential, albeit intuitive.

Formally, a security assumption can be expressed by a propositionσ with the fol-

lowing syntax:

σ ::= good p | p says σ | honest p | p1 � p2 | σ1∧σ2 | σ1∨σ2

The interpretation is straightforward:good p means thatp is non-compromised;

p says σ means thatp claimsσ; honest p means thatp is honest (∀σ. p says σ ⇒ σ);

p1 � p2 means thatp1 acts forp2. The connectors∧ and∨ are the standard propositional

“and” and “or”. With this language, the semantics of labelu :p is as follows:

[[u :p]] = honest u ∧ good p

By the meaning ofp1 � p2, it is clear thatp1 � p2 implies good p2 ⇒ good p1,

p1 says σ ⇒ p2 says σ, andhonest p1 ⇒ honest p2. By the definition ofp1∧p2, we

20

immediately have the following inference rules:

R1. good p1 ∨ good p2 ⇔ good (p1∧p2)

R2. p1 says σ ∧ p2 says σ ⇔ p1∧p2 says σ

Dually, we have the following rules withp1∨p2:

R3. good p1 ∧ good p2 ⇔ good (p1∨p2)

R4. p1 says σ ∨ p2 says σ ⇔ p1∨p2 says σ

By rule (R4), we can prove the following lemma:

Lemma 2.3.1.honest p1∨p2 ⇔ honest p1 ∧ honest p2

Proof.

honest p1∨p2

⇔ ∀σ. p1∨p2 says σ ⇒ σ

⇔ ∀σ. p1 says σ ∨ p2 says σ ⇒ σ

⇔ ∀σ. (p1 says σ ⇒ σ) ∧ (p2 says σ ⇒ σ)

⇔ (∀σ. p1 says σ ⇒ σ) ∧ (∀σ. p2 says σ ⇒ σ)

⇔ honest p1 ∧ honest p2

2.3.2 Decentralized labels

Owned labels allow different principals to specify and manage their security require-

ments. Multiple owned labelsO1, . . . , On may be specified on the same security prop-

ertyρ. A secure system needs to enforce all these labelsO1, . . . , On onρ, which amounts

to ensuring∀i ∈ {1, . . . , n}. [[Oi]] ⇒ ρ, or equivalently,(
∨

1≤i≤n[[Oi]]) ⇒ ρ.

Based on this observation, we can writeO1, . . . , On together as a single labell =

{O1, . . . , On} and let[[l]] =
∨

1≤i≤n[[Oi]]. Then specifying and enforcingO1, . . . , On on

ρ is equivalent to specifying and enforcingl on ρ. The labell is called adecentralized

21

labelbecause it incorporates security requirements of different principals that generally

do not fall under a centralized authority. Now the security requirements with regard to

a security property can be described by a single label, even in a distributed system with

mutual distrust. This greatly simplifies security analysis.

2.3.3 Comparing labels

A label l2 is as high as another labell1, written asl1 ≤ l2, if the enforcement ofl2 on

any propertyρ implies the enforcement ofl1 on ρ. Intuitively, if ρ is enforced under a

weak assumption, thenρ is also enforced under a strong assumption. Therefore,l1 ≤ l2

if and only if [[l1]] is as strong as[[l2]], or [[l1]] ⇒ [[l2]]. By the semantics of owned labels,

the following rule for comparing owned labels immediately follows:

u2 � u1 p2 � p1

u1 :p1 ≤ u2 :p2

Consider two decentralized labelsl1 andl2. Intuitively, if for any owned labelO in

l1, there exists an owned label inl2 that is as high asO, thenl2 is as high asl1. Formally,

it is easy to show that(∀O ∈ l1. ∃O′ ∈ l2. O ≤ O′) implies [[l1]] ⇒ [[l2]]. Thus, we have

the following inference rule for comparing decentralized labels:

∀O ∈ l1. ∃O′ ∈ l2. O ≤ O′

l1 ≤ l2

The set of all the decentralized labels form a lattice with the followingjoin (t) and

meet(u) operations:

l1 t l2 = l1 ∪ l2

l1 u l2 = {u1∨u2 :p1∨p2 | u1 :p1 ∈ l1 ∧ u2 :p2 ∈ l2}

The join and meet operations are well-defined because of the following theorem, which

implies thatl1 t l2 is the least upper bound ofl1 andl2 with respect to the≤ ordering,

andl1 u l2 is the greatest lower bound ofl1 andl2.

22

Theorem 2.3.1.[[l t l′]] = [[l]] ∨ [[l′]] and[[l u l′]] = [[l]] ∧ [[l′]].

Proof. Supposel = {O1, . . . , On} andl′ = {O′
1, . . . , O

′
m}, andOi = ui : pi andO′

j =

u′j :p
′
j. Thenl t l′ = {O1, . . . , On, O

′
1, . . . , O

′
m}. Thus,

[[l t l′]] = (
∨

1≤i≤n[[Oi]]) ∨ (
∨

1≤j≤m[[O′
j]]) = [[l]] ∨ [[l′]].

For l u l′, we have the following deduction:

[[l u l′]] = [[{ui∨u′j :pi∨p′j |1 ≤ i ≤ n, 1 ≤ j ≤ m}]]

=
∨

1≤i≤n, 1≤j≤m[[ui∨u′j :pi∨p′j]]

=
∨

1≤i≤n, 1≤j≤m honest ui∨u′j ∧ good pi∨p′j

=
∨

1≤i≤n, 1≤j≤m honest ui ∧ honest u′j ∧ good pi ∧ good p′j (By Lemma 2.3.1 and R3)

=
∨

1≤i≤n, 1≤j≤m[[ui :pi]] ∧ [[u′j :p
′
j]]

=
∨

1≤i≤n([[ui :pi]] ∧
∨

1≤j≤m[[u′j :p
′
j]])

=
∨

1≤i≤n([[ui :pi]] ∧ [[l′]])

= (
∨

1≤i≤n[[ui :pi]]) ∧ [[l′]]

= [[l]] ∧ [[l′]]

By the definition of the join operation,⊥ = ∅ is the bottom of the decentralized label

lattice, since∀l. ∅ t l = l. Intuitively, the bottom label represents the strongest security

assumption, and thus[[∅]] is the propositionfalse. The top element of the decentralized

label lattice is> = {∗ :∗}, because for any owned labelu :p, we haveu :p ≤ ∗ :∗.

Having a lattice of labels supports static program analysis [18]. For example, con-

sider an addition expressione1 + e2. Let A(e1) andA(e2) represent the availability

labels of the results ofe1 ande2. By condition DP, we haveA(e1 + e2) ≤ A(e1) and

A(e1 + e2) ≤ A(e2), since the result ofe1 + e2 is available if and only if the results ofe1

ande2 are both available. Because the labels form a lattice,A(e1 + e2) = A(e1)uA(e2)

is the least restrictive availability label we can assign to the result ofe1 + e2. Similarly,

I(e1 + e2) = I(e1)u I(e2) is the least restrictive integrity label for the result ofe1 + e2,

23

whereI(e1) andI(e2) are respectively the integrity labels ofe1 ande2. Dually, if C(e1)

andC(e2) are the confidentiality labels ofe1 and e2, thenC(e1) ≤ C(e1 + e2) and

C(e2) ≤ C(e1 + e2). The least restrictive confidentiality label that can be assigned to

the result ofe1 + e2 isC(e1) t C(e2).

In addition, with a lattice label model, the DP and NI conditions can be written as:

∀ρ, ρ1, . . . , ρn. (ρ1 ∨ . . . ∨ ρn ; ρ) ⇒ (lρ ≤ lρ1 t . . . t lρn) (DP)

∀ρ, ρ1, . . . , ρn. (lρ 6≤ lρ1 t . . . t lρn) ⇒ ρ1 ∨ . . . ∨ ρn 6; ρ (NI)

2.3.4 Information security labels

In general, a system will need to simultaneously enforce labels on confidentiality, in-

tegrity, and availability for the information it manipulates. These labels can be applied

to information as a single security label, which have the following syntax:

Property namesα ∈ P

Security labels ` ::= {α1 = l1, . . . , αn = ln}

Essentially, an information security label` = {α1 = l1, . . . , αn = ln} incorporates

labels on various security properties about a piece of information: namesα1, . . . , αn

from a name spaceP identify the security properties, andli is the decentralized label on

the property identified byαi. The security label̀ is composed of decentralized labels,

but does not belong to the DLM itself. To distinguish these two kinds of labels, we call

a decentralized labell a base label. The name spaceP contains at leastC, I andA,

representing the confidentiality, integrity and availability properties, respectively. Label

` usually has the form{C= l1, I= l2, A= l3}, but can also contain base labels for other

security properties. For example, in a real-time system, we may want to enforcetiming

integrity, which means that attackers cannot affect when a piece of data is generated.

Then we can use the nameTI to represent the timing integrity property and specify a

base labell on TI to prevent attackers from compromising timing integrity under the

assumption[[l]].

24

Given a label̀ , letαi(`) denote the base label component corresponding toαi. For

example,C(`), I(`), andA(`) represent the respective confidentiality, integrity, and

availability components of̀.

It is convenient to have a single label to incorporate base labels on different proper-

ties. For example, this leads to a more succinct label constraint when analyzing infor-

mation flows. An information flow from datad1 to datad2 means that the value ofd2

may depend on the value ofd1. The security implications are that the confidentiality of

d1 depends on the confidentiality ofd2, and the integrity ofd2 depends on the integrity

of d1. Let `1 and`2 be the labels ofd1 andd2, respectively. The dependencies caused by

the information flow impose the following label constraints:

C(`1) ≤ C(`2) I(`2) ≤ I(`1)

Based on the two constraints, we can define an information flow ordering (v) on labels:

C(`1) ≤ C(`2) I(`2) ≤ I(`2)

`1 v `2

Information flow fromd1 to d2 is secure if and only if̀ 1 v `2. In addition, we can

define a join (t) operation on security labels:

`1 t `2 = {C= C(`1) t C(`2), I= I(`1) u I(`2), A= A(`1) u A(`2)}

The join operation is useful in analyzing computation. For example, suppose expres-

sionse1 ande2 have security labels̀1 and`2, respectively. Theǹ1 t `2 is the least

restrictive label that can be assigned to the result ofe1 + e2, as discussed in the previous

section.

It is easy to show that (1)̀1 v `1 t `2 and`2 v `1 t `2; (2) `1 v ` and`2 v `

imply `1 t `2 v `. Thus,`1 t `2 is a least upper bound of`1 and`2 with respect to thev

ordering. Based on the definition of the join operation on information labels, the bottom

label for thev ordering is⊥⊥⊥ = {C= ⊥, I = >, A= >}, which satisfies⊥⊥⊥ t ` = ` if

` = {C= l1, I= l2, A= l3}.

25

2.4 Example

Consider the example in Figure 1.2. Now we can assign formal security labels to vari-

ables accessed by the program:

bid, offer, t, a, result : `0 acct : `1

where

`0 = {C = A∧B :A∨B, I = A∧B : (A∧B)∨(B∧T)∨(A∧T), A= l}

`1 = {C = A :A, I = A :A∨(B∧T), A = l}

l = A∧B : (A∧B)∨(B∧T)∨(A∧T)∨(C1∧C2)∨(C1∧C3)∨(C2∧C3)

The label ofbid is `0, in whichA represents Alice,B represents Bob, andT is a third

party helping to mediate the transaction. The confidentiality labelA∧B :A∨B means that

both B andA can learn the values of these variables with label`0. The integrity label

indicates that affecting the value inbid requires the cooperation of at least two parties.

For example,A∧B can cooperatively affectbid, since they are the two directly involved

parties. IfA andB disagree on the value ofbid, the mediatorT can keep the transaction

going by agreeing with the value claimed by eitherB or A. As a result, bothA∧T andB∧T

can affect the value ofbid.

The availability componentA(`0) is l, which assumesB∧A, B∧T, A∧T, C1∧C2,

C1∧C3 andC2∧C3 to be non-compromised, whereC1, C2 andC3 represent three clusters

of hosts, and hosts in the same cluster are supposed to share the same failure causes.

PrincipalC1 fails if and only if all the hosts inC1 fail; the same holds forC2 andC3.

This label assumes that at most one cluster amongC1, C2 andC3 would fail, effectively

specifying a failure model. Because all the variables share the same availability labell,

the availability label ofresult cannot be violated by making other variables unavail-

able. Sincel ≤ I(`0), the availability label cannot be violated by compromising the

integrity oft.

The label ofacct is `1, which has a confidentiality componentA : A, meaning that

26

Alice allows only herself to learn aboutacct. The integrity label ofacct is A :A∨(B∧T),

meaning thatA as well asB∧T can affect the value ofacct, because the transaction can

proceed to chargeacct as long asB andT cooperate.

2.5 Related work

Security labels have been widely used in security models and mechanisms for control-

ling information flow. Such security models include the Bell-LaPadula model [10], the

secure information flow model [16], and the multilevel security model [23]. More re-

cent models for information flow have defined various security properties that ensure

the absence of insecure information flows, such as noninterference [31] for determin-

istic systems, possibilistic extensions of noninterference including nondeducibility [82]

and generalized noninterference [54], and probabilistic extensions of noninterference

including the Flow Model [57] and P-restrictiveness [32].

According to Denning [16], information flow control mechanisms fall into four cat-

egories based on whether they support static or dynamic binding of objects to labels and

whether they are run-time or compile-time mechanisms.

• Run-time static-binding mechanisms include the access control mechanism of the

MITRE system [9], which checks static-binding labels at run time to enforce the

“no read-up and no write-down” rule. The Data Mark Machine proposed by Fen-

ton [24] has an interesting run-time enforcement mechanism, in which labels are

static except for the program counter label that is associated with the program

counter of a process and may be updated at run time to control implicit flows.

Recently, run-time label checking has been formalized as explicit language struc-

tures, and type systems [86, 106] have been developed to analyze run-time label

checks statically.

27

• Compile-time static-binding mechanisms include the program certification mech-

anism proposed by Denning and Denning [18], and type-based information flow

analyses [88, 34, 101, 70, 7].

• Run-time dynamic-binding mechanisms update the label of an object according

to the changes to the contents of the object. This type of mechanisms was used in

ADEPT [94], and more recently the IX system [55], the Flask security architec-

ture [80] and the Asbestos system [20].

• Compile-time dynamic-binding mechanisms have been studied recently. Amtoft

and Banerjee [6] developed a Hoare-like logic to track the independence relations

between variables. Given a variablex, the set of variables thatx depend on can

be viewed as the security label ofx, which may be different at different program

points. Hunt and Sands [39] proposed a flow-sensitive type system for analyzing

information flows. In the flow-sensitive type system, a variable may be assigned

different types (including security labels) at different program points.

Owned-retained access control (ORAC) [53] uses owner-retained ACLs to label ob-

jects and enables flexible label management by allowing the owner of an object to mod-

ify its own ACL about the object.

Myers and Liskov proposed the decentralized label model for specifying information

flow policies [63]. This thesis generalizes the DLM to provide a unified framework for

specifying confidentiality, integrity and availability policies.

Focardi and Gorrieri [27] provide a classification of security properties in the set-

ting of a non-deterministic process algebra. In particular, the BNDC (bisimulation-

based non-deducibility on compositions) property prevents attackers from affecting the

availabilities of observable process actions. However, the BNDC property requires ob-

servational equivalence, making it difficult to separate the concerns for integrity and

availability.

28

Yu and Gligor [99] develop a formal method for analyzing availability: a form of

first-order temporal logic is used to specify safety and liveness constraints on the inputs

and behaviors of a service, and then those constraints can be used to formally verify the

availability guarantees of the service. The flexibility and expressiveness of first-order

temporal logic come at a price: it is difficult to automate the verification process. The

approach of formalizing and reasoning system constraints and guarantees in terms of

logic resembles the rely-guarantee method [40], which was also applied to analyzing

cryptographic protocols by Guttman et al. [33].

The formalization of owned labels is inspired by the access control calculus [1],

which introduces the formulaA says s (principalA sayss), and a principal logic with

conjunctive and disjunctive principals. The purpose of the access control calculus is

to determine whether access requests should be granted given a set of access control

policies formalized as formulas in the calculus. In comparison, the universal DLM

focuses on comparing decentralized labels.

29

Chapter 3

The Aimp language
As discussed in the previous chapter, security policies can be enforced by noninterfer-

ence. It is well known that noninterference in terms of confidentiality and integrity can

be enforced by static, compile-time analysis of program text [88, 34, 102, 73]. The

new challenge is to apply the same approach to availability. This chapter presents the

Aimp language with a security type system enforcing noninterference for three security

properties: availability, along with confidentiality and integrity.

3.1 Syntax

The Aimp language is a simple imperative language with assignments, sequential com-

position, conditionals, and loops. The syntax of Aimp is as follows:

Values v ::= n

Expressions e ::= v | !m | e1 + e2

Statements s ::= skip | m := e | S1;S2

| if e then S1 else S2 | while e do S

In Aimp, a value is an integern. An expression may be a valuev, a dereference ex-

pression!m, or an addition expressione1 + e2. A statement may be an empty statement

skip, an assignment statementm := e, a sequential compositionS1;S2, or anif or

while statement.

A program of Aimp is just a statement, and the state of a program is captured by a

memoryM that maps memory references (memory locations) to values. For simplicity,

we assume that memory is observable and use memory references to model I/O chan-

nels. A reference representing an input is called aninput reference, and a reference

representing an output is called anoutput reference. To model availability, a memory

30

reference may be mapped to two special values:

• none, indicating that the value of the reference is not available, and

• void, indicating that the reference itself is not available.

Intuitively, if a referencem is mapped tonone, then a dereference operation onm will

cause the running program toget stuck(cannot be further evaluated); ifm is mapped to

void, then either a dereference or assignment operation will cause the running program

to get stuck. In particular, an output reference mapped tonone represents an unavail-

able (not yet produced) output, and an input reference mapped tovoid represents an

unavailable (remaining so during execution) input.

3.2 Operational semantics

The small-step operational semantics of Aimp is given in Figure 3.1. LetM represent

a memory that is a finite map from locations to values (includingnone andvoid), and

let 〈S, M〉 be a machine configuration. Then a small evaluation step is a transition from

〈S, M〉 to another configuration〈S ′, M ′〉, written〈S, M〉 7−→ 〈S ′, M ′〉.

The evaluation rules (S1)–(S7) are standard for an imperative language. Rules (E1)–

(E3) are used to evaluate expressions. Because an expression causes no side-effects to

memory, we use the notation〈e, M〉 ⇓ v to mean that evaluatinge in memoryM results

in the valuev. Rule (E1) is used to evaluate a dereference expression!m. In rule (E1),

Let M [m] represent the value thatm is mapped to inM . ThenM(m) is computed as

follows:

M(m) =

 n if M [m] = n

none if M [m] = none orM [m] = void

Dereferencing a reference that is mapped tonone orvoid produces an unavailable value,

represented bynone.

31

(E1)
M(m) = v

〈!m, M〉 ⇓ v

(E2)
〈e1, M〉 ⇓ v1 〈e2, M〉 ⇓ v2 v = v1 ⊕ v2

〈e1 + e2, M〉 ⇓ v

(E3) 〈v, M〉 ⇓ v

(S1)
〈e, M〉 ⇓ n M [m] 6= void

〈m := e, M〉 7−→ 〈skip, M [m 7→ n]〉

(S2)
〈S1, M〉 7−→ 〈S′1, M ′〉

〈S1;S2, M〉 7−→ 〈S′1;S2, M ′〉

(S3) 〈skip;S, M〉 7−→ 〈S, M〉

(S4)
〈e, M〉 ⇓ n n > 0

〈if e then S1 else S2, M〉 7−→ 〈S1, M〉

(S5)
〈e, M〉 ⇓ n n ≤ 0

〈if e then S1 else S2, M〉 7−→ 〈S2, M〉

(S6)
〈e, M〉 ⇓ n n > 0

〈while e do S, M〉 7−→ 〈S; while e do S, M〉

(S7)
〈e, M〉 ⇓ n n ≤ 0

〈while e do S, M〉 7−→ 〈skip, M〉

Figure 3.1: Operational semantics for Aimp

Rule (E2) evaluates addition expressions. Intuitively, the sum of two valuesv1 and

v2 is unavailable ifv1 or v2 is unavailable. Accordingly, ife1 ande2 are evaluated tov1

andv2, e1 + e2 is evaluated tov1 ⊕ v2, which is computed using the following formula:

v1 ⊕ v2 =

 n1 + n2 if v1 = n1 andv2 = n2

none if v1 = none or v2 = none

Rules (S1)–(S7) are mostly self-explanatory. In rule (S1), the assignment tom can

be accomplished only ifm does not fail (M [m] 6= void). Rules (S1), (S4)–(S7) show

that if the evaluation of configuration〈S, M〉 depends on the result of an expressione,

it must be the case that〈e, M〉 ⇓ n. In other words, if〈e, M〉 ⇓ none, the evaluation of

32

(A) m2:=!m1; mo:= 1;

(B) while (!m1) do skip; mo:=1;

(C) if (!m1) then while (1) do skip; else skip;
mo:=1;

(D) if (!m1) then mo:=1 else skip;
while (!m2) do skip;
mo:=2;

Figure 3.2: Examples

〈S, M〉 gets stuck.

3.3 Examples

The Aimp language focuses on the essentials of an imperative language. Figure 3.2

shows a few code segments that demonstrate various kind of availability dependencies,

some of which are subtle. In all these examples,mo represents an output, and its initial

value isnone. All other references represent inputs.

In code segment (A), ifm1 orm2 is not available (mapped tovoid), execution gets

stuck at the first assignment. Therefore, the availability ofmo depends on the availability

of m1 andm2.

In code segment (B), thewhile statement gets stuck if the value ofm1 is not avail-

able. Moreover, itdiverges(goes into an infinite loop) if the value ofm1 is positive.

Thus, availability ofmo depends on both the availability and integrity ofm1.

In code segment (C), theif statement diverges if the value ofm1 is positive, so the

availability ofmo depends on the integrity ofm1.

In code segment (D),mo is assigned in one branch of theif statement, but not in the

other. Therefore, when theif statement terminates, the availability ofmo depends on

the value ofm1. Moreover, the program executes awhile statement that may diverge

beforemo is assigned the value 2. Therefore, for the whole program, the availability of

33

1 t := 0; a := -1;

2 while (!t < 3)

3 if (!bid >= !offer[i]) then

4 acct := !acct + !bid; a := t;

5 t := 5

6 else t := !t + 1;

7 result := !a;

Figure 3.3: Bidding example

mo depends on the integrity ofm1. Similar to (B), the availability ofmo also depends

on the availability and integrity ofm2.

The Aimp language is expressive enough to write the bidding program in Figure 1.2,

as shown in Figure 3.3. The arrayoffer can be viewed as syntactic sugar for three ref-

erencesoffer1, offer2 andoffer3 that are accessed based on the value oft. Deref-

erencing variables is now represented explicitly with the operator!.

3.4 Type system

Let l range over a latticeL of base labels, such as the set of combined owned labels

discussed in Section 2.3.2. The top and bottom elements ofL are represented by> and

⊥, respectively. The syntax for types in Aimp is shown as follows:

Base labels l ∈ L

Labels `, pc ::= {C= l1, I= l2, A= l3}

Types τ ::= int` | int` ref | stmtR

In Aimp, the only data type isint`, an integer type annotated with security label`,

which contains three base labels as described in Section 2.3.4. Supposeτ is int`. Then

we use the notationsC(τ), I(τ) andA(τ) to representC(`), I(`) andA(`), respectively.

A memory referencem has typeint` ref, indicating the value stored atm has type

int`. In Aimp, types of memory references are specified by atyping assignmentΓ that

34

maps references to types so that the type ofm is τ ref if Γ(m) = τ .

The type of a statementS has the formstmtR whereR contains the set of unas-

signed output references whenS terminates. Intuitively,R represents all the outputs

that are still expected by users afterS terminates.

The type system of Aimp is designed to ensure that any well-typed Aimp program

satisfies noninterference. For confidentiality and integrity, the type system performs a

standard static information flow analysis [18, 88]. For availability, the type system tracks

the set of unassigned output references at each program point. And the availability of

an unassigned output reference at a program point depends on whether execution gets

stuck at that program point. Such dependency relations induce label constraints that the

type system of Aimp enforces, as the DP condition of Section 2.2 requires.

To track unassigned output references, the typing environment for a statementS

includes a componentR, which contains the set of unassigned output references before

the execution ofS. The typing judgment for statements has the form:Γ ;R ; pc ` S :

stmtR′, meaning thatS has typestmtR′ with respect to the typing assignmentΓ, the

set of unassigned output referencesR, andpc, the program counter label [17] used to

indicate security levels of the program counter. The typing judgment for expressions

has the formΓ ;R ` e : τ , meaning thate has typeτ with respect toΓ andR.

The typing rules are shown in Figure 3.4. Rules (INT) and (NONE) check constants.

An integern has typeint` where` can be an arbitrary label. The valuenone represents

an unavailable value, so it can have any data type. Sinceint is the only data type in

Aimp, none has typeint`.

Rule (REF) says that the type of a referencem is τ ref whereτ = Γ(m). In Aimp,

Γ(m) is always an integer type.

Rule (DEREF) checks dereference expressions. It disallows dereferencing the refer-

ences inR, because they may be unassigned output references.

35

(INT) Γ ;R ` n : int`

(NONE) Γ ;R ` none : int`

(REF)
Γ(m) = τ

Γ ;R ` m : τ ref

(DEREF)
m 6∈ R Γ(m) = int`

Γ ;R `!m : int`

(ADD)
Γ ;R ` e1 : int`1 Γ ;R ` e2 : int`2

Γ ;R ` e1 + e2 : int`1t`2

(SKIP) Γ ;R ; pc ` skip : stmtR

(SEQ)

Γ ;R ; pc ` S1 : stmtR1

Γ ;R1 ; pc ` S2 : stmtR2

Γ ;R ; pc ` S1;S2 : stmtR2

(ASSIGN)

Γ ;R ` m : int` ref Γ ;R ` e : int`′
C(pc) t C(`′) ≤ C(`) I(`) ≤ I(pc) u I(`′)

AΓ(R) ≤ A(`′) uA(`)
Γ ;R ; pc ` m := e : stmtR−{m}

(IF)

Γ ;R ` e : int` AΓ(R) ≤ A(`)
Γ ;R ; pc t ` ` Si : τ i ∈ {1, 2}

Γ ;R ; pc ` if e then S1 else S2 : τ

(WHILE)

Γ ` e : int` Γ ;R ; pc t ` ` S : stmtR
AΓ(R) ≤ I(`) u I(pc) uA(`)

Γ ;R ; pc ` while e do S : stmtR

(SUB)
Γ ;R ; pc ` S : τ Γ ;R ; pc ` τ ≤ τ ′

Γ ;R ; pc ` S : τ ′

Figure 3.4: Typing rules for Aimp

Rule (ADD) checks addition expressions. As discussed in Section 2.3.4, the label of

e1 + e2 is exactly`1 t `2 if ei has the label̀i for i ∈ {1, 2}.

Rule (SKIP) checks theskip statement, which does not have any effects. Thus, the

unassigned output references are stillR after executingskip.

Rule (SEQ) checks sequential statements. The premiseΓ ;R ; pc ` S1 : stmtR1

36

means thatR1 contains the set of unassigned output references afterS1 terminates and

beforeS2 starts. Therefore, the typing environment forS2 is Γ ;R1 ; pc. It is clear that

S2 andS1;S2 terminate at the same point. Thus,S1;S2 has the same type asS2.

Rule (ASSIGN) checks assignment statements. The statementm := e assigns the

value ofe tom, creating an explicit information flow frome tom and an implicit flow

from the program counter tom. To control these information flows, this rule requires

C(`′) t C(pc) ≤ C(Γ(m)) to protect the confidentiality ofe and the program counter,

andI(Γ(m)) ≤ I(pc) u I(`′) to protect the integrity ofm.

If the value ofe is unavailable or the referencem fails, the assignmentm := e will

get stuck. Therefore, rule (ASSIGN) has the premiseAΓ(R) ≤ A(`′) u A(`), where

AΓ(R) =
⊔
m∈RA(Γ(m)), to ensure the availability labels ofe andm is as high as the

availability label of any unassigned output reference. For example, in the code segment

(A) of Figure 3.2, the type system ensures thatA(Γ(mo)) ≤ A(Γ(m1)) u A(Γ(m2)).

When the assignmentm := e terminates,m should be removed from the set of

unassigned output references, and thus the statement has typestmtR−{m}.

Rule (IF) checksif statements. Consider the statement:if e then S1 else S2.

The value ofe determines which branch is executed, so the program-counter labels for

branchesS1 andS2 subsume the label ofe to protecte from implicit flows. As usual,

theif statement has typeτ if both S1 andS2 have typeτ . As in rule (ASSIGN), the

premiseAΓ(R) ≤ A(`) ensures thate has sufficient availability.

Rule (WHILE) checkswhile statements. In this rule, the premiseAΓ(R) ≤ I(`) u

I(pc) u A(`) can be decomposed into three constraints:AΓ(R) ≤ A(`), which ensures

thate has sufficient availability,AΓ(R) ≤ I(`), which prevents attackers from making

thewhile statement diverge by compromising the integrity ofe, andAΓ(R) ≤ I(pc),

which prevents attackers from affecting whether the control flow reaches thewhile

statement, because awhile statement may diverge without any interaction with attack-

37

ers.

For example, consider the code segments (B) and (C) in Figure 3.2, in whichR =

{mo}. Suppose base labellA represents the security level of attackers, andA(Γ(mo)) 6≤

lA. In (B), the constraintAΓ(R) ≤ I(`) of rule (WHILE) ensuresI(Γ(m1)) 6≤ lA, so

attackers cannot affect the value ofm1, or whether thewhile statement diverges. In (C),

the constraintAΓ(R) ≤ I(pc) guaranteesI(pc) 6≤ lA, and thusI(Γ(m1)) 6≤ lA holds

becauseI(pc) ≤ I(Γ(m1)). Therefore, attackers cannot affect which branch of theif

statement would be taken, or whether control reaches thewhile statement.

Rule (SUB) is the standard subsumption rule. LetΓ ;R ; pc ` τ ≤ τ ′ denote thatτ

is a subtype ofτ ′ with respect to the typing environmentΓ ;R ; pc. The type system of

Aimp has one subtyping rule:

(ST)

R′ ⊆ R′′ ⊆ R
∀m, m ∈ R′′ −R′ ⇒ A(Γ(m)) ≤ I(pc)

Γ ;R ; pc ` stmtR′ ≤ stmtR′′

SupposeΓ ;R ; pc ` stmtR′ ≤ stmtR′′ andΓ ;R ; pc ` S : stmtR′. ThenΓ ;R ; pc `

S : stmtR′′ by rule (SUB). In other words, ifR′ contains all the unassigned output

references afterS terminates, so doesR′′. This is guaranteed by the premiseR′ ⊆ R′′

of rule (ST). The reference setR contains all the unassigned output references beforeS

is executed, so rule (ST) requiresR′′ ⊆ R. Intuitively, the statementS can be treated as

having typestmtR′′ because there might exist another control flow path that bypassesS

and does not assign to references inR′′ −R′. Consequently, for anym in R′′ −R′, the

availability ofm may depend on whetherS is executed. Therefore, rule (ST) enforces

the constraint∀m, m ∈ R′′ −R′ ⇒ A(Γ(m)) ≤ I(pc).

Consider the assignmentmo := 1 in the code segment (D) of Figure 3.2. By rule

(ASSIGN),Γ ;{mo} ; pc ` mo := 0 : stmt∅. For theelse branch of theif statement,

we haveΓ ;{mo} ; pc ` skip : stmt{mo}. By rule (IF), Γ ;{mo} ; pc ` mo := 0 :

stmt{mo} needs to hold, which requiresΓ ;{mo} ; pc ` stmt∅ ≤ stmt{mo}. In this

38

example, the availability ofmo depends on which branch is taken, and we need to ensure

A(Γ(mo)) ≤ I(Γ(m1)). Indeed, if (D) is well typed, by rules (ST) and (IF), we have

A(Γ(mo)) ≤ I(pc) ≤ I(Γ(m1)).

This type system satisfies the property of subject reduction, or type preservation, as

stated in the following theorem, which is proved in the next section.

Theorem 3.4.1 (Subject reduction).SupposeΓ ;R ; pc ` S : τ , and dom(Γ) =

dom(M). If 〈S, M〉 7−→ 〈S ′, M ′〉, then there existsR′ such thatΓ ;R′ ; pc ` S ′ : τ ,

andR′ ⊆ R, and for anym ∈ R−R′,M ′(m) 6= none.

3.5 Security by type checking

As discussed in Section 2.2, security policies can be enforced by noninterference. This

section shows that the type system of Aimp can enforce the security policies specified

by type annotations (labels), by proving that every well-typed program satisfies nonin-

terference.

3.5.1 Noninterference properties

In general, a program can affect three security properties: the confidentiality of an in-

put, the integrity of an output and the availability of an output. Thus, the notion of

noninterference can be formalized as three more specific noninterference properties,

corresponding to the three security properties. Although this formalization is done in

the context of Aimp, it can be easily generalized to other state transition systems.

For both confidentiality and integrity, noninterference has a simple, intuitive descrip-

tion: equivalent low-confidentiality (high-integrity) inputs always result in equivalent

low-confidentiality (high-integrity) outputs. The notion of availability noninterference

is more subtle, because an attacker has two ways to compromise the availability of an

39

output. First, the attacker can make an input unavailable and block computation that

depends on the input. Second, the attacker can try to affect the integrity of control flow

and make the program diverge (fail to terminate). In other words, the availability of an

output may depend on both the integrity and availability of an input. The observation is

captured by this intuitive description of availability noninterference:

With all high-availability inputs available, equivalent high-integrity inputs

will eventually result in equally available high-availability outputs.

This formulation of noninterference provides a separation of concerns (and policies) for

availability and integrity, yet prevents the two attacks discussed above.

The intuitive concepts of high and low security are based on the power of the poten-

tial attacker, which is represented by a base labellA. In the DLM, lA = {∗ : p1∧. . .∧pn},

if the attacker can act forp1, . . . , pn. Given a base labell, if l ≤ lA then the label rep-

resents a low-security level and is not protected from the attacker. Otherwise,l is a

high-security label.

For an imperative language, the inputs of a program are just the initial memory and

the outputs are the observable aspects of a program execution, which is defined by the

observation modelof the language. In Aimp, we have the following observation model:

• Memories are observable.

• The valuenone is not observable. In other words, ifM(m) = none, an observer

cannot determine the value ofm in M .

SupposeS is a program, andM is the initial memory. Based on the observation model,

the outputs ofS are a setT of finite traces of memories, and for any traceT in T ,

there exists an evaluation〈S, M〉 7−→ 〈S1, M1〉 7−→ . . . 7−→ 〈Sn, Mn〉 such that

T = [M,M1, . . . ,Mn]. Intuitively, every trace inT is the outputs observable to users at

some point during the evaluation of〈S, M〉, andT represents all the outputs of〈S, M〉

40

observable to users. Since the Aimp language is deterministic, for any two traces inT ,

it must be the case that one is a prefix of the other.

In the intuitive description of noninterference, equivalent low-confidentiality inputs

can be represented by two memories whose low-confidentiality parts are indistinguish-

able. Suppose the typing information of a memoryM is given by a typing assign-

ment Γ. Thenm belongs to the low-confidentiality part ofM if C(Γ(m)) ≤ lA,

whereC(Γ(m)) = C(`) if Γ(m) = int`. Similarly, m is a low-integrity reference

if I(Γ(m)) ≤ lA, a high-integrity reference ifI(Γ(m)) 6≤ lA, and a high-availability

reference ifA(Γ(m)) 6≤ lA. Let v1 ≈ v2 denote thatv1 andv2 are indistinguishable. By

the observation model of Aimp, a user cannot distinguishnone from any other value.

Consequently,v1 ≈ v2 if and only if v1 = v2, v1 = none or v2 = none. With these

settings, given two memoriesM1 andM2 with respect toΓ, we define three kinds of

indistinguishability relations betweenM1 andM2 as follows:

Definition 3.5.1 (Γ ` M1 ≈C≤lA M2). The low-confidentiality parts ofM1 andM2 are

indistinguishable, writtenΓ ` M1 ≈C≤lA M2, if for anym ∈ dom(Γ), C(Γ(m)) ≤ lA

impliesM1(m) ≈M2(m).

Definition 3.5.2 (Γ ` M1 ≈I 6≤lA M2). The high-integrity parts ofM1 andM2 are indis-

tinguishable, writtenΓ ` M1 ≈I 6≤lA M2, if for anym ∈ dom(Γ), I(Γ(m)) 6≤ lA implies

M1(m) ≈M2(m).

Definition 3.5.3 (Γ ` M1 ≈A6≤lA M2). The high-availability parts ofM1 andM2 are

equally available, writtenΓ ` M1 ≈A6≤lA M2, if for anym ∈ dom(Γ), A(Γ(m)) 6≤ lA

implies thatM1(m) = none if and only ifM2(m) = none.

Based on the definitions of memory indistinguishability, we can define trace indis-

tinguishability, which formalizes the notion of equivalent outputs. Intuitively, two traces

are indistinguishable if they may be produced by the same execution. First, we assume

41

that users cannot observe timing. As a result, traces[M,M] and[M] look the same to a

user. In general, two tracesT1 andT2 are equivalent, writtenT1 ≈ T2, if they are equal

up to stuttering, which means the two traces obtained by eliminating repeated elements

in T1 andT2 are equal. For example,[M1,M2,M2] ≈ [M1,M1,M2]. Second,T1 and

T2 are indistinguishable, ifT1 appears to be a prefix ofT2, because in that case,T1 and

T2 may be generated by the same execution. This implies that trace indistinguishability

is not an equivalence relation because two distinguishable traces may share the same

prefix.

Given two tracesT1 andT2 of memories with respect toΓ, let Γ ` T1 ≈C≤lA T2

denote that the low-confidentiality parts ofT1 andT2 are indistinguishable, andΓ `

T1 ≈I 6≤lA T2 denote that the high-integrity parts ofT1 andT2 are indistinguishable.

These two notions are defined as follows:

Definition 3.5.4 (Γ ` T1 ≈C≤lA T2). Given two tracesT1 andT2, Γ ` T1 ≈C≤lA T2 if

there existT ′1 = [M1, . . . ,Mn] andT ′2 = [M ′
1, . . . ,M

′
m] such thatT1 ≈ T ′1, andT2 ≈ T ′2,

andΓ `Mi ≈C≤lA M
′
i for anyi in {1, . . . , min(m,n)}.

Definition 3.5.5 (Γ ` T1 ≈I 6≤lA T2). Given two tracesT1 andT2, Γ ` T1 ≈I 6≤lA T2 if

there existT ′1 = [M1, . . . ,Mn] andT ′2 = [M ′
1, . . . ,M

′
m] such thatT1 ≈ T ′1, andT2 ≈ T ′2,

andΓ `Mi ≈I 6≤lA M
′
i for anyi in {1, . . . , min(m,n)}.

Note that two executions are indistinguishable if any two finite traces generated by

those two executions are indistinguishable. Thus, we can still reason about the indistin-

guishability of two nonterminating executions, even though≈I 6≤lA and≈C≤lA are defined

on finite traces.

With the formal definitions of memory indistinguishability and trace indistinguisha-

bility, it is straightforward to formalize confidentiality noninterference and integrity non-

interference:

42

Definition 3.5.6 (Confidentiality noninterference).A programS has theconfidential-

ity noninterferenceproperty w.r.t. a typing assignmentΓ, written Γ ` NIC(S), if for

any two tracesT1 andT2 generated by evaluating〈S, M1〉 and〈S, M2〉, we have that

Γ `M1 ≈C≤lA M2 impliesΓ ` T1 ≈C≤lA T2.

Note that this confidentiality noninterference property does not treat covert channels

based on termination and timing. Static control of timing channels is largely orthogonal

to this work, and has been partially addressed elsewhere [79, 3, 72].

Definition 3.5.7 (Integrity noninterference). A programS has theintegrity noninter-

ferenceproperty w.r.t. a typing assignmentΓ, writtenΓ ` NII(S), if for any two traces

T1 andT2 generated by evaluating〈S, M1〉 and〈S, M2〉, we have thatΓ `M1 ≈I 6≤lA M2

impliesΓ ` T1 ≈I 6≤lA T2.

Consider the intuitive description of availability noninterference. To formalize the

notion that all the high-availability inputs are available, we need to distinguish input

references from unassigned output references. Given a programS, letR denote the set

of unassigned output references. In general, references inR are mapped tonone in the

initial memory. Ifm 6∈ R, then referencem represents either an input, or an output

that is already been generated. Thus, given an initial memoryM , the notion that all the

high-availability inputs are available can be formalized as∀m. (A(Γ(m)) 6≤ lA ∧m 6∈

R) ⇒M(m) 6= none, as in the following definition of availability noninterference:

Definition 3.5.8 (Availability noninterference). A programS has theavailability non-

interferenceproperty w.r.t. a typing assignmentΓ and a set of unassigned output ref-

erencesR, written Γ ;R ` NIA(S), if for any two memoriesM1,M2, the following

statements

• Γ `M1 ≈I 6≤lA M2

• For i ∈ {1, 2}, ∀m ∈ dom(Γ). A(Γ(m)) 6≤ lA ∧m 6∈ R ⇒Mi(m) 6= none

43

• 〈S, Mi〉 7−→∗ 〈S ′i, M ′
i〉 for i ∈ {1, 2}

imply that there exist〈S ′′i , M ′′
i 〉 for i ∈ {1, 2} such that〈S ′i, M ′

i〉 7−→∗ 〈S ′′i , M ′′
i 〉 and

Γ `M ′′
1 ≈A6≤lA M

′′
2 .

3.5.2 The Aimp* language

The noninterference result for Aimp is proved by extending the language to a new lan-

guage Aimp*. Each configuration〈S, M〉 in Aimp* encodes two Aimp configurations

〈S1, M1〉 and 〈S2, M2〉. Moreover, the operational semantics of Aimp* is consistent

with that of Aimp in the sense that the result of evaluating〈S, M〉 is an encoding of the

results of evaluating〈S1, M1〉 and〈S2, M2〉 in Aimp. The type system of Aimp* en-

sures that if〈S, M〉 is well-typed, then the low-confidentiality or high-integrity parts of

〈S1, M1〉 and〈S2, M2〉 are equivalent. Intuitively, if the result of〈S, M〉 is well-typed,

then the results of evaluating〈S1, M1〉 and〈S2, M2〉 should also have equivalent low-

confidentiality or high-integrity parts. Therefore, the preservation of type soundness in

an Aimp* evaluation implies the preservation of low-confidentiality or high-integrity

equivalence between two Aimp evaluations. Thus, to prove the confidentiality and in-

tegrity noninterference theorems of Aimp, we only need to prove the subject reduction

theorem of Aimp*. This proof technique was first used by Pottier and Simonet to prove

the noninterference result of a security-typed ML-like language [70].

What is new here is that the availability noninterference theorem of Aimp can by

proved by aprogressproperty of the type system of Aimp*.

This section details the syntax and semantic extensions of Aimp* and proves the key

subject reduction and progress theorems of Aimp*.

44

Syntax extensions

The syntax extensions of Aimp* include the bracket construct, which is composed of

two Aimp terms and captures the difference between two Aimp configurations.

Values v ::= . . . | (v1 | v2)

StatementsS ::= . . . | (S1 | S2)

Bracket constructs cannot be nested, so the subterms of a bracket construct must be

Aimp terms. Given an Aimp* statementS, let bSc1 andbSc2 represent the two Aimp

statements thatS encodes. The projection functions satisfyb(S1 | S2)ci = Si and are

homomorphisms on other statement and value forms. An Aimp* memoryM maps

references to Aimp* values that encode two Aimp values. Thus, the projection function

can be defined on memories too. Fori ∈ {1, 2}, dom(bMci) = dom(M), and for any

m ∈ dom(M), bMci(m) = bM(m)ci.

Since an Aimp* term effectively encodes two Aimp terms, evaluation of an Aimp*

term can be projected into two Aimp evaluations. An evaluation step of a bracket state-

ment(S1 | S2) is an evaluation step of eitherS1 or S2, andS1 or S2 can only access the

corresponding projection of the memory. Thus, the configuration of Aimp* has an index

i ∈ {•, 1, 2} that indicates whether the term to be evaluated is a subterm of a bracket

expression, and if so, which branch of a bracket the term belongs to. For example, the

configuration〈S, M〉1 means thatS belongs to the first branch of a bracket, andS can

only access the first projection ofM . We write “〈S, M〉” for “ 〈S, M〉•”, which means

S does not belong to any bracket. To abuse notation a bit, letbSc• = S andbvc• = v.

The operational semantics of Aimp* is shown in Figure 3.5. It is based on the

semantics of Aimp and contains some new evaluation rules (S8)–(S9) for manipulating

bracket constructs. Rules (E1) and (S1) are modified to access the memory projection

corresponding to indexi. The functionv[v′/πi] returns the value obtained by replacing

theith component ofv with v′. The rest of the rules in Figure 5.2 are adapted to Aimp*

45

(E1)
bM(m)ci = v

〈!m, M〉i ⇓ v

(S1)
〈e, M〉i ⇓ v bvc1 6= none bvc2 6= none bM [m]ci 6= void

〈m := e, M〉i 7−→ 〈skip, M [m 7→ M [m][v/πi]]〉i

(S8)
〈e, M〉 ⇓ (n1 | n2)

〈if e then S1 else S2, M〉 7−→
〈(if n1 then bS1c1 else bS2c1 |
if n2 then bS1c2 else bS2c2),M〉

(S9)
〈Si, M〉i 7−→ 〈S′i, M ′〉i Sj = S′j {i, j} = {1, 2}

〈(S1 | S2), M〉 7−→ 〈(S′1 | S′2), M ′〉

(S10) 〈(skip | skip), M〉 7−→ 〈skip, M〉

[Auxiliary functions]

v[v′/π•] = v′ v[v′/π1] = (v′ | bvc2) v[v′/π2] = (bvc1 | v′)

Figure 3.5: The operational semantics of Aimp*

by indexing each configuration withi. The following adequacy and soundness lemmas

state that the operational semantics of Aimp* is adequate to encode the execution of two

Aimp terms.

Let the notation〈S, M〉 7−→T 〈S ′, M ′〉 denote that〈S, M〉 7−→ 〈S1, M1〉 7−→

. . . 7−→ 〈sn, Mn〉 7−→ 〈S ′, M ′〉 andT = [M,M1, . . . ,Mn,M
′], or S = S ′ andM =

M ′ andT = [M]. In addition, let|T | denote the length ofT , andT1 ⊕ T2 denote the

trace obtained by concatenatingT1 andT2. SupposeT1 = [M1, . . . ,Mn] andT2 =

[M ′
1, . . . ,M

′
m]. If Mn = M ′

1, thenT1 ⊕ T2 = [M1, . . . ,Mn,M
′
2, . . . ,M

′
m]. Otherwise,

T1 ⊕ T2 = [M1, . . . ,Mn,M
′
1, . . . ,M

′
m].

Lemma 3.5.1 (Projection i). Suppose〈e, M〉 ⇓ v. Then〈beci, bMci〉 ⇓ bvci holds for

i ∈ {1, 2}.

Proof. By induction on the derivation of〈e, M〉 ⇓ v.

• Case (E1).v isM(m). Thus,bvci = bM(m)ci = bMci(m).

46

• Case (E2). By induction,〈be1ci, bMci〉 ⇓ bv1ci and〈be2ci, bMci〉 ⇓ bv2ci. Thus,

〈be1 + e2ci, ⇓〉bv1 ⊕ v2ci.

• Case (E3).e is v. Thus,〈bvci, bMci〉 ⇓ bvci.

Lemma 3.5.2 (Projection ii). SupposeM is an Aimp* memory, andbMci = Mi for

i ∈ {1, 2}, and〈S, Mi〉 is an Aimp configuration. Then〈S, Mi〉 7−→ 〈S ′, M ′
i〉 if and

only if 〈S, M〉i 7−→ 〈S ′, M ′〉i andbM ′ci = M ′
i .

Proof. By induction on the structure ofS.

Lemma 3.5.3 (Expression adequacy).Suppose〈ei, Mi〉 ⇓ vi for i ∈ {1, 2}, and there

exists an Aimp* configuration〈e, M〉 such thatbeci = ei andbMci = Mi for i ∈ {1, 2}.

Then〈e, M〉 ⇓ v such thatbvci = vi.

Proof. By induction on the structure ofe.

Lemma 3.5.4 (One-step adequacy).If for i ∈ {1, 2}, 〈Si, Mi〉 7−→ 〈S ′i, M ′
i〉 is

an evaluation in Aimp, and there exists〈S, M〉 in Aimp* such thatbSci = Si and

bMci = Mi, then there exists〈S ′, M ′〉 such that〈S, M〉 7−→T 〈S ′, M ′〉, and one of the

following conditions holds:

i. For i ∈ {1, 2}, bT ci ≈ [Mi,M
′
i] andbS ′ci = S ′i.

ii. For {j, k} = {1, 2}, bT cj ≈ [Mj] andbS ′cj = Sj, andbT ck ≈ [Mk,M
′
k] and

bS ′ck = S ′k.

Proof. By induction on the structure ofS.

• S is skip. ThenS1 andS2 are alsoskip and cannot be further evaluated. There-

fore, the lemma is correct because its premise does not hold.

47

• S is m := e. In this case,Si is m := beci, and we have〈m := beci, Mi〉 7−→

〈skip, Mi[m 7→ vi]〉 where〈beci, Mi〉 ⇓ vi. By Lemma 3.5.3, we have〈e, M〉 ⇓

v and bvci = vi. Therefore,〈m := e, M〉 7−→ 〈skip, M [m 7→ v]〉. Since

bMci = Mi, we havebM [m 7→ v]ci = Mi[m 7→ bvci].

• S is if e then S ′′1 else S
′′
2 . Suppose〈ei, Mi〉 ⇓ ni. By Lemma 3.5.3,〈e, M〉 ⇓ v

such thatbvci = ni for i ∈ {1, 2}. SinceSi is if beci then bS ′′1ci else bS ′′2ci for

i ∈ {1, 2}, S ′i is bS ′′jici whereji ∈ {1, 2}. If v = n, then〈S, M〉 7−→T 〈S ′′j , M〉

for somej in {1, 2}, andji = j for i ∈ {1, 2}. If v = (n1 |n2), then〈S, M〉 7−→T

〈(bS ′′j1c1 | bS
′′
j2
c2), M〉, wherej1, j2 ∈ {1, 2}. In both cases,bS ′ici = S ′i for

i ∈ {1, 2} andT ≈ [M,M].

• S is while e do S ′′. By the same argument as the above case.

• S is S3;S4. There are three cases:

– S3 is skip or (skip | skip). Then〈S, M〉 7−→T 〈S4, M〉, andT ≈ [M].

For i ∈ {1, 2}, sinceSi = skip; bS4ci, 〈Si, bMci〉 7−→∗ 〈bS4ci, bMci〉.

Therefore, the lemma holds for this case.

– S3 is (S5 | skip) or (skip |S5) whereS5 is notskip. Without loss of gener-

ality, supposeS3 is (S5 | skip). ThenS1 is S5; bS4c1, andS2 is skip; bS4c1.

Since〈S5; bS4c1, bMc1〉 7−→ 〈S ′1, M ′
1〉, we have〈S5, bMc1〉 7−→ 〈S ′5, M ′

1〉

and S ′1 is S ′5; bS4c1. By (S9) and Lemma 3.5.2, we have〈S, M〉 7−→

〈(S ′5 | skip);S4, M
′〉, andbM ′c1 = M ′

1, andbM ′c2 = bMc2 = M2. It

is clear that condition (ii) holds.

– For i ∈ {1, 2}, bS3ci is not skip. For i ∈ {1, 2}, because〈Si, Mi〉 7−→

〈S ′i, M ′
i〉 andSi = bS3ci; bS4ci, we have〈bS3ci, Mi〉 7−→ 〈S3i, M

′
i〉. By

induction,〈S3, M〉 7−→T 〈S ′3, M ′〉, and condition (i) or (ii) holds forT and

S ′3. Suppose condition (i) holds. Then fori ∈ {1, 2}, bT ci ≈ [Mi,M
′
i] and

48

bS ′3ci = S3i. By evaluation rule (S2),〈S, M〉 7−→T 〈S ′3;S4, M
′〉. More-

over, bothbS ′3;S4ci andS ′i areS3i; bS4ci for i ∈ {1, 2}. Therefore, the

lemma holds. For the case that condition (ii) holds forT andS3, the same

argument applies.

• S is (S1 |S2). Since〈Si, M〉 7−→ 〈S ′i, M ′〉 for i ∈ {1, 2}, we have〈S1, M〉1 7−→

〈S ′1, M ′′〉1 and〈S2, M
′′〉2 7−→ 〈S ′2, M ′〉2. Therefore,〈S, M〉 7−→T 〈(S ′1|S ′2), M ′〉

whereT = [M,M ′′,M ′]. By Lemma 3.5.2,bT ci ≈ [Mi,M
′
i] for i ∈ {1, 2}.

Lemma 3.5.5 (Adequacy).Suppose〈Si, Mi〉 7−→Ti 〈S ′i, M ′
i〉 for i ∈ {1, 2} are two

evaluations in Aimp. Then for an Aimp* configuration〈S, M〉 such thatbSci = Si and

bMci = Mi for i ∈ {1, 2}, we have〈S, M〉 7−→T 〈S ′, M ′〉 such thatbT cj ≈ Tj and

bT ck ≈ T ′k, whereT ′k is a prefix ofTk and{k, j} = {1, 2}.

Proof. By induction on the sum of the lengths ofT1 andT2: |T1|+ |T2|.

• |T1| + |T2| ≤ 3. Without loss of generality, suppose|T1| = 1. ThenT1 = [M1].

Let T = [M]. We have〈S, M〉 7−→T 〈S, M〉. It is clear thatbT c1 = T1, and

bT c2 = [M2] is a prefix ofT2.

• |T1| + |T2| > 3. If |T1| = 1 or |T2| = 1, then the same argument in the above

case applies. Otherwise, we have〈Si, Mi〉 7−→ 〈S ′′i , M ′′
i 〉 7−→T ′i 〈S ′i, M ′

i〉 and

Ti = [Mi] ⊕ T ′i for i ∈ {1, 2}. By Lemma 3.5.4,〈S, M〉 7−→T ′ 〈S ′′, M ′′〉 such

that

i. For i ∈ {1, 2}, bT ′ci ≈ [Mi,M
′′
i] andbS ′′ci = S ′′i . Since|T ′1| + |T ′2| <

|T1| + |T2|, by induction we have〈S ′′, M ′′〉 7−→T ′′ 〈S ′, M ′〉 such that for

{k, j} = {1, 2}, bT ′′cj ≈ T ′j andbT ′′ck ≈ T ′′k , andT ′′k is a prefix ofT ′k. Let

T = T ′⊕T ′′. Then〈S, M〉 7−→T 〈S ′, M ′〉, andbT cj ≈ Tj, andbT ck ≈ T ′k

whereT ′k = [Mk,M
′′
k]⊕ T ′′k is a prefix ofTk.

49

ii. For {j, k} = {1, 2}, bT ′cj ≈ [Mj] andbScj = Sj, andbT ′ck ≈ [Mk,M
′′
k]

andbSck = s′′k. Without loss of generality, supposej = 1 andk = 2. Since

〈S1, M1〉 7−→T1 〈S ′1, M ′
1〉 and〈S ′′2 , M ′′〉 7−→T ′2 〈S ′2, M ′

2〉, andbS ′c1 = S1

andbS ′c2 = S ′′2 , and|T ′2| < |T2|, we can apply the induction hypothesis to

〈S ′′, M ′′〉. By the similar argument in the above case, this lemma holds for

this case.

Typing rules

The type system of Aimp* includes all the typing rules in Figure 3.4 and has two ad-

ditional rules for typing bracket constructs. Both confidentiality and integrity noninter-

ference properties are instantiations of an abstract noninterference property: inputs with

security labels that does not satisfy a conditionζ cannot affect outputs with security

labels that satisfiesζ. Intuitively, ζ represents “low-confidentiality” or “high-integrity”.

Two Aimp configurations are calledζ-consistent if the terms and memory locations with

security labels that satisfyζ are indistinguishable. Another way to put the abstract non-

interference property is that theζ-consistency relation between two configurations is

preserved during evaluation.

The bracket constructs captures the differences between two Aimp configurations.

As a result, any effect and result of a bracket construct should have a security label that

does not satisfyζ. Let ζ(`) andζ(int`) denote that̀ satisfiesζ. If v1 andv2 are not

none, rule (V-PAIR) ensures that the value(v1 | v2) has a label that does not satisfyζ;

otherwise, there is no constraint on the label of(v1 | v2), because the unavailable value

none is indistinguishable from other values. In rule (S-PAIR), the premise¬ζ(pc′)

ensures that the statement(S1 | S2) may have only effects with security labels that do

not satisfyζ.

50

(V-PAIR)

Γ ` v1 : τ Γ ` v2 : τ
¬ζ(τ) or v1 = none or v2 = none

Γ ` (v1 | v2) : τ

(S-PAIR)

Γ ;bRc1 ; pc′ ` S1 : τ
Γ ;bRc2 ; pc′ ` S2 : τ ¬ζ(pc′)

Γ ;R ; pc ` (S1 | S2) : τ

The key observation is that the inputs with labels not satisfyingζ do not interfere

with the outputs with labels satisfyingζ, as long as all the bracket constructs are well-

typed.

An important constraint that conditionζ needs to satisfy is that¬ζ(`) implies¬ζ(`t

`′) for any`′. In Aimp*, if expressione is evaluated to a bracket value(n1|n2), statement

if ethenS1elseS2 would be reduced to a bracket statement(S ′1 |S ′2) whereS ′i is either

S1 or S2. To show(S ′1 | S ′2) is well-typed, we need to show thatS1 andS2 are well-

typed under a program-counter label that satisfying¬ζ, and we can show it by using the

constraint on¬ζ. Supposee has typeint`, then we know thatS1 andS2 are well-typed

under the program counter labelpc t `. Furthermore,̀ satisfies¬ζ because the result

of e is a bracket value. Thus, by the constraint that¬ζ(`) implies¬ζ(` t `′), we have

¬ζ(pc t `).

SupposeΓ ;R ; pc ` (S1 | S2) : τ , andm ∈ R. By the evaluation rule (S9), it is

possible that〈(S1 | S2), M〉 7−→∗ 〈(S ′1 | S2), M
′〉 andM ′(m) = (n | none), which

means thatm still needs to be assigned inS2, but not inS ′1. Assume there existsR′ such

thatΓ ;R′ ; pc ` (S ′1 | S2) : τ . Then by rule (S-PAIR), we haveΓ ;bR′c1 ; pc ` S ′1 : τ

andΓ ;bR′c2 ; pc ` S2 : τ . Intuitively, we want to havem 6∈ bR′c1 andm ∈ bR′c2,

which are consistent withM ′. To indicate such a situation, a referencem in R may

have an index:m1 orm2 means thatm needs to be assigned only in the first or second

component of a bracket statement, andm• is the same asm. The projection ofR is

51

computed in the following way:

bRci = {m | mi ∈ R ∨m ∈ R}

Note that indexed references are not allowed to appear in a statement typestmtR. To

make this explicit, we requirestmtR is well-formed only ifR does not contain any in-

dexed referencemi. For convenience, we introduce two notations dealing with indexed

reference sets. Let the notationR ≤ R′ denotebRc1 ⊆ bR′c1 andbRc2 ⊆ bR′c2,

and letR − mi denote the reference set obtained by eliminatingmi from R, and it is

computed as follows:

R−mi =


R′ if R = R′ ∪ {mj} ∧ i ∈ {j, •}

R′ ∪ {mj} if R = R′ ∪ {m} ∧ {i, j} = {1, 2}

R if otherwise

Subject reduction

Lemma 3.5.6 (Update).If Γ ;R ` v : τ andΓ ;R ` v′ : τ , thenΓ ;R ` v[v′/πi] : τ .

Proof. If i is •, thenv[v′/πi] = v′, and we haveΓ ` v′ : τ . If i is 1, thenv[v′/πi] =

(v′ | bvc2). SinceΓ ` v : τ , we haveΓ ` bvc2 : τ . By rule (V-PAIR),Γ ` (v′ | bvc2) : τ .

Similarly, if i is 2, we also haveΓ ` v[v′/πi] : τ .

Lemma 3.5.7 (Relax).If Γ ;R ; pc t ` ` S : τ , thenΓ ;R ; pc ` S : τ .

Proof. By induction on the derivation ofΓ ;R ; pc t ` ` S : τ .

Lemma 3.5.8.SupposeΓ ;R ` e : τ , andΓ `M , and〈e, M〉 ⇓ v. ThenΓ ;R ` v : τ .

Proof. By induction on the structure ofe.

Lemma 3.5.9. SupposeΓ ;R ; pc ` S : stmtR′. If mi ∈ R wherei ∈ {1, 2}, then

m 6∈ R′.

Proof. By induction on the derivation ofΓ ;R ; pc ` S : stmtR′.

52

Definition 3.5.9 (Well-typed memory).MemoryM is well-typed inΓ, writtenΓ `M ,

if dom(Γ) = dom(M), and for anym ∈ dom(Γ), Γ ;R `M(m) : Γ(m).

Definition 3.5.10 (Γ ;R ` M). A memoryM is consistent withΓ, R, writtenΓ ;R `

M , if Γ `M , and for anym in dom(M) such thatAΓ(m) 6≤ L,M(m) = none implies

m ∈ R, andM(m) = (none | n) impliesm1 ∈ R, andM(m) = (n | none) implies

m2 ∈ R.

Theorem 3.5.1 (Subject reduction).SupposeΓ ;R ; pc ` S : τ , andΓ ` M , and

〈S, M〉i 7−→ 〈S ′, M ′〉i, andi ∈ {1, 2} impliesV (pc). Then there existsR′ such that

the following conditions hold:

i. Γ ;R′ ; pc ` S ′ : τ , andR′ ≤ R, andΓ `M ′.

ii. For anymj ∈ R−R′, bM ′ci(mj) 6= none.

iii. SupposeV (`) is I(`) ≤ L. ThenΓ ;R ` bMci impliesΓ ;R′ ` bM ′ci.

iv. If bMci(m) = none, andbM ′ci(m) = n, andA(Γ(m)) 6≤ I(pc), thenm 6∈ R′.

Proof. By induction on the evaluation step〈S, M〉i 7−→ 〈S ′, M ′〉i. Without loss of

generality, we assume that the derivation ofΓ ;R ; pc ` S : τ does not end with using the

(SUB) rule. In fact, ifΓ ;R ; pc ` S : stmtR2 is derived byΓ ;R ; pc ` S : stmtR1 and

Γ ;R ; pc ` stmtR1 ≤ stmtR2, and there existsR′′ such that conditions (i)–(iv) hold for

Γ ;R ; pc ` S : stmtR1 , then by Lemma 3.5.9, we can show thatR′ = R′′ ∪ (R2−R1)

satisfies conditions (i)–(iv) forΓ ;R ; pc ` S : stmtR2.

• Case (S1). In this case,S is m := e, S ′ is skip, and τ is stmtR−{m}. By

(S1),M ′ is M [m 7→ M(m)[v/πi]]. By Lemma 3.5.8, we haveΓ ` v : Γ(m),

which implies thatM(m)[v/πi] has typeΓ(m). Therefore,Γ ` M ′. The well-

formedness ofτ implies thatR does not contain any indexed references. LetR′

beR−{m}. It is clear thatR′ ≤ R. By rule (SKIP),Γ ;R′ ; pc ` skip : stmtR′.

53

BecausebM ′ci(m) = v 6= none, andR − R′ = {m}, condition (ii) holds.

SincebM ′ci(m) = n andR − R′ = {m}, we have thatΓ ;R ` bMci implies

Γ ;R′ ;L ` bM ′ci.

• Case (S2). Obvious by induction.

• Case (S3). Trivial.

• Case (S4). In this case,S is if e then S1 else S2. By the typing rule (IF), we

haveΓ ;R ; pc t `e ` S1 : τ . By Lemma 3.5.7,Γ ;R ; pc ` S1 : τ . In this case,

M ′ = M andR′ = R, so conditions (ii) and (iii) immediately hold.

• Case (S5). By the similar argument of case (S4).

• Case (S6). In this case,S is while e do S1, andτ is stmtR. By rule (WHILE),

Γ ;R ; pc t ` ` S1 : stmtR, where` is the label ofe. By the typing rule (SEQ),

Γ ;R ; pct` ` S1; whileedoS1 : stmtR. SinceM ′ = M andR′ = R, conditions

(ii)–(iv) hold.

• Case (S7). In this case,S ′ is skip, andτ is stmtR. We haveΓ ;R ; pc ` skip :

stmtR. Furthermore,M ′ = M andR′ = R. Thus, conditions (ii)–(iv) hold.

• Case (S8). In this case,S is if e then S1 else S2, andi must be•. Suppose

Γ ` e : int`. By Lemma 3.5.8,Γ ` (n1 | n2) : int`. By rule (V-PAIR),V (`)

holds, which impliesV (pc t `). By rule (IF), Γ ;R ; pc t ` ` Si : τ , which

implies Γ ;R ; pc t ` ` if ni then bS1ci else bS2ci : τ . By rule (S-PAIR),

Γ ;R ; pc ` S ′ : τ . Again, sinceM ′ = M andR′ = R, conditions (ii) and (iii)

hold.

• Case (S9). In this case,S is (S1 | S2). Without loss of generality, suppose

〈S1, M〉1 7−→ 〈S ′1, M ′〉1, and〈S, M〉 7−→ 〈(S ′1 | S2), M
′〉. By rule (S-PAIR),

Γ ;bRc1 ; pc ` S1 : τ . By induction, there existsR′
1 such thatΓ ;R′

1 ; pc ` S ′1 : τ ,

andR′
1 ⊆ bRc1, andΓ ` M ′. LetR′ beR′

1 • bRc2, which is computed by the

54

formula:

R1 • R2 = {m | m ∈ R1 ∩R2} ∪

{m1 | m ∈ R1 −R2} ∪

{m2 | m ∈ R2 −R1}

SincebR′c1 = R′
1 andbR′c2 = bRc2, we haveΓ ;bR′c1 ; pc ` S ′1 : τ . By rule

(S-PAIR),Γ ;R′ ; pc ` S ′ : τ holds. SincebR′c2 = bRc2, for anymj ∈ R−R′,

it must be the case thatj = 1, andm ∈ bRc1 −R′
1. By induction,bM ′c1(m) 6=

none. Therefore, condition (ii) holds.

If Γ ;R ` M , thenΓ ;bRc1 ` bMc1. By induction,Γ ;R′
1 ` bM ′c1. Therefore,

Γ ;R′ `M ′ holds.

• Case (S10). In this case,S is (skip | skip). We haveΓ ;bRci ; pc ` skip :

stmtbRci for i ∈ {1, 2}. By rule (S-PAIR),Γ ;bRci ; pc′ ` skip : τ . Therefore,

Γ ;bRci ; pc′ ` stmtbRci ≤ τ . By the subtyping rule,τ = stmtbRci. SobRc1 =

bRc2 = R andτ = stmtR. By rule (SKIP),Γ ;R ; pc ` skip : τ .

Progress

Lemma 3.5.10 (Expression availability).SupposeΓ ;R ` e : τ andΓ ;R ` M . Then

〈e, M〉i ⇓ v such thatv is available.

Proof. By induction on the structure ofe.

• e is n. Obvious.

• e is !m. SinceΓ ;R `M , bMci(m) is eithern or (n1 | n2).

• e is e1 + e2. Then〈e, M〉i ⇓ vi. By induction, bothv1 andv2 are available. Thus,

v1 + v2 is an available value.

55

Theorem 3.5.2 (Progress).Let ζ(`) beI(`) 6≤ lA, and let|S| represent the size of the

statementS, i.e. the number of syntactical tokens inS. SupposeΓ ;R ; pc ` S : stmtR′,

andΓ ;R ` bMci, andS is notskip, andAΓ(R) 6≤ lA, andi ∈ {1, 2} impliesI(pc) ≤

lA. Then〈S, M〉i 7−→ 〈S ′, M ′〉i. Furthermore, ifS is (S1 | S2);S3 or (S1 | S2), then

|S ′| < |S|.

Proof. By induction on the structure ofS.

• S is m := e. SupposeA(R) 6≤ lA. By Lemma 3.5.10,〈e, M〉i ⇓ v andv is

available. By rule (S1),〈m := e, M〉i 7−→ 〈skip, M [m 7→M(x)[v/πi]]〉i.

• S is S1;S2. SupposeS1 is notskip. By induction,〈S1, M〉i 7−→ 〈S ′1, M〉i. By

(S2),〈S1;S2, M〉i 7−→ 〈S ′1;S2, M〉i. Moreover, by induction,|S ′1;S2| < |S1;S2|.

If S1 is skip, then〈S1;S2, M〉i 7−→ 〈S2, M〉i.

• S is if e then S1 else S2. By Lemma 3.5.10,〈e, M〉i ⇓ v, andv is available.

If v = n, then〈if e then S1 else S2, M〉i 7−→ 〈Sj, M〉i wherej ∈ {1, 2}. If

v = (n1 | n2), thenbRc1 = bRc2 becauseS is not a pair statement.

• S is while e do S1. By Lemma 3.5.10,〈e, M〉i ⇓ v, and v is available. If

v = n, then〈while e do S1, M〉i 7−→ 〈skip, M〉i or 〈while e do S1, M〉i 7−→

〈S1; while e do S1, M〉i. If i ∈ {1, 2}, thenI(pc) ≤ lA. By the typing rule

(WHILE), A(R) ≤ lA, contradictingA(R) 6≤ lA. Therefore,i is •, which implies

bRc1 = bRc2.

• S is (S1 | S2). If S1 andS2 are bothskip, then〈S, M〉 7−→ 〈skip, M〉. Other-

wise, without loss of generality, supposeS1 is notskip. By (S-PAIR),Γ ;bRc1 ; pc′ `

S1 : τ , whereI(pc′) ≤ lA holds. By induction,〈S1, M〉1 7−→ 〈S ′1, M ′〉2. By

I(pc′) ≤ lA andA(R) 6≤ lA, S1 is not awhile statement. Thus,|S ′1| < |S1|. By

(S9),〈S, M〉 7−→ 〈(S ′1 | S2), M
′〉. In addition,|(S ′1 | S2)| < |S|.

56

3.5.3 Noninterference proof

Theorem 3.5.3 (Confidentiality noninterference).If Γ ;R ; pc ` S : τ , thenΓ `

NIC(S).

Proof. Given two memoriesM1 andM2 in Aimp, let M = M1] M2 be an Aimp*

memory computed by mergingM1 andM2 as follows:

M1]M2(m) =

 M1(m) if M1(m) = M2(m)

(M1(m) |M2(m)) if M1(m) 6= M2(m)

Let ζ(`) be C(`) ≤ lA. ThenΓ ` M1 ≈C≤lA M2 implies thatΓ ` M . Suppose

〈Si, Mi〉 7−→Ti 〈S ′i, M ′〉 for i ∈ {1, 2}. Then by Lemma 3.5.5, there exists〈S ′, M ′〉

such that〈S, M〉 7−→T 〈S ′, M ′〉, andbT cj ≈ Tj andbT ck ≈ T ′k where{j, k} = {1, 2}

andT ′k is a prefix ofTk. By Theorem 3.5.1, for eachM ′ in T , Γ ` M ′, which implies

thatbM ′c1 ≈C≤lA bM ′c2. Therefore, we haveΓ ` Tj ≈C≤lA Tk. Thus,Γ ` NIC(S).

Theorem 3.5.4 (Integrity noninterference). If Γ ;R ; pc ` S : τ , thenΓ ` NII(S).

Proof. Let ζ(`) beI(`) 6≤ lA. By the same argument as in the proof of the confidentiality

noninterference theorem.

Lemma 3.5.11 (Balance).Let ζ(`) be I(`) 6≤ lA. SupposeΓ ;R ; pc ` S : τ , and

Γ ;R `M . Then〈S, M〉 7−→∗ 〈S ′, M ′〉 such thatΓ ` bM ′c1 ≈A6≤lA bM ′c2.

Proof. By induction on the size ofS.

• |S| = 1. In this case,S must beskip. However,Γ ;R ; pc ` skip : stmtR

implies bRc1 = bRc2, which is followed byΓ ` bMc1 ≈A6≤lA bMc2 because

Γ ;R `M .

• |S| > 1. By the definition ofΓ ;R ` M , Γ ` bMc1 6≈A6≤L bMc2 implies

bRc1 6= bRc2. By Theorem 3.5.2,〈S, M〉 7−→ 〈S ′, M ′〉 and |S ′| < |S|. By

Theorem 3.5.1, there existsR′ such thatΓ ;R′ ; pc ` S ′ : τ andΓ ;R′ ` M ′. By

induction,〈S ′, M ′〉 7−→∗ 〈S ′′, M ′′〉 andΓ ` bM ′′c1 ≈A6≤lA bM ′′c2.

57

Theorem 3.5.5 (Availability noninterference). If Γ ;R ; pc ` S : τ , thenΓ ;R `

NIA(S).

Proof. Let ζ(`) be I(`) 6≤ lA. Given two memoriesM1 andM2 in Aimp such that

Γ `M1 ≈I 6≤lA M2 and for anym in dom(Γ),m 6∈ R andA(Γ(m)) 6≤ lA implyMi(m) 6=

none. To proveΓ ` NIA(S), we only need to show that there exists〈S ′i, M ′
i〉 such that

〈S, Mi〉 7−→∗ 〈S ′i, M ′
i〉, and for any〈S ′′i , M ′′

i 〉 such that〈S ′i, M ′
i〉 7−→∗ 〈S ′′i , M ′′

i 〉,

Γ `M ′′
1 ≈A6≤lA M

′′
2 holds.

LetM = M1]M2. Intuitively, by Lemma 3.5.11, evaluating〈S, M〉will eventually

result in a memoryM ′ such thatΓ ` bM ′c1 ≈A6≤lA bM ′c2, and if any high-availability

referencem is unavailable inM ′, m will remain unavailable. This conclusion can be

projected to〈S, Mi〉 for i ∈ {1, 2} by Lemma 3.5.2.

Suppose〈S, M〉 7−→∗ 〈S ′, M ′〉 such that for anym with AΓ(m) 6≤ lA, bM ′ci(m) 6=

none for i ∈ {1, 2}. By Lemma 3.5.2,〈S, Mi〉 7−→∗ 〈bS ′ci, bM ′ci〉. Moreover, for any

〈S ′i, M ′
i〉 such that〈bS ′ci, bM ′ci〉 7−→∗ 〈S ′i, M ′

i〉, and anym with AΓ(m) 6≤ L, it must

be the case thatM ′
i(m) 6= none. Therefore,Γ `M ′

1 ≈A6≤lA M
′
2.

Otherwise,〈S, M〉 7−→∗ 〈S ′, M ′〉 such that there existsm with A(Γ(m)) 6≤ lA and

bM ′ci(m) = none for somei ∈ {1, 2}, and for any〈S ′′, M ′′〉 such that〈S ′, M ′〉 7−→∗

〈S ′′, M ′′〉, Γ ` bM ′ci ≈A6≤lA bM ′′ci. By Lemma 3.5.11,Γ ` bM ′c1 ≈A6≤lA bM ′c2 must

hold. AssumeΓ ` bM ′c1 ≈A6≤lA bM ′c2 does not hold. Then there exists〈S ′′, M ′′〉 such

that 〈S ′, M ′〉 7−→∗ 〈S ′′, M ′′〉 andΓ ` bM ′′c1 ≈A6≤lA bM ′′c2. Because fori ∈ {1, 2},

Γ ` bM ′ci ≈A6≤lA bM ′′ci, we haveΓ ` bM ′c1 ≈A6≤lA bM ′c2, which contradicts the

original assumption.

In addition, we can show that〈S ′, M ′〉 would generate an evaluation of infinite

steps, and both projections of the evaluation also have infinite steps so that they always

cover the evaluations of〈S, M1〉 and〈S, M2〉. By Theorem 3.5.1, there existsR′ such

58

that Γ ;R′ ; pc ` S ′ : τ , andΓ ;R′ ` M ′. It is clear thatA(R′) 6≤ lA holds, because

there existsm such thatA(Γ(m)) 6≤ lA andbM ′ci(m) = none for somei ∈ {1, 2}.

By Theorem 3.5.2,〈S ′, M ′〉 7−→ 〈S ′′, M ′′〉. SinceΓ ` bM ′ci ≈A6≤lA bM ′′ci for i ∈

{1, 2}, 〈S ′′, M ′′〉 can make progress by the same argument. Therefore,〈S ′, M ′〉 will

generate an evaluation of infinite steps. Suppose the first projection of the evaluation

is finite. Then〈S ′, M ′〉 7−→∗ 〈S1, M1〉 7−→ 〈S2, M2〉 7−→ . . . 7−→ 〈Sn, Mn〉 . . ., and

b〈Sj, Mj〉c1 = b〈S1, M1〉c1 for any j. It must be the case thatS1 is (S ′1 | S ′2);S ′3 or

(S ′1 | S ′2). This contradicts Theorem 3.5.2, which implies|Sj+1| < |Sj| for anyj.

By Lemma 3.5.2, the projections of the evaluation are Aimp evaluations. Therefore,

for i ∈ {1, 2}, there exists〈S ′′i , M ′′
i 〉 such that〈S ′, M ′〉 7−→∗ 〈S ′′, M ′′〉 andbM ′′ci =

M ′′
i . SinceΓ `M ′′

i ≈A6≤lA bM ′ci for i ∈ {1, 2}, Γ `M ′′
1 ≈A6≤lA M

′′
2 holds.

3.6 Related work

Using static program analysis to check information flow was first proposed by Denning

and Denning [18], and is one of the four classes of information flow control mechanisms

as discussed in Section 2.5. Later work phrased the static information flow analysis as

type checking (e.g., [66]). Noninterference was later developed as a more semantic

characterization of security [31], followed by many extensions. Volpano, Smith and

Irvine [88] first showed that type systems can be used to enforce noninterference and

proved a version of noninterference theorem for a simple imperative language, starting

a line of research pursuing the noninterference result for more expressive security-typed

languages. Heintze and Riecke [34] proved the noninterference theorem for the SLam

calculus, a purely functional language. Zdancewic and Myers [102] investigated a se-

cure calculus with first-class continuations and references. Pottier and Simonet [70]

considered an ML-like functional language and introduced the proof technique that is

59

extended in this paper. A more complete survey of language-based information-flow

techniques can be found in [73, 107]. Compared with those previous work, the main

contribution of Aimp is to apply the security-typed language approach to enforcing

availability policies.

Volpano and Smith [87] introduce the notion oftermination agreement, which re-

quires two executions indistinguishable to low-confidentiality users to both terminate

or both diverge. The integrity dual of termination agreement can be viewed as a special

case of the availability noninterference in which termination is treated as the only output

of a program.

Lamport first introduced the concepts ofsafetyand livenessproperties [46]. Being

available is often characterized as a liveness property, which informally means “some-

thing good will eventually happen”. In general, verifying whether a program will even-

tually produce an output is equivalent to solving the halting problem, and thus incom-

putable for a Turing-complete language. This work proposes a security model in which

an availability policy can be enforced by a noninterference property [31]. It is well

known that a noninterference property is not a property on traces [58], and unlike safety

or liveness properties, cannot be specified by a trace set. However, a noninterference

property can be treated as a property on pairs of traces. For example, consider a trace

pair (T1, T2). It has the confidentiality noninterference property if the first elements of

T1 andT2 are distinguishable, orT1 andT2 are indistinguishable to low-confidentiality

users. Therefore, a noninterference property can be represented by a set of trace pairs

P, and a program satisfies the property if all the pairs of traces produced by the program

belong toP. Interestingly, with respect to a trace pair, the confidentiality and integrity

noninterference properties have the informal meaning of safety properties (“something

bad will not happen”), and availability noninterference takes on the informal meaning

of liveness.

60

Li et al. [47] formalize the notion that highly available data does not depend on low-

availability data. However, their definition istermination-insensitive[73], which makes

it inappropriate to model availability noninterference.

Lafrance and Mullins [45] define a semantic security propertyimpassivityfor pre-

venting DoS attacks. Intuitively, impassivity means that low-cost actions cannot inter-

fere with high-cost actions. In some sense, impassivity is an integrity noninterference

property, if we treat low-cost as low-integrity and high-cost as high-integrity. With the

implicit assumption that high-cost actions may exhaust system resources and render a

system unavailable, impassivity corresponds to one part of our notion of availability

noninterference: low-integrity inputs cannot affect the availabilities of highly available

outputs.

61

Chapter 4

Secure distributed computation
A static analysis like the type system of Aimp described in the previous chapter can

check for potential security violations in a program that is executed on a trusted comput-

ing platform. This chapter considers how to perform secure computation in a distributed

system with untrusted hosts. The main result is a programming language DSR, which is

designed for writing secure distributed programs and has some novel features compared

to other security-typed process calculi [37, 103]:

• Dynamic label checking, which combines static analysis and dynamic mecha-

nisms needed to deal with untrusted hosts,

• Quorum replication, which is built into the syntax and type system of DSR, mak-

ing it possible to reason about the security assurances provided by this replication

technique,

• Multilevel timestamp, a novel timestamp scheme used to coordinate concurrent

computations running on different replicas, without introducing covert channels.

This chapter gives an overview of the key mechanisms of DSR and how they can be

used to build secure programs. A formal description of DSR is found in Chapter 5.

4.1 System model

A distributed system is a set of networked host machines. Each host can be viewed as a

state machine that acts upon incoming network messages, changing its local state and/or

sending out messages to other hosts. Figure 4.1 shows a distributed system composed

of five hosts, which communicate with each other through messages such asµ1, . . . , µ7.

As the close-up of hosth3 shows, a host is composed of a memoryM , a thread poolΘ,

62

h1 h2

h3

h4

h5

µ1

µ2 µ3

µ4

µ6 µ5

µ7

c1{s1} c2{s2} · · · cn{sn}

〈c1, η11, . . .〉
〈c1, η12, . . .〉

. . .

〈c2, η21, . . .〉
〈c2, η22, . . .〉

. . .

〈cn, ηn1, . . .〉
〈cn, ηn2, . . .〉

. . .

Reactorclosures

Reactors

ThreadpoolΘ
MemoryM

h3

µ3 = [exec 〈c1, η12〉 :: . . .]

µ5

Figure 4.1: System model

a set ofreactorsthat specifies the code to be executed in reaction to incoming messages,

and a set ofreactor closuresthat contains data (parameters) needed to execute code in

corresponding reactors.

Each reactor has a unique namec and a program statements. When invoked by a net-

work message, reactorc spawns a new thread to execute its statement. Each invocation

message carries an integer identifierη, corresponding to aninvocation context, which is

embedded in a reactor closure on the receiving host and contains parameters needed to

handle the invocation. A context identifierη is unique for a given reactor, so the pair

〈c, η〉 uniquely identifies a closure, and is called aclosure identifier. For simplicity, we

use the term “closure〈c, η〉” to denote the closure identified by〈c, η〉. Every invocation

message for reactorc carries a context identifierη and can be viewed as invoking the clo-

sure〈c, η〉. For example, as shown in Figure 4.1, messageµ3 = [exec 〈c1, η12〉 :: . . .]

requests executing (invoking) the closure〈c1, η12〉, and a new thread is spawned to ex-

ecute the code ofc1. Since an invocation context is associated with a particular invoca-

tion, a reactor closure can be invoked only once.

63

Intuitively, a reactor is like a function that can be invoked remotely, and a reactor

closure is like a function closure. Closure [71, 77, 61] is a well-known mechanism for

handling first-class functions with lexical scoping. Introducing closures explicitly makes

DSR different from other process calculi [59, 60, 29] with an evaluation model based on

substitution. The substitution needs in general to happen on code located on a different

host than the current one, and it is an implicit distributed operation. In comparison,

representing closures explicitly is more faithful to the way that computation occurs in a

real distributed system, and this treatment makes the security of DSR clear.

We assume that each hosth has a labellabel(h) = ` that specifies the security

level of the host. LetC(h), I(h) andA(h) respectively represent the confidentiality, in-

tegrity and availability components oflabel(h). Intuitively, these base labels place upper

bounds on the base labels of data processed byh. For example, hosth is trusted to pro-

tect the confidentiality of data with a confidentiality label less than or equal toC(h). Let

H be a set of hosts. We often need to compute the join and meet of base labels of hosts

in H. Thus, we introduce the following notations:Ct(H) =
⊔
h∈H C(h), Cu(H) =

d
h∈H C(h), It(H) =

⊔
h∈H I(h), Iu(H) =

d
h∈H I(h), At(H) =

⊔
h∈H A(h), and

Au(H) =
d
h∈H A(h).

4.2 Reactors

A distributed program is simply a set of reactor declarations written in the DSR language

with the following (simplified) syntax:

Reactor declarationsr ::= c{pc, loc, z :τz, λy :τ .s}

Statements s ::= skip | m := e | s1; s2 | if e then s1 else s2

| exec(c, η, pc, loc, e) | chmod(c, η, pc, loc, `)

| setvar(〈c, η〉.z, e)

A reactor declarationr contains the following components:

64

• c, the reactor name.

• pc, a lower bound (with respect to the label orderingv) to the labels of any side

effects generated by the reactor.

• loc, the location ofc. In DSR, a reactor may be replicated on multiple hosts to

achieve high integrity and availability. Thus,loc may be a single host, a set of

hosts, or a more complicated replication scheme.

• z :τz, a list of variable declarationsz1 : τz1, . . . , zk : τzk. Variablesz are free

variables of the code to be executed when the reactor is invoked, and are bound to

the values provided by the invocation context. For simplicity, an empty variable

list, denoted byε, may be omitted from a reactor declaration.

• λy :τ .s, the reactor body, in which statements is the code to be executed when

the reactor is invoked, andy :τ is a list of variable declarations:y1 :τ1, . . . , yn :τn.

Variablesy are free variables ofs, and are bound to the value arguments carried by

an invocation message. The reactor body resembles a lambda term, since invoking

a reactor is like invoking a function.

A message invoking reactorc has the form[exec 〈c, η〉 :: pc, v, loc, t], wherev is

a list of values to which variablesy of reactorc are bound, andpc, loc and t are the

program counter label, location and timestamp of the sender, respectively. In general, a

network messageµ has the form[α :: β], whereα is themessage headspecifying the

purpose and destination of the message, andβ is themessage bodycontaining specific

parameters. Bothα andβ are lists of components.

When reactorc receives the invocation messageµ = [exec 〈c, η〉 :: pc, v, loc, t],

it needs to check the validity of the message, because the message may be sent by a

host controlled by attackers. Therefore, the closure〈c, η〉 contains anaccess control

label: acl(c, η) = `, and the constraintpc v ` is checked to ensure that implicit flows

from µ to the thread of〈c, η〉 are secure. Other validity checks are discussed later in

65

Section 5.2. If requestµ is deemed valid, thenc creates a new thread to executes with

all the variables ins replaced by certain values: variablesy are replaced by valuesv, and

variablesz are replaced by values from the closure〈c, η〉. The closure bound to〈c, η〉

has the form〈c, η, `,A, a〉, where` is the access control label,A is a record that maps

variablesz to values, anda is a list of additional attributes discussed later in Section 5.2.

In DSR, a statements may be empty statementskip, the assignment statement

m := e, a sequential compositions1; s2, anif statement, or one of three primitives for

invoking a reactor closure or updating the state of a closure:

• exec(c, η, pc, loc, e). Theexec statement sends anexec message[exec 〈c, η〉 ::

pc, v, loc, t] to the hosts wherec is located. The list of valuesv are the results of

e, andt is the timestamp of the current thread. After running theexec statement,

the current thread is terminated. Thus, theexec statement explicitly transfers

control between reactors, which may be located on different hosts. As in other

process calculi (e.g., [60, 29]), reactors do not implicitly return to their invokers. A

return from an invoked closure requires anexec statement, and the return address

(closure) must be sent to the closure explicitly.

• chmod(c, η, pc, loc, `). Thechmod statement sends a message[chmod 〈c, η〉 ::

pc, `, loc, t] to the hosts ofc. The purpose is to set` as the access control label

of closure〈c, η〉. This statement essentially provides a remote security manage-

ment mechanism, which is useful because a remote reactor may have more precise

information for making access control decisions than a local one.

• setvar(〈c, η〉.z, e). Suppose valuev is the result ofe. Then thesetvar state-

ment sends a message[setvar 〈c, η〉.z :: v, t] to the hosts toc to setv as the value

of variablez in closure〈c, η〉.

66

4.2.1 Example

Figure 4.2 shows a DSR program that computesm :=!m1+!m2. In this figure, mes-

sages and closures are labeled with sequence numbers indicating their order of occur-

rence. Assume memory referencesm1, m2 andm are located at hostsh1, h2 andh3,

respectively. Reactorc1 on hosth1 delivers the value ofm1 to h3; reactorc2 on host

h2 delivers the value ofm2 to h3; reactorc3 on hosth3 computes the sum and updates

m. In Figure 4.2, reactorc1 is invoked with a context identifierη. Then the program is

executed as follows:

(1) The thread of〈c1, η〉 executes the statementsetvar(〈c3, cid〉.z3, !m1). In this

statement, variablecid represents the context identifier of the current thread and

is bound toη. Thus, thesetvar statement sends the message[setvar 〈c3, η〉.z3 ::

v1, t1] to h3 wherev1 is the value ofm1.

(2) Upon receiving thesetvar message,h3 updates the closure〈c3, η〉 to mapz to

v1.

(3) Concurrently with (2), the thread of〈c1, η〉 invokes〈c2, η〉 by executing the state-

mentexec(c2, cid, pc, h1).

(4) The thread of〈c2, η〉 invokes closure〈c3, η〉 by executing theexec statement

exec(c3, cid, pc, h2, !m2), which sends the message[exec 〈c3, η〉 :: pc, v2, h2, t4]

to h3, wherev2 is the value ofm2. Once invoked,〈c3, η〉 spawns a thread to

execute the statementm := z + y with z andy bound tov1 andv2, respectively.

An alternative way to implementm :=!m1+!m2 would be to make reactorc1 send

the valuev1 to c2 as an argument in the invocation request, and letc2 computev1+!m2

and send the result toc3. This implementation does not need the closure-based variable

binding mechanism. However, the value ofm1 is sent toh2, imposing an additional

security requirement:h2 must be able to protect the confidentiality ofm1. In essence,

67

c1{pc, h1, λ.
setvar(〈c3, cid〉.z, !m1)
exec(c1, cid, pc, h1) }

c2{pc, h2, λ.
exec(c3, cid, pc, h2, !m2)}

c3{pc, h3, z :int`,
λy :int`. m := z + y }

(2) 〈c3, η, pc, {z : v1}, . . .〉

(1) [setvar 〈c3, η〉.z :: v1, t1]

(3) [exec 〈c2, η〉 :: pc, h1, t3] (4) [exec 〈c3, η〉 :: pc, v2, h2, t4]

h1

h2

h3

Figure 4.2: A distributed program

the closure-based binding mechanism enables the separation of data flow and control

flow, providing more flexibility for constructing secure distributed computation.

4.3 Dynamic label checking

As shown in the previous section, the DSR language provides a dynamic label checking

mechanism, which is composed of three elements:

• Dynamic labels, labels with run-time representations, including the access control

label (mutable) in a reactor closure, and the program counter labels inexec or

chmod statements and messages.

• Dynamic label checks, such as checking the constraintpcµ v acl(c, η) when re-

ceiving anexec messageµ for 〈c, η〉. The labelpcµ is the program counter label

of µ.

• Dynamic label updates, such as thechmod statements that can be used to change

the access control label of a reactor closure.

The dynamic label mechanism is necessary because static program analysis alone cannot

guarantee that untrusted hosts behave correctly. This section discusses how the dynamic

label mechanism is used to enforce information security.

Suppose a messageµ = [exec 〈c, η〉 :: pcµ, v, loc, t] is sent to invoke a closure〈c, η〉

on hosth. The security implication of this invocation is to cause information flows and

dependencies between the sender thread and the thread of〈c, η〉. Let pcc represent the

68

program counter label ofc. Then the following constraints are sufficient to ensure the

security of this invocation:

I(pcc) ≤ I(loc) u I(pcµ) C(pcµ) ≤ C(pcc)

The first constraint ensures that the sender thread and the sender hosts have sufficient

integrity to cause the effects produced by the thread of〈c, η〉. The second constraint

prevents information about the program counter of the sender thread from being leaked

through the effects of the thread of〈c, η〉. Dually, the confidentiality constraint should

beC(pcµ) ≤ C(pcc) u C(locc) wherelocc is the location ofc. This constraint prevents

the information about the program point whereµ is sent from being leaked by hosts in

locc and the effects of the thread of〈c, η〉. In general, the host of a reactorc should

always have sufficient confidentiality level to read the information processed byc, and

the corresponding constraintC(pcc) ≤ C(locc) is enforced by static program analysis.

Therefore, the constraintC(pcµ) ≤ C(pcc)uC(locc) is equivalent toC(pcµ) ≤ C(pcc).

Although the two constraints are sufficient to enforce confidentiality and integrity,

they may be overly conservative and lead to the infamous “label creep” problem [17]:

the integrity of control flow can only be weakened and may eventually be unable to

invoke any reactor.

A static information flow analysis such as the Aimp type system solves the label

creep problem by lowering the program counter label at merge points of conditional

branches. For example, consider the following code:

if e then S1 else S2; S3

SupposeΓ ;R ; pc ` if ethenS1 elseS2 : τ . ThenS1 andS2 are checked with respect

to the program counter labelpc t `e. However,S3 can still be checked withpc because

both branches would transfer control toS3, and the fact that control reachesS3 does not

reveal which branch is taken.

69

Similarly, in a distributed setting, it may be secure to allow a messageµ to invoke

〈c, η〉 even withpcµ 6v pcc, if 〈c, η〉 is a merge point for high-confidentiality and low-

integrity (with respect topcc) branches, or theonly invokable closure at or above the

security levelpcc, which is also called alinear entry.

Formally, a closure〈c, η〉 is a linear entry if there are no threads running at or above

the levelpc, and〈c, η〉 is the only closure such thatacl(c, η) 6v pc andpcc v pc, which

mean that〈c, η〉 may be invoked by a messageµ such thatpcµ 6v pcc. In terms of

integrity, the existence of a high-integrity linear entry implies that high-integrity com-

putation is suspended, and attackers cannot harm the integrity of computation by invok-

ing a high-integrity linear entry, because that is the only way to continue high-integrity

computation.

Using thechmod statement, a distributed program can set up linear entries and al-

low low-integrity (or high-confidentiality) messages to invoke high-integrity (or low-

confidentiality) reactors. In general, the creation of a linear entry always happens when

a high-integrity reactorc0 invokes a low-integrity reactorc1, but eventually control re-

turns to a high-integrity reactorc2. In this case, the program counter labels ofc0, c1 and

c2 satisfypcc2 t pcc1 v pcc0 andpcc2 6v pcc1 . To set up the linear entry〈c2, η〉, the

thread of〈c0, η〉 sends a message[chmod 〈c2, η〉 :: pcc0 , pcc1 , . . .] to the host ofc2. The

chmod message changes the access control label of〈c2, η〉 to pcc1 such thatc1 is able to

invoke 〈c2, η〉. Moreover, after running thechmod message, the thread of〈c0, η〉 must

be running at the program counter levelpcc1 so that there are no high-integrity threads

running. Thus,〈c2, η〉 becomes a linear entry. When receiving achmod messageµ

for closure〈c, η〉, a host performs the same label checkpcµ v acl(c, η) as that for an

exec message, ensuring that the sender has sufficient integrity. When a closure〈c, η〉

is first created, its access control label is set aspcc so that the access check enforces the

constraintpcµ v pcc.

70

c0{`0, h0, λ.
if !bid ≥ !offer then
chmod(c2, cid, `0, h0, `1)
exec(c1, cid, `1, h0, !bid)

elseexec(c3, cid, `2, h0) }

c1{`1, h1, λ(amt:int`1).
acct:=!acct+amt;
exec(c2, cid, `1, h1) }

c2{`0, h2, λ. a:=!t;. . .}

(2) 〈c2, η, `1, . . .〉

(1) [chmod 〈c2, η〉 :: `0, `1, . . .]

(3) [exec 〈c1, η〉 :: `1, . . .]

(4) [exec 〈c2, η〉 :: `1, . . .]

h0

h1

h2

Figure 4.3: Linear entry creation

Figure 4.3 illustrates the creation and invocation of a linear entry. The distributed

program in Figure 4.3 performs the same computation as lines 3–4 in Figure 3.3. As-

sume memory locationsbid andoffer are located at hosth0, acct is located at hosth1,

anda andt are located at hosth2. Reactorc0 on hosth0 invokes reactorc1 or c3 based

on whether the value ofbid is greater than or equal to the value ofoffer. Reactorc1

updatesacct and invokesc2, which assigns the value oft to a. Supposec0 is invoked

with a context identifierη, and the value ofbid is greater than or equal to the value of

offer. Then the program is executed as follows:

(1) The thread of〈c0, η〉 executes the statementchmod(c2, . . .) to send the message

[chmod 〈c2, η〉 :: `0, `1, . . .] to h2.

(2) On receiving thechmod message,h2 changes the access control label of〈c2, η〉

to `1. Note that the program counter label of the message is`0, which passes the

access control check sinceacl(c2, η) is `0 initially.

(3) Concurrently with (2), the thread of〈c0, η〉 invokes〈c1, η〉 by running the state-

mentexec(c1, cid, `1, h0, !bid). The program counter label of theexec statement

is `1 instead of̀ 0, since the program counter label is bounded by`1 after thechmod

statement.

(4) The thread of〈c1, η〉 invokes〈c2, η〉 after updatingacct. The invocation message

[exec 〈c2, η〉 :: `1, . . .] is accepted becauseacl(c2, η) is `1.

71

4.4 Replication and message synthesis

Replicating code and data is an effective way to achieve fault tolerance and ensure in-

tegrity and availability. In DSR, both reactors and memory references may be replicated

on multiple hosts. Suppose reactorc is replicated on a set of hostsH. Then other

reactors interact withc as follows:

• Any message forc is sent to all the hosts inH.

• The replicas ofc process incoming messages independently of each other. To

make this possible, all the program states ofc have a local copy on every host inH.

In particular, every memory reference (location) accessed byc is also replicated

onH.

• If invoked with the same context identifier, the replicas ofc are supposed to pro-

duce the same messages. Thus, the receiver hosth of such a messageµ may

receive the replicas ofµ from different hosts inH. The redundancy is crucial

for achieving fault tolerance. Some hosts inH may be compromised, and these

bad hosts may send corrupted messages or simply not send anything. In general,

the replicas ofµ received byh contain some correct ones, which are the same,

and some bad ones, which can be arbitrarily inconsistent. It is up toh to identify

the correctµ from those message replicas. This process is calledmessage syn-

thesis, and the algorithm for identifying the correct message is called amessage

synthesizer.

For example, consider the program in Figure 4.4, which computesm :=!m1+!m2

like the program in Figure 4.2, except thatm2 is replicated on three hostsh21, h22 and

h23. Accordingly, the reactorc2 that reads the value ofm2 is also replicated on hosts

h21, h22 andh23. To invokec2, the statementexec(c1, cid, pc, h1) of c1 sends anexec

message to all three hosts wherec2 is replicated. Then each replica ofc2 sends anexec

72

c1{pc, h1, λ.
setvar(〈c3, cid〉.z, !m1)
exec(c1, cid, pc, h1) }

c2{pc, h2, λ.
exec(c3, cid, pc, H, !m2) }

c2{pc, h2, λ.
exec(c3, cid, pc, H, !m2) }

c2{pc, h2, λ.
exec(c3, cid, pc, H, !m2) }

c3{pc, h3, z :int`,
λy :int`. m := z + y }

(2) 〈c3, η, pc, {z : v1}, . . .〉

(5)[exec 〈c3, η〉 :: pc, v2, . . .]

π

(1) [setvar 〈c3, η〉.z :: v1, . . .]

(3) [exec 〈c2, η〉 :: pc, . . .]

(4) [exec 〈c3, η〉 :: pc, v21, . . .]

(4) [exec 〈c3, η〉 :: pc, v22, . . .]

(4) [exec 〈c3, η〉 :: pc, v23, . . .]

h1

h21

h22

h23

h3

Figure 4.4: Replication example

message containing the local value ofm2 to h3. Theexec messages fromh12, h22 and

h23 are synthesized into a single message[exec 〈c3, η〉 :: pc, v2, . . .] by the synthesizer

π onh3. By doing a majority voting, the synthesizerπ can produce the correct message

if only one host ofh21, h22 andh23 is compromised.

4.4.1 Analyzing security assurances of message synthesizers

Intuitively, the main goal of a message synthesizer is to identify the correct message.

By “correct”, we mean “with sufficient integrity”. LetI(µ) be the integrity label ofµ,

specifying the integrity level of the contents ofµ. When receiving the replicas ofµ,

message synthesizerπ is intended to produce the correctµ, if I(µ) 6≤ lA, which says that

µ is a high-integrity message and should not be compromised by attackers. IfI(µ) ≤ lA,

thenµ is a low-integrity message, and the system is considered secure even ifµ is

compromised, as discussed in Chapter 2. In other words, ifI(µ) ≤ lA, the synthesizer

π is under no obligation to ensure the correctness ofµ. Therefore, ifπ determines that

I(µ) ≤ lA holds, it has two options: (1) reporting an error, and (2) producingµ while

knowing thatµ might be incorrect. Both options do not reduce the integrity assurance.

But the first option effectively makes the message unavailable, reducing availability

assurance. Therefore, the second option is generally preferred.

73

Now we demonstrate how to analyze the security assurances of a message synthesis

algorithm. Consider the synthesizerπ in Figure 4.4. Supposeπ producesµ using the

following algorithm, which returns[exec 〈c3, η〉 :: pc, v21, . . .] if v21, v22 andv23 are

equal, and otherwise returnsnone, which means that the message is unavailable.

if (v21 = v22 && v21 = v23) then return [exec 〈c3, η〉 :: pc, v21, . . .]
else return none

With this algorithm, attackers can convinceπ to produce a messageµ containing a fabri-

cated value by compromising the integrity of all three hostsh21, h22 andh23. Therefore,

this algorithm imposes the following label constraint:

I(µ) ≤ I(h21) t I(h22) t I(h23).

At the same time, if attackers compromise the integrity of one host and send a message

replica inconsistent with the other two,µ is unavailable according to the algorithm.

Thus, the algorithm places an upper bound on the available labelA(µ) of µ:

A(µ) ≤ I(h21) u I(h22) u I(h23).

To increase the availability assurance at the expense of integrity assurance,π can use

the following algorithm:

if (v21 = v22 || v21 = v23) return [exec 〈c3, η〉 :: pc, v21, . . .]
if (v22 = v23) return [exec 〈c3, η〉 :: pc, v22, . . .]
else return none

in which,π produces messageµ if two of v21, v22 andv23 are equal. Attackers can com-

promise the integrity ofµ by compromising the integrity of two hosts. At the same time,

to makeµ unavailable, attackers only need to makev21, v22 andv23 all different from

each other by compromising the integrity of two hosts. Thus, the algorithm imposes the

follow constraints:

I(µ) ≤ (I(h21) t I(h22)) u (I(h22) t I(h23)) u (I(h21 t I(h23))

A(µ) ≤ (I(h21) t I(h22)) u (I(h22) t I(h23)) u (I(h21 t I(h23))

74

Suppose the integrity constraint holds, andv21, v22 andv23 differ from each other. Then

I(µ) ≤ lA can be concluded. There are only two cases in which attackers can makev21,

v22 andv23 differ from each other. First, the values are computed using low-integrity

data. In this case, the type system of DSR ensuresI(µ) ≤ lA, as discussed in the next

chapter. Second, attackers are able to compromise two hosts ofh21, h22 andh23. Without

loss of generality, suppose attackers compromise the integrity ofh21 andh22. Then

I(h21) t I(h22) ≤ lA, which impliesI(µ) ≤ lA by the above integrity constraint. Based

on the discussion at the beginning of this section,π can choose to return a message

with an arbitraryv2 without reducing integrity assurance. This idea is applied to the

following algorithm:

if (v21 = v22 || v21 = v23) return [exec 〈c3, η〉 :: pc, v21, . . .]
if (v22 = v23) return [exec 〈c3, η〉 :: pc, v22, . . .]
else return [exec 〈c3, η〉 :: pc, 0, . . .]

which returns a message with a default value0 if the three incoming message replicas

differ from each other. This algorithm provides higher availability assurance than the

last one without sacrificing integrity assurance. In fact, the algorithm is bound to return

some messageµ. Thus,µ is available as long as hostsh21, h22 andh23 are available.

Therefore,

A(µ) = A(h21) u A(h22) u A(h23).

Qualified host sets

In general, given a message synthesizerπ, a host setH is qualifiedwith respect toπ,

written asqualified π(H), if receiving messages from all the hosts inH guaranteesπ

will produce a message. For example,{h21, h22, h23} is a qualified set for the third syn-

thesizer algorithm discussed above. Suppose a reactor replicated onH sends a message

to be synthesized byπ. Then the availability ofµ is guaranteed if aπ-qualified subset

of H is available. Thus,A(µ) is enforced ifA(µ) ≤ A(H, π), whereH is the sender set

75

of µ, andA(H, π) is computed as follows:

A(H, π) =
⊔

H′⊆H ∧ qualified π(H′)

Au(H
′)

4.4.2 Label threshold synthesizer

The label threshold synthesizerLT[l], parameterized with an integrity labell, produces

a messageµ if it receivesµ from a set of hostsH satisfyingl ≤ It(H), or if it can

determine from the incoming messages thatl ≤ lA holds. Using the label threshold

synthesizer to handleexec messages allows a reactor to be invoked by any host set with

sufficient integrity. This flexibility is important because a reactor, like a remote function,

may be invoked by different callers.

The components of a message may have different integrity labels. Thus,LT[l] syn-

thesizes the message components separately. For example, supposeLT[l] receives mes-

sageµi = [exec 〈c, η〉 :: pci, vi, loci, ti] from hosthi for i ∈ {1, . . . , n}, and produces

a messageµ = [exec 〈c, η〉 :: pc, v, loc, t]. ThenLT[l] usespc1, . . . , pcn to produce

pc, andv11, . . . , vn1 to producev1, and so on. Intuitively,LT[l] produces messages with

an integrity level upper bounded byl. Therefore, the integrity label of every message

component is bounded byl.

First, let us consider howLT[l] synthesizes the corresponding componentsv1, . . . , vn

into v, wherevi belongs to messageµi sent by hosthi. This synthesis algorithm can be

described by the following pseudo-code.

LT[l](H, v1, . . . , vn) {

if ∃H ′ ⊆ H. (l ≤ It(H
′) ∧ ∀hj ∈ H ′. vj = v)

return v
if (qualified LT[l](H)) return vd
else return none

}

First, this algorithm returns valuev if v is sent by a host setH ′ satisfying the label

constraint:l ≤ It(H
′). Second, if no subset ofH with sufficient integrity endorses the

76

same value, andH is LT[l]-qualified, then the algorithm returns a default valuevd. In

this case, returning a default value is justified because the following qualified condition

for LT[l] impliesl′ ≤ lA, wherel′ is the integrity label of the component.

H is LT[l]-qualified if and only ifH cannot be partitioned into two disjoint

setsH1 andH2 such thatl 6≤ It(H1) andl 6≤ It(H2).

Now we show that the qualified condition impliesl′ ≤ lA if there does not exist a subset

H ′ of H such that for anyhi ∈ H ′, vi = v, andl ≤ It(H
′). Suppose, by way of con-

tradiction,l′ 6≤ lA. Then attackers can only compromisevi by compromisinghi. Then

the setHg of good (high-integrity) hosts send the same value. Therefore,l 6≤ It(Hg)

holds, which impliesl ≤ It(Hb) whereHb = H − Hg is the set of bad hosts, since

H satisfies the above qualified condition forLT[l]. Therefore,l ≤ lA, which contradicts

l′ 6≤ lA ∧ l′ ≤ l.

In some sense, theLT[l]-qualified condition is like the byzantine fault tolerance con-

dition, which requires2f + 1 hosts to toleratef failures. A set of2f + 1 hosts cannot

be partitioned into two disjoint sets such that either set may be composed of only failed

hosts, if there are at mostf failures.

It is straightforward to constructLT[l] for messages using theLT[l] algorithm for

message components. SupposeLT[l] receives messagesµ1, . . . , µn from hostsH, and

µi = [α :: vi1, . . . , vik]. Here notation is abused a bit:vij may be a value, a location or a

timestamp. The following pseudo-code describes howLT[l] synthesizes these messages.

LT[l](H, µ1, . . . , µn) {

if (∀j. LT[l](H, vj1, . . . , vjn) = vj ∧ vj 6= none)

return [α :: v1, . . . , vk]
else return none

}

77

4.5 Using quorum systems

The label threshold synthesizerLT[l] is based on the assumption that all replicas on

good hosts generate the same high-integrity outputs. The assumption requires that good

hosts agree on their local states. In particular, if the contents of a messageµ depend

on the value of some memory referencem, replicas ofm on good hosts must have the

same value. Otherwise, the replicas ofµ cannot be synthesized usingLT[l]. To maintain

the consistency (equality) between the replicas ofm on good hosts essentially requires

that the updates tom are synchronized on all the hosts ofm. However, this strong

synchronization requirement makes it difficult to guarantee the availability of a memory

write operation because all the hosts ofm need to be available to synchronize a write

operation onm. To achieve high availability for both memory read and write operations,

we need more complex replication schemes and message synthesis algorithms.

Quorum systems are a well-known replication scheme for ensuring the consistency

and availability of replicated data [35, 51]. A quorum systemQ is a collection of sets

(quorums) of hosts, having the form〈H, W1, . . . ,Wn〉, whereH is all the hosts inQ,

and quorumsW1, . . . ,Wn are subsets ofH. Suppose a memory locationm is replicated

on a quorum system. Then an update tom is consideredstable(finished) if it is com-

pleted on a quorum of hosts. In DSR as in some other quorum systems [51], timestamps

are used to distinguish different versions of the same replicated memory location. A

read operation can get the most recent update by consulting with a setR of hosts inter-

secting every quorum. In some literature [52], eachWi is called awrite quorum, andR

is called aread quorum. Using quorum protocols, only a subset of hosts is needed to

finish either a read or write operation. That is why replicating a memory location in a

quorum system can potentially achieve high availability for both reads and writes.

This section describes how the DSR language incorporates quorum system proto-

cols.

78

4.5.1 Tracking timestamps

In quorum protocols, timestamps play an important role: to distinguish different ver-

sions of the contents of a memory reference.

To track timestamps, DSR provides the following mechanisms:

• Thread timestamps

Each thread has a timestamp that is incremented with every execution step of the

thread.

• Message timestamps

When a threadθ sends a messageµ, the current timestamp ofθ is embedded inµ.

• Versioned memory

The contents of a memory reference are associated with timestamps that indicate

whether the contents are up to date. If a memory referencem is assigned valuev

at timestampt, theversioned valuev@t is stored in the local memory as a version

of m.

A new version ofm does not overwrite old versions ofm. This is necessary

because execution is asynchronous. It is possible that a thread on hosth updates

m at timet while another thread onh at a logically earlier time still needs to read

m. Old versions ofm resolve this write-read conflict.

In general, a local memory on a host maps a memory referencem to a set of

versioned valuesv@t. A derereference!m evaluated at timet results in the most

recent version ofm by the timet.

If m is replicated on multiple hostsH, it is possible that some hosts inH may be

running behind, and they do not have an up-to-date version ofm. Thus, the type

system of DSR prevents a versioned value from being used in any computation,

since the value may be outdated. To compute using the value ofm, a host needs

79

to obtain the replicas ofm from sufficient number of hosts and figure out the most

recent version.

4.5.2 Quorum read

In general, to read the value ofm replicated on hostsH = {h1, . . . , hn}, a program

invokes a reactorc replicated onH, and eachc on hosthi will send back its local

versionvi@ti of m in a setvar message[setvar 〈c′, η〉.z :: vi@ti, t
′
i]. After a host

h′ of c′ receives thosesetvar messages,h′ uses a message synthesizer to produce a

message[setvar 〈c′, η〉.z :: v] such thatv@t is the most recent version ofm by the

time thosesetvar messages are sent. IfH forms a quorum systemQ, thenh′ uses a

quorum readsynthesizer, written asQR[Q, l], wherel is the integrity label ofm.

Suppose the most recent update tom by the timec is invoked is stable. Then at least

all the hosts in one quorum ofQ complete the update. Therefore, ifQR[Q, l] receives

sufficientsetvar messages from every quorum ofQ, it can identify the needed value

with sufficient integrity. Based on this insight, a host setR is QR[Q, l]-qualified if the

following condition holds:

∀W ∈ Q. qualified LT[l](W ∩R)

The condition requires that the intersection betweenR and each quorumW is a qualified

set forLT[l]. Intuitively, the messages fromW ∩R are sufficient to determine the value

held byW , if W is the quorum holding the most recent version ofm. Suppose the

quorumW holds the most recent valuev@t. Then any good host inW ∩Rmust provide

the valuev@t. Furthermore, any good host inQ would not provide a valuev′@t′ such

thatt < t′, sincev@t is the most recent version.

TheQR[Q, l]-qualified condition can be viewed as a generalization of the requirement

that the intersection of any read quorum and any write quorum has a size at least2f + 1

in order to toleratef byzantine failures.

80

Supposeµi = [setvar 〈c, η〉.z :: vi@ti, t
′
i] (1 ≤ i ≤ n) from R are received.

Then the followingQR[Q, l] algorithm is able to return the appropriate version ofm with

sufficient integrity, ifR is QR[Q, l]-qualified.

QR[Q, l](R, µ1, . . . , µn) {
if qualified QR[Q,l](R)
if (R ` v@t : l and ∀ti.t < ti ⇒ R 6` vi@ti : l)

return [setvar 〈c, η〉.z :: v]
else return [setvar 〈c, η〉.z :: vd]

else return none
}

In this algorithm, the notationR ` v@t : l means that there exists a subsetR′ of R such

that l ≤ It(R
′) and for any hosthj in R′, vj@tj = v@t. Intuitively, the notation means

that v@t is a version ofm with sufficient integrity. Essentially, this algorithm returns

the versioned value with sufficient integrity and the highest timestamp. If there does

not existv@t such thatR ` v@t : l, thenl ≤ lA must hold, which justifies returning a

message with a default value.

Applying the general formula forA(H, π), the availability guarantee of a read oper-

ation on the quorum systemQ = 〈H,W 〉 is as follows:

A(H, QR[Q, l]) =
⊔

R⊆H∧qualified QR[Q,l](R)

Au(R)

4.5.3 Quorum write

Similar to a quorum read operation, a write operation for referencem replicated onQ

is performed by invoking some reactorc that is also replicated onQ and contains an

assignment tom.

The quorum read synthesizer assumes that an update tom is stable by the timem

is read again. Supposem is replicated onQ and updated by reactorc. To maintain

the stability ofm, the reactorc′ invoked byc is required to wait for the invocation

requests from a quorum ofQ. This ensures that the execution ofc, including the update

81

to m, is completed on a quorum, and the update is therefore guaranteed to be stable

by the timem is read by another reactor. Recall that anexec message has the form

[exec 〈c, η〉 :: pc, v, loc, t], whereloc may be used to describe the quorum system of

the memory locations being written to by the sender reactor. So the receiver has all the

information to do the quorum-write check.

Essentially, an available quorum ensures that a write operation terminates. There-

fore, the availability guarantee of a quorum write is as follows:

Awrite(Q) =
⊔
W∈Q

Au(W)

4.6 Multi-level timestamps

Timestamps introduce new, potentially covert, information channels. First, timestamps

are incremented at execution steps, and thus contain information about the execution

path. Second, in quorum protocols, timestamps can affect the result of a memory read.

We want to increment the timestamp so that (1) it stays consistent across different

good replicas, and (2) its value only depends on the part of the execution path with label

` such that̀ v pc (wherepc is the current program counter label). To achieve this,

DSR usesmulti-level timestampsthat track execution history at different security levels.

To simplify computation local to a reactor, a timestamp has two parts: theglobal part

tracks the invocations of reactors at different security levels; thelocal part tracks the

execution steps of a local thread. Formally, a multi-level timestamp is a tuple〈pc :n, δ〉:

the global partpc :n is a list of pairs〈pc1 : n1, . . . , pck : nk〉, wherepc1, . . . , pck are

program counter labels satisfying the constraintpc1 v . . . v pck, andn1, . . . , nk are

integers. Intuitively, the componentpci : ni means that the number of reactors invoked

at the levelpci is ni. The local partδ is less significant than the global part in timestamp

comparison, and its concrete form will be discussed later in Section 5.2.

82

When a multi-level timestampt is incremented at a program point with labelpc,

the high-confidentiality and low-integrity (with respect topc) components oft are dis-

carded, because those components are not needed to track the time at the levelpc, and

discarding those components prevents insecure information flows. Furthermore, the lo-

cal part of a timestamp after the increment is reset to an initial stateδ0. Supposet =

〈pc1 :n1, . . . , pck :nk; δ〉, andpci v pc andpci+1 6v pc. Thenpci+1 :ni+1, . . . , pck :nk

are low-integrity components to be discarded, and incrementingt at levelpc is carried

out by the following formula:

inc(t, pc) =

 〈pc1 :n1, . . . , pci :ni + 1; δ0〉 if pci = pc

〈pc1 :n1, . . . , pci :ni, pc :1; δ0〉 if pci 6= pc

When comparing two timestamps, low global components are more significant than high

ones. Therefore, for anypc, we always havet < inc(t, pc).

4.7 Example

Like Figure 4.3, the distributed program in Figure 4.5 performs the same computation

as lines 3–4 in Figure 3.3, except that referencebid is replicated on a quorum system

Q. This example illustrates how to read a memory reference replicated on a quorum

system and how timestamps are tracked in a system. Reactorreadbid is used to read

the value ofbid and send the value toc1 so thatc1 can compute!acct+!bid. Reactor

readbid is replicated on the same quorum system asprice so that each replica of

readbid can read the local replica ofprice and send it to hosth1 using asetvar

message. Hosth1 usesQR[Q, l] (specified in the declaration ofc1, and l = I(`1)) to

synthesize thesetvar messages sent by replicas ofreadbid. If QR[Q, l] produces a

message[setvar 〈c1, η〉.amt :: v], then the valuev is recorded in the closure〈c1, η〉 as

the value ofamt.

83

c0{`0, h0, QR[Q, l] . zbid :int`0 ,
λ. if zbid≥ !offer then

chmod(c2, cid, `0, h0, `1)
exec(readbid, cid, `1, h0)

elseexec(c3, cid, `2, h0) }

c1{`1, h1, QR[Q, l] . amt :int`0 ,
λ. acct:=!acct+ amt;
exec(c2, cid, `1, h1) }

QR[Q, l] (5)〈c1, η, `1, {amt : v}, . . .〉

LT[l]

c2{`0, h2, λ. a:=!t; . . .}

(2) 〈c2, η, `1, . . . , t2〉

readbid{`1,Q,
λ.setvar(〈c1, cid〉.z, !bid);
exec(c1, cid, `1, H

′) }

readbid{`1,Q, . . . , }

readbid{`1,Q, . . . , }

h0

h1

h3

h′1

h′2

h′n

...

(1) [chmod 〈c2, η〉 :: `0, `1, h0, t1]

(3) [exec 〈readbid, η〉 :: `1, h0, t3]

(7) [exec 〈c2, η〉 :: `1, h1, t7]

(4) [setvar 〈c1, η〉.amt :: v′i@t′i, t4]

(6) [exec 〈c1, η〉 :: `1, H
′, t6]

Figure 4.5: Quorum replication and timestamps

To track the time globally, every message carries the timestamp of its sender. Sup-

pose the timestamp of〈c0, η〉 is t0 = 〈`0 : 1; δ0〉. Then the timestamps are incremented

as follows:

(1) t1 = 〈`0 : 1; δ11〉. The local partδ11 is obtained by incrementingδ0.

(2) t2 = inc(t1, `0) = 〈`0 : 2; δ0〉. On receiving thechmod message, hosth3 incre-

mentst1 to obtaint2 and storest2 in closure〈c2, η〉. When〈c2, η〉 is invoked

by a low-integrity messageµ, the initial timestamp of the thread of〈c2, η〉 will

be t2 instead of the timestamp obtained by incrementing the timestamp of the

low-integrityµ.

(3) t3 = 〈`0 :1; δ12〉. The local partδ12 is obtained by incrementingδ11.

(4) t4 = inc(t3, `1) = 〈`0 : 1, `1 : 1; δ0〉. Since the program counter label ofreadbid

is `1, the initial timestamp for〈readbid, η〉 is obtained by incrementingt3 at the

level `1.

84

(6) t6 = 〈`0 :1, `1 :1; δ61〉. The local partδ61 is obtained by incrementingδ0.

(7) t7 = 〈`0 : 1, `1 : 2; δ71〉. The initial timestamp of〈c1, η〉 is inc(t6, `1) = 〈`0 : 1, `1 :

2; δ0〉. Thus,t7 is obtained by incrementing the local part of the initial timestamp.

Note thatt2 = inc(t7, `0), which means that ift7 is correct, the initial timestamp

of 〈c2, η〉 is the same as that obtained by incrementingt7.

4.8 Related work

The design of the reactor model and DSR is inspired by concurrent process calculi and

by object-oriented programming [2]. Well-known examples of process calculi include

CSP [36], CCS [59], the pi calculus [60], and the join calculus [29]. In these calculi, pro-

cess communication is modeled by message passing. The key difference between DSR

and prior process calculi is that DSR provides explicit language constructs for replica-

tion and run-time security labels, allowing these mechanisms to be statically analyzed

by a type system.

There has been some work on type-based information flow analyses for process cal-

culi. Honda and Yoshida [37] develop a typedπ-calculus for secure information flow

based on linear/affine type disciplines. Zdancewic and Myers [103] present a security-

typed languageλPAR
SEC, which extends the join calculus with linear channels, and demon-

strate that internal timing attacks can be prevented by eliminating races. In these lan-

guages, linear channels provide additional structure to facilitate more accurate informa-

tion flow analyses. Linearity also plays an important role in security types for low-level

languages in continuation passing style [102]. In DSR, a closure can be viewed as a

linear continuation, since it can be invoked only once.

Quorum systems [84, 15, 35, 51, 8, 5] are a well studied technique for improving

fault tolerance in distributed systems. Quorum systems achieve high data availability

by providing multiple quorums capable of carrying out read and write operations. If

85

some hosts in one quorum fail to respond, another quorum may still be available. Mar-

tin, Alvisi and Dahlin [52] proposed Small Byzantine Quorum protocols, which place

different constraints on read and write quorums, and require that every read quorum

intersects with every write quorum rather than every two quorums intersect with each

other.

The Replica Management System (RMS) [48] computes a placement and replication

level for an object based on programmer-specified availability and performance param-

eters. RMS does not consider Byzantine failures or other security properties.

Keeping multiple versions of the program state is a well-known approach to efficient

concurrency control, especially for providing consistency for read-only transactions [13,

92, 4]. This work uses the approach to provide consistency for reactor replicas running

behind.

Multipart timestamps have been used to provide avector clockscheme [90, 68, 11,

43, 44, 42], in which a timestamp contains multiple components tracking incomparable

times, such as the times of different processes. This work uses multiple components in

a timestamp to count events at different security levels.

Walker et al. [91] designedλzap, a lambda calculus that models intermittent data

faults, and they use it to formalize the idea of achieving fault tolerance through replica-

tion and majority voting. However,λzapis designed for a single-machine platform with

at most one integrity failure.

The DSR language supports run-time labels, and the evaluation model of DSR re-

lies on run-time label checking to control information flows between hosts. Dynamic

information flow control mechanisms [94, 95] track security labels dynamically and use

run-time security checks to constrain information propagation. These mechanisms are

transparent to programs, but they cannot prevent illegal implicit flows arising from the

control flow paths not taken at run time. The Jif language [62, 65] is the first security-

86

typed language with explicit language features for run-time labels and run-time security

checks. Some recent work focuses on presenting sound static analyses of run-time la-

bels. Tse and Zdancewic proved a noninterference result for a security-typed lambda

calculus (λRP) with run-time principals [86]. Zheng and Myers proved a noninterference

result for a security-typed lambda calculus (λDSEC) with run-time labels [106].

Various general security models [56, 83, 28] have been proposed to incorporate dy-

namic labeling. Unlike noninterference, these models define what it means for a system

to be secure according to a certain relabeling policy, which may allow downgrading

labels.

87

Chapter 5

The DSR language
This chapter formally describes the syntax and semantics of DSR and proves that the

type system of DSR can enforce the confidentiality and integrity noninterference prop-

erties.

5.1 Syntax

The syntax of the DSR language is shown in Figure 5.1. We use the namel to range

over a lattice of base labelsL, x, y andz to range over variable names,m to range over

a space of memory locations,h to range over host names, andc to range over reactor

names.

To facilitate writing generic code, reactors may be polymorphic. The full form of a

reactor declaration is:

c[x :σ]{pc, Q, π . z :τ1, λy :τ2. s}

wherex :σ is a list of parameter declarations. If valuesv have typesσ, thenc[v] can be

used as the name of a reactor. Variablesy andz may be used in statements. Variables

z are initialized bysetvar messages synthesized byπ. In DSR, a message synthesizer

π is either a quorum read synthesizerQR[Q, l] or a label threshold synthesizerLT[l]. For

simplicity, empty-list components may be omitted from a reactor declaration.

A valuev may be a variablex, an integern, a context identifierη, a memory refer-

encem, a reactorc[v], a remote variable〈c[v], v〉.z, a versioned valuev@t, or a label

`. Expressions and statements are standard except for the three reactor operationsexec,

chmod andsetvar. In statementexec(v1, v2, pc, Q, e) or chmod(v1, v2, pc, Q, `),

valuev1 is either a reactor valuec[v] or a variable, andv2 is eitherη or a variable. In

statementsetvar(v, e), valuev is either〈c[v], η〉.z or a variable.

88

Base labels l ∈ L
Labels `, pc ::= {C = l1, I = l2, A= l3} | x

Timestamps t ::= 〈pc :n ; nδ〉
Values v ::= x | n | η | m | c[v] | 〈c[v], v〉.z | v@t | `

Expressions e ::= v | !e | e1 + e2

Statements s ::= skip | v := e | s1; s2 | if e then s1 else s2

| exec(v1, v2, pc, Q, e) | chmod(v1, v2, pc, Q, `)
| setvar(v, e)

Reactor decls r ::= c[x :σ]{pc, Q, π . z :τ , λy :τ .s}
Synthesizers π ::= QR[Q, l] | LT[l]

Base types β ::= int | label | τ ref | τ var
| reactor[x :σ]{pc, π . z :τ1, τ2}
| reactor[x :σ]{pc, τ2}

Security types σ ::= β`

Types τ ::= σ | σ@Q | stmt`

Host sets H,W ::= {h1, . . . , hn}
Quorum systems Q ::= 〈H,W 〉 | h | H | &v | #v

Programs P ::= {r1, . . . , rn}

Figure 5.1: Syntax of the DSR language

A base typeβ can beint (integer),label (security label),τ ref (reference of type

τ), τ var (remote variable of typeτ) and reactor typereactor[x :σ]{pc, π . z :τ1, τ2}

whose components are interpreted the same way as in a reactor declaration. A reactor

type may also have a simplified formreactor[x :σ]{pc, τ2}, which contains sufficient

typing information for checking the invocation, while providing polymorphism over the

argumentsz.

A security typeσ is a base typeβ annotated with security label`. Like security

labels, replication schemes are also specified as type annotations. A located typeσ@Q

indicates that data with this type is replicated on the quorum systemQ. In general, a

quorum systemQ has the form〈H,W 〉. If Q is 〈H, ε〉 or 〈{h}, ε〉, thenQ also has a

simplified form:H or h. In addition, ifv is a memory reference replicated onQ, then

&v representsQ, and#v representsH = |Q|, which is the set of hosts inQ. The type

of a statements has the formstmt`, which means that afters terminates, the program

counter label is lower bounded by` with respect to the orderingv.

A timestampt has the form〈pc :n ; nδ〉, where the listn of integers is the local part

89

of t. In DSR, a programP is simply a set of reactor declarations.

5.2 Operational semantics

In DSR, a system configuration incorporates the program states of all the hosts in the

system. A system configuration is a tuple〈Θ, M, E〉 whereΘ is a thread pool,M is

a global memory, andE is a system environment that captures system state other than

memory, including messages and closures.

• The thread poolΘ is a set of threads. A threadθ is a tuple〈s, t, h, c[v], η〉

wheres, t andh are the code, timestamp, and location of the thread, respectively;

〈c[v], η〉 identifies the closure of this thread.

• The global memoryM maps hosts to their local memories, and a local memory

maps references to lists of versioned values. Thus,M[h][m] = v1@t1, . . . , vn@tn

means thatv1@t1, . . . , vn@tn are the versions ofm on hosth. If M[h][m] =

none@t, then the value ofm is unavailable on hosth. Unlike in Aimp, memory

failures are modeled by host failures instead of mapping references tovoid.

• The environmentE is a tuple〈MT, CT 〉 whereMT is amessage tablemapping

a host pair〈hs, hr〉 to the set of messages fromhs to hr, andCT is aclosure table

mapping a tuple〈h, c[v], η〉 to the closure〈c[v], η〉 onh.

To read and update various program states in a system configuration, the evaluation

rules of DSR uses the following notations:

• M[h,m, t]: the value ofm on hosth at timet. If v@t ∈M[h][m], thenM[h,m, t] =

v. Otherwise,M[h,m, t] is not defined.

• M(h, t): a snapshot ofM on hosth at timet. SupposeM(h, t) = M . ThenM

maps references to versioned values, andM [m] is the most recent version ofm

on hosth by the timet.

90

(E1)
M(m) = v

〈!m, M〉 ⇓ v (E2)
〈ei, M〉 ⇓ vi i ∈ {1, 2} v = v1 ⊕ v2

〈e1 + e2, M〉 ⇓ v (E3) 〈v, M〉 ⇓ v

(S1)
〈e, M〉 ⇓ n M ′ = M [m 7→ n@t]

〈m := e, M, Ω, t〉 7−→ 〈skip, M ′, Ω, t+ 1〉 (S2)
〈s1, M, Ω, t〉 7−→ 〈s′1, M ′, Ω′, t′〉

〈s1; s2, M, Ω, t〉 7−→ 〈s′1; s2, M ′, Ω′, t′〉

(S3) 〈skip; s, M, Ω, t〉 7−→ 〈s, M, Ω, t+ 1〉 (S4) 〈fi; s, M, Ω, t〉 7−→ 〈s, M, Ω, t . 1〉

(S5)
〈e, M〉 ⇓ n n > 0

〈if e then s1 else s2, M, Ω, t〉 7−→ 〈s1; fi, M, Ω, t / 1〉

(S6)
〈e, M〉 ⇓ n n ≤ 0

〈if e then s1 else s2, M, Ω, t〉 7−→ 〈s2; fi, M, Ω, t / 1〉

(S7)
〈e, M〉 ⇓ v1 none 6∈ v1

〈exec(c[v], η, pc, Q, e), M, Ω, t〉 7−→ 〈halt, M, Ω ∪ [exec 〈c[v], η〉 :: pc, v1,Q, t], t+ 1〉

(S8) 〈chmod(c[v], η, pc, Q, `), M, Ω, t〉 7−→ 〈skip, M, Ω ∪ [chmod 〈c[v], η〉 :: pc, `,Q, t], t+ 1〉

(S9)
〈e, M〉 ⇓ v v 6= none

〈setvar(〈c[v], η〉.z, e), M, Ω, t〉 7−→ 〈skip, M, Ω ∪ [setvar 〈c[v], η〉.z :: v, t], t+ 1〉

(G1)

〈s, M, Ω, t〉 7−→ 〈s′, M ′, Ω′, t′〉 M(h, t) = M

E ′ = (if Ω′ = Ω ∪ {µ} then E[messages(h) 7→+ µ] else E)

〈{〈s, t, h, c[v], η〉} ∪Θ, M, E〉 7−→ 〈{〈s′, t′, h, c[v], η〉} ∪Θ, M[h 7→t M ′], E ′〉

(M1)

E.closure(h, c[v], η) = 〈c[v], η, `,A, t′, on〉 P (c[v]) = c[v]{pc′, Q′, π . z :τ2, λy :τ1.s}
∀zi.A(zi) 6= none E.messages(∗, h, [exec 〈c[v], η〉 :: ∗]) = 〈H,h, µ〉

LT[`](H,µ) = [exec 〈c[v], η〉 :: pc, v1,Q, t] ∃W ∈ Q. W ⊆ H pc v ` Γ ` v1 : τ1

t′′ = (if pc v pc′ then inc(t, pc′) else t′) t′ 6= none⇒ t ≤ t′

E ′ = E[closure(h, c[v], η) 7→ 〈c[v], η, `,A, t′′, off〉] A′ = A[y 7→ v1][cid 7→ η][nid 7→ hash(t′′)]

〈Θ, M, E〉 7−→ 〈Θ ∪ {〈s[A′], t′′, h, c[v], η〉}, M, E ′〉

(M2)

E.closure(h, c[v], η) = 〈c[v], η, `,A, t′, on〉
E.messages(∗, h, [chmod 〈c[v], η〉 :: x, y, ∗], x v ` v y, ` 6= y) = 〈H,h, µ〉 ∃W ∈ Q. W ⊆ H

LT[`](H,µ) = [chmod 〈c[v], η〉 :: pc, `′,Q, t] t′′ = (if pc v pc′ then inc(t, `) else t′)

〈Θ, M, E〉 7−→ 〈Θ, M, E[closure(h, c[v], η) 7→ 〈c[v], η, `′,A, t′′, on〉]〉

(M3)

E.closure(h, c[v], η) = 〈c[v], η, `,A, t′, on〉 P (c[v]) = c[v]{pc′, H′, π . z :τ, λy :τ1.s}
A(zi) = none E.messages(∗, h, [setvar 〈c[v], η〉.zi :: ∗]) = 〈H,h, µ〉

πi(H,µ) = [setvar 〈c[v], zi〉.η :: v, t] Γ ` v : τi[v/x]

〈Θ, M, E〉 7−→ 〈Θ, M, E[closure(h, c[v], η) 7→ 〈c[v], η, `,A[zi 7→ v], t′, on〉]〉

(A1)

I(h) ≤ lA M(h, t) = M Γ(m) = σ or σ@Q
M ′ = M [m 7→ v@t] Γ ` v : σ

〈Θ, M, E〉 7−→ 〈Θ, M[h 7→t M ′], E〉 (A2)

I(h) ≤ lA Γ ` µ
E ′ = E[messages(h, h′) 7→+ µ]

〈Θ, M, E〉 7−→ 〈Θ, M, E ′〉

(A3)
A(h) ≤ lA

〈{〈s, t, h, c[v], η〉} ∪Θ, M, E〉 7−→ 〈{〈abort, t, h, c[v], η〉} ∪Θ, M, E〉

Figure 5.2: Operational semantics of DSR with respect toΓ andP

91

• M(h,m): the most recent value ofm on hosth. If M(h,m) = v, thenv@t ∈

M[h][m], and for anyv′@t′ ∈M[h][m], t′ ≤ t.

• E [messages(h) 7→+ µ]: the environment obtained by adding toE the message

µ sent byh. SupposeE [messages(h) 7→+ µ] = E ′. Then E ′.MT [h, h′] =

E .MT [h, h′] ∪ {µ} for anyh′ ∈ receivers(µ), and for any other host pairh1, h2,

E ′.MT [h1, h2] = E .MT [h1, h2]. Supposeµ is for reactorc replicated onQ. Then

receivers(µ) = |Q|.

• E [messages(h1, h2) 7→+ µ]: the environment obtained by addingµ to E as a mes-

sage sent fromh1 to h2.

• M[h 7→t M]: the memory obtained by incorporating intoM the memory snap-

shotM on hosth at timet. SupposeM[h 7→t M] = M′. ThenM [m] = v@t

implies thatM′[h,m, t] = v, and for any hosth′, timet′ and referencem′, h′ 6= h

or t′ 6= t orM [m′] 6= v@t impliesM′[h′,m′, t′] = M[h′,m′, t′].

• E [closure(h, c[v], η) 7→ k]: the environment obtained by mapping〈h, c[v], η〉 to

closurek in the closure table ofE .

The operational semantics of DSR is given in Figure 5.2. The evaluation of a term

may need to use the reactor declarations (the program textP) and the typing assignment

Γ of memory, which maps references to types. For brevity,Γ andP are implicitly used

by the evaluation rules in Figure 5.2, though they are technically an (unchanging) part of

the evaluation relation defined by the operational semantics. In addition, three auxiliary

statements may appear during execution, although they cannot appear in programs. They

arehalt, indicating the normal termination of a thread,abort, indicating an availability

failure, andfi, indicating the end of the execution of a conditional statement.

Rules (E1)–(E3) are used to evaluate expressions on a single host. The notation

〈e, M〉 ⇓ v means that evaluatinge in a local memory snapshotM results in the value

92

v. These rules are standard. In (E1), the notationM(m) represents the value ofm inM .

If M [m] = v@t, thenM(m) is computed as follows:

M(m) =

 v@t if Γ(m) = σ@Q

v if Γ(m) = σ

In rule (E2),v1 ⊕ v2 is computed as follows:

v1 ⊕ v2 =

 n1 + n2 if v1 = n1 andv2 = n2

none if v1 = none or v2 = none

Rules (S1) through (S9) are used to execute statements on a single host, defining a

local evaluation relation〈s, M, Ω, t〉 7−→ 〈s′, M ′, Ω′, t′〉, where the outputΩ keeps

track of outgoing messages from the thread ofs.

Rules (S1)–(S6) are largely standard. The interesting part is the manipulation of

timestamps. Each evaluation step increments the local part of the timestampt, which

is a list of integer components. To avoid covert implicit flows, executing a conditional

statement should eventually cause the timestamp to be incremented exactly once no

matter which branch is taken. When entering a branch, in (S5) and (S6), a new integer

component is appended to the local part oft; when exiting a branch in (S4), the last com-

ponent is discarded. Givent = 〈pc : n ; n′1, . . . , n
′
k〉, the following auxiliary functions

manipulate local parts of timestamps:

t+ 1 = 〈pc : n ; n′1, . . . , n
′
k + 1〉

t / 1 = 〈pc : n ; n′1, . . . , n
′
k, 1〉

t . 1 = 〈pc : n ; n′1, . . . , n
′
k−1 + 1〉

Rules (S7)–(S9) evaluate the three reactor operations. They all send out a network

message encoding the corresponding command. In rule (S7), theexec statement pro-

duces the message[c[v], η, exec :: pc, v1,Q, t], whereQ is a quorum system of the

current thread that potentially contains an unstable memory update. The destination

93

hosts of this message are determined byc[v]. After executing anexec statement, the

current thread is terminated, evaluating tohalt.

A global evaluation step is a transition〈Θ, M, E〉 7−→ 〈Θ′, M′, E ′〉. Rule (G1)

defines global transitions by lifting local evaluation steps, using changes to the local

memory and outgoing messages to update the system configuration.

Rule (M1) handlesexecmessages. This rule is applicable when hosth receivesexec

messages that can be synthesized into a valid invocation request for closure〈c[v], η〉.

The following auxiliary function retrieves the set of messages with some property from

environmentE :

E .messages(h̃s, h̃r, µ̃, C) = 〈h, h′, µ〉

whereh̃s areh̃r arehost patternsthat may be some hosth, or a wild card∗ representing

any host, or some variablex; µ̃ is a message pattern, a message with some components

replaced by∗ or x; C is a set of constraints on the variables appearing in these patterns.

The result〈h, h′, µ〉 represents a list of〈hi, h′i, µi〉 tuples wherehi andh′i are the sender

and receiver ofµi, andµi matches the pattern and satisfiesC. To abuse notation a bit,

h can be represented byH = {h1, . . . , hn}, or hs if all the hosts inh arehs. For ex-

ample, in rule (M1), the functionE .messages(∗, h, [exec 〈c[v], η〉 :: ∗]) returns all the

messages inE that are sent toh and have the message head “exec, 〈c[v], η〉”. The re-

sult of the function is〈H, h, µ〉, whereH = {h1, . . . , hn}, and eachhi sendsµi to h.

ThenH andµ can be fed to the message synthesizerLT[`] (abbreviation forLT[I(`)]),

where` = acl(c[v], η). This enforces the constraintI(`) ≤ It(H), ensuring that the

set of sender hosts have sufficient integrity to invoke the closure. As discussed in Sec-

tion 4.2, a reactor closure has the form〈c, η, `,A, a〉. The extra attributesa include

t, the initial timestamp of the thread generated by invoking the closure, andstate, a

flag for the invocation state, which could be eitheron (yet to be invoked on this host)

or off (already invoked). SupposeP (c) is the declaration of reactorc. ThenP (c[v])

94

representsP (c)[v/x], wherex are parameters ofc. OnceLT[`] returns an invocation

request[exec 〈c[v], η〉 :: pc, v1,Q, t], hosth verifies the following constraints to ensure

the validity of the request:

• ∀zi.A(zi) 6= none. This constraint guarantees that variablesz are all initialized.

• ∃W ∈ Q.W ⊆ H. This constraint ensures that all memory updates of the sender

thread are stable.

• pc v `. This label constraint controls the implicit flows by ensuring the program

point of the sender thread has sufficient integrity and does not reveal confidential

information.

• Γ ` v1 : τ1. Run-time type checking ensures that the arguments of the request

are well-typed. This check is necessary because bad hosts may send ill-typed

messages.

• t′ 6= none⇒ t ≤ t′. This constraint ensures that the invocation request is not out

of order.

After the request is validated, hosth creates a new thread whose code iss[A′], the

statement obtained by applying substitutionA′ to s. In particular, the current context

identifiercid is replaced byη, and the new closure identifiernid is replaced by the hash

of the current timestampt′′, which is eithert′, or inc(t, pc′) if pc v pc′. The state of the

closure is set tooff to prevent more invocations.

Rule (M2) handleschmod messages. Suppose thechmod messages to be processed

are for closure〈c[v], η〉. Like in (M1), the closure〈c[v], η, `,A, t′, on〉 is retrieved from

E ; LT[`] is used to synthesize thechmod messages that attempt to change the access

control label of〈c[v], η〉 from ` to `′ such that̀ v `′ and` 6= `′. Thechmod messages

are extracted fromE by E .messages(∗, h, [chmod 〈c[v], η〉 :: x, y, ∗], x v ` v y, ` 6= y),

which produces onlychmod messages that are meant to changeacl(c, η) to a label higher

95

than`. Once a message[chmod 〈c[v], η〉 :: pc, `′,Q, t] is produced byLT[`], rule (M2)

verifies the quorum constraint and the label constraintpc v `, just like rule (M1). Once

the constraints are verified, the closure’s timestamp is initialized if necessary, and the

access control label of the closure is set to`′.

Rule (M3) handlessetvar messages. Suppose the corresponding request is to ini-

tialize variablezi of the closure identified by〈c[v], η〉. Thenπi is the message synthe-

sizer to use, according to the declaration ofc[v]. If πi returns asetvar request with a

well-typed initial valuev, andzi has not yet been initialized, thenzi is mapped tov in

the variable record of the closure.

In a distributed system, attackers can launch active attacks using the hosts they con-

trol. Rules (A1) through (A3) simulate the effects of those attacks. In general, integrity

attacks fall into two categories: modifying the memory of a bad host and sending mes-

sages from a bad host. Rules (A1) and (A2) correspond to these two kinds of attacks.

The constraintI(h) ≤ lA indicates that the attacker is able to compromise the integrity of

hosth. In rule (A1), an arbitrary memory referencem on hosth is modified. Note that

we assume the attack does not violate the well-typedness of the memory. This assump-

tion does not limit the power of an attacker because the effects of an ill-typed memory

would either cause the execution of a thread to get stuck—essentially an availability

attack—or produce an ill-typed message, which a correct receiver would ignore. In rule

(A2), an arbitrary messageµ is sent from hosth. Again, we assume thatµ is well-typed

without loss of generality. Rule (A3) simulates an availability attack by aborting a thread

of a hosth whose availability may be compromised by the attacker.

5.3 Type system

This section describes the type system of DSR, which is designed to control information

flow in distributed programs.

96

(ST1) τ1 ≤ τ2 τ2 ≤ τ1

τ1 ref ≤ τ2 ref
(ST2) τ2 ≤ τ1

τ1 var ≤ τ2 var

(ST3)
τ4 ≤ τ2 τ3 ≤ τ1 pc′ v pc

reactor[x :σ]{pc, π . z :τ2, τ1} ≤ reactor[x :σ]{pc′, π . z :τ4, τ3}

(ST4) reactor[x :σ]{pc, π . z :τ2, τ1} ≤ reactor[x :σ]{pc, τ1}

(ST5)
β1 ≤ β2 `1 v `2

C ` (β1)`1 ≤ (β2)`2
(ST6)

σ1 ≤ σ2

σ1@Q ≤ σ2@Q
(ST7)

pc1 v pc2

stmtpc1 ≤ stmtpc2

Figure 5.3: Subtyping rules

5.3.1 Subtyping

The subtyping relationship between security types plays an important role in enforcing

information flow security. Given two security typesτ1 = β1`1 andτ2 = β2`2, supposeτ1

is a subtype ofτ2, written asτ1 ≤ τ2. Then any data of typeτ1 can be securely treated

as data of typeτ2, and any data with label`1 may be treated as data with label`2, which

requires̀ 1 v `2, that is,C(`1) ≤ C(`2) andI(`2) ≤ I(`1). In DSR, a label may be a

variable, and a label variablex is incomparable with other labels except forx itself.

The subtyping rules are shown in Figure 5.3. Rules (ST1)–(ST4) are about subtyping

on base types. These rules demonstrate the expected covariance or contravariance, as

reactors are like functions, and remote variables are like final fields in Java [81]. As

shown in rule (ST3), the argument types are contravariant, and the premisepc2 v pc1

is needed because thepc of a reactor type is an upper bound on thepc of the caller.

Rule (ST4) says that any reactor of typereactor[x :σ]{pc, π . z :τ2, τ1} can be treated

as a reactor of typereactor[x :σ]{pc, τ2}. Intuitively, it is safe to associate a more

restrictive program counter label with a program point, since it permits fewer implicit

flows. Therefore, a statement of typestmtpc1 also has typestmtpc2 if pc1 v pc2, as

shown in (ST7).

97

5.3.2 Typing

The typing rules of DSR are shown in Figure 5.4. A programP is well-typed inΓ,

written asΓ ` P , if every reactor declarationr in P is well-typed with respect toΓ and

P , written Γ ;P ` r, whereΓ andP provides the typing information for memory and

reactors, respectively.

A reactor declaration is well-typed if its body statement is well-typed. The typing

judgment for a statements has the formΓ ;P ;Q ; pc ` s : τ , meaning thats has type

τ under the typing environmentΓ ;P ;Q ; pc, whereQ is the quorum system wheres is

replicated, andpc is the program counter label. The typing judgment for an expression

e has the formΓ ;P ;Q ` e : τ , meaning thate has typeτ under the typing environment

Γ ;P ;Q. For simplicity, a component in the typing environment of a typing judgment

may be omitted if the component is irrelevant. For example, in rule (INT), the type

of n has nothing to do with the typing environment, and thus the typing judgment is

simplified as̀ n : int`.

Rules (INT), (CID), (LABEL), (VAR), (LOC), (ADD), (ESUB), (IF) and (SUB) are

standard for a security type system aimed to analyze information flows.

In DSR, only thechmod statement imposes a lower bound on the program counter

label after termination. Thus, the types ofskip, v := e, and theexec andsetvar state-

ments are the same:stmt⊥⊥⊥, which effectively places no lower bound on the program

counter label after termination, as⊥⊥⊥ v pc holds for anypc.

Rule (REACTOR) is used to check reactor valuec[v]. The notations̀ v σ and

` v σ@Q represent̀ v `′ if σ = β`′. Supposec[x :σ]{pc, Q, π . z :τ1, λ y :τ2. s}

is the declaration ofc in P . Then the list of parametersv must have typesσ[v/x],

where the substitution is necessary becausexmay appear inσ. The values of the reactor

parameters and the effects of this reactor depend on the reactor value itself. Thus,` v

σ[v/x] and` v pc[v/x] are enforced. Since this reactor is replicated onQ′ = Q[v/x],

98

(INT) ` n : int` (CID) ` η : int` (LABEL) ` {C= l1, I= l2, A= l3} : label`

(VAR) Γ ` x : Γ(x) (LOC)
Γ(m) = τ

Γ ` m : (τ ref)`
(ADD)

Γ ` ei : int`i
i ∈ {1, 2}

Γ ` e1 + e2 : int`1t`2

(REACTOR)

P (c) = c[x :σ]{pc, Q, π . z :τ1, λy :τ2. s}
Γ ` v : σ[v/x] ` v σ[v/x] ` v pc[v/x]

Ct(τ1[v/x]) t Ct(τ2[v/x]) t C(pc[v/x]) ≤ Cu(Q[v/x])

Γ ;P ` c[v] : reactor[v/x]{pc, π . z :τ1, τ2}`

(ARG)

Γ ;P ` c[v] : reactor{pc, π . z :τ, τ2}`

` v : int` FV (v) = ∅ ` v τi

Γ ;P ` 〈c[v], v〉.zi : (πi ⊗ τi var)`
(TV)

Γ ` v : σ
Γ ;Q ` v@t : σ@Q

(DEREF)
Γ ` e : (τ ref)` readable(Q, τ)

Γ ;Q `!e : τ t ` (ESUB)
Γ ;P ;Q ` e : τ1 τ1 ≤ τ2

Γ ;P ;Q ` e : τ2

(SKIP) Γ ;P ;Q ; pc ` skip : stmt⊥⊥⊥ (ASSI)
Γ ` v : (τ ref)` writable(Q, τ)Γ ` e : σ base(τ) = σ pc t ` v σ

Γ ;Q ; pc ` v := e : stmt⊥⊥⊥

(SEQ)

Γ ;P ;Q ; pc ` s1 : stmt`1

Γ ;P ;Q ; pc t `1 ` s2 : stmt`2

Γ ;P ;Q ; pc ` s1; s2 : stmt`1t`2

(IF)

Γ ;Q ` e : int`

Γ ;P ;Q ; pc t ` ` si : τ i ∈ {1, 2}
Γ ;P ;Q ; pc ` if e then s1 else s2 : τ

(EXEC)

Γ ;P ` v1 : reactor{pc′, π . z :τ, τ2}`

Γ ;Q ` v2 : int` Γ ` ` : label` Γ ;P ;Q ` e : τ2

pc v τ2 pc v `

Γ ;P ;Q ; pc ` exec(v1, v2, `, Q, e) : stmt⊥⊥⊥

(CHMD)

Γ ;P ` v1 : reactor{pc′, π . z :τ, τ2}`

Γ ;Q ` v2 : int` Γ ` ` : label`

Γ ` `′ : label` pc v ` ` v `′

Γ ;P ;Q ; pc ` chmod(v1, v2, `, Q, `′) : stmt`′
(SETV)

Γ ;Q ` v : (τ var)` Γ ;Q ` e : τ

pc t ` v τ

Γ ;P ;Q ; pc ` setvar(v, e) : stmt⊥⊥⊥

(RD)
Γ, x :σ, y :τ1, z :τ2, cid :intpc, nid :intpc ;P ;Q ; pc ` s : stmtpc′

Γ ;P ` c[σ x]{pc, Q, π . τ z, λτ y. s}

(SUB)
Γ ;P ;Q ; pc ` s : τ1 τ1 ≤ τ2

Γ ;P ;Q ; pc ` s : τ2

[Auxiliary notations]
π ⊗ τ : QR[Q]⊗ σ = σ@Q LT[I]⊗ τ = τ

writable(Q, τ) : τ = σ@Q ∨ (τ = σ ∧ |Q| = {h})

readable(Q, τ) : (τ = σ@Q′ ∧ |Q| = |Q′|) ∨ (τ = σ ∧ |Q| = {h})

Figure 5.4: Typing rules of DSR

any data processed by the reactor is observable to the hosts inQ′. The last constraint

ensures that the hosts inQ′ would not leak information aboutc[v].

99

Rule (ARG) checks remote variable〈c[v], v〉.zi. If the type ofc[v] shows thatzi has

typeτi and synthesizerπi, then the values used to initializezi have typeπi⊗ τi such that

they can be synthesized byπi into a value with typeτi. Therefore, the type of〈c[v], v〉.zi

is (πi ⊗ τi var)` where` is the label ofc[v].

Rule (TV) checks versioned values. Ifv has typeσ, thenv@t has typeσ@Q in the

typing environmentΓ ;Q, which indicates that the versioned value is evaluated atQ.

Rules (DEREF) and (ASSI) checks memory dereferences and assignments. These

two rules need to ensure that the involved memory reference is accessible onQ. Intu-

itively, if a memory referencem is replicated onQ, then a read or write operation needs

to be performed on all the hosts inQ. In rule (DEREF), the premisereadable(Q, τ) en-

sures thatQ contains the same set of hosts asQ′ where the reference of typeτ ref

is replicated, or the reference is not replicated at all. In rule (ASSI), the premise

writable(Q, τ) ensures thatQ is the quorum system where the reference to be assigned

is replicated.

In rule (DEREF), ife has type(τ ref)`, then!e has typeτ t `. We use the notation

β` t `′ to representβ`t`′, andσ@Qt ` to representσ t `@Q. The label̀ is folded into

the type of!e because the result of!e depends on the value ofe.

Rule (ASSI) says thatv := e is well-typed if v has type(τ ref)`, ande has type

σ = base(τ), which strips the location part ofτ . The constraintpc t ` v σ ensures the

safety of both the explicit information flow frome to referencev and the implicit flow

from the program counter tov.

Rule (SEQ) checks sequential statements1; s2. If s1 has typestmt`1, thens2 is

checked withpc t `1, since`1 is a lower bound to the program counter label afters1

terminates. If the type ofs2 is stmt`2, then the type ofs1; s2 is stmt`1t`2, as both̀ 1 and

`2 are a lower bound to the program counter label afters1; s2 terminates.

Rule (EXEC) checksexec statements. It resembles checking a function call. The

100

constraintspc v τ2 andpc v ` ensure that the reactor to be invoked would not leak the

information about the current program counter.

Rule (CHMD) checkschmod statements. The label`′ is meant to be the new access

control label of closure〈v1, v2〉. After executing this statement, the program counter

label is lower bounded bỳ′, effectively preventing the following code from running

anotherchmod statement with label̀ before〈v1, v2〉 is invoked. The constraint̀v `′

impliespc v `′, ensuring the new program counter label is as restrictive as the current

one.

Rule (SETV) is used to check thesetvar statement. Valuev has type(τ var)`,

representing a remote variable. The value of expressione is used to initialize the remote

variable, and thuse has typeτ . The constraintpc t ` v τ is imposed becausev and the

program counter may affect the value of the remote variable.

Rule (RD) checks reactor declarations:c[x :σ]{pc, Q, π . z :τ2, λy :τ1.s} is well-

typed with respect toΓ andP as long as the reactor bodys is well-typed in the typing

environmentΓ, x :σ, y :τ1, z :τ2 ;P ;Q ; pc.

5.3.3 Subject reduction

The type system of DSR satisfies the subject reduction property, which is stated in the

subject reduction theorem, following the definitions of well-typed memories and con-

figurations.

Definition 5.3.1 (Well-typed memory).M is well-typed inΓ, written Γ ` M, if for

anym in dom(Γ) and any hosth and any timestampt, M[h,m, t] = v andΓ(m) =

σ or σ@Q imply Γ ` v : σ.

Definition 5.3.2 (Well-typed memory snapshot).M is well-typed inΓ, writtenΓ `M ,

if for anym in dom(Γ), `M(m) : Γ(m).

101

Definition 5.3.3 (Well-typed environment).E is well-typed inΓ andP , writtenΓ ;P `

E , if for any closure〈c[v], η, `, t,A, ∗〉 in E and anyx ∈ dom(A), ` A(x) : τ whereτ is

the type ofx based onΓ andc[v], and for anyµ in E , we haveΓ ;P ` µ, which means

the contents ofµ are well-typed. The inference rules forΓ ;P ` µ are standard:

(M-EXEC)
Γ ;P ` c[v] : reactor{pc′, π . z :τ1, τ2} ` v1 : τ1

Γ ;P ` [exec 〈c[v], η〉 :: pc, v1,Q, t]

(M-CHMD)
Γ ;P ` c[v] : reactor{pc′, π . z :τ1, τ2}

Γ ;P ` [chmod 〈c[v], η〉 :: pc, `,Q, t]

(M-SETV)
Γ ;P ` 〈c[v], η〉.z : (τ var)` ` v1 : τ

Γ ;P ` [setvar 〈c[v], η〉.z :: v1, t]

Definition 5.3.4 (Well-typed configuration). 〈Θ, M, E〉 is well-typed inΓ andP ,

written Γ ;P ` 〈Θ, M, E〉, if Γ ` M, andΓ ;P ` E , and for any〈s, t, h, c[v], η〉 in

Θ, Γ ;P ;Q ; pc ` s : τ .

Lemma 5.3.1 (Expression subject reduction).SupposeΓ ` 〈e, M〉 ⇓ v, andΓ ;Q `

e : τ , andΓ `M . ThenΓ ;Q ` v : τ .

Proof. By induction on the derivation of〈e, M〉 ⇓ v.

• Case (E1). In this case,e is !m, andτ is Γ(m), andv isM(m). If Γ(m) = int`,

thenM(m) = n whileM [m] = n@t, andΓ ;Q ` n : int`. Otherwise,Γ(m) =

int`@Q, andM(m) = M [m] = n@t. We haveΓ ;Q ` n@t : int`@Q.

• Case (E2). By induction,Γ ;Q ` vi : int`i for i ∈ {1, 2}. Thus,Γ ;Q ` v1 + v2 :

int`1t`2 .

Lemma 5.3.2 (Substitution). SupposeΓ ` v : τ . Thenx : τ,Γ ;P ;Q ` e : τ ′

impliesΓ[v/x] ;P ;Q[v/x] ` e[v/x] : τ ′[v/x], andx : τ,Γ ;P ;Q ; pc ` s : τ ′ implies

Γ[v/x] ;P ;Q[v/x] ; pc[v/x] ` s[v/x] : τ ′[v/x].

102

Proof. By induction on the structure ofe ands. Without loss of generality, assume that

the typing derivations ofe ands end with applying rule (ESUB) or (SUB).

• e is y. If y = x, then e[v/x] = v, andx does not appear inτ . Therefore,

Γ ` e[v/x] : τ ′[v/x] immediately followsΓ ` v : τ . If y 6= x, thene[v/x] = y,

andy :τ ′[v/x] belongs toΓ[v/x]. Thus,Γ[v/x] ` y : τ ′[v/x].

• e is n, η, `, orm. This case is obvious.

• e is c[v], 〈c[v, v〉.z, v@t, !e or e1 + e2. By induction.

• s is v′ := e. By induction,Γ[v/x] ` v′[v/x] : τ ′′ ref`[v/x], andΓ[v/x] `

e[v/x] : σ[v/x]. Sincebase(τ ′′) = σ, we havebase(τ ′′[v/x]) = σ[v/x]. In addi-

tion, writable(Q, τ ′′) implieswritable(Q[v/x], τ ′′[v/x]), andpc t ` v σ implies

pc[v/x] t `[v/x] v σ[v/x]. Therefore,Γ[v/x] ;P ;Q[v/x] ` s[v/x] : τ ′[v/x].

• s is s1; s2 or if e then s1 else s2. By induction.

Lemma 5.3.3 (Subject reduction).Suppose〈s, M, Ω, t〉 7−→ 〈s′, M ′, Ω′, t′〉, and

Γ `M , andΓ ;P ` Ω, andΓ ;P ;Q ; pc ` s : τ . ThenΓ ;P ;Q ; pc ` s′ : τ andΓ `M ′

andΓ ;P ` Ω′.

Proof. By induction on the derivation of〈s, M, Ω, t〉 7−→ 〈s′, M ′, Ω′, t′〉.

• Case (S1). By rule (ASSI),Γ ;Q ` m : (τ ref)` and Γ ;Q ` e : τ . By

Lemma 5.3.1,Γ ;Q ` v : τ . Therefore,Γ `M [m 7→ v@t].

• Case (S2). By induction.

• Case (S3).s isskip; s′. SinceΓ ;P ;Q ; pc ` skip; s′ : τ , we haveΓ ;P ;Q ; pc `

skip : stmt` andΓ ;P ;Q ; pc t ` ` s′ : τ , which implies thatΓ ;P ;Q ; pc ` s′ :

τ .

103

• Case (S4). By the same argument as case (S3).

• Case (S5).s is if e then s1 else s2. By the typing rule (IF),Γ ;P ;Q ; pc t `e `

s1 : τ , which impliesΓ ;P ;Q ; pc ` s1 : τ .

• Case (S6). By the same argument as case (S5).

• Case (S7). Supposec[v] has typereactor{pc′,Q′, π . τz, τ1}. By Lemma 5.3.1,

Γ ;Q ` v1 : τ1. By (M-EXEC), Γ ;P ` [exec 〈c[v], η〉 :: pc, v1,Q, t], which

impliesΓ ;P ` Ω′.

• Case (S8). Sincec[v] is well-typed, thechmod message sent in this step is also

well-typed.

• Case (S9). By Lemma 5.3.1,v1 is of the correct type, and thesetvar message is

well-typed.

Theorem 5.3.1 (Subject reduction).SupposeΓ ;P ` 〈Θ, M, E〉 7−→ 〈Θ′, M′, E ′〉

andΓ ;P ` 〈Θ, M, E〉. ThenΓ ;P ` 〈Θ′, M′, E ′〉.

Proof. By induction on the derivation of〈Θ, M, E〉 7−→ 〈Θ′, M′, E ′〉.

• Case (G1). The evaluation step is derived from〈s, M, Ω, t〉 7−→ 〈s′, M ′, Ω′, t′〉

on hosth, andM′ = M[h 7→t M
′]. SinceM ′ andM are well-typed,M′ is also

well-typed. IfΩ′ = Ω, thenE ′ = E is well-typed. Otherwise,Ω′ = Ω ∪ {µ}, and

E ′ = E [messages(h) 7→+ µ]. Sinceµ is well-typed,E ′ is well-typed.

• Case (M1). In this case, we only need to prove that the newly created thread is

well-typed. SinceΓ ` v1 : τ1. By Γ ` v1 : τ1[v/x], we haveΓ′ ` A′. By

Lemma 5.3.2,Γ′ ` s[A′] : τ ′.

• Case (M2). In this case, only the access control label of a closure is changed,

which does not affect the well-typedness of the closure.

104

• Case (M3). In this case, we need to prove thatA[zi 7→ v] is well-typed. By the

run-time type checking in rule (M3), we haveΓ ` v : τi[v/x]. Furthermore,A is

well-typed. Thus,A[zi 7→ v] is well-typed.

• Case (A1). By the premiseΓ ` v : Γ(m) in rule (A1).

• Case (A2). By the premiseΓ ` µ.

• Case (A3). The statementabort is considered well-typed.

5.3.4 Preventing races

In DSR, a race is used to refer to the scenario that two threads with different closure

identifiers are running at the same timestamp or sending messages with the same mes-

sage head. A race makes it possible for attackers to choose to side with one of the two

racing threads, and affect execution that the security policies do not allow them to af-

fect. Furthermore, message races increase the complexity of maintaining consistency

between reactor replicas. Therefore, it is desirable to prevent races in DSR programs.

According to the evaluation rule (S7) of DSR, a thread is terminated after sending

out anexec message. As a result, if the execution of a distributed program starts from

a single program point, then threads generated from normal execution can be serialized,

and so can the memory accesses by those threads.

We now discuss how to prevent the races between messages. Races betweenchmod

messages are harmless becausechmod messages with different labels are processed sep-

arately, and the type system of DSR ensures that no two differentchmod requests would

be issued by the same thread at the same program counter label. As for preventing races

between other messages, our approach is to enforce the following linearity constraints:

• A closure can be invoked by at most one reactor instance.

105

• A remote variable can be initialized by at most one reactor instance.

These constraints can be enforced by a static program analysis, which tracks the uses

of communication terms, including reactor names, closure identifiers, context iden-

tifiers and remote variables. Given a statements and the typing assignmentΓ for

that statement, letRV (s,Γ) represent the multi-set of communication terms appear-

ing in theexec andsetvar statements ins. Note thatRV (s,Γ) is a multi-set so that

multiple occurrences of the same value can be counted. Given a reactor declaration

r = c[x :σ]{pc, Q, π . z :τ , λy :τ .s}, let RV (r,Γ) denote the multi-set of communica-

tion terms appearing inr with respect toΓ. Then we have

RV (r,Γ) = RV (s, Γ, x :σ, y :τ1, z :τ2)

Given a programP such thatΓ ` P , we can ensure that there are no races between

messages by enforcing the following three conditions:

• RV1. For anyr in P , RV (r,Γ) is a set.

• RV2. If 〈c[v], v〉.z ∈ RV (r,Γ), thenv is eithercid or nid, and for any otherr′

in P , 〈c[v], cid〉.z 6∈ RV (r′,Γ). Furthermore, ifv is cid, thenc has no reactor

parameters, andv contains no variables.

• RV3. If 〈c[v], v〉 ∈ RV (r,Γ), thenv is a variable. Furthermore, ifr may be

invoked byc directly or indirectly, thenv is nid.

The first condition ensures that a reactor can perform at most one operation on a com-

munication term. The second condition ensures that only one reactor is allowed to have

〈c[v], cid〉.z in its body. According to (RV2), if〈c[v], cid〉.z appears in reactorc′, then

c′ has no parameters. Therefore, only closure〈c′, η〉 can use〈c[v], η〉.z without receiv-

ing the variable from its invoker. By (RV1),〈c′, η〉 can either initialize the variable or

pass it on to another closure, ensuring that only one reactor may initialize〈c[v], η〉.z.

106

The third condition (RV3) ensures that no two threads created by normal execution with

different closure identifiers can invoke the same closure. Suppose two threads with dif-

ferent closure identifiers〈c1, η1〉 and〈c2, η2〉 invoke the same closure〈c, η〉. If the two

threads are created by normal execution, then〈c1, η1〉 and 〈c2, η2〉 can be serialized.

Without loss of generality, suppose〈c1, η1〉 is invoked first. Since the thread of〈c1, η1〉

invokes〈c, η〉, the thread of〈c, η〉 invokes〈c2, η2〉 directly or indirectly. By (RV3),η

is the value ofnid for the thread of〈c2, η2〉. This contradicts the assumption that the

thread of〈c1, η1〉 invokes〈c, n〉, sinceη is unique for the thread of〈c2, η2〉.

We say that a programP is race-freeif P satisfies (RV1)–(RV3), and use the notation

Γ
 P to denote thatP is well-typed and race-free.

5.4 Noninterference

This section formalizes the properties of confidentiality and integrity noninterference for

the execution model of DSR, and proves that a well-typed and race-free DSR program

satisfies the noninterference properties.

Unlike a trusted single-machine platform, a distributed system may be under active

attacks launched from bad hosts. Possible active attacks are formalized by the evalua-

tion rules (A1)–(A3), as discussed in Section 5.2. Since we ignore timing channels, the

availability attack in rule (A3) does not produce any observable effects, and is irrele-

vant to confidentiality or integrity noninterference. The attacks in rules (A1) and (A2)

only produce low-integrity effects. Thus, those attacks do not affect the integrity non-

interference property. For confidentiality, the attacks may be relevant because they may

affect low-integrity low-confidentiality data, and generate different low-confidentiality

outputs. However, such attacks can be viewed as providing different low-confidentiality

inputs. Therefore, we assume that attackers would not affect low-confidentiality data

when considering the confidentiality noninterference, which ensures that a program pro-

107

(VE1) v ≈ v (VE2) none ≈ v (VE3)
t1 = t2 ⇒ v1 ≈ v2

v1@t1 ≈ v2@t2

(MSE1)
P (c[v]) = c{pc′, Q, π . z :τ, λx :τ1.s} ∀i. ζ(τ1i) ⇒ v1i ≈ v2i

[exec 〈c[v], η〉 :: pc, v1,Q, t] ≈ζ [exec 〈c[v], η〉 :: pc, v2,Q, t]

(MSE2)
ζ(pc) ⇒ `1 = `2

[chmod 〈c[v], η〉 :: pc, `1,Q, t] ≈ζ [chmod 〈c[v], η〉 :: pc, `2,Q, t]

(MSE3)
ζ(c[v].z) ⇒ v1 ≈ v2

[setvar 〈c[v], η〉.z :: v1, t] ≈ζ [setvar 〈c[v], η〉.z :: v2, t]

(ME)

∀h1, h2,m, t. ζ(m,h1) ∧ ζ(m,h2) ∧ t ≤ min(T1(h1, t), T2(h2, t)) ⇒M1[h1,m, t] = M2[h2,m, t]

∀h1, h2,m. ζ(m,h1) ∧ ζ(m,h2) ⇒M1[h1,m, t0] ≈M2[h2,m, t0]

Γ ` 〈M1, T1〉 ≈ζ 〈M2, T2〉

(CE)
varmap (P, c[v]) ` A1 ≈ζ A2 ζ(c[v]) ⇒ t1 = t2

P ` 〈c[v], η, `1,A1, t1, ∗〉 ≈ζ 〈c[v], η, `2,A2, t2, ∗〉

(EE)

∀h1, h2. ∀t ≤ min(T1(h1, t), T2(h2, t)).

((∃j ∈ {1, 2}. 〈hj , h
′
j , µj〉 ∈ Ej .messages(hj , ∗, [∗ :: ∗, t]) ∧ ∀i ∈ {1, 2}. ζ(µj , hi)) ⇒

(∀i ∈ {1, 2}. Ei.messages(hi, ∗, [∗ :: ∗, t]) = 〈hi, h
′
i, µi〉) ∧ µ1 ≈ζ µ2

∀h1, h2. ∀〈c[v], η〉. ζ(c[v], h1) ∧ ζ(c[v], h2) ⇒ P ` E1.closure(h1, c[v], η) ≈ζ E2.closure(h2, c[v], η)

P ` 〈E1, T1〉 ≈ζ 〈E2, T2〉

(TE)
t1 ≈ t2

〈s1, t1, h1, c[v], η〉 ≈ζ 〈s2, t2, h2, c[v], η〉

(TPE)

∀t′ ≤ t. ∀h1, h2. (∀i ∈ {1, 2}. ζ(t′, hi) ∧Θi(hi, t
′) = θi) ⇒ θ1 ≈ζ θ2

(∀t′ < t. (∃h. ∃j ∈ {1, 2}. Θj(h, t
′) = θ ∧ ζ(t′, h)) ⇒ ∀i ∈ {1, 2}. stableζ(Θi, Q, t′)
t ` Θ1 ≈ζ Θ2

(SE)

∀i ∈ {1, 2}. Ti = timestamps(Θi, Ei, ζ) Γ ` 〈M1, T1〉 ≈ζ 〈M2, T2〉 Γ ` 〈E1, T1〉 ≈ζ 〈E2, T2〉
min(max(T1, ζ), max(T2, ζ)) ` Θ1 ≈ζ Θ2

Γ ` 〈Θ1, M1, E1〉 ≈ζ 〈Θ2, M2, E2〉

[Auxiliary definitions]

∃H. (∀hi ∈ H. ζ(t, h) ⇒ Θ(hi, t) = 〈si, ti, hi, c[v], η〉 ∧ Γ ;Q ; pci ` si : τ ∧ ¬ζ(pci) ∧ ∃W ∈ Q. W ⊆ H)

stableζ(Θ, Q, t)

Figure 5.5:ζ-Equivalence relation

duces the same low-confidentiality outputs only if the program receives the same inputs.

108

5.4.1 ζ-Consistency

As discussed in Section 3.5.2, both confidentiality and integrity noninterference proper-

ties can be viewed as the preservation of aconsistencyrelation between the program

states that satisfies aζ condition, which intuitively represents low-confidentiality or

high-integrity. In DSR, two system configurations areζ-consistentif their ζ parts are

consistent, meaning that it cannot be determined that the two configurations belong to

different executions by examining theirζ parts.

For confidentiality, theζ condition is defined as follows:

ζ(x) =

 C(x) ≤ lA if x is a label

C(label(x)) ≤ lA otherwise

wherelabel(x) denotes the label ofx, which is a program term such as typeτ , reference

m, hosth, timestampt and messageµ. The definition oflabel(x) is shown below:

• label(h) is the label specified on hosth.

• label(τ) is `, if τ = β` or τ = β`@Q.

• label(µ) is pc if µ is anexec or chmod message andpc is the program counter

label ofµ, and label(µ) is ` if µ is a setvar message and̀ is the label of the

remote variable targeted byµ.

• label(t) is the lastpc component of the global part oft.

• label(c[v]) is the program counter label ofc[v].

Whether a termx satisfies theζ condition may depend on the host wherex resides.

For instance, any term on a low-integrity host is also low-integrity. In general, whether

termx on hosth satisfiesζ can be determined byζ(label(x)ulabel(h)), which is written

asζ(x, h).

109

For integrity, theζ condition represents the notion of high-integrity and is defined as

below:

ζ(x) =

 I(x) 6≤ lA if x is a label

I(label(x)) 6≤ lA otherwise

The key issue in formalizing the noninterference properties is to defineζ-consistency

between system configurations, which depends on theζ-consistency relations between

thread pools, memories, and environments. Figure 5.5 shows the definitions of those

ζ-consistency relations in the form of inference rules.

Rules (VE1)–(VE3) define a consistency relation (≈) between values. Intuitively,

v1 ≈ v2 means they may be used in the same way and in the same execution. More

concretely,v1 andv2 may be assigned to the replicas of a memory reference, and they

may appear as the same component in the replicas of a message. Rule (VE1) is standard.

Rule (VE2) says thatnone is consistent with any valuev becausenone represents an

unavailable value that cannot be used in any computation to generate observable effects.

Rule (VE3) says that two versionedv1@t1 andv2@t2 are consistent ift1 = t2 implies

v1 ≈ v2. Two versioned values with different timestamps are considered consistent,

because they may be used in the same way and in the same execution.

Rules (MSE1)–(MSE3) define theζ-consistency between messages. Rule (MSE1)

says that two messages[exec 〈c[v], η〉 :: pc, v1,Q, t] and[exec 〈c[v], η〉 :: pc, v2,Q, t]

areζ-consistent if any two corresponding argumentsv1i andv2i are consistent on con-

dition that ζ(τ1i) holds. Intuitively,¬ζ(τ1i) means that values with typeτ1i can be

distinguishable. Rules (MSE2) and (MSE2) are interpreted similarly.

Rule (ME) defines memoryζ-consistency. Intuitively, two global memoriesM1

andM2 are consideredζ-consistent with respect to the typing assignmentΓ, if for

any hostsh1 andh2, any referencem, and any timet, ζ(m,h1) and ζ(m,h2) imply

M1[h1,m, t] ≈ M[h2,m, t]. However, with knowledge of thread timestamps,M1

andM2 may be distinguishable ifM1[h1,m, t] = n andM2[h2,m, t] = none, because

110

M2[h2,m, t] = none can be determined by reading the most recent version ofm by t on

hosth2. If there exists a thread onh2 with a timestampt′ such thatt′ ≈ t (the global parts

of t andt′ are equal) andt ≤ t′, thenM1 andM2 must belong to different executions.

Therefore, theζ-consistency ofM1 andM2 should be considered with respect to the

timing information, which is captured by a timing mapT that maps a hosth to the set of

timestamps of the threads onh. LetT (h, t) be the timestampt′ in T [h] such thatt ≈ t′.

ThenM1[h1,m, t] andM2[h2,m, t] need to beequal if t ≤ min(T1(h1, t), T2(h2, t)),

which means the two threads on hostsh1 andh2 have reached timet. Therefore, ifm

is updated at timet in one thread, thenm should also be updated att in another thread.

Otherwise, the two threads, along withM1 andM2 belong to different executions. Rule

(ME) also requires thatM1 andM2 haveζ-consistent states at the initial timet0 = 〈〉.

The second premise of rule (ME) saysM1[h1,m, t0] andM2[h2,m, t0] are equivalent

if ζ(m,hi) holds fori ∈ {1, 2}.

Rule (CE) defines the equivalence relationship between reactor closures. Two clo-

sures are equivalent if they have the same closure identifier〈c[v], η〉 andζ-consistent

variable records. In this rule, the notationvarmap(P, c[v]) represents the local typing

assignmentΓ′ of c[v] with respect toP , mapping local variables ofc[v] to types. The no-

tationΓ′ ` A1 ≈ζ A2 means that for anyz in dom(Γ′), ζ(Γ′(z)) impliesA1(z) ≈ A2(z).

Rule (EE) defines the equivalence relationship between environments. Intuitively,

two environments are equivalent if the corresponding (with the same timestamp) mes-

sages in the two environments areζ-consistent, and the corresponding (with the same

reference) closures areζ-consistent. Like in rule (ME), we need to take into account the

case that there exists a message at timet in one environment, but there does not exist

such a message in the other environment. Similarly,ζ-consistency between two envi-

ronmentsE1 andE2 is considered with respect to the corresponding timing mapsT1 and

T2. Formally, given two hostsh1 andh2, and some timestampt that is less than or equal

111

to Ti(h1, t), if there exists a messageµj in Ej such thatµj has the timestampt and the

program counter labelpcµj
such thatζ(pcµj ,hi

) holds fori ∈ {1, 2}, then in bothE1 and

E2, exactly one message (µ1 andµ2, respectively) is sent at timet, andµ1 ≈ζ µ2. Fur-

thermore, for any hostsh1 andh2 and any closure reference〈c[v], η〉, if ζ(c[v], h1) and

ζ(c[v], h2), then the closures identified by〈c[v], η〉 on hostsh1 andh2 areζ-consistent.

Rule (TE) defines the equivalence between threads. Two threads are equivalent if

they correspond to the same reactor instance, and their base timestamps are the same.

Rule (TPE) definesζ-consistency between thread pools. Two thread poolsΘ1 and

Θ2 are equivalent with respect to their corresponding timing statesT1 andT2, written

〈Θ1, T1〉 ≈ζ 〈Θ2, T2〉, if two conditions hold. First, any two hostsh1 andh2, and any

timestampt′ satisfyingt′ ≤ t wheret is the smaller of the largest timestamps satisfying

ζ(t) in T1 andT2, if ζ(t′, hi) and there exists a threadθi on hi and with timestampti

such thatti ≈ t′ in Θi, thenθ1 ≈ζ θ2. Second, for any timestampt′ less thant, if there

exists a thread att′ in eitherΘ1 or Θ2, then the threads at timet′ arestablewith respect

to the quorum systemQ and the conditionζ in bothΘ1 andΘ2. Intuitively, these two

conditions ensure that bothΘ1 andΘ2 have reachedt, and the corresponding threads

beforet are equivalent.

Rule (SE) defines the equivalence relationship between system configurations. Two

configurations are considered equivalent if their corresponding components are equiv-

alent with respect to their timing states, which are computed bytimestamps(Θ, E , ζ).

SupposeT = timestamps(Θ, E , ζ). ThenT [h, t] = t′ means that one of the follow-

ing cases occurs. First, there exists a thread onh with timestampt′ such thatt′ ≈ t,

and for any thread onh with timestampt′′, t′′ ≈ t implies t′′ ≤ t′. Second, there

exists a closure onh with timestampt′ and access control label` such thatζ(`) and

t′ ≈ t, and there is no thread onh with timestampt′′ such thatt′′ ≈ t. The notation

current-time(T , ζ) is the most recent timestampt such thatT [h, t] = t andζ(t, h). Intu-

112

itively, min(max(T1, ζ), max(T2, ζ)) is the current timestamp of the lagging one of the

two configuration.

5.4.2 The DSR* language

To facilitate proving the noninterference results of DSR, we introduce a bracket con-

struct that syntactically captures the differences between executions of the same pro-

gram on different inputs. The extended language is called DSR*. Except for proving

noninterference, the DSR* language also helps reasoning about concurrent execution of

threads on different hosts.

Intuitively, each machine configuration in DSR* encodes multiple DSR local config-

urations that capture the states of concurrent threads on different hosts. The operational

semantics of DSR* is consistent with that of DSR in the sense that the evaluation of a

DSR* configuration is equivalent to the evaluation of DSR configurations encoded by

the DSR* configuration. The type system of DSR* can be instantiated to ensure that a

well-typed DSR* configuration satisfies certain invariants. Then the subject reduction

result of DSR* implies that the invariant is preserved during evaluation. In particular,

the invariant may represent theζ-consistency relation corresponding to a noninterfer-

ence result. For example, a DSR* configuration may encode two DSR configurations,

and the invariant may be that the low-confidentiality parts of the two configurations are

equivalent. Then the subject reduction result of DSR* implies the preservation of the

ζ-consistency between two DSR local configurations. The proof technique is similar to

the one used to prove the noninterference result of Aimp in Section 3.5.2.

113

Syntax extensions

The syntax extensions of DSR* are bracket constructs, which are composed of a set of

DSR terms and used to capture the differences between DSR configurations.

Values v ::= . . . | (v1, . . . , vn)

Statements s ::= . . . | (s1, . . . , sn)

Bracket constructs cannot be nested, so the subterms of a bracket construct must be DSR

terms. Given a DSR* statements, let bsci represent the DSR statements thats encodes.

The projection functions satisfyb(s1, . . . , sn)ci = si and are homomorphisms on other

statement and expression forms. A DSR* memory M incorporates multiple DSR local

memory snapshots.

Since a DSR* term effectively encodes multiple DSR terms, the evaluation of a

DSR* term can be projected into multiple DSR evaluations. An evaluation step of a

bracket statement(s1, . . . , sn) is an evaluation step of anysi, andsi can only access

the corresponding projection of the memory. Thus, the configuration of DSR* has an

indexi ∈ {•, 1, . . . , n} that indicates whether the term to be evaluated is a subterm of a

bracket term, and if so, which branch of a bracket the term belongs to. For example, the

configuration〈s, M, Ω, t〉1 means thats belongs to the first branch of a bracket, ands

can only access the first projection of M. We write “〈s, M, Ω, t〉” for “ 〈s, M, Ω, t〉•”.

The operational semantics of DSR* is shown in Figure 5.6. Since DSR* is used to

analyze the local evaluation steps of DSR, only the evaluation rules for statements are

presented. An evaluation step of a DSR* statement is denoted by〈s, M, Ω, t〉i 7−→

〈s′, M′, Ω′, t′〉i. Most evaluation rules are straightforwardly adapted from the seman-

tics of DSR by indexing each configuration withi. The main change is that memory

accesses and timestamp increments are to be performed on the memory and times-

tamp projection corresponding to indexi. In rule (S1), the updated memory M′ is

M[m 7→i v@btci], wherebtci is the ith projection oft. Suppose M[m] = v′. Then

114

M′[m] = (bv′c1, . . . , v@btci, . . . , bv′cn). In DSR*, the local part of a timestampt may

have the formn, or n, (n1, . . . , nk), which indicates that the execution deviates after

local timen. Supposet = n, (n1, . . . , nk). Then we have

btci = n, ni

t /i 1 = n, (n1, . . . , ni / 1, . . . , nk)

t .i 1 = n, (n1, . . . , ni . 1, . . . , nk)

t . 1 = n + 1

wheren / 1 = n, 1, andn . 1 = n1, . . . , nk−1 + 1, andn+ 1 = n1, . . . , nk + 1. If t = n,

thent /i 1 = n, (ε, . . . , 1, . . . , ε).

There are also new evaluation rules (S11–S14) for manipulating bracket constructs.

The following adequacy and soundness lemmas state that the operational semantics of

DSR* is adequate to encode the execution of multiple DSR terms.

Lemma 5.4.1 (Projection i). Suppose〈e, M〉 ⇓ v. Then〈beci, bMci〉 ⇓ bvci holds for

i ∈ {1, . . . , n}.

Proof. By induction on the structure ofe.

• e is v. Thenbeci = bvci.

• e is !m. Thenbeci =!m, and 〈!m, bMci〉 ⇓ bMci(m), andv = bM(m)ci =

bMci(m).

• e is !(m1, . . . ,mn). By (E4),v = (v1, . . . , vn), wherevi = bM(mi)ci. Moreover,

〈!mi, bMci〉 ⇓ vi.

• e is e1 + e2. By induction,〈bejci, bMci〉 ⇓ bvjci for j ∈ {1, 2}. Thus,〈be1 +

e2ci, bMci〉 ⇓ bv1] v2ci.

Lemma 5.4.2 (Projection ii). Supposes is a DSR statement, andbMci = Mi and

bΩci = Ωi andbtci = ti. Then fori ∈ {1, . . . , n}, 〈s, M, Ω, t〉i 7−→ 〈s′, M′, Ω′, t′〉i

115

(E1)
bM(m)ci = v

〈!m, M〉i ⇓ v
(E2)

〈e1, M〉i ⇓ v1 〈e2, M〉i ⇓ v2 v = v1 ⊕ v2

〈e1 + e2, M〉i ⇓ v
(E3) 〈v, M〉i ⇓ bvci

(E4)
bM(mi)ci = vi

〈!(m1, . . . ,mn), M〉 ⇓ (v1, . . . , vn)

(S1)
〈e, M〉i ⇓ v

〈m := e, M, Ω, t〉i 7−→ 〈skip, M[m 7→i v@btci], Ω, t+i 1〉i
(S2)

〈s1, M, Ω, t〉i 7−→ 〈s′1, M′, Ω′, t′〉i
〈s1; s2, M, Ω, t〉i 7−→ 〈s′1; s2, M′, Ω′, t′〉i

(S3) 〈skip; s, M, Ω, t〉i 7−→ 〈s, M, Ω, t〉i (S4) 〈fi; s, M, Ω, t〉i 7−→ 〈s, M, Ω, t .i 1〉i

(S5)
〈e, M〉i ⇓ n n > 0

〈if e then s1 else s2, M, Ω, t〉i 7−→ 〈s1; fi, M, Ω, t /i 1〉i

(S6)
〈e, M〉i ⇓ n n ≤ 0

〈if e then s1 else s2, M, Ω, t〉i 7−→ 〈s2; fi, M, Ω, t /i 1〉i

(S7)
〈e, M〉i ⇓ v1

〈exec(c[v], η, pc, Q, e), M, Ω, t〉i 7−→ 〈halt, M, Ω ∪ [exec 〈c[v], η〉 :: t, pc,Q, v1]i, t+i 1〉i

(S8) 〈chmod(c[v], n, pc, Q, `), M, Ω, t〉i 7−→ 〈skip, M, Ω ∪ [chmod 〈c[v], η〉 :: t, pc,Q, `]i, t+i 1〉i

(S9) 〈setvar(〈c[v], η〉.z, v), M, Ω, t〉i 7−→ 〈skip, M, Ω ∪ [setvar 〈c[v], η〉.z :: t, v]i, t+i 1〉i

(S10) 〈(skip, . . . , skip), M, t〉 7−→ 〈skip, M, t〉 (S11) 〈(fi, . . . , fi), M, t〉 7−→ 〈skip, M, t . 1〉

(S12)
〈e, M〉 ⇓ (v1, . . . , vn)

〈if e then s1 else s2, M, Ω, t〉 7−→ 〈(if vi then bs1ci else bs2ci | 1 ≤ i ≤ n), M, Ω, t〉

(S13)
〈si, M, Ω, t〉i 7−→ 〈s′i, M′, Ω′, t′〉i

〈(s1, . . . , si, . . . , sn), M, Ω, t〉 7−→ 〈(s1, . . . , s′i, . . . , sn), M′, Ω′, t′〉

(S14) 〈(m1, . . . ,mn) := e, M, Ω, t〉 7−→ 〈(m1 := bec1, . . . ,mn = becn), M, Ω, t〉

Figure 5.6: The operational semantics of DSR*

if and only if 〈s, Mi, Ωi, ti〉 7−→ 〈s′, M ′
i , Ω′

i, t
′
i〉 andbM′ci = M ′

i andbΩ′ci = Ω′
i and

bt′ci = t′i

Proof. By induction on the derivation of〈s, M, Ω, t〉i 7−→ 〈s′, M′, Ω′, t′〉i.

• Case (S1). In this case,s is m := e. Then M′ = M[m 7→i v@btci], where

〈e, M〉i ⇓ v. By Lemma 5.4.1,〈beci, bMci〉 ⇓ bvci. Therefore,M ′
i = M [m 7→

bvci@ti] = bM′ci. By (S1),t′ = t+i 1, which implies thatbtc′i = btci + 1 = t′i.

• Case (S2). By induction.

116

• Case (S3).Ω′ = Ω, M′ = M and t′ = t. In addition,〈skip; s, Mi, Ωi, ti〉 7−→

〈s, Mi, Ωi, ti〉.

• Case (S4). We have〈fi; s, Mi, Ωi, ti〉 7−→ 〈s, Mi, Ωi, ti . 1〉.

• Case (S5). In this case,s isif ethens1elses2, and〈e, M〉 ⇓ n. By Lemma 5.4.1,

〈ei, Mi〉 ⇓ n. By rule (S5), we have〈if e then s1 else s2, Mi, Ωi, ti〉 7−→

〈s1, M1, Ωi, ti / 1〉.

• Case (S6). By the same argument as that of case (S5).

• Case (S7). By Lemma 5.4.1,〈e, Mi〉 ⇓ bv1ci. Therefore,〈s, Mi, Ωi, ti〉 7−→

〈s, Mi, Ωi ∪ µi, ti + 1〉, andµi = b[exec 〈c[v], η〉 :: t, pc,Q, v1]ci.

• Cases (S8) and (S9). By the same argument as that of case (S7).

Lemma 5.4.3 (Expression adequacy).Suppose〈ei, Mi〉 ⇓ vi for i ∈ {1, . . . , n}, and

there exists a DSR* configuration〈e, M〉 such thatbeci = ei andbMci = Mi. Then

〈e, M〉 ⇓ v such thatbvci = vi.

Proof. By induction on the structure ofe.

Definition 5.4.1 (Local run). A local run 〈s, M, Ω, t〉 7−→∗ 〈s′, M′, Ω′, t′〉 repre-

sents a list of consecutive local evaluation steps:〈s, M, Ω, t〉 7−→ 〈s1, M1, Ω1, t1〉,

〈s1, M′
1, Ω1, t1〉 7−→ 〈s2, M2, Ω2, t2〉, . . ., 〈sn, Mn, Ωn, tn〉 7−→ 〈s′, M′, Ω′, t′〉, where

M′
i and Mi may differ because the execution of other threads or active attacks may

change the local memory snapshot.

Lemma 5.4.4 (One-step adequacy).SupposeEi = 〈si, Mi, Ωi, ti〉 7−→ 〈s′i, M ′
i , Ω′

i, t
′
i〉

for i ∈ {1, . . . , n}, and there exists a DSR* configuration〈s, M, Ω, t〉 such that for

all i, b〈s, M, Ω, t〉ci = 〈si, Mi, Ωi, ti〉. Then there existsE = 〈s, M, Ω, t〉 7−→∗

〈s′, M′, Ω′, t′〉 such that for anyi, bEci � Ei, and for somej, bEcj ≈ Ej.

117

Proof. By induction on the structure ofs.

• s is skip. Thensi is alsoskip and cannot be further evaluated. Therefore, the

lemma is correct in this case because its premise does not hold.

• s is v := e. In this case,si is bvci := beci, and〈bvci := beci, Mi, Ωi, ti〉 7−→

〈skip, Mi[mi 7→ti vi], Ωi, ti + 1〉 wheremi = bvci and 〈beci, M1〉 ⇓ vi. By

Lemma 5.4.3,〈e, M〉 ⇓ v′ andbv′ci = vi. If v ism, then〈v := e, M, Ω, t〉 7−→

〈skip, M[m 7→ v′@t], Ω, t+ 1〉. SincebMci = Mi, we havebM[m 7→ v′@t]ci =

Mi[m 7→ bv′@tci]. In addition, we havebs′ci = s′i = skip. If v is (m1, . . . ,mn),

then we have

E = 〈v := e, M, Ω, t〉

7−→ 〈(m1 := bec1, . . . ,mn := becn), M, Ω, t〉

7−→ 〈(skip, . . . ,mn := becn), M[m1 7→1 v1@t1], Ω, t+1 1〉

It is clear thatbEc1 ≈ E1 andbEci � Ei for anyi.

• s is if e then s′′1 else s′′2. Therefore,si is if beci then bs′′1ci else bs′′2ci. By

Lemma 5.4.3,〈e, M〉 ⇓ v. If v = n, then for somej in {1, 2}, we haveE =

〈s, M, Ω, t〉 7−→ 〈s′′j ; fi, M, Ω, t / 1〉 . By Lemma 5.4.1,〈beci, bMci〉 ⇓ n,

which implies〈si, Mi, Ωi, ti〉 7−→ 〈bs′′j ci; fi, Mi, Ωi, ti/1〉. If v = (n1, . . . , nk),

then we have

E = 〈s, M, Ω, t〉 7−→ 〈(if ni then bs1ci else bs2ci | 1 ≤ i ≤ n), M, Ω, t〉

7−→ 〈(s′′j ; fi, . . . , if nk then bs1ck else bs2ck), M, Ω, t /i 1〉.

By Lemma 5.4.1,〈beci, Mi〉 ⇓ ni. Therefore,bEc1 ≈ E1, andbEci � Ei.

• s is s′′1; s
′′
2. In this case,si = bs′′1ci; bs′′2ci. There are four cases:

– bs′′1ci is notskip or fi for anyi. Then the lemma holds by induction.

– s′′1 is skip or (skip, . . . , skip). Then 〈s, M, Ω, t〉 7−→∗ 〈s′′2, M, Ω, t〉.

Correspondingly,〈si, Mi, Ωi, ti〉 7−→ 〈bs′′2ci, Mi, Ωi, ti〉.

118

– s′′1 is fi or (fi, . . . , fi). Then〈s, M, Ω, t〉 7−→ 〈s′′2, M, Ω, t . 1〉. In addi-

tion, 〈si, Mi, Ωi, ti〉 7−→ 〈bs′′2ci, Mi, Ωi, ti . 1〉, andbt . 1ci = btci . 1 =

ti . 1.

– s′′1 is (s11, . . . , s1n), and there exists somes1j that is neitherskip nor fi.

Then we have〈s1j, M, Ω, t〉j 7−→ 〈s′1j, M′, Ω′, t′〉j, and〈s, M, Ω, t〉 7−→

〈(s11, . . . , s
′
1j, . . . , s1n); s

′′
2, M′, Ω′, t′〉. By Lemma 5.4.2,〈s1j, Mj, Ωj, tj〉

7−→ 〈s′1j, M ′
j, Ω′

j, t
′
j〉, andbM′cj = M ′

j andbΩ′cj = Ω′
j andbt′cj = t′j.

It is clear that for anyi such thati 6= j, bM′ci = Mi andbΩ′ci = Ωi and

bt′ci = ti.

• s is exec(c[v], η, pc, Q, e). Then〈s, M, Ω, t〉 7−→ 〈skip, M, Ω ∪ {µ}, t + 1〉

while µ = [exec 〈c[v], η〉 :: t, pc,Q, v1] and 〈e, M〉 ⇓ v1. By Lemma 5.4.3,

〈beci, Mi〉 ⇓ bv1ci. Therefore,〈si, Mi, Ωi, ti〉 7−→ 〈skip, Mi, Ωi∪{µi}, ti+1〉,

andµi = bµci.

• s is chmod(c[v], η, pc, Q, `) or setvar(〈c[v], η〉.z, v). By the same argument as

in the previous case.

• s is (s1, . . . , sn). By Lemma 5.4.2, we have〈s, M, Ω, t〉 7−→ 〈s′, M′, Ω′, t′〉

such thatb〈s′, M′, Ω′, t′〉c1 = 〈s′1, M ′
1, Ω′

1, t
′
1〉. By (S13),b〈s′, M′, Ω′, t′〉ci =

〈si, Mi, Ωi, ti〉 for anyi such thati 6= 1.

Lemma 5.4.5 (Adequacy).SupposeEi = 〈si, Mi, Ωi, ti〉 7−→∗ 〈s′i, M ′
i , Ω′

i, t
′
i〉 for

all i in {1, . . . , n}, and there exists a DSR* configuration〈s, M, Ω, t〉 such that for

all i, b〈s, M, Ω, t〉ci = 〈si, Mi, Ωi, ti〉. Then there existsE = 〈s, M, Ω, t〉 7−→∗

〈s′, M′, Ω′, t′〉 such that for anyi, bEci � Ei, and for somej, bEcj ≈ Ej.

Proof. By induction on the total length ofE1 throughEn. The base case is trivial.

The lemma holds immediately if〈sj, Mj, Ωj, tj〉 = 〈s′j, M ′
j, Ω′

j, t
′
j〉 holds for some

119

j. Suppose for alli, 〈si, Mi, Ωi, ti〉 7−→ 〈s′′i , M ′′
i , Ω′′

i , t
′′
i 〉 7−→∗ 〈s′i, M ′, Ω′

i, t
′
i〉. By

Lemma 5.4.4, there existsE ′ = 〈s, M, Ω, t〉 7−→∗ 〈s′′, M′′, Ω′′, t′′〉 such thatbEci �

〈si, Mi, Ωi, ti〉 7−→ 〈s′′i , M ′′
i , Ω′′

i , t
′′
i 〉, and for somej, bEcj ≈ 〈sj, Mj, Ωj, tj〉 7−→

〈s′′j , M ′′
j , Ω′′

j , t
′′
j 〉. Let E ′′

i = Ei − bE ′ci. By induction, there exists a runE ′′ =

〈s′′, M′′, Ω′′, t′′〉 7−→∗ 〈s′, M′, Ω′, t′〉 such thatbE ′′ci � E ′′
i and for somej′, bE ′′cj′ ≈

E ′′
j′. ThenE = E ′, E ′′ is a run satisfying the lemma.

Typing rules

(BV1)
Γ ` vi : τ ¬ζ(τ) or ∀i. vi = v ∨ vi = none

Γ ` (v1, . . . , vn) : τ

(BV2)
Γ ` vi : τ τ = σ@Q K(v1, . . . , vn)

Γ ` (v1, . . . , vn) : τ

(BS)
bΓci ;P ;Q ;bpc′ci ` si : bτci ¬ζ(pc′)

Γ ;P ;Q ; pc ` (s1, . . . , sn) : τ

(M-EXEC)

Γ ;P ` c[v] : reactor{pc′, π . z :τ1, τ2}
` v1 : τ1 i ∈ {1, . . . , n} ⇒ ¬ζ(pc)

Γ ;P ` [exec 〈c[v], η〉 :: pc, v1,Q, t]i

(M-CHMD)

Γ ;P ` c[v] : reactor{pc′, π . z :τ1, τ2}
` ` : label`′ ¬ζ(`′)

i ∈ {1, . . . , n} ⇒ ¬ζ(pc)

Γ ;P ` [chmod 〈c[v], η〉 :: pc, `,Q, t]i

(M-SETV)
` c[v].η1 : τ var ` v1 : τ i ∈ {1, . . . , n} ⇒ ¬ζ(pc)

Γ ;P ` [setvar 〈c[v], η〉.z :: v1, t]i

Figure 5.7: Typing rules of DSR*

The type system of DSR* is similar to that of Aimp* except for additional rules for

bracket terms, which are shown in Figure 5.7.

Intuitively, bracket constructs capture the differences between DSR terms, and any

effect of a bracket construct should not satisfyζ. Let ¬ζ(x) denote thatx does not

satisfyζ. Rule (BV1) says that a bracket valuev is well-typed if its type satisfies¬ζ,

120

or all the non-none components inv are equal, which implies that the components of

v are consistent asnone is consistent with any value. Rule (BV2) is used to check

bracket values with located types that may satisfyζ. The key insight is that versioned

values with different timestamps may be consistent. Rule (BV2) relies on an abstract

functionK(v1, . . . , vn) to determine whether a bracket of versioned values can have a

type satisfyingζ. In other words, the type system of DSR* is parameterized withK.

Rule (BS) says that a bracket statement(s1, . . . , sn) is well-typed if everysi is well-

typed with respect to a program counter label not satisfyingζ.

Rules (M-EXEC), (M-CHMD) and (M-SETV) introduce an additional premise:i ∈

{1, . . . , n} ⇒ ¬ζ(pc), which says that if a message carries an indexi ∈ {1, . . . , n},

thenζ(pc) is not satisfied because the message must have been sent by a statement in a

bracket.

In DSR*, a memory M is well-typed with respect to the typing assignmentΓ, written

Γ ` M, if Γ ` M(m) : Γ(m) holds for anym in dom(M). If M [m] = (v1@t1, . . . , vn@tn)

andΓ(m) = σ, then M(m) = (v1, . . . , vn). The message setΩ is well-typed with re-

spect toΓ andP , writtenΓ ;P ` Ω, if any messageµ in Ω is well-typed with respect to

Γ andP .

An important constraint thatζ needs to satisfy is that¬ζ(`) implies¬ζ(` t `′) for

any `′. The purpose of this constraint is best illustrated by an example. In DSR*, if

expressione is evaluated to a bracket value(v1, . . . , vn), statementif e then s1 else s2

would be reduced to a bracket statement(s′1, . . . , s
′
n), wheres′i is eitherbs1ci or bs2ci.

To show(s′1, . . . , s
′
n) is well-typed, we need to show that eachs′i is well-typed under

a program-counter label that satisfying¬ζ, and we can show it by using the constraint

on ζ. Supposee has typeint`, then we know thats′i is well-typed under the program

counter labelpct `. Furthermore,¬ζ(`) holds because the result ofe is a bracket value.

Thus, by the constraint that¬ζ(`) implies¬ζ(` t `′), we have¬ζ(pc t `).

121

Subject reduction

This section proves the subject reduction theorem of DSR*.

Lemma 5.4.6 (Expression subject reduction).SupposeΓ ;P ;Q ` e : τ , andΓ ` M,

and〈e, M〉i ⇓ v. ThenΓ ;P ;Q ` v : τ .

Proof. By induction on the derivation of〈e, M〉i ⇓ v.

• Cases (E1). SinceΓ ` M, we haveΓ ` M(m) : τ . According to rules (BV1) and

(BV2), Γ ` bM(m)ci : τ .

• Case (E2). By induction,Γ ;P ` vi : τ for i ∈ {1, 2}, andτ is not a located

type. If v1 or v2 is a bracket value, thenτ satisfiesRV () by rule (BV1), and thus

we haveΓ ;P ` v : τ even thoughv is a bracket value. If neitherv1 nor v2 is a

bracket value, thenv is not a bracket value either, which impliesΓ ;P ` v : τ .

• Case (E3). Sincee is v, we haveΓ ;P ;Q ` v : τ , which impliesΓ ;P ;Q ` bvci :

τ .

• Case (E4). By the typing rule (DEREF),τ does not satisfyζ. Therefore, we have

Γ ;P ;Q ` (v1, . . . , vn) : τ by (BV1).

Theorem 5.4.1 (Subject reduction).SupposeΓ ;P ;Q ; pc ` s : τ , andΓ ` M, and

Γ ;P ` Ω, and 〈s, M, Ω, t〉i 7−→ 〈s′, M′, Ω′, t′〉i, and i ∈ {1, . . . , n} implies that

¬ζ(pc). ThenΓ ;P ;Q ; pc ` s′ : τ , andΓ ` M′, andΓ ;P ` Ω′.

Proof. By induction on the derivation step〈s, M, Ω, t〉i 7−→ 〈s′, M ′, Ω′, t′〉i.

• Case (S1). In this case,s ism := e; τ isstmtpc; s′ isskip. We haveΓ ;P ;Q ; pc `

skip : stmtpc. By (S1), M′ is M[m 7→i v@t]. By Lemma 5.4.6, we have

Γ ` v : Γ(m). If i is •, then M′(m) is v or v@t according toΓ(m), and in

122

either case, the type of M′(m) is Γ(m). Otherwise,¬ζ(Γ(m)) holds, and thus

M′(m) has typeΓ(m) according to rule (BV1).

• Case (S2). By typing rule (SEQ),Γ ;P ;Q ; pc ` s1 : stmtpc′ andΓ ;P ;Q ; pc′ `

s2 : stmtpc′′. By induction,Γ ;P ;Q ; pc ` s′1 : stmtpc′. Therefore,Γ ;P ;Q ; pc `

s′1; s2 : stmtpc′′. By induction,Γ ` M′ andΓ ;P ` Ω′.

• Case (S3).s is skip; s′. By rule (SEQ),Γ ;P ;Q ; pc ` s′ : τ .

• Case (S5).s is if ethens1elses2. By typing rule (IF),Γ ;P ;Q ; pct`e ` s1 : τ ,

which impliesΓ ;P ;Q ; pc ` s1 : τ .

• Case (S6). By the same argument as case (S5).

• Case (S7). In this case,s is exec(c[v], η, pc, Q, e). By Lemma 5.4.6,Γ ;Q `

v1 : τ1, whereτ1 are the types of the corresponding arguments ofc[v]. Thus

Γ ` [exec 〈c[v], η〉 :: pc, v1,Q, t].

• Case (S8). By the same argument as case (S7).

• Case (S9). By Lemma 5.4.6.

• Case (S10). We haveΓ ;P ;Q ; pc ` skip : τ .

• Case (S12). In this case,s isif ethens1elses2 and〈e, M〉 ⇓ (v1, . . . , vn). By the

typing rule (IF),Γ ;Q ` e : int`. By Lemma 5.4.6,Γ ;Q ` (v1, . . . , vn) : int`.

By the typing rule (BV1), we have¬ζ(`), which implies¬ζ(pct`). Moreover, by

rule (IF),Γ ;Q ; pc t ` ` bsjci : τ for i ∈ {1, . . . , n} andj ∈ {1, 2}. Therefore,

by rule (BS),Γ ;Q ; pc ` s′ : τ .

• Case (S13). By induction,Γ ` M′ andΓ ;P ` Ω′, andΓ ;P ;Q ; pc′ ` s′i : τ .

Therefore,Γ ;P ;Q ; pc ` s′ : τ .

• Case (S14).s′ is (m1 := bec1, . . . ,mn := becn). SupposeΓ ;P ` (m1, . . . ,mn) :

(int` ref)`′. By (BV1), ¬ζ(`′), which implies¬ζ(`). As a result,Γ ;P ;Q ; ` `

s′ : τ .

123

5.4.3 Noninterference proof

Let Θ0 represent the initial thread pool that is empty, andE0 represent the initial en-

vironment that contains only invocation messages for the starting reactorc (having no

arguments) at timet0 = 〈〉.

Lemma 5.4.7 (Noninterference).SupposeΓ
 P , andEi = 〈Θ0, Mi, E0〉 7−→∗

〈Θ′
i, M′

i, E ′i〉 for i ∈ {1, 2} If Γ ;P ` 〈Θ0, M1, E0〉 ≈ζ 〈Θ0, M2, E0〉, thenΓ ;P `

〈Θ′
1, M′

1, E ′1〉 ≈ζ 〈Θ′
2, M′

2, E ′2〉.

Proof. By induction on the total length ofE1 andE2: |E1| + |E2|. The base cases

are trivial. Without loss of generality, suppose|E1| ≤ |E2| and 〈Θ, Mi, E〉 7−→∗

〈Θ′′
i , M′′

i , E ′′i 〉 7−→ 〈Θ′
i, M′

i, E ′i〉 for i ∈ {1, 2}. Let T ′
i = timestamps(Θ′

i) and

T ′′
i = timestamps(Θ′′

i). By induction,Γ ;P ` 〈Θ′′
1, M′′

1, E ′′1 〉 ≈ζ 〈Θ′
2, M′

2, E ′2〉. Then

we need to show thatΓ ;P ` 〈Θ′
1, M′

1, E ′1〉 ≈ζ 〈Θ′
2, M′

2, E ′2〉 holds for all cases of

〈Θ′′
1, M′′

1, E ′′1 〉 7−→ 〈Θ′
1, M′

1, E ′1〉:

• Case (G1). In this case, the evaluation step is derived from〈s, M ′′
1 , Ω′′

1, t
′′
1〉 7−→

〈s′, M ′
1, Ω′

1, t
′
1〉 on some hosth1. We need to show that the local state ofh1 in

configuration〈Θ′
1, M′

1, E ′1〉 is still ζ-consistent with the local state of any hosth2

in 〈Θ′
2, M′

2, E ′2〉.

By examining rules (S1)–(S9), we only need to consider two cases: (1)M ′′
1 =

M ′
1[m 7→t′′1

v], and ζ(m,hi) holds for i ∈ {1, 2}; (2) Ω′′
1 = Ω′

1 ∪ {µ}, and

ζ(µ, hi) holds for i ∈ {1, 2}. Suppose one of the two cases occurs. If there

exists no thread onh2 at t′1 in Θ′
2, then the evaluation step does not affect the

ζ-consistency between the local states ofh1 andh2. Otherwise, consider the lo-

cal run of the thread att′1 on hosthi: E ′
i = 〈si, Mi, ∅, t〉 7−→∗ 〈s′i, M ′

i , Ω′
i, t

′
i〉

124

for i ∈ {1, 2}. By rule (TPE), the two local runs correspond to the same closure

reference〈c[v], η〉. Then we can show thatsi = s[A′
i] andΓ′ ` A′

1 ≈ζ A′
2,

where Γ′ is the local typing assignment for reactorc[v]. By (M1), we have

A′
i = Ai[y 7→ vi][cid 7→ η][nid 7→ hash(t)], whereAi is the variable record in the

corresponding closure, andvi is the list of arguments in the invocation requests.

By induction,Γ′ ` A1 ≈ζ A2. If the type of anyyj satisfies theζ condition, then

the program counter labels of the corresponding invocation also satisfyζ. SinceP

satisfies (RV3), the invocation messages are sent by threads with the same closure

reference. ByΓ ;P ` 〈Θ′′
1, M′′

1, E ′′1 〉 ≈ζ 〈Θ′
2, M′

2, E ′2〉, those messages areζ-

consistent, which implies that the arguments areζ-consistent with respect to their

types. Therefore,Γ′ ` A′
1 ≈ζ A′

2.

In addition, we can showΓ `M1 ≈ζ M2, which means that for anym in dom(Γ),

ζ(Γ(m)) impliesM1(m) ≈ M2(m). In fact, if Γ(m) = σ@Q, by induction and

(ME), we haveM1(m) ≈ M2(m). If Γ(m) = σ, then it must be the case that

M1[m] = M2[m] orMj[m] = none for somej ∈ {1, 2}. Otherwise, there exists

some thread updatingm before timet such that this thread is completed in one

execution but not in the other. This contradicts (TPE).

Then we can construct a DSR* configuration〈s, M, ∅, t〉 such thatbsci = si and

s and M are well-typed with the followingK condition: K(v1@t1, . . . , vn@tn)

is true if for any i, j, vi@ti ≈ vj@tj. By Lemma 5.4.5, there existsE ′ =

〈s, M, ∅, t〉 7−→∗ 〈s′, M′, Ω′, t′〉 such thatbE ′ci = E ′
i andbE ′cj � E ′

j where

{i, j} = {1, 2}. Without loss of generality, supposebE ′c1 = E ′
1 andbE ′c2 � E ′

2.

Then there exists a configuration〈s′′2, M ′′
2 , Ω′′

2, t
′′
2〉 such thatbM′c2 = M ′′

2 and

bΩ′c2 = Ω′′
2 andbt′c2 = t′′2. By Theorem 5.4.1, M′ andΩ′ are well-typed. There-

fore,Γ ` M ′
1 ≈ζ M

′′
2 , andΩ′

1 ≈ζ Ω′′
2. Moreover, the rest ofE ′

2 modifies the con-

figuration at timestamps greater thant′1. Thus,Γ `M ′
1 ≈ζ M

′
2 andΓ ` Ω′

1 ≈ζ Ω′
2,

125

which means that the local states ofh1 andh2 are still consistent after this execu-

tion step.

• Case (M1). In this case, it is obvious thatΓ ` 〈M′
1, T ′

1 〉 ≈ζ 〈M′
2, T ′

2 〉 and

P ` 〈E ′1, T ′
1 〉 ≈ζ 〈E ′2, T ′

2 〉 by induction. Thus, the goal is to provet ` Θ′
1 ≈ζ Θ′

2,

wheret is min(max(T ′
1 , ζ), max(T ′

2 , ζ)). Suppose the newly created thread isθ =

〈s, h, t1, c[v], η〉, and the program counter label ofc[v] is pc, andt′1 = max(T ′′
1 , ζ).

If ¬ζ(pc, h), thenΓ ` 〈Θ′
1, M′

1, E ′1〉 ≈ζ 〈Θ′
2, M′

2, E ′2〉 holds immediately by

induction. So we focus on the case whereζ(pc, h) holds.

If t1 < inc(t′1, pc), then we need to prove thatθ is not the only thread at time

t1. Suppose otherwise. Byt1 < inc(t′1, pc), θ is not invoked by the threads at

t′1. Let n be the number ofζ-threads with timestamps having different global

parts inΘ′′
1. Thenn − 1 differentζ-threads need to invoken differentζ-threads.

Therefore, threads at some timetd need to invoke two threads with different time-

stamps, which means that different invocation messages satisfying theζ condition

are sent by the thread replicas attd. That contradictsΓ ;P ` 〈Θ′′
1, M′′

1, E ′′1 〉 ≈ζ

〈Θ′′
1, M′′

1, E ′′1 〉. Therefore,θ is not the only thread att1, andt ` Θ′
1 ≈ζ Θ′

2 follows

t ` Θ′′
1 ≈ζ Θ′

2. In addition,θ is ζ-consistent with other threads at timet1 because

Γ ;P ` 〈Θ′′
1, M′′

1, E ′′1 〉 ≈ζ 〈Θ′
1, M′

1, E ′1〉 holds by induction.

If t1 = inc(t′1, pc), by rule (M1), at least one quorum finishes executing the thread

at t′1. Suppose〈Θ′′
2, M′′

2, E ′′2 〉 7−→ 〈Θ′
2, M′

2, E ′2〉. Let t′2 = timestamp(Θ′′
2, E ′′2)

and t2 = timestamp(Θ′
2, E ′2). If t2 ≤ t′1, then we havet ` Θ′

1 ≈ζ Θ′
2 by t `

Θ′′
1 ≈ζ Θ′

2. Similarly, if t1 ≤ t′2, we havet ` Θ′
1 ≈ζ Θ′

2 by t ` Θ′
1 ≈ζ Θ′′

2. Now

consider the case thatt′2 < t1 andt′1 < t2. We can prove thatt′1 = t′2 andt1 = t2.

Supposet′2 < t′1. By t′1 ` Θ′′
1 ≈ζ Θ′

2, we have that any invariant thread inΘ′′
2

has its counterpart inΘ′′
1 and has a timestamp less thant′1. But that contradicts

t′1 < t2. By the same argument, we can rule out the case oft′1 < t′2. Therefore,

126

t′1 = t′2, which impliest1 = t2, and it is clear thatt1 ` Θ′
1 ≈ζ Θ′

2.

• Case (M2). By the same argument as case (M1).

• Case (M3). In this case, some variable in a closure is initialized. So our goal is to

prove that the closure is still equivalent to its counterparts inE2. SupposeE ′1 =

E ′′1 [closure(h1, c[v], η) 7→ 〈c[v], η, `,A′
1[z 7→ v], t′, on〉]. Then we need to show

that for any hosth2 in loc(c[v]) such thatζ(c[v], h2),P ` E ′1.closure(h1, c[v], η) ≈ζ

E ′2.closure(h2, c[v], η). Let A1 andA2 be the argument maps in the two clo-

sures. SinceE ′′1 andE ′2 are equivalent, we only need to prove thatζ(τ) implies

A1(z) ≈ A2(z), whereτ is the type ofz.

First, we prove that theζ-messages used to initializez have the same timestamp.

SinceP satisfies (RV1) and (RV2), the threads that first operate on〈c[v], η〉.z cor-

respond to either〈c′, η′〉, or 〈c1[v1], η1〉 with 〈c[v], nid〉.z appearing in its code.

In both cases, the timestamps of those threads are equal because〈Θ′′
1, M′′

1, E ′′1 〉 ≈ζ

〈Θ′
2, M′

2, E ′2〉, and the program counter labels of those threads areζ-labels. Sup-

pose twosetvar messages forz have different timestamps. Then it must be the

case that in the two runs, two reactor instances with the same timestamp send dif-

ferent messages containing〈c[v], η〉.z. By E ′′1 ≈ζ E ′2, at least one of the reactor

instances sends two different messages containing the remote variable. This con-

tradicts with the fact thatP satisfies (RV1). Therefore, thesetvar messages for

z have the same timestamp.

If ζ(x) isC(x) ≤ lA, then all thesetvar message satisfy theζ condition, and they

are equivalent byΓ ` 〈Θ′′
1, M′′

1, E ′′1 〉 ≈ζ 〈Θ′
2, M′

2, E ′2〉. Thus, the initial values

of 〈c[v], η〉.z are equal in both runs.

Supposeζ(x) is I(x) 6≤ lA. Consider the message synthesizerπ for z. There are

two cases:

127

– π is LT[I(`)]. The setvar messages have the form[setvar 〈c[v], η〉.z ::

v, t], andz has typeint`. SinceΓ ` 〈Θ′′
1, M′′

1, E ′′1 〉 ≈ζ 〈Θ′
2, M′

2, E ′2〉,

those high-integrity messages are equivalent. Therefore, the values resulted

from synthesizing thesetvar messages are the same in both runs. Thus,

A1(z) ≈ A2(z).

– π is QR[Q, I]. Suppose the set of high-integrity senders areh1, . . . , hn in E1

andh′1, . . . , h
′
k in E2, and the local memory snapshots for these hosts when

executing the thread att areM1, . . . ,Mn andM ′
1, . . . ,M

′
k, respectively. Let

M incorporate those local memories. By rule (TPE), we can show that M is

well-typed with respect to the followingK constraint:

∀i. vi = v ∨ vi = none

(v1, . . . , vn) ⇓ v

∃vj@tj . vj@tj = v@t ∀i. ti ≤ t

(v1@t1, . . . , vn@tn) ⇓ v

(v1, . . . , vn) ⇓ v (v′1, . . . , v
′
k) ⇓ v

K(v1, . . . , vn, v
′
1, . . . , v

′
k)

In addition, we can construct a DSR* statements such thatbsci = si

where 1 ≤ i ≤ n + k. Then we have a well-typed DSR* configura-

tion 〈s, M, ∅, t〉. By Lemma 5.4.5,〈s, M, ∅, t〉 7−→∗ 〈s′, M′, Ω′, t′〉 and

bt′ci ≤ t′i and for somej, bt′cj = t′j. By Theorem 5.4.1,Ω′ is well-

typed, and the message[setvar 〈c[v], η〉.z :: v, t] in Ω′ is also well-typed,

which means thatv = (v1, . . . , vn, v
′
1, . . . , v

′
k) is well-typed. Furthermore,

K(v1, . . . , vn, v
′
1, . . . , v

′
k) implies that thesetvar messages produced by

QR[Q, I] contain the same initial valuev. Therefore,A1(z) = A2(z).

• Case (A1). For integrity,ζ(m,h) does not hold. Therefore,Γ ` 〈M′
1, T ′

1 〉 ≈ζ

〈M′
2, T ′

2 〉 immediately followsΓ ` 〈M′′
1, T ′′

1 〉 ≈ζ 〈M′
2, T ′

2 〉. For confidentiality,

we assume attackers would refrain from changing low-confidentiality data in this

case.

• Case (A2). By the same argument as case (A1).

128

• Case (A3). In this case, some thread aborts. However, the timestamp of the thread

remains unchanged, and theζ-consistency between program states is not affected.

Theorem 5.4.2 (Integrity Noninterference).SupposeΓ
 P , and〈Θ0, Mi, E0〉 7−→∗

〈Θ′
i, M′

i, E ′i〉 for i ∈ {1, 2}. If Γ ;P ` 〈Θ0, M1, E0〉 ≈I 6≤lA 〈Θ0, M2, E0〉, thenΓ ;P `

〈Θ′
1, M′

1, E ′1〉 ≈I 6≤lA 〈Θ′
2, M′

2, E ′2〉.

Proof. Let ζ(`) beI(`) 6≤ L and apply Lemma 5.4.7.

Theorem 5.4.3 (Confidentiality Noninterference).SupposeΓ
 P , and fori ∈ {1, 2},

〈Θ0, Mi, E0〉 7−→∗ 〈Θ′
i, M′

i, E ′i〉, andΓ ;P ` 〈Θ0, M1, E0〉 ≈C≤lA 〈Θ0, M2, E0〉.

ThenΓ ;P ` 〈Θ′
1, M′

1, E ′1〉 ≈C≤lA 〈Θ′
2, M′

2, E ′2〉.

Proof. Let ζ(`) beC(`) ≤ L and apply Lemma 5.4.7.

5.5 Related work

The related work on the language features of DSR is covered in Section 4.8, and the

related work on proving a security type system enforces noninterference is covered in

Section 3.6.

Following the approach of theλDSEC [106], the DSR type system uses dependent

types to model dynamic labels. Other work [97, 96] has used dependent type systems

to specify complex program invariants and to statically catch program errors considered

run-time errors by traditional type systems.

129

Chapter 6

Security by construction
This chapter presents a program transformation that translates an Aimp program into a

DSR program to be executed in a distributed system with untrusted hosts.

As shown in the following figure, the transformation generates a DSR programP

from a typing assignmentΓ, a trust configurationH that maps hosts to their labels, and

an Aimp programS.

A/D Translator
Splitter

D, ∆Γ
H

P
S

The transformation is a two-step process. First,Γ, H andS are fed to thesplitter,

which generates adistribution schemeD and alabel assignment∆. The distribution

scheme specifies where the target code of source statements is replicated, and where

memory references are replicated. The label assignment associates labels with source

statements. The label of a statement specifies the security requirements for executing

the statement and may be used to generate dynamic labels in the target program.

Second, the Aimp/DSR translator takes in the outputs (D and∆) of the splitter and

the source programS, and generates the target DSR programP .

6.1 Splitter

GivenS, Γ andH, the splitter partitionsS into small program segments and determines

where the target code of each program segment is replicated. Intuitively, it is easier to

find a set of hosts that are trusted to run a small program segment than it is to find a set

that can run the whole program. Based on this idea, the least restrictive way to partition

130

S is to treat everynon-sequence substatement(substatement that is not a sequential

composition) ofS as a segment. For simplicity, the Aimp/DSR translation uses this

partitioning approach. We assume that each non-sequence statementS in the source

program is instrumented with a unique namec so that the corresponding segment can be

easily identified. The instrumented statement is written as{c}S. The instrumentation

does not affect the semantics of the source program.

A distribution scheme is formalized as a map from statement names to host sets and

from memory references to quorum systems. Given a distribution schemeD, D(m) =

Q requires thatm is replicated onQ; D(c) = H requires that the target code of{c}S

is replicated on setH of hosts.

In general, a distribution schemeD needs to satisfy certain security constraints. For

example, supposeD(m) = Q, andm has typeint` ref. Then every hosth in Q

must satisfyC(`) ≤ C(h) in order to protect the confidentiality ofm. Given a source

programS, there may exist many valid distribution schemes that satisfy those security

constraints. And it is up to the splitter to select one that helps generate efficient target

code. Because the main concern of this work is security rather than performance, we

do not consider the problem of selecting a scheme to increase performance. Instead,

we focus on identifying security constraints sufficient to ensure that a given distribution

scheme is able to enforce the security policies of the source.

6.1.1 Statement labels

How to replicate a statement depends on the label of the statement, which is derived

from the program counter label and the labels of data processed byS. The label̀ of a

statementS has five components:

• C: an upper bound to the confidentiality label of any data used byS,

• I: an upper bound to the integrity label of any effect caused byS,

131

(L1)
Γ ;R ` e : int`′ Γ ;R ` m : int` ref

Γ ;R ;R′ ; pc ` m := e : {C = C(`′), I = I(`), A = A(R′), Cpc = C(pc), Cend = C(pc)}

(L2) Γ ;R ;R′ ; pc ` skip : {C = ⊥, I = ⊥, A = A(R′), Cpc = C(pc), Cend = C(pc)}

(L3)

Γ ;R ` e : int` Γ ;R ;R′ ; pc t ` ` Si : `i i ∈ {1, 2}
`′ = {C = C(`), I = I(`1) t I(`2), A = A(R′), Cpc = C(pc), Cend = Cpc(`1) t Cpc(`2)}

Γ ;R ;R′ ; pc ` if e then S1 else S2 : `′

(L4)
Γ ;R ;R′ ; pc ` S1 : `1 Γ ;R ;R′ ; pc ` S2 : `2

Γ ;R ;R′ ; pc ` S1;S2 : {C = C(`1) t C(`2), I = I(`1) t I(`2), A = A(R′), Cpc = C(pc), Cend = Cpc(`2)}

(L5)
Γ ;R ;R′ ; pc ` e : int` Γ ;R ;R′ ; pc t ` ` S : `′

Γ ;R ;R′ ; pc ` while e do S : {C = C(`), I = I(`′) tA(R′), A = A(R′), Cpc = C(pc), Cend = C(pc)}

(L6)
Γ ;R ;R′ ; pc ` S : ` ` ≤ `′

Γ ;R ;R′ ; pc ` S : `

Figure 6.1: Rules for inferring statement labels

• A: an upper bound to the availability label of any output reference that may still

be unassigned afterS terminates,

• Cend, the confidentiality label of the information that can be inferred by knowing

the termination point ofS, and

• Cpc, the confidentiality component of the program counter label ofS.

The rules for inferring the label of a statement are shown in Figure 6.1. The judgment

Γ ;R ;R′ ; pc ` S : ` means thatS has a label̀ while Γ ;R ; pc ` S : stmtR′. In

general, with respect toΓ,R,R′ andpc, the confidentiality label of a statementS is the

join of the labels of data used byS; the integrity label ofS is the join of the labels of

effects caused byS; the availability label ofS isAΓ(R′), simply written asA(R′); the

Cpc label ofS is C(pc); theCend label is the join of the confidentiality components of

the program counter labels at the program points whereS may terminate.

In rule (L5), because the termination of thewhile statement depends on the integrity

of e, the integrity label ofS is I(`′) t A(R′).

132

Rule (L6) means that it is secure to assign a stronger than necessary security label

to a statement. In practice, assigning a stronger integrity label to a statement helps

generate more efficient control transfer code for that statement because of the extra

integrity allows the hosts to perform more freely. A valid label assignment∆ satisfies

Γ ;Rc ` S ′ : `′ and`′ ≤ ∆(c). for any statement{c}S ′ appearing in the source program

S.

We impose an additional constraint on∆ to help generate control transfer code.

Suppose{c1}S1 and{c2}S2 are two statements in the source programS, andS2 is a

post-dominator ofS1 in the control flow graph ofS, which means that every control path

starting fromS1 leads toS2. Let l1 = I(∆(c1)) andl2 = I(∆(c2)). In addition, suppose

for any post-dominator{c′}S ′ of S1, if S ′ dominatesS2, then l1 6≤ I(∆(c′)). Then

l1 ≤ l2 or l2 ≤ l1 is required to hold. Otherwise, it is difficult to construct the protocol for

transferring control fromS1 to S2. Supposel1 6≤ l2 andl2 6≤ l1. Intuitively, by l1 6≤ l2,

the target code ofS1 needs to run achmod statement to notify some following reactor at

integrity levell1 to expect invocation requests of integrity levell1 u l2. However, after

running thechmod statement, the integrity level of control flow is lowered tol1 u l2,

which makes it difficult to invoke the target code ofS2 becausel2 6≤ l1 u l2.

6.1.2 Secure distribution schemes

LetQ � int` ref denote that it is secure to store memory references with typeint` ref

onQ, andD ; ∆ ;S � {c}S ′ denote that it is safe to replicate the target code of{c}S ′ on

the host setD(c) with respect to the distribution schemeD, the whole source program

S, and the label assignment∆. The following rules can be used to infer these two kinds

133

of judgments:

(DM)
C(`) ≤ Cu(Q) A(`) ≤ Awrite(Q) uA(|Q|, QR[Q, I(`)])

Q � int` ref

(DS)

∆(c) = ` D(c) = H C(`) ≤ Cu(H)
{c1}S1; {c}S′ ∈ S ⇒ Cend(∆(c1)) ≤ Cu(H)

A(`) ≤ A(H, LT[`]) ∀m ∈ UM (S′). Cpc(`) ≤ Cu(D(m))
∀m ∈ UM (S′). D(m) = h ⇒ D(c) = {h}

D ;∆ ; S � {c}S′

In rule (DM), the first premiseC(`) ≤ Cu(Q) guarantees that every host inQ is

allowed to read the value ofm. The second premise ensures that the availability of both

the read and write operations onQ is as high asA(`), while enforcing the integrity label

I(`).

In rule (DS), the premiseC(`) ≤ Cu(H) says thatH is allowed to see the data

needed for executingS ′. The second premise ensures thatH is allowed to learn about the

termination point of its predecessor{c1}S1, since hosts inH can infer the information

from the invocation requests forc. In particular, ifS ′ follows a conditional statement,H

is allowed to learn which branch is taken. The premiseA(`) ≤ A(H, LT[`]) ensures that

H can produce the outputs ofS with sufficient integrity and availability. In addition,

a distribution scheme also needs to prevent illegal implicit flows arising from memory

accesses, including memory reads. LetUM (S ′) be the set of references accessed byS ′.

Then for anym in UM (S ′), on receiving an access request form, hosts inD(m) may

be able to infer that control reaches that program point of{c}S ′. Thus, the constraint

Cpc(`) ≤ Cu(D(m)) is imposed. The last premise says that ifm appears inS, andm is

not replicated, thenD assignsm andS to the same hosth so that the target code ofS

can simply accessm in the local memory.

A distribution schemeD is secure, if for anym in dom(Γ), D(m) � int` ref, and

for any{c}S ′ in S,D ; ∆ ;S � {c}S ′.

134

6.2 Aimp/DSR translator

The Aimp/DSR translator is formalized as a set of translation rules, which rely on a

generic way of accessing remote replicated memory.

6.2.1 Remote memory accesses

If a memory referencem is replicated on multiple hosts, rule (DS) does not require a

statementS that accessesm to be assigned to the hosts wherem is replicated. Conse-

quently, the target code ofS may need to access memory references on remote hosts.

To support remote memory access, hosts storing a memory reference need to provide

reactors to handle memory access requests. Using DSR, we can implement genericread

andwrite reactors to handle remote memory reads and writes:

read[lb :labellb, lm :labellb, m : (intlm@&m ref)lb,
ret :reactor{lb}lb, rid :intlb, rv : (intlmtlb@&m var)lb]

{ lb, #m, λ. setvar(rv, !m); exec(ret, rid, lb, #m, ε) }

write[lb :labellb, m : (intlb@&m ref)lb, ret :reactor{lb}lb, rid :intlb]
{ lb, &m, λ val :intlb. m := val; exec(ret, rid, lb, &m, ε) }

To achieve genericity, bothread andwrite reactors carry several reactor parame-

ters. Theread reactor has six parameters:

• lb, the program counter label of this reactor,

• lm, the label of the memory reference to be read,

• m, the memory reference to be read,

• ret andrid, specifying the closure〈ret, rid〉 for returning control to, and

• rv, the remote variable to receive the value ofm.

Theread reactor should be invoked on the hosts holding replicas of referencem, and the

reactor does not update any reference. The code of theread reactor first sets the remote

variablerv with the value ofm, and then invokes〈ret, rid〉.

135

Thewrite reactor has four parameters:lb, the program counter label of this reactor,

m, the reference to write to,ret andrid, specifying the return closure〈ret, rid〉. This

reactor has one argumentval, which is the value to be assigned tom. The code of the

reactor is self-explanatory. Since thewrite reactor updatesm, theexec statement to

invoke〈ret, rid〉 contains the term&m, indicating that some reference on the quorum

system&m is updated, and the update may still be unstable.

6.2.2 Translation rules

The syntax-directed translation rules are shown in Figure 6.2. Rules (TE1)–(TE5) are

used to translate expressions; rules (TS1)–(TS6) are used to translate statements; rules

(TC1) and (TC2) are used to generate control transfer code. All these translation rules

use a translation environment〈D,∆,Γ′〉 composed of a distribution schemeD, a label

assignment∆, and a typing assignmentΓ′, which is derived fromD and the typing

assignmentΓ of the source: for anym in dom(Γ), if D(m) = h, thenΓ′(m) = Γ(m),

otherwiseG′(m) = Γ′(m)@D(m).

The translation judgment for statements has the form[[S]]Ψ′ = 〈P,Ψ〉, meaning that

an Aimp statementS is translated into a DSR programP in the translation contextΨ′,

which is a list ofprogram entriesof the target code of the rest part of the source program

that followsS.

Program entries

In general, the target codeP of an Aimp statementS needs to perform the computation

of S and invoke the target codeP ′ of the statement followingS. On the surface, invoking

P ′ means invoking the starting reactorc′ of P ′. However,c′ may not have sufficient

integrity to trigger all the computation ofP ′. Thus,P may be responsible for notifying

(usingchmod messages) theentry reactorsof P ′ at different security levels.

136

(TE1) [[η]]〈c, c′, cu, `,Q〉 = η (TE2) [[m]]〈c, c′, cu, `,Q〉 = m (TE3)
Γ′(m) = σ

[[!m]]〈c, c′, cu, `,Q〉 =!m

(TE4)
Γ′(m) = int`1@Qm r = c{`, Q, λ.exec(read[`, `1,m, c′, cid, 〈cu, cid〉.z], nid, `, Q, ε)}

[[!m]]〈c, c′, cu, `,Q〉 = 〈{r}, λ(QR[Qm, I(`1)] . z :int`1). z〉

(TE5)

[[e1]]〈c, c1, cu, `,Q〉 = 〈P1, λπ1 . z1 :τ1. e′1〉 [[e2]]〈c1, c′, cu, `,Q〉 = 〈P2, λπ2 . z2 :τ2. e′2〉
c1 = (if P2 6= ∅ then new-reactor(P1, c) else c′)

[[e1 + e2]]〈c, c′, cu, `,Q〉 = 〈P1 ∪ P2, λπ1 . z1 :τ1, π2 . z2 :τ2. e′1 + e′2〉

(TC1)

Ψ = {ψ1, . . . , ψn} `i = label(ci) i ∈ {1, ..., n} `0 = > `n+1 = ⊥ `j+1 v label(c) v `j

wj+1 = w [[(c, wi+1)]]〈`i, ψi+1〉 = 〈si, wi〉 i ∈ {0, . . . , j}

[[(c, w)]]Ψ = 〈sj ; . . . ; s0, {(c, w), ψj+1, . . . , ψn}〉

(TC2)

s = (if w′ = c′′.z then setvar(〈c′′, nid〉.z, w) else skip)
w′′ = (if w′ = c′′.z then w else nid)

`′ = label(c) t label(c′) s′ = (if ` = > then exec(c′, w′′, `′, Q, ε) else chmod(c′, w′′, `′, Q, `))

[[(c, w)]]〈`, (c′, w′)〉 = 〈s; s′, w′′〉

(TS1)

∆ ;D ` c :〈`,Q〉 Γ′(m) = σ@Qm [[e]]〈c, c1, `,Q〉 = 〈Pe, λπ . z :τ.e′〉 c1 = new-reactor(Pe, c)

r1 = c1{`, Q, π . z :τ, λ.exec(write[`,m, c2, cid], nid, `, Q, e′)} [[c]]Ψ = 〈s′,Ψ′〉 r2 = c2{`, Q, λ.s′}

[[{c}m := e]]Ψ = 〈Pe ∪ {r1, r2},Ψ′〉

(TS2)

∆ ;D ` c :〈`,Q〉 Γ′(m) = σ [[e]]〈c, c1, `,Q〉 = 〈Pe, λπ . z :τ. e′〉
c1 = new-reactor(Pe, c) [[c]]Ψ = 〈s′,Ψ′〉 r1 = c1{`, Q, π . z :τ, λ. m := e′; s′}

[[{c}m := e]]Ψ = 〈Pe ∪ {r1},Ψ′〉

(TS3)

∆ ;D ` c :〈`,Q〉 [[c]]Ψ = 〈s,Ψ′〉
r = c{`, Q, λ.s}

[[{c} skip]]Ψ = 〈{r},Ψ′〉 (TS4)

[[S2]]Ψ = 〈P2,Ψ2〉
[[S1]]Ψ2 = 〈P1,Ψ1〉

[[S1;S2]]Ψ = 〈P1 ∪ P2,Ψ1〉

(TS5)

∆ ;D ` c :〈`,Q〉 c1 = new-reactor(Pe, c) [[Si]]Ψ = 〈Pi,Ψi〉 [[c]]Ψi = 〈s′i,Ψ′〉 i ∈ {1, 2}
[[e]]〈c, c1, `,Q〉 = 〈Pe, λπ . z :τ. e′〉 r1 = c1{`, Q, π . z :τ, λ. if e′ then s′1 else s′2}

[[{c} if e then S1 else S2]]Ψ = 〈Pe ∪ P1 ∪ P2 ∪ {r1},Ψ′〉

(TS6)

∆ ;D ` c :〈`,Q〉 [[e]]〈c, c1, `,Q〉 = 〈Pe, λπ . z :τ.e′〉 [[S]]c = 〈P,Ψ1〉
c1 = new-reactor(Pe, c) [[〈c1, nid〉]]Ψ1 = 〈s1, 〈c1, nid〉〉 [[〈c, c1.z′〉]]Ψ = 〈s2,Ψ′〉

r1 = c1{`, Q, π . z :τ, LT[`] . z′ :int`, λ. if e
′ then setvar(〈c1, nid〉.z′, z′); s1 else s2}

[[{c} while e do S]]Ψ = 〈Pe ∪ P ∪ {r1},Ψ′〉

Figure 6.2: Aimp/DSR Translation rules

An entry reactorc at security level̀ is the reactor whose program counter label

is ` and there is no other reactor inP ′ precedingc with a program counter labelpc

satisfyingpc v `. Formally, a program entryψ has the form(c, w), wherec is the

reactor name of the entry, andw is a variable whose value is the context identifier used

137

by c to invoke its next reactor. In most cases,wi is cid, and thusci is used as an

abbreviation for(ci, cid). Let&P ′ represent the list of entries ofP ′, which has the form

Ψ′ = ψ1, . . . , ψn such thatlabel(ψi+1) v label(ψi) holds for anyi ∈ {1, . . . , n}, where

label((c, w)) = label(c). Intuitively, ψ1 throughψn are to be invoked in order, and for

any reactorc′′ to be invoked betweenψi andψi+1, the constraintlabel(ψi) v label(c′′)

is satisfied so thatψi has sufficient integrity to handle the invocation ofc′′ on its own.

The translation ofS depends onP ′, and thus is denoted by[[S]]Ψ′ = 〈P,Ψ〉, whereΨ

should be the entries ofP ∪ P ′.

Translating expressions

The translation of a source expressione generates a DSR expressione′ that results in the

same value ase does in the source program. In addition, the memory accesses inemight

require invokingread reactors on remote hosts. Therefore, the translation result ofe is

composed of two parts:P , a distributed program that fetches the values of replicated

memory references, andλπ . z :τ .e′, wheree′ computes the final value ofe, andz are

free variables ofe′, initialized by messages going throughπ. The translation context

of e is a five-element tuple〈c, c′, cu, `,Q〉, wherec is the starting reactor ofP , c′ is the

continuation reactor ofP , cu is the reactor that computese′, ` is the program counter

label of reactorc, andQ is the quorum system whereP is replicated.

Rules (TE1)–(TE3) translate constants and dereferences of non-replicated refer-

ences, which remain the same after translation. In rules (TE1)–(TE3), there is no need

to access remote references, and the translation result is just an expression. Rule (TE4)

is used to translate!m whenm is replicated on multiple hosts. The target code invokes

read[`, `1,m, c
′, cid, 〈cu, cid〉.z], which initializes〈cu, cid〉.z with the value ofm and

invokes〈c′, cid〉. Note that theread reactor is invoked withnid so thatread requests

issued by different reactors are distinguishable.

138

Rule (TE5) translates the addition expressione1 +e2. It combines the translations of

e1 ande2 in a natural way. Supposeei is translated into〈Pi, λπi . zi :τi.e′i〉 for i ∈ {1, 2}.

Thene1 + e2 is translated into〈P1 ∪ P2, λπ1 . z1 :τ1, π2 . z2 :τ2. e
′
1 + e′2〉. The tricky

part is to figure out the translation contexts ofe1 ande2. Expressione1 is computed first,

soP1 is executed beforeP2. Therefore,c is the entry ofP1, c′ is the successor ofP2,

and both the entry ofP2 and the successor ofP1 are some reactorc1. In general,c1 is a

fresh reactor name. However, there are two exceptions. First,P2 is empty. Second,P2

is not empty, butP1 is empty. In the first exception,c′ is the successor ofP1, and thus

c1 = c′. In the second exception,c is the entry ofP2, andc1 = c. Putting it all together,

c1 is computed by the formula(if P2 6= ∅ then new-reactor(P1, c) else c′).

Translating entries

Rules (TC1) and (TC2) generate the code forc to invokeΨ with the context identifierw.

It can be viewed as translating(c, w) in the contextΨ. The translation result is a tuple

〈s,Ψ′〉 wheres is the control transfer code, andΨ′ is the entries of the computation

starting withc. In practice,c can also invoke a reactorc′ that has the same security level

asc, and letc′ runs to invokeΨ.

SupposeΨ = ψ1, . . . , ψn, and`i = label(ψi) for i ∈ {1, . . . , n}, `0 = >, and

`n+1 = ⊥. If `j+1 v label(c) v `j, thenc is able to invokeψ1, . . . , ψj, andΨ′ is

{(c, w), ψj+1, . . . , ψn}. Now the only remaining task is to generate the code for invoking

ψj, . . . , ψ1 in order.

Let [[〈c, wi+1〉]]〈`i, ψi+1〉 = 〈si, wi〉 denote thatsi is the code to invokeψi+1 with

context identifierwi+1 and program counter label`i, andwi is the context identifier to

be used after executingsi. Thensj; . . . ; s0 is the code to invokeΨ.

Rule (TC2) is used to compute[[(c, w)]]〈`, (c′, w′)〉. The translation depends on

whetherw′ is some remote variablec′′.z and whether̀ is >. If w′ = c′′.z, then the

139

translation includes asetvar statement to initialize〈c′′, nid〉.z with w so thatc′′ can

invoke the following computation with the context identifierw. Moreover, after execut-

ing thesetvar statement,c needs to invoke or notify other entries withnid, and thus

w′′ is set tonid. If ` is >, it means that〈c′, w′〉 is to be invoked directly, and thus the

translation includes anexec statement to invokec′. Otherwise, the target code includes

achmod statement, which changes the access control label of〈c′, w′′〉 to `.

Translating statements

Rules (TS1)–(TS6) are used to translate statements. Notation∆ ;D ` c : 〈`,Q〉 means

that ` andQ are the program counter label and the location of reactorc. Formally,

D(c) = Q, and` = {C = Cpc(`
′), I = I(`′), A= A(`′)}, where`′ = ∆(c). The rules

use a functionnew-reactor(P, c), which is a fresh reactor name unlessP is empty, in

which case it isc.

Rule (TS1) is used to translate{c}m := e whenΓ(m) = σ@Qm. Sincem is repli-

cated onQ, the assignment is done by invoking thewrite reactors onQ. The reactor

write[`,m, c2, cid] updatesm and then invokes〈c2, cid〉. The reactorc2 contains the

code to invokeΨ with cid. The value ofe is computed byPe andλπ . z :τ .e′. Reactor

c is the entry ofPe. Reactorc1 computese′ and issues thewrite requests. Thus,c1

containsπ . z :τ as its variables. Therefore, the translation context ofe is 〈c, c1, `,H〉,

which is an abbreviation for〈c, c1, c1, `,H〉. Note that ifPe is empty, thenc1 is the entry

of the translation, andc1 = c.

Rule (TS2) translates{c}m := e whenΓ(m) = σ. Expressione is translated in the

same way as in rule (TS1). Sincem is not replicated,m := e is simply translated into

m := e′, followed by the code for invokingΨ.

Rule (TS3) translates the skip statement. Sinceskip does nothing, the translation

only needs to generate code to invokeΨ.

140

Rule (TS4) translates the sequential statementS1;S2. First, S2 is translated into

〈P2,Ψ2〉 with respect toΨ. Then,S1 is translated in the contextΨ2. The target code of

S1;S2 is the union of the target code ofS1 andS2.

Rule (TS5) is used to translate conditional statements. Expressione is translated

in the same way as in rule (TS1). Reactorc1 computese′ and executes the conditional

statement to determine which branch to take and invoke the target code of that branch.

The two branchesS1 andS2 have the same continuation. Therefore,S1 andS2 are

translated in the same contextΨ, and the translation results are〈P1,Ψ1〉 and〈P2,Ψ2〉.

Then reactorc1 needs to invokeΨ1 if e′ is evaluated to a positive value, andΨ2 if

otherwise. The control transfer code is generated by[[c]]Ψi. Note thatlabel(c) is a lower

bound to the security label of any reactor inP1 andP2 because it affects whether these

reactors are invoked. As a result,[[c]]Ψ1 and[[c]]Ψ2 generate the same initial entriesΨ′.

Rule (TS6) translateswhile statements. Expressione is translated in the same way

as in rule (TS1). Implementing a loop, the target code of awhile statement may be

invoked multiple times, and each invocation needs to have a different context identifier

so that it would not be confused with other invocations. When the loop terminates,

Ψ needs to be invoked with the same context identifierw regardless of the number of

iterations. Thus,w cannot becid ornid, which changes in each iteration. Therefore, the

context identifier used to invokeΨ is the variablez′ of reactorc1, which computese′ and

determines whether to enter the loop body or to invokeΨ with z′. The code for entering

the loop body starts withsetvar(〈c1, nid〉.z′, z′) so thatz′ is initialized with the same

value in every iteration. The loop bodyS is translated with respect toc, because control

is returned toc after the loop body terminates. The premise[[S]]c = 〈P,Ψ1〉 says that

the entries of the target code ofS is Ψ1. Therefore,c1 needs to invokeΨ1 with nid if

the value ofe′ is positive. And the control transfer code is generated by[[〈c1, nid〉]]Ψ1.

141

6.3 Example

Consider the Aimp program in Figure 3.3 with the following typing assignment as dis-

cussed in Section 2.4:

bid, offer, t, a, result : int`0 acct : int`1

where

`0 = {C = A∧B :A∨B, I = A∧B : (A∧B)∨(B∧T)∨(A∧T), A= l}

`1 = {C = A :A, I = A :A∨(B∧T), A = l}

l = A∧B : (A∧B)∨(B∧T)∨(A∧T)∨(C1∧C2)∨(C1∧C3)∨(C2∧C3)

Suppose the bidding application is to be executed in a distributed system composed

of a hosthP and three clusters of hosts:C1, C2 andC3. For all i ∈ {1, 2, 3}, cluster

Ci contains hostshiA, hiB andhiT with integrity labelsA∧B : A, A∧B : B andA∧B : T,

respectively. Hosts in clusterCi has an availability labelA∧B : Ci. All the hosts in the

three clusters have a confidentiality labelA∧B :A∨B. The label ofhP is `1. Based on this

trust configuration,acct can be located onhP , andbid, offer, t, a andresult can be

replicated on the following quorum system

Q = 〈{h1A, h1B, h1T , h2A, h2B, h2T , h3A, h3B, h3T}, W12, W13, W23〉

whereWij = {hiA, hiB, hiT , hjA, hjB, hjT}. It is easy to verify thatQ � int`0 ref. The

non-sequence statements of the bidding program has an integrity labelI(`0), except

for acct :=!acct+!bid whose integrity label isI(`1). As a result, the target code of

acct :=!acct+!bid can be distributed tohP , while the target code of other statements

can be replicated on the host setH = {h1A, h1B, h1T , h2A, h2B, h2T}, which satisfies

A(`0) ≤ A(H, LT[`0]).

With the distribution scheme just described, the source program in Figure 3.3 can

be translated into a DSR program shown in Figure 6.3. For convenience, the reactor

names are based on the line numbers of the corresponding source statements. For ex-

ample, thewhile statement in line 2 of the source program is translated into reactors

142

line1{`0, H, λ.exec(write[`0, t, line1a, cid], nid, `0, H, 0)}

line1a{`0, H, λ.exec(write[`0, a, line1b, cid], nid, `0, H, −1)}

line1b{`0, H, λ.setvar(〈line2a, nid〉.z′, cid); exec(line2, nid, `0, H, ε) }

line2{`0, H, λ.exec(read[`0, `0, t, line2a, cid, 〈line2a, cid〉.z], nid, `0, H, ε)}

line2a{`0, H, QR[Q, I(`)] . z : int`0 , LT[`] . z′ : int`0 ,
λ.if z < 3 then setvar(〈line2a, nid〉.z′, z′); exec(line3, nid, `0, H, ε)
else exec(line7, z′, `0, H, ε) }

line3{`0, H, λ.exec(read[`0, `0, bid, line3a, cid, 〈line3b, cid〉.z1], nid, `0, H, ε)}

line3a{`0, H, λ.exec(read[`0, `0, offert, line3b, cid, 〈line3b, cid〉.z2], nid, `0, H, ε)}

line3b{`0, H, QR[Q, I(`)] . z1 : int`0 , QR[Q, I(`)] . z2 : int`0 ,
λ.if z1 ≥ z2 then chmod(line4b, cid, `0, H, `1); exec(line4, cid, `1, H, ε)
else exec(line6, cid, `1, H, ε)}

line4{`1, hP , λ.exec(read[`1, `0, bid, line4a, cid, 〈line4b, cid〉.z], nid, `1, H, ε)}

line4a{`1, hP , QR[Q, I(`)] . z : int`0 , λ.acct :=!acct + z; exec(line4b, cid, `1, hP , ε) }

line4b{`0, H, λ.exec(read[`0, `0, t, line4c, cid, 〈line4c, cid〉.z], nid, `0, H, ε)}

line4c{`0, H, QR[Q, I(`)] . z : int`0 , λ.exec(write[`0, a, line5, cid], nid, `0, H, z)}

line5{`0, H, λ.exec(write[`0, t, line3, cid], nid, `0, H, 5)}

line6{`0, H, λ.exec(read[`0, `0, t, line6a, cid, 〈line6a, cid〉.z], nid, `0, H, ε)}

line6a{`0, H, QR[Q, I(`)] . z : int`0 , λ.exec(write[`0, a, line2, cid], nid, `0, H, z + 1)}

line7{`0, H, λ.exec(read[`0, `0, a, line7a, cid, 〈line6a, cid〉.z], nid, `0, H, ε)}

line7a{`0, H, QR[Q, I(`)] . z : int`0 , λ.exec(write[`0, result, exit, cid], nid, `0, H, z)}

exit{`0, H, λ.skip}

Figure 6.3: The target DSR code of the bidding example

line2 andline2a using rule (TS6) of Figure 6.2. Reactorline2 invokes aread re-

actor onQ, which initializes〈line2a, cid〉.z with the value oft and invokesline2a.

Once invoked, reactorline2a executes a conditional statement with the guard expres-

sion z < 3, wherez has the value oft. If z is not less than3, then reactorline2a

143

invokes〈line7, z′〉, wherez′ is the context identifier of reactorline1b, which invokes

〈line2, nid〉 after initializing 〈line2a, nid〉.z′ with cid. If z is less than3, then re-

actorline2a invokes〈line3, nid〉 after recursively initializing〈line2a, nid〉.z′ with

z′. The target code is not very efficient, and there is much potential for optimization,

which is left for future work.

6.4 Typing preservation

The DSR language relies on static typing to enforce security. Therefore, the Aimp/DSR

translation needs to produce well-typed target programs. This is guaranteed by the typ-

ing preservation theorem (Theorem 6.4.1), which roughly says that the target code of a

well-typed source program is a well-typed program in DSR.

Definition 6.4.1 (Well-formed entry list). An entry listΨ is well-formed with respect

to P , writtenP � Ψ, if the following two conditions hold. First, for any entry(c, w)

in Ψ, P (c) = c[x :σ]{pc, Q, π . z :τ , λ.s}, and ifw = c′.z, thenP ` 〈c′, cid〉.z :

(int` var)`′. Second, ifΨ = (c1, w1), . . . , (cn, wn), thenlabel(ψi+1) v label(ψi) holds

for anyi ∈ {1, . . . , n}, wherelabel((ci, wi)) = label(ci).

Lemma 6.4.1 (Control transfer typing soundness).SupposeP is the target code of

an Aimp program under the translation environment〈Γ,∆, D〉, and∆ ;D ` c : 〈pc,Q〉,

andP � Ψ, and[[(c, w)]]Ψ = 〈sc,Ψ′〉. ThenΓ, w :intpc, nid :intpc ;P ;Q ; pc ` sc : τ ,

andP � Ψ′.

Proof. Let Γ′ = Γ, w : intpc, nid : intpc SupposeΨ = ψ1, . . . , ψn. By (TC1), sc is

sj, . . . , s0, where[[(c, wi+1)]]〈`i, ψi+1〉 = 〈si, wi〉. By (TC2),si = s; s′. Statements is

setvar(〈c′′, nid〉.z, wi+1) or skip. In either case,Γ′ ;P ;Q ; pc ` s : stmt⊥. State-

ments′ is exec(c1, w
′′, `′, Q, ε) if i = 0. Otherwises′ is chmod(ci+1, w

′′, `′, Q, `i),

144

where`′ = label(c)t label(ci+1). In the first case,Γ′ ;P ;Q ; `′ ` s′ : stmt⊥. In the sec-

ond case,Γ′ ;P ;Q ; `′ ` s′ : stmt`i. Therefore, we haveΓ′ ;P ;Q ; `′ ` s; s′ : stmt`i,

and `′ is `i if 0 ≤ i ≤ j − 1, and `′ is pc if i = j. By the typing rule (SEQ),

Γ′ ;P ;Q ; pc ` sj; . . . , s0 : τ .

Lemma 6.4.2 (Typing preservation).Suppose[[Γ]]D = Γ′, andP ′ is the target code

of an Aimp programS ′. If e is an expression inS ′, and Γ ;R ; pc ` e : τ , and

[[e]]〈c, c′, cu, `,Q〉 = 〈P, λπ . z :τ .e′〉, andP ′ � c, c′, thenΓ′ ;P ′ ` P andΓ′, z : τ ;Q `

e′ : τ . If S is a statement inS ′, andΓ ;R ; pc ` S : τ , and[[S]]Ψ = 〈P,Ψ′〉 andP ′ � Ψ′,

thenΓ′ ;P ′ ` P .

Proof. By induction on the derivation ofΓ ;R ; pc ` e : τ or Γ ;R ; pc ` s : τ .

• Cases (INT) and (REF). Obvious.

• Case (DEREF). If Γ′(m) = σ, thene′ is !m, andP is ∅ by rule (TE3). We

haveΓ′ ;Q `!m : τ , sinceτ = σ, andQ contains only one host. IfΓ′(m) =

int`1@Qm, by rule (TE4),P = {r} where

r = c{`, Q, λ.exec(read[`, `1,m, c′, cid, 〈cu, cid〉.z], nid, `, Q, ε)}.

By rules (EXEC) and (RD), we have:

Γ′ ` read[`, `1,m, c′, cid, 〈cu, cid〉.z] : reactor{`, Qm} ` v `

Γ′′ ;P ′ ;Q ; ` ` exec(read[`, `1,m, c′, cid, 〈cu, cid〉.z], nid, `, Q, ε) : stmt`

Γ′ ;P ′ ` r

whereΓ′′ = Γ′, cid :int`, nid :int`.

• Case (ADD). By induction,Γ′ ;P ′ ` P1 andΓ′ ;P ′ ` P2. Thus,Γ′ ;P ′ ` P1 ∪P2.

By induction,Γ′, zi :τi ;Q ` e′i : τ for i ∈ {1, 2}. Thus,Γ′, z1 :τ1, z2 :τ2 ;Q `

e′1 + e′2 : τ .

145

• Case (SKIP). By (TS3),P = {r} andr = c{`,Q, λ.s}, wheres is obtained from

[[c]]Ψ = 〈s,Ψ′〉. By Lemma 6.4.1,Γ′, cid : int`, nid : int` ;P
′ ;Q ; ` ` s : τ .

Therefore,Γ′ ;P ′ ` P .

• Case (SEQ). S is S1;S2, and we haveΓ ;R ; pc ` S1 : stmtR1 andΓ ;R1 ; pc `

S2 : τ . By rule (TS4),[[S2]]Ψ = 〈P2,Ψ1〉 and[[S1]]Ψ1 = 〈P1,Ψ
′〉. By induction,

Γ′ ;P ′ ` P2 andΓ′ ;P ′ ` P1. ThereforeΓ′ ;P ′ ` P1 ∪ P2.

• Case (ASSIGN). S ism := e, andΓ ;R ` e : int`′. By rules (TS1) and (TS2),

[[e]]〈c, c1, `,Q〉 = 〈Pe, λπ . z :τ .e′〉. By induction,Γ′ ;P ′ ` Pe andΓ′, z :τ ;Q `

e′ : int`′. If Γ(m) = σ@Qm, then (TS1) is used. By Lemma 6.4.1,Γ′ ;P ′ ` r2.

Let Γ′′ = Γ′, z :τ , cid :int`, nid :int`. Then the following derivation shows that

r1 is also well-typed:

Γ′ ;P ′ ` write[`,m, c2, cid] : reactor{`, Qm, int`}
Γ′′ ` nid : int` Γ′′ ` ` : label⊥ ` v ` Γ, z :τ ;Q ` e′ : int`
Γ′′ ;P ′ ;Q ; ` ` exec(write[`,m, c2, cid], nid, `, Qm, e′) : stmt`

Γ′ ;P ′ ` r1

If Γ(m) = σ, then (TS2) is used. By Lemma 6.4.1,Γ′′ ;P ′ ;Q ; ` ` s′ : τ .

Therefore, we have the following derivation:

Γ′ ` m : (int` ref)` Γ′, z :τ ` e′ : int` ` v int`
Γ′, z :τ ;P ′ ;Q ; ` ` m := e′ : stmt⊥ Γ′′ ;P ′ ;Q ; ` ` s′ : τ

Γ′ ;P ′ ` r1

• Case (IF). S is if ethenS1 elseS2. By induction,Pe, P1 andP2 are well-typed,

ande′ is well-typed with respect toΓ′, z :τ andQ. By Lemma 6.4.1,s′1 ands′2 are

well-typed. Therefore, the statementif e′ then s′1 else s
′
2 is well-typed, and so

is r1.

• Case (WHILE). S is while e do S ′. By induction,Pe andP are well-typed. The

146

following derivation shows thatr1 is well-typed:

Γ′, z :τ , z′ :int` ` z′ : int` ` 〈c1, nid〉.z′ : (int` var)`

Γ′, z :τ , z′ :int` ;Q ; ` ` setvar(〈c1, nid〉.z′, z′) : stmt⊥ Γ′, z :τ , z′ :int` ;Q ; ` ` s′1 : τ

Γ′, z :τ , z′ :int` ;P ′ ;Q ; ` ` setvar(〈c1, nid〉.z′, z′); s′1 : τ

Γ′, z :τ , z′ :int` ;Q ` e′ : int`′

Γ′, z :τ , z′ :int` ;P ′ ;Q ; ` ` setvar(〈c1, nid〉.z′, z′); s′1 : τ
Γ′, z :τ , z′ :int` ;P ′ ;Q ; ` ` s′2 : τ

Γ′, z :τ , z′ :int` ;P ′ ;Q ; ` ` if e′ then setvar(〈c1, nid〉.z′, z′); s′1 else s′2 : τ

Γ′ ;P ′ ` r1

• Case (SUB). By induction.

Theorem 6.4.1 (Typing preservation).SupposeΓ ;R ; pc ` S : τ , and[[S]]∅ = 〈P, c〉

with respect to a distribution schemeD, andS = {c}S1;S2. ThenΓ′
 P , where

Γ′ = [[Γ]]D.

Proof. By Lemma 6.4.2,Γ′ ` P . By examining the translation rules,P satisfies (RV1)–

(RV3).

6.5 Semantics preservation

In general, an adequate translation needs to preserve semantics of the source program.

In a distributed setting, attackers may launch active attacks from bad hosts, making the

low-integrity part of the target execution deviate from the source execution. However,

the trustworthiness of the target code does not depend on the low-integrity program state.

Therefore, we consider a translation adequate if it preserves high-integrity semantics.

This notion of semantics preservation is formalized as two theorems. First, the trans-

lation soundness theorem says that there exists a benchmark execution of the target

program generating the same outputs as the source program execution. Based on Theo-

rem 5.4.2, any execution of the target program would result in equivalent high-integrity

147

outputs as the benchmark execution and the source program. Therefore, we only need

another theorem stating that any target execution achieves the same availability as the

source.

To prove the translation soundness theorem, we construct an equivalence relation

between an Aimp configuration and a DSR configuration, and show that there exists a

DSR evaluation to preserve the equivalence relation. Informally, a target configuration

〈Θ, M, E〉 and a source configuration〈S, M〉 are equivalent, ifM andM are equiv-

alent, andΘ andE indicate that the code to be executed by〈Θ, M, E〉 is exactly the

target code ofS. SupposeD is the distribution scheme used in the translation. The

equivalence betweenM andM is defined as follows:

Definition 6.5.1 (Γ ;D ` M ≈M). For anym in dom(Γ), thenM(h,m) = M(m) for

anyh ∈ D(m).

The configuration〈Θ, M, E〉 must be able to execute the target code ofS. As a

result, the entries of the target code ofS must beactivatedin 〈Θ, M, E〉 with respect

to the current context identifier, as defined below:

Definition 6.5.2 (E ; η � Ψ). ThatΨ is activated with context identifierη in the environ-

mentE , writtenE ; η � Ψ, if it can be inferred using the following rules, where auxiliary

functionE(w, η) returnsη if w is cid, and the value of〈c, η〉.z in E if w is c.z.

E ; η � (c, w) E ; E(w, η) ; label(c) � Ψ
E ; η � (c, w),Ψ

E ; η ; ` � (c, w) E ; E(w, η) ; label(c) � Ψ
E ; η ; ` � (c, w),Ψ

∀h ∈ hosts(c). 〈c, η, `,A, t, off〉 ∈ E(h)
E ; η � (c, w)

∀h ∈ hosts(c). 〈c, η, `′,A, t, ∗〉 ∈ E(h) ` v `′

E ; η ; ` � (c, w)

To track the activated entries during program execution, we introduce the notation

P ; Ψ ` S : Ψ′, which intuitively means that executing the target code ofS with the

list of activated entriesΨ would result in the list of activated entriesΨ′. Formally, it is

148

defined using the following inference rules:

(EL1) P ; Ψ ` skip : Ψ (EL2)
[[S]]Ψ′ = 〈P ′,Ψ〉 P ′ ⊆ P

P ; Ψ ` S : Ψ′

(EL3)
P ; Ψ ` S : Ψ′ Ψ1 = 〈c, c1.z〉,Ψ2

P ; Ψ,Ψ1 ` S : Ψ′ ⊗Ψ1
(EL4)

P ; Ψ ` S1 : Ψ1 P ; Ψ1 ` S2 : Ψ2

P ; Ψ ` S1;S2 : Ψ2

The unnamed statementskip has no effects or target code. Thus, rule (EL1) says that

executing the target code ofskip does not activate any new entry. Rule (EL2) is straight-

forward based on the meaning of[[S]]Ψ′ = 〈P ′,Ψ〉. Rule (EL3) is applied to the case that

S belongs to the body of awhile statement, andΨ1 is the entry list for the computation

following S. Based on the translation rule (TS6),Ψ1 = (c, c1.z),Ψ2, where(c, c1.z)

is the entry for the next iteration of thewhile statement. SupposeP ; Ψ ` S : Ψ′. If

Ψ′ = c, then afterS terminates, the next iteration of the loop would start, and the acti-

vated entry list would be(,1). Otherwise, the entry list at the point thatS terminates is

Ψ′,Ψ1. SupposeΨ1 = 〈c, c1.z〉,Ψ2. Then the notationΨ′ ⊗ Ψ1 denotesΨ1 if Ψ′ = c,

andΨ′,Ψ1 if otherwise. Rule (EL4) is standard for composingP ; Ψ ` S2 : Ψ1 and

P ; Ψ1 ` S2 : Ψ2, as the termination point ofS1 is the starting point ofS2.

To construct the benchmark execution, it is convenient to assume that all the reactor

replicas are running synchronously, and to formalize the program point that a target

configuration corresponds to. A program point is represented by〈s; Ψ; Π〉, wheres is

the code of the current running threads,Ψ is the entry list for the programP following

the current thread, andΠ is a set ofcommunication portsused byP . A communication

port is either a reactor namec or a remote variable namec.z. Intuitively, at the program

point represented by〈s; Ψ; Π〉, the entry listΨ are activated, and there are no messages

for the communication ports inΠ yet. Formally, we have the following definition:

Definition 6.5.3 (Θ ; E ; η � 〈s; Ψ; Π〉). A configuration〈Θ, M, E〉 corresponds to

the program point〈s; Ψ; Π〉 with respect to the context identifierη, writtenΘ ; E ; η �

〈s; Ψ; Π〉, if the following conditions hold withΨ = c ; Ψ′. First, any unfinished thread

149

in Θ has the form〈s, t, h, c, η〉, and the timestamp of any thread inΘ is less than or equal

to t. Second,E ; η � Ψ. Third, for anyπ in Π, if π = c′ andc′ 6= c, thenE contains no

exec messages for〈π, η〉; if π = c.z does not appear inΨ, thenE contains nosetvar

messages for〈π, η〉. If s is the code ofc, then〈Ψ; Π〉 is an abbreviation of〈s; Ψ; Π〉.

Now we define the DSR-Aimp configuration equivalence and prove the translation

soundness theorem after proving two lemmas.

Definition 6.5.4 (D-A configuration equivalence).A DSR configuration〈Θ, M, E〉

and an Aimp configuration〈S, M〉 are equivalent with respect toΓ, P , η andΨ′, written

asΓ ;P ; η ` 〈Θ, M, E〉 ≈ 〈S, M, Ψ′〉, if the following conditions hold. First,P ; Ψ `

S : Ψ′. Second,Θ ; E ; η � 〈Ψ; ΠS〉, whereΠS are the set of communication ports of

the target code ofS. Third,Γ `M ≈M.

Lemma 6.5.1 (Expression translation soundness).Supposee is an Aimp expression,

and [[e]]〈c, c′, cu, `,H〉 = 〈P, λπ . τ z.e′〉, and〈e, M〉 ⇓ v, andΓ ` M ≈ M, and

Θ ; E ; η � 〈c,Ψ; ΠP ∪ {c′, cu.z} ∪ Π〉. Then there exists a run〈Θ, M, E〉 7−→∗

〈Θ′, M, E ′〉 such thatΘ′ ; E ′ ; η � 〈c′,Ψ; Π〉, and 〈e′[A], M[h, t]〉 ⇓ v, whereA is

the variable record in the closure〈cu, η〉 on hosth.

Proof. By induction on the structure ofe.

• e is n. Trivial.

• e is !m andΓ(m) = σ. ThenP is empty, ande′ is !m. SinceΓ ` M ≈ M, we

have that〈!m, M(h, t)〉 ⇓M(m).

• e is !m andΓ(m) = int`1@Q. By (TE4),P is {r}, and

r = c{`, Q′, λ.exec(read[`, `1,m, c
′, cid, 〈cu, cid〉.z], nid, `, Q′, ε).

Then by running theexec statement, we have〈Θ, M, E〉 7−→∗ 〈Θ1, M, E1〉,

and

Θ1 ; E1 ; η′ � 〈s′; read[`, `1,m, c′, cid, 〈cu, cid〉.z],Ψ; {c′, cu.z} ∪ Π〉,

150

wheres′ is setvar(〈cu, η〉.z, !m); exec(c′, η, `, �, ε). In other words, the ex-

ecution reaches the point that all the replicas of theread reactor are invoked

with the newly-created context identifierη′. Further, by executings′ on all the

hosts ofm and processing all the messages sent bys′, the execution produces

〈Θ1, M, E1〉 7−→∗ 〈Θ′, M, E ′〉 such thatΘ′ ; E ′ ; η � 〈c′; Ψ; Π〉. By Γ ` M ≈

M, the synthesizerQR[Q, I] associated withcu.z receives thesetvar messages

containing the same versioned valuev@t′ wherev = M(m). Therefore,z is

mapped tov in the closure〈cu, η〉 by the evaluation rule (M3). Thus, we have

〈z[A], M(h, t)〉 ⇓ v.

For simplicity, we write such an execution run in the form of the following table,

where each line denotes that the execution produces a system configuration (the

first column), which corresponds to a program point (the second column) and sat-

isfies certain constraints (the third column), based on some reasoning (the fourth

column).

〈Θ, M, E〉

7−→∗ 〈Θ1, M, E1〉 〈s′; Ψ′; {c′, cu.z} ∪Π〉

7−→∗ 〈Θ′, M, E ′〉 〈c′,Ψ; Π〉 〈z[A], M(h, t)〉 ⇓ M(m) By Γ ` M ≈M

• e is e1 + e2. By rule (TE5), we have[[e1]]〈c, c1, cu, `,Q〉 = 〈P1, λπ1 . τ1 z1. e
′
1〉

and[[e2]]〈c1, c′, cu, `,Q〉 = 〈P2, λπ2 . τ2 z2. e
′
2〉. Then we have the following exe-

cution:

〈Θ, M, E〉

7−→∗ 〈Θ1, M, E1〉 〈c1,Ψ; ΠP2 ∪ {c′, cu.z2} ∪Π〉 〈e′1[A], M(h, t)〉 ⇓ v1 By induction

7−→∗ 〈Θ′, M, E ′〉 〈c′,Ψ; Π〉 〈e′2[A], M(h, t)〉 ⇓ v2 By induction

Therefore,〈e′1 + e′2[A], M(h, t)〉 ⇓ v, wherev = v1 + v2 andA is the variable

record of the closure〈cu, η〉 onh.

151

Lemma 6.5.2 (Control transfer soundness).Suppose[[(c, w)]]Ψ′ = 〈s,Ψ〉, andΨ =

(c, w),Ψ′′, andΘ ; E ; η � 〈s; c1,Ψ′′; Π〉. Then〈Θ, M, E〉 7−→∗ 〈Θ′, M, E ′〉 such that

Θ′ ; E ′ ; η′ � 〈Ψ′; Π〉, whereη′ = E(w, η).

Proof. By (TC1), s is sj; . . . ; s0, andΨ′ = ψ1, . . . , ψn, andΨ = (c, w), ψj+1, . . . , ψn.

By (TC2), eachsi activatesψi, ands0 invokesc1. Let 〈Θ, M, E〉 7−→∗ 〈Θ′, M, E ′〉 be

the run that finishes executings on the quorum system ofc and processing the messages

sent bys. ThenΘ′ ; E ′ ; η′ � 〈Ψ′; Π〉.

Theorem 6.5.1 (Translation soundness).SupposeΓ ;R ; pc ` S : τ , and〈S, M〉 7−→

〈S ′, M ′〉, andΓ ;P ; η ` 〈Θ, M, E〉 ≈ 〈S, M, Ψ′〉. Then there exists a runE =

〈Θ, M, E〉 7−→∗ 〈Θ′, M′, E ′〉 such thatΓ ;P ; η′ ` 〈Θ′, M′, E ′〉 ≈ 〈S ′, M ′, Ψ′〉. In

addition, for any messageµ sent inE, the port ofµ is in eitherΨ or ΠS.

Proof. By induction on the evaluation step〈S, M〉 7−→ 〈S ′, M ′〉. BecauseΓ ;P ; η `

〈Θ, M, E〉 ≈ 〈S, M, Ψ′〉, we haveP ; Ψ ` S : Ψ′, andΘ ; E ; η � 〈Ψ; ΠS〉, and

Γ ` M ≈M .

• Case (S1). In this case,S is {c}m := e, andM ′ = M [m 7→ v], and〈e, M〉 ⇓ v.

SupposeΨ = c,Ψ1. Then we have

〈Θ, M, E〉

7−→∗ 〈Θ1, M, E1〉 〈c1,Ψ1; ΠS −ΠPe
〉 〈e′[A], M(h, t)〉 ⇓ v By Lemma 6.5.1

If Γ(m) = σ@Q, then rule (TS1) is used, and the code ofc1 is

exec(write[`,m, c2, cid], nid, `, �, e′).

Thus, we have

〈Θ1, M, E1〉

7−→∗ 〈Θ2, M, E2〉 〈m := v; exec(c2, η, `, &m, ε); write[`,m, c2, η],Ψ1; {c2}〉

7−→∗ 〈Θ3, M′, E3〉 〈c2,Ψ1; ∅〉 M′ = M[m 7→ v]

7−→∗ 〈Θ4, M′, E4〉 〈Ψ′; ∅〉 Ψ′ ` skip : Ψ′ By Lemma 6.5.2

152

If Γ(m) = σ, rule (TS2) is used, and the code ofc1 ism := e′; s′, wheres′ comes

from [[c]]Ψ′ = 〈s′,Ψ〉. Thus, we have

〈Θ1, M, E1〉

7−→∗ 〈Θ2, M′, E2〉 〈s′; c1,Ψ1; ∅〉 M′(h, m) = v

7−→∗ 〈Θ3, M′, E3〉 〈Ψ′; ∅〉 By Lemma 6.5.2

• Case (S2).S isS1;S2, andP ; Ψ ` S1;S2 : Ψ′, which implies thatP ; Ψ ` S1 : Ψ1

andP ; Ψ1 ` S2 : Ψ′. By induction, there exists a runE = 〈Θ, M, E〉 7−→∗

〈Θ′, M′, E ′〉 such thatΓ ;P ; η ` 〈Θ′, M′, E ′〉 ≈ 〈S ′1, M ′, Ψ1〉. Therefore,

Θ′ ; E ′ ; η � 〈Ψ′
1; ΠS′1

〉, and for anyπ that receives a message inE, if π 6∈ ΠS1,

thenπ ∈ Ψ′
1. Thus, we haveΘ′ ; E ′ ; η � 〈Ψ′

1; ΠS′1;S2
〉. In addition,Ψ′

1 ` S ′1 : Ψ1

holds. SoP ; Ψ′
1 ` S ′1;S2 : Ψ′. Thus, we haveΓ ;P ; η ` 〈Θ′, M′, E ′〉 ≈

〈S ′1;S2, M
′, Ψ′〉.

• Case (S3).S is {c} skip;S ′. By Ψ ` {c} skip;S ′ : Ψ′, we haveΨ ` {c} skip :

Ψ′
1 andΨ′

1 ` S ′ : Ψ′. Then we have

〈Θ, M, E〉 〈c,Ψ1; ΠS〉

7−→∗ 〈Θ′, M, E ′〉 〈Ψ′
1; ΠS′〉 By rule (TS3) and Lemma 6.5.2

• Case (S4). SinceP ; Ψ ` S : Ψ′, we have that[[S]]Ψ′
1 = 〈P ′,Ψ1〉, andΨ = Ψ1,Ψ2

andΨ′ = Ψ′
1 ⊗Ψ2. By rule (TS5),Ψ1 = c,Ψ′′. Then we have

〈Θ, M, E〉

7−→∗ 〈Θ1, M, E1〉 〈c1,Ψ′′; ΠS〉 〈e′[Ac1,η], M(h, t)〉 ⇓ n By Lemma 6.5.1

7−→∗ 〈Θ2, M, E2〉 〈s1; c1,Ψ′′; ΠS1〉 By (S5)

7−→∗ 〈Θ3, M, E3〉 〈Ψ′′
1 ; ΠS1〉 Ψ′′

1 ` S1 : Ψ′
1 By Lemma 6.5.2

Also the above run is limited to the code ofS and does not affectΨ2. Therefore,

Θ3 ; E3 ; η � 〈Ψ′′
1,Ψ2; ΠS1〉, andP ; Ψ′′

1,Ψ2 ` S1 : Ψ′. Thus,〈Θ3, M, E3〉 ≈

〈S1, M, Ψ′
1〉.

• Case (S5). By the same argument as in case (S4).

153

• Case (S6).S iswhileedoS1, andS ′ isS1; whileedoS1, and〈e, M〉 ⇓ n (n > 0).

Then we have:

〈Θ, M, E〉

7−→∗ 〈Θ1, M, E1〉 〈c1,Ψ′′; ΠS〉 〈e′[Ac1,η], M〉 ⇓ n By Lemma 6.5.1

7−→∗ 〈Θ2, M, E2〉 〈setvar(〈c1, nid〉.z′, z′); s1; c1,Ψ′′; ΠS〉 By (S5)

7−→∗ 〈Θ3, M, E3〉 〈s1; c1; ΠS1〉 E3 ;AΘ3(nid) ; `c � 〈c, c1.z
′〉,Ψ′′

7−→∗ 〈Θ′, M, E ′〉 〈Ψ1; ΠS1〉 AΘ′(cid) = AΘ3(nid) By Lemma 6.5.2

Therefore,〈Θ′, E ′〉 ≈ 〈Ψ1, 〈c, c1.z′〉,Ψ′′; ΠS1;S〉. In addition,Ψ1, 〈c, c1.z′〉,Ψ′′ `

S1;S : Ψ′. Thus, we have〈Θ′, M, E ′〉 ≈ 〈S1; while e do S1, M, Ψ′〉.

• Case (S7).S is while e do S1, and〈e, M〉 ⇓ n, andn ≤ 0. Then we have:

〈Θ, M, E〉

7−→∗ 〈Θ1, M, E1〉 〈c1,Ψ′′; ΠS〉 c1 ` 〈e′, M〉 ⇓ n By Lemma 6.5.1

7−→∗ 〈Θ2, M, E2〉 〈s2; c1,Ψ′′; ∅〉

7−→∗ 〈Θ3, M, E3〉 〈Ψ′′; ∅〉 E3 ; nid ; `c � 〈c, c1, w〉,Ψ′′ By Lemma 6.5.2

Now we show that a target program achieves the same availability as the source

program. First, we formally define the notion that a target memoryM has the same

availability as a source memoryM:

Definition 6.5.5 (Γ ` M ≈A6≤lA M). For anym such thatA(Γ(m)) 6≤ lA, if M(m) 6=

none, then for anyh in Qm, A(h) 6≤ lA impliesM(h,m) 6= none.

Again, we prove the availability preservation result by induction. First, we prove two

lemmas that are concerned with the availability of expression target code and control

transfer code, respectively. The availability results need to be applicable to all execu-

tions. Accordingly, we say “〈Θ, M, E〉 ;∗ 〈Θ′, M′, E ′〉 such that a condition holds”

if for any run〈Θ, M, E〉 7−→∗ 〈Θ1, M1, E1〉, there exists〈Θ′, M′, E ′〉 satisfying the

condition and〈Θ1, M1, E1〉 7−→∗ 〈Θ′, M′, E ′〉. Let E � 〈c, η〉.z denote that variable

154

〈c, η〉.z is already initialized inE . More concretely, For any hosth of c, the variable

record of the closure〈c, η〉 on hosth mapsz to a value that is notnone. In addition,

let E � 〈c, η〉 denote that the closure〈c, η〉 has been invoked on all the hosts ofc in E .

Then the expression availability lemma is formalized as follows:

Lemma 6.5.3 (Expression availability).SupposeΓ ;R ; pc ` e : int`, and〈e, M〉 ⇓

n, andA(R) 6≤ lA, and[[e]]〈c, c′, cu, `,Q〉 = 〈Pe, λπ . τ z. e′〉, and there exists〈Θ, M, E〉

such thatE � 〈c, η〉, andΓ ` M ≈A6≤lA M . Then〈Θ, M, E〉 ;∗ 〈Θ′, M′, E ′〉 such

thatE ′ � 〈c′, η〉 andE ′ � 〈cu, η〉.z.

Proof. By induction on the structure ofe.

• e is n, m, or !m with Γ(m) = σ. In this case,[[e]]〈c, c′, cu, `,H〉 = e andc = c′.

Thus,E � 〈c′, η〉 andE ′ � 〈cu, η〉.z immediately hold.

• e is !m, with Γ(m) = σ@Q. By rule (TE3),Pe = {r} and

r = c{`, Q, λ.exec(read[`, `1,m, c′, cid, 〈cu, cid〉.z], nid, `, �, ε)}.

SinceE � 〈c, η〉 holds, we have〈Θ, M, E〉 ;∗ 〈Θ1, M1, E1〉 such thatE1 �

〈read[`, `1,m, c′, η, 〈cu, η〉.z], η′〉 whereη′ = E(c.nid, η). By A(R) 6≤ lA and

rule (DM), A(Q) 6≤ lA, which means that at least aQR[Q, I(`)]-qualified set of

hosts inQ are available to finish executing theread reactor. Therefore, we have

〈Θ1, M1, E1〉 ;∗ 〈Θ′, M′, E ′〉 such thatE ′ � 〈c′, η〉 andE ′ � 〈cu, η〉.z.

• e is e1 + e2. By induction,〈Θ, M, E〉 ;∗ 〈Θ1, M1, E1〉 such thatE1 � 〈c1, η〉

andE1 � 〈cu, η〉.z1. Again, by induction,〈Θ1, M1, E1〉 ;∗ 〈Θ′, M′, E ′〉 such

thatE ′ � 〈c′, η〉 andE ′ � 〈cu, η〉.z2.

Lemma 6.5.4 (Control transfer availability). Suppose[[(c, w)]]Ψ′ = 〈s,Ψ〉, and there

exists a run〈Θ0, M0, E0〉 7−→∗ 〈Θ, M, E〉 such thatE ; η � Ψ, andE � 〈c1, η〉, and

155

the body ofc1 ends withs, andA(c1) 6≤ lA. Then〈Θ, M, E〉 ;∗ 〈Θ′, M′, E ′〉 such

thatE ′ ; η′ � Ψ′.

Proof. By inspecting rules (TC1) and (TC2).

Lemma 6.5.5 (Availability preservation I). SupposeΓ ;R ; pc ` S : stmtR′, and

I(pc) ≤ lA andA(R) 6≤ lA, andP ; Ψ ` S : Ψ′, and〈Θ, M, E〉 satisfiesE ; η � Ψ

andavailable (M, R, lA), which means that for anym in dom(Γ), A(Γ(m)) 6≤ lA and

m 6∈ R imply thatm is available inM. Then〈Θ, M, E〉 ;∗ 〈Θ′, M′, E ′〉 such that

E ′ ; η � Ψ′, andavailable (M′, R′, lA).

Proof. By induction on the structure ofS.

• S is skip. SinceΨ′ = Ψ, 〈Θ, M, E〉 already satisfies the conditions.

• S is {c} skip. The target code ofS just invokesΨ′. By Lemma 6.5.4, this lemma

holds.

• S is {c}m := e. Then we have[[S]]Ψ′ = 〈P1,Ψ1〉, andP1 ⊆ P . First, suppose

Γ(m) = σ. By (TS2), [[e]]〈c1, c′1, `,H〉 = 〈Pe, λπ . τ z.e′〉. SinceA(R) 6≤ lA,

we have〈e, M〉 ⇓ n. By Lemma 6.5.3 andE ; η � Ψ1, we have〈Θ, M, E〉 ;∗

〈Θ1, M1, E1〉 such thatE1 � 〈c′1, η〉. Supposeh′ is the host wherec′1 resides. By

rule (DS),A(m) ≤ A(h′). If A(R) 6≤ lA, thenA(m) 6≤ lA andA(h′) 6≤ lA, which

means thath′ is available. SinceR′ isR−{m}, we haveR′ ` M′ ≈A6≤lA M
′. By

rule (TS2) and Lemma 6.5.4,〈Θ1, M1, E1〉 ;∗ 〈Θ′, M′, E ′〉 such thatE ′ ; η �

Ψ′.

• S is S1;S2. By induction.

• S is {c} if e then S1 else S2. SinceA(R) 6≤ lA, 〈e, M〉 ⇓ n. SupposeΓ ;R `

S : `, andQc = 〈H, ∅〉. ThenA(R) ≤ A(H, LT[`]). SinceA(R) 6≤ lA, there

exists aLT[`]-qualified subsetH ′ of H such thatAu(H ′) 6≤ lA. Therefore, there

156

exists a subsetH ′′ of H ′ such thatI(`) ≤ I(H ′′) and all the hosts ofH ′′ takes the

same branch. Without loss of generality, suppose the first branch is taken. Then

by (TS5) and Lemma 6.5.4,〈Θ, M, E〉 ;∗ 〈Θ′′, M′′, E ′′〉 such thatE ′′ ; η � Ψ′′

and Ψ′′ ` S1 : Ψ′. By induction, 〈Θ′′, M′′, E ′′〉 ;∗ 〈Θ′, M′, E ′〉 such that

E ′ ; η � Ψ′.

• S is while e do S ′. By the typing rule (WHILE) of Aimp,I(pc) ≤ lA implies

A(R) ≤ lA. Thus, this case cannot occur.

According to the translation soundness theorem, for a run of the source program

〈S, M〉 7−→∗ 〈S ′, M ′〉, there is a benchmark run of the target program that behaves

similar to the source run. Therefore, we can associate each evaluation step of the source

program with the context identifier of the corresponding evaluation step in the bench-

mark target execution, and use the notation〈S1, M1〉η1 7−→ 〈S2, M2〉η2 to denote thatη1

andη2 are the corresponding context identifier of configurations〈S1, M1〉 and〈S2, M2〉.

Lemma 6.5.6 (Availability preservation II). SupposeΓ ;R ; pc ` S : stmtR′ and

I(pc) 6≤ lA andA(R) 6≤ lA and 〈S, M〉η 7−→ 〈S1, M1〉η′, andP ; Ψ ` S : Ψ′,

and 〈Θ, M, E〉 satisfiesE ; η � Ψ and Γ ` M ≈A6≤lA M . Then 〈Θ, M, E〉 ;∗

〈Θ2, M2, E2〉 such thatE2 ; η′ � Ψ2, andΨ2 ` S2 : Ψ′, andΓ ` M2 ≈A6≤lA M1,

andS1 ≈ S2, which means eitherS1 = S2 or for i ∈ {1, 2}, Si = S ′i;S
′′ such that

Γ ;R ; pc ` S ′i : stmt′R andI(pc) ≤ L.

Proof. By induction on〈S, M〉 7−→ 〈S ′, M ′〉. Without loss of generality, suppose

[[S]]Ψ′ = 〈P,Ψ〉. In general,[[S]]Ψ′′ = 〈P,Ψ1〉 andΨ = Ψ1,Ψ3 andΨ′ = Ψ′′ ⊗ Ψ3. If

the theorem holds forΨ1 ` S : Ψ′′, then we haveΨ2 ` S2 : Ψ′′. Therefore,Ψ2,Ψ3 `

S2 : Ψ′′ ⊗Ψ3, that is,Ψ′
2 ` S2 : Ψ′.

157

• Case (S1).S ism := e, andM1 = M [m 7→ v] where〈e, M〉 ⇓ v. There are two

cases. First,Γ(m) = σ. By (TS2), [[e]]〈c, c1, `,H〉 = 〈Pe, λπ . τ z.e′〉, and the

first element ofΨ is c. By Lemma 6.5.3 andE ; η � Ψ, we have〈Θ, M, E〉 ;∗

〈Θ1, M1, E1〉 such thatE1 ; η � c1. By (TS2), the code ofc1 ism := e′; s′ where

[[c]]Ψ = 〈s′,Ψ′〉. Supposeh1 is the host wherec1 resides. By rule (DM),A(m) ≤

A(h1). SinceA(R) 6≤ lA, we haveA(h1) 6≤ lA, which means thath1 is available

to finish executing the thread of〈c1, η〉. Sincem is the only location updated in

this evaluation step, andm is also updated during executing the target program,

we haveΓ′ ` M2 ≈A6≤lA M1. By rule (TS2),[[c]]Ψ′ = 〈s′,Ψ〉. By Lemma 6.5.4,

〈Θ1, M1, E1〉 ;∗ 〈Θ′, M′, E ′〉 in finite steps such thatE ′ ; η′ � Ψ′. In addition,

S2 is skip, andΨ′ ` skip : Ψ′.

Second,Γ(m) = σ@Qm. By rule (DS),A(R) ≤ A(H, LT[I(m)]). As a result, at

least aLT[I(m)]-qualified subsetH ′ ofH are available to invokewrite[`,m, c2, η].

SinceA(`) 6≤ lA, at least a quorum ofQm is available. The available quorum is

able to finish executing thewrite reactor and invokec2 onQ. By rule (TS1), the

code ofc2 is s′. Due toA(`) 6≤ lA, the available hosts inQ have sufficient in-

tegrity so that the remote requests sent bys′ would be accepted. By Lemma 6.5.4,

〈Θ1, M1, E1〉 ;∗ 〈Θ′, M′, E ′〉 such thatE ′ ; η′ � Ψ′.

• Case (S2).S is S1;S2, and〈S1, M〉 7−→ 〈S ′′1 , M ′〉. By Ψ ` S : Ψ′, we have

Ψ ` S1 : Ψ1, andΨ1 ` S2 : Ψ′. By induction,〈Θ, M, E〉 ;∗ 〈Θ2, M2, E2〉

such thatE2 ; η � Ψ2, andΨ2 ` S ′1 : Ψ1 andS1 ≈ S ′1. Therefore,S1;S2 ≈ S ′1;S2,

andΨ2 ` S ′1;S2 : Ψ′.

• Case (S3). IfS is{c} skip;S2, the conclusions immediately hold by Lemma 6.5.4.

Otherwise,S is skip;S2. Thus,S1 = S2, andP ; Ψ ` S2 : Ψ′ sinceP ; Ψ `

skip : Ψ.

• Case (S4). S is if e then S1 else S2, and 〈e, M〉 ⇓ n and n > 0. By

158

Lemma 6.5.3,〈Θ, M, E〉 ;∗ 〈Θ1, M, E1〉 such thatE1 ; η � c1. By Theo-

rem 6.5.1, there exists a benchmark execution〈Θ0, M0, E0〉 7−→∗ 〈Θ2, M2, E2〉

such that〈e′[Ac1,η], M2〉 ⇓ n. If I(e) 6≤ L, then by Theorem 5.4.2, for any

h in Qc1, 〈e′[Ac1,η], M(h, t)〉 ⇓ n, and the execution takes the branchs′1. By

Lemma 6.5.4,〈Θ1, M, E1〉 ;∗ 〈Θ′, M′, E ′〉 such thatE ′ ; η ` Ψ2 where[[S1]]Ψ
′ =

〈P1,Ψ2〉.

If I(e) ≤ L, attackers may be able to compromise the integrity ofe and make

the execution to take the second branch. In that case, we have〈Θ1, M, E1〉 ;∗

〈Θ′, M, E ′〉 such thatE ′ ; η � Ψ2 andP ; Ψ2 ` S2 : Ψ′. Furthermore,S1 ≈ S2

sinceI(e) ≤ L.

• Case (S5). By the same argument as case (S4).

• Case (S6).S is while e do S1, 〈e, M〉 ⇓ n, n > 0, andS ′ is S1; while e do S1.

By Lemma 6.5.3,〈Θ, M, E〉 ;∗ 〈Θ′, M′, E ′〉 such thatE ′ ; η � c1. Moreover,

A(R) 6≤ lA implies I(e) 6≤ lA. By Theorem 6.5.1, for anyh in Q(c1) such that

I(h) 6≤ lA, 〈e′[Ac1,η], M′(h, t)〉 ⇓ n. Sincen > 0, “setvar(〈c1, nid〉.z′, z′); s1”

is executed on hosth. By executingsetvar(〈c1, nid〉.z′, z′) and processing

the messages the statement,〈Θ′, M′, E ′〉 ;∗ 〈Θ1, M1, E1〉 such thatE1 ; η′ �

Ψ2. By executings1 and processing the messages sent bys1, 〈Θ1, M1, E1〉 ;∗

〈Θ2, M2, E2〉 such thatE2 ; η′ � Ψ′.

• Case (S7). S is while e do S1, 〈e, M〉 ⇓ n, n ≤ 0, andS ′ is skip. By

Lemma 6.5.3,〈Θ, M, E〉 ;∗ 〈Θ1, M, E1〉 such thatE ′′ ; η � c1. SinceI(e) 6≤

lA, for anyh in Qc1 such thatI(h) 6≤ lA, 〈e′[Ac1,η], M(h, t)〉 ⇓ n, ands2 is exe-

cuted onh. Therefore, by Lemma 6.5.4,〈Θ1, M, E1〉 ;∗ 〈Θ′, M, E ′〉 such that

E ′ ; η′ � Ψ′.

159

Theorem 6.5.2 (Availability preservation).SupposeΓ ;R ; pc ` S : τ , and〈S, M〉 7−→∗

〈S ′, M ′〉, and[[S]]∅ = 〈P, c〉, andM ≈ M. Then〈Θ0, M, E0〉 ;∗ 〈Θ′, M′, E ′〉 such

thatΓ ` M′ ≈A6≤lA M
′

Proof. By induction on the number of steps of〈S, M〉 7−→∗ 〈S ′, M ′〉, we can prove

a stronger result:〈S ′, M ′〉 7−→∗ 〈S ′′, M ′′〉 such thatΓ ;R′′ ; pc′′ ` S ′′ : τ implies

I(pc′′) 6≤ lA, and and〈Θ0, M, E0〉 ;∗ 〈Θ′, M′, E ′〉 such thatΓ ` M′ ≈A6≤lA M
′′ and

E ′ ; η � Ψ′ whereΨ′ = &S ′′,

Suppose〈S, M〉 7−→∗ 〈S1, M1〉 7−→ 〈s′, M ′〉. By induction, the result stated above

holds for 〈S1, M1〉 7−→∗ 〈S ′1, M ′
1〉. If S1 6= S ′1, then the result immediately holds

for 〈S ′, M ′〉 7−→∗ 〈S ′1, M ′
1〉. Otherwise, we have thatΓ ;R1 ; pc1 ` §1 : τ implies

I(pc1) 6≤ lA, and〈Θ0, M, E0〉 ;∗ 〈Θ1, M1, E1〉 such thatΓ ` M1 ≈A6≤lA M1 and

E1 ; η � Ψ1 whereΨ1 = &S1. By Lemma 6.5.6,〈Θ1, M1, E1〉 7−→∗ 〈Θ2, M2, E2〉

such thatΓ ` M2 ≈A6≤lA M ′ and E2 ; η2 � Ψ2 whereΨ2 = &S2 and S ′ ≈ S2.

SupposeS2 = S ′2;S
′′ such thatΓ ;R2 ; pc2 ` S ′2 : stmtR′ and I(pc2) ≤ lA. By

Lemma 6.5.5,〈Θ2, M2, E2〉 ;∗ 〈Θ′, M′, E ′〉 such thatE ′ ; η′ � Ψ′′ whereΨ′′ = &S ′′,

andavailable (M′, R′, lA). Moreover,〈S1, M1〉 7−→∗ 〈S ′′, M ′′〉. SupposeS1 = S ′1;S
′′.

By S1 ≈ S2, the high-availability memory references initialized byS ′1 are also initial-

ized byS ′2. Therefore,Γ ` M′ ≈A6≤lA M
′′.

6.6 Related work

The closest work to the Aimp/DSR translation is the Jif/split system [104, 105] that

introduced the secure program partitioning technique and automatic replication of code

and data. However, the Jif/split system cannot provide strong availability assurance, and

it does not have a formal correctness proof yet, due to its complexity.

160

Program slicing techniques [93, 85] provide information about the data dependen-

cies in a piece of software. Although the use of backward slices to investigate integrity

and related security properties has been proposed [26, 49], the focus of work on program

slicing has been debugging and understanding existing software.

Using program transformation to enforce security policies is a widely used approach.

The SFI (Software Fault Isolation) technique [89] enforces memory safety by a program

transformation, which insertscheckingor sandboxingcode before every operation of

the original program that may violate memory safety. The sandboxing code inserted be-

fore an operation updates the program state such that the operation would never violate

memory safety and the update is equivalent to a no-op if the operation is safe in the orig-

inal program. The checking code inserted before an operation determines whether the

operation would violate memory safety and aborts execution if it would. The SFI tech-

nique has been applied to enforcing other safety properties [78, 22, 67]. Erlingsson and

Schneider proposed the SASI framework [21] that generalizes SFI to any security policy

that can be specified as a security automaton and enforced by a reference monitor [76].

The general program transformation approach has also been applied to implementing

secure function evaluation and preventing timing channels. Fairplay [50] is a system

implementing generic secure function evaluation. Fairplay uses a compiler to translate

a two-party secure function specified in a high-level procedural language into low-level

Boolean circuits evaluated in a manner suggested by Yao [98].

Agat [3] proposed a padding transformation that eliminates the timing channels in

the source program with respect to a target execution model with observable timing

information.

161

Chapter 7

Conclusions
This thesis proposes a unified approach to building distributed programs that enforce

end-to-end confidentiality, integrity and availability policies, within a common frame-

work of program analysis and transformation. The key innovative idea is that end-to-end

availability policies can also be enforced by a form of noninterference and it is thus pos-

sible to apply the techniques for enforcing confidentiality and integrity policies (such as

static information flow control and secure program partitioning) to enforcing end-to-end

availability policies. Based on the idea, this thesis presents

• a universal decentralized label model for specifying end-to-end security policies,

• a sequential language Aimp with a security type system ensuring that a well-typed

program enforces the security policies (including availability policies) specified as

type annotations,

• a distributed language DSR that uses quorum replication and a form of multipart

timestamps to enforce availability policies without sacrificing confidentiality and

integrity, and

• a formal translation from Aimp to DSR, which allows programmers to use Aimp

to develop applications running on distributed systems.

This thesis proves that if a well-typed Aimp programS is translated into a DSR

programP with respect to a trust configuration, then the distributed target programP

enforces the security policies of the source in the given trust configuration. Therefore,

this constructive approach for building secure distributed programs is correct in theory.

Whether this approach is practical is not addressed in this thesis because both Aimp and

DSR are minimal in terms of language features. Nevertheless, previous work on the

Jif/split system provides some evidence that the constructive approach is practical by

162

showing more examples, including various auction applications and an implementation

of the battleship game. To some extent, the theoretical result of this thesis and the ex-

perimental result of the Jif/split system complement each other, as the Jif/split compiler

and the Aimp/DSR translator follow the same principles.

163

BIBLIOGRAPHY

[1] Mart́ın Abadi, Michael Burrows, Butler W. Lampson, and Gordon D. Plotkin.
A calculus for access control in distributed systems.TOPLAS, 15(4):706–734,
1993.

[2] Mart́ın Abadi and Luca Cardelli.A Theory of Objects. Monographs in Computer
Science. Springer-Verlag, New York, 1996.

[3] Johan Agat. Transforming out timing leaks. InProc. 27th ACM Symp. on Prin-
ciples of Programming Languages (POPL), pages 40–53, Boston, MA, January
2000.

[4] Divyakant Agrawal, Arthur J. Bernstein, Pankaj Gupta, and Soumitra Sengupta.
Distributed optimistic concurrency control with reduced rollback. 2(1):45–59,
March 1987.

[5] Lorenzo Alvisi, Dahlia Malkhi, Evelyn Pierce, Michael Reiter, and Rebecca N.
Wright. Dynamic byzantine quorum systems. InInternational Conference on
Dependable Systems and Networks (DSN00), 2000.

[6] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical form.
In The Eleventh International Symposium on Static Analysis Proceedings, pages
100–115, Verona, Italy, 2004.

[7] Anindya Banerjee and David A. Naumann. Secure information flow and pointer
confinement in a Java-like language. InProc. 15th IEEE Computer Security Foun-
dations Workshop, June 2002.

[8] Rida A. Bazzi. Synchronous byzantine quorum systems. InProceedings of
the Sixteenth Annual ACM Symposium on Principles of distributed computing
(PODC 97), pages 259–266, Santa Barbara, California, United States, 1997.

[9] D. E. Bell and L. J. LaPadula. Secure computer systems: mathematical foun-
dations and model. Technical Report M74-244, MITRE Corp., Bedford, MA,
1973.

[10] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition and
Multics interpretation. Technical Report ESD-TR-75-306, MITRE Corp. MTR-
2997, Bedford, MA, 1975. Available as DTIC AD-A023 588.

[11] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group

164

multicast. InACM Transactions on Computer Systems, volume 9(3), August
1991.

[12] Matt Bishop.Computer Security: Art and Science. Addison-Wesley Professional,
2002.

[13] A. Chan and R. Gray. Implementing distributed read-only transactions.IEEE
Transactions on Software Engineering, SE-11(2):205–212, February 1985.

[14] David Clark and David R. Wilson. A comparison of commercial and military
computer security policies. InProc. IEEE Symposium on Security and Privacy,
pages 184–194, 1987.

[15] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in par-
titioned networks.Computing Surveys, 17(3):341–370, September 1985.

[16] Dorothy E. Denning. A lattice model of secure information flow.Comm. of the
ACM, 19(5):236–243, 1976.

[17] Dorothy E. Denning.Cryptography and Data Security. Addison-Wesley, Read-
ing, Massachusetts, 1982.

[18] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow.Comm. of the ACM, 20(7):504–513, July 1977.

[19] Department of Defense.Department of Defense Trusted Computer System Evalu-
ation Criteria, DOD 5200.28-STD (The Orange Book) edition, December 1985.

[20] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. La-
bels and event processes in the Asbestos operating system. InProc. 20th ACM
Symp. on Operating System Principles (SOSP), October 2005.

[21] Ulfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies: A
retrospective. InProceedings of the New Security Paradigm Workshop, Caledon
Hills, Ontario, Canada, 1999.

[22] David Evans and Andrew Twyman. Flexible policy-directed code safety. InProc.
IEEE Symposium on Security and Privacy, Oakland, May 1999.

[23] R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of a

165

system design.Proc. 6th ACM Symp. on Operating System Principles (SOSP),
ACM Operating Systems Review, 11(5):57–66, November 1977.

[24] J. S. Fenton. Memoryless subsystems.Computing J., 17(2):143–147, May 1974.

[25] David Ferraiolo and Richard Kuhn. Role-based access controls. In15th National
Computer Security Conference, 1992.

[26] George Fink and Karl Levitt. Property-based testing of privileged programs.
In Proceedings of the 10th Annual Computer Security Applications Conference,
pages 154–163, Orlando, FL, 1994. IEEE Computer Society Press.

[27] Riccardo Focardi and Roberto Gorrieri. A classification of security properties for
process algebras.Journal of Computer Security, 3(1):5–33, 1995.

[28] Simon Foley, Li Gong, and Xiaolei Qian. A security model of dynamic labeling
providing a tiered approach to verification. InIEEE Symposium on Security and
Privacy, pages 142–154, Oakland, CA, 1996. IEEE Computer Society Press.

[29] C. Fournet and G. Gonthier. The Reflexive CHAM and the Join-Calculus. InProc.
ACM Symp. on Principles of Programming Languages (POPL), pages 372–385,
1996.

[30] D. K. Gifford. Weighted voting for replicated data. InProc. of the Seventh
Symposium on Operating Systems Principles, pages 150–162, Pacific Grove, CA,
December 1979. ACM SIGOPS.

[31] Joseph A. Goguen and Jose Meseguer. Security policies and security models. In
Proc. IEEE Symposium on Security and Privacy, pages 11–20, April 1982.

[32] James W. Gray, III. Probabilistic interference. InProc. IEEE Symposium on
Security and Privacy, pages 170–179, May 1990.

[33] Joshua D. Guttman et al. Trust management in strand spaces: A rely-guarantee
method. InProc. European Symposium on Programming, pages 325–339, April
2004.

[34] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with se-
crecy and integrity. InProc. 25th ACM Symp. on Principles of Programming
Languages (POPL), pages 365–377, San Diego, California, January 1998.

166

[35] M. Herlihy. A quorum-consensus replication method for abstract data types.ACM
Transactions on Computer Systems, 4(1):32–53, February 1986.

[36] C. A. R. Hoare. Communicating sequential processes.Comm. of the ACM,
21(8):666–677, August 1978.

[37] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure informa-
tion flow. In Proc. 29th ACM Symp. on Principles of Programming Languages
(POPL), pages 81–92. ACM Press, June 2002.

[38] John Hopcroft and Jeffrey Ullman.Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, Reading, MA, 1979.

[39] Sebastian Hunt and David Sands. On flow-sensitive security types. InProc. 33th
ACM Symp. on Principles of Programming Languages (POPL), pages 79–90,
Charleston, South Carolina, USA, January 2006.

[40] Cliff B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Transactions on Programming Languages and Systems, 5(4):596–
619, 1983.

[41] Ari Juels and John Brainard. Client puzzles: A cryptographic countermeasure
against connection depletion attacks. InProceedings of NDSS’99 (Network and
Distributed System Security Symposium), pages 151–165, 1999.

[42] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Soft-
ware Distributed Shared Memory. InProc. of 19th Int’l Symp. on Computer
Architecture, pages 13–21, Queensland, Australia, May 1992.

[43] R. Ladin, B. Liskov, and L. Shrira. Lazy replication: Exploiting the semantics
of distributed services (extended abstract). InProceedings of the Fourth ACM
European Workshop on Fault Tolerance Support in Distributed Systems, Bologna,
Italy, September 1990.

[44] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing High Availability
Using Lazy Replication.ACM Transactions on Computer Systems, 10(4):360–
391, November 1992.

[45] Stephane Lafrance and John Mullins. Using admissible interference to detect de-
nial of service vulnerabilities. In6th International Workshop on Formal Methods,
pages 1–19, July 2003.

167

[46] Leslie Lamport. Proving the correctness of multiprocess programs.IEEE Trans-
actions on Software Engineering, SE-3(2):125–143, March 1977.

[47] Peng Li, Yun Mao, and Steve Zdancewic. Information integrity policies. In
Proceedings of the Workshop on Formal Aspects in Security and Trust, September
2003.

[48] Mark C. Little and Daniel McCue. The Replica Management System: a scheme
for flexible and dynamic replication. InProceedings of the 2nd International
Workshop on Configurable Distributed Systems, pages 46–57, Pittsburgh, March
1994.

[49] James R. Lyle, Dolores R. Wallace, James R. Graham, Keith. B. Gallagher,
Joseph. P. Poole, and David. W. Binkley. Unravel: A CASE tool to assist evalua-
tion of high integrity software. IR 5691, NIST, 1995.

[50] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—a se-
cure two-party computation system. InProceedings of the 13th Usenix Security
Symposium, pages 287–302, San Diego, CA, August 2004.

[51] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. InProc. of the
29th ACM Symposium on Theory of Computing, pages 569–578, El Paso, Texas,
May 1997.

[52] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Small byzantine quo-
rum systems. InInternational Conference on Dependable Systems and Networks
(DSN02), June 2002.

[53] Catherine J. McCollum, Judith R. Messing, and LouAnna Notargiacomo. Beyond
the pale of MAC and DAC—defining new forms of access control. InProc. IEEE
Symposium on Security and Privacy, pages 190–200, 1990.

[54] Daryl McCullough. Specifications for multi-level security and a hook-up prop-
erty. InProc. IEEE Symposium on Security and Privacy. IEEE Press, May 1987.

[55] M. Douglas McIlroy and James A. Reeds. Multilevel security in the UNIX tradi-
tion. Software—Practice and Experience, 22(8):673–694, August 1992.

[56] John McLean. The algebra of security. InIEEE Symposium on Security and
Privacy, pages 2–7, Oakland, California, 1988.

168

[57] John McLean. Security models and information flow. InProc. IEEE Symposium
on Security and Privacy, pages 180–187, 1990.

[58] John McLean. A general theory of composition for trace sets closed under selec-
tive interleaving functions. InProc. IEEE Symposium on Security and Privacy,
pages 79–93, May 1994.

[59] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[60] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.Information
and Computation, 100(1):1–77, 1992.

[61] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conver-
sion. pages 271–283, 1996.

[62] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In
Proc. 26th ACM Symp. on Principles of Programming Languages (POPL), pages
228–241, San Antonio, TX, January 1999.

[63] Andrew C. Myers and Barbara Liskov. A decentralized model for information
flow control. InProc. 17th ACM Symp. on Operating System Principles (SOSP),
pages 129–142, Saint-Malo, France, 1997.

[64] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentral-
ized label model.ACM Transactions on Software Engineering and Methodology,
9(4):410–442, October 2000.

[65] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. Jif: Java information flow. Software release, at
http://www.cs.cornell.edu/jif, July 2001–.

[66] Jens Palsberg and Peter Ørbæk. Trust in theλ-calculus. InProc. 2nd Interna-
tional Symposium on Static Analysis, number 983 in Lecture Notes in Computer
Science, pages 314–329. Springer, September 1995.

[67] Raju Pandey and Brant Hashii. Providing fine-grained access control for java
programs. InECOOP ’99 Conference Proceedings, Lisbon, Portugal, June 1999.

[68] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. Walker, E. Walton,
J. Chow, D. Edwards, S. Kiser, and C. Kline. Detection of mutual inconsistency in
distributed systems.IEEE Transactions on Software Engineering, SE-9(3):240–
247, May 1983.

169

[69] Charles P. Pfleeger and Shari Lawrence Pfleeger.Security in Computing. Prentice
Hall PTR, Upper Saddle River, New Jersey, third edition, 2003.

[70] François Pottier and Vincent Simonet. Information flow inference for ML. In
Proc. 29th ACM Symp. on Principles of Programming Languages (POPL), pages
319–330, 2002.

[71] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. InACM ’72: Proceedings of the ACM annual conference, pages 717–
740, 1972.

[72] Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement for dis-
tributed programs. InProceedings of the 9th International Static Analysis Sympo-
sium, volume 2477 ofLNCS, Madrid, Spain, September 2002. Springer-Verlag.

[73] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow se-
curity. IEEE Journal on Selected Areas in Communications, 21(1):5–19, January
2003.

[74] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

[75] Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial.ACM Computing Surveys, 22(4):299–319, December 1990.

[76] Fred B. Schneider. Enforceable security policies.ACM Transactions on Infor-
mation and System Security, 3(1):30–50, 2001. Also available as TR 99-1759,
Computer Science Department, Cornell University, Ithaca, New York.

[77] Zhong Shao and Andrew W. Appel. Space-efficient closure representations. In
LISP and Functional Programming, pages 150–161, 1994.

[78] Christopher Small. A tool for constructing safe extensible c++ systems. In
Proceedings of the Third USENIX Conference on Object-Oriented Technologies,
pages 175–184, Portland, Oregon, USA, June 1997.

[79] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded
imperative language. InProc. 25th ACM Symp. on Principles of Programming
Languages (POPL), pages 355–364, San Diego, California, January 1998.

[80] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen,
and Jay Lepreau. The flask security architecture: System support for diverse

170

security policies. InThe Eighth USENIX Security Symposium Proceedings, pages
123–139, August 1999.

[81] Sun Microsystems.Java Language Specification, version 1.0 beta edition, Octo-
ber 1995. Available atftp://ftp.javasoft.com/docs/javaspec.ps.zip.

[82] David Sutherland. A model of information. InProc. 9th National Security Con-
ference, pages 175–183, Gaithersburg, Md., 1986.

[83] Ian Sutherland, Stanley Perlo, and Rammohan Varadarajan. Deducibility security
with dynamic level assignments. InProc. 2nd IEEE Computer Security Founda-
tions Workshop, Franconia, NH, June 1989.

[84] R. H. Thomas. A majority consensus approach to concurrency control for multi-
ple copy databases.ACM Transactions on Database Systems, 4(2):180–209, June
1979.

[85] Frank Tip. A survey of program slicing techniques.Journal of Programming
Languages, 3:121–189, 1995.

[86] Stephen Tse and Steve Zdancewic. Run-time principals in information-flow type
systems. InIEEE Symposium on Security and Privacy, Oakland, CA, May 2004.

[87] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum
typings. InProc. 10th IEEE Computer Security Foundations Workshop. IEEE
Computer Society Press, 1997.

[88] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for
secure flow analysis.Journal of Computer Security, 4(3):167–187, 1996.

[89] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Ef-
ficient software-based fault isolation. InProc. 14th ACM Symp. on Operating
System Principles, pages 203–216. ACM Press, December 1993.

[90] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS distributed
operating system. InProceedings of the 9th Symposium on Operating Systems
Principles, Bretton Woods, NH, October 1983. ACM.

[91] David Walker, Lester Mackey, Jay Ligatti, George Reis, and David August. Static
typing for a faulty lambda calculus. InACM SIGPLAN International Conference
on Functional Programming, September 2006. To appear.

171

[92] William E. Weihl. Distributed Version Management for Read-only Actions.IEEE
Transactions on Software Engineering, SE-13(1):55–64, January 1987.

[93] Mark Weiser. Program slicing.IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

[94] Clark Weissman. Security controls in the ADEPT-50 time-sharing system. In
AFIPS Conference Proceedings, volume 35, pages 119–133, 1969.

[95] John P. L. Woodward. Exploiting the dual nature of sensitivity labels. InIEEE
Symposium on Security and Privacy, pages 23–30, Oakland, California, 1987.

[96] Hongwei Xi. Imperative programming with dependent types. InProceedings of
15th Symposium on Logic in Computer Science, Santa Barbara, June 2000.

[97] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Proc. 26th ACM Symp. on Principles of Programming Languages (POPL), pages
214–227, San Antonio, TX, January 1999.

[98] A. Yao. How to generate and exchange secrets. InProceedings of the twenty-
seventh annual IEEE Symposium on Foundations of Computer Science, pages
162–167, 1986.

[99] Che-Fn Yu and Virgil D. Gligor. A specification and verification method for
preventing denial of service. InProc. IEEE Symposium on Security and Privacy,
pages 187–202, Oakland, CA, USA, April 1988.

[100] Aris Zakinthinos and E. Stewart Lee. A general theory of security properties and
secure composition. InProc. IEEE Symposium on Security and Privacy, Oakland,
CA, 1997.

[101] Steve Zdancewic and Andrew C. Myers. Secure information flow and CPS. In
Proc. 10th European Symposium on Programming, volume 2028 ofLecture Notes
in Computer Science, pages 46–61, 2001.

[102] Steve Zdancewic and Andrew C. Myers. Secure information flow via linear con-
tinuations.Higher Order and Symbolic Computation, 15(2–3):209–234, Septem-
ber 2002.

[103] Steve Zdancewic and Andrew C. Myers. Observational determinism for con-
current program security. InProc. 16th IEEE Computer Security Foundations
Workshop, pages 29–43, Pacific Grove, California, June 2003.

172

[104] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Se-
cure program partitioning.ACM Transactions on Computer Systems, 20(3):283–
328, August 2002.

[105] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve Zdancewic. Using
replication and partitioning to build secure distributed systems. InProc. IEEE
Symposium on Security and Privacy, pages 236–250, Oakland, California, May
2003.

[106] Lantian Zheng and Andrew C. Myers. Dynamic security labels and noninterfer-
ence. InProc. 2nd Workshop on Formal Aspects in Security and Trust, IFIP TC1
WG1.7. Springer, August 2004.

[107] Lantian Zheng and Andrew C. Myers. Dynamic security labels and noninterfer-
ence. Technical Report 2004–1924, Cornell University Computing and Informa-
tion Science, 2004.

173

