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This thesis introduces new techniques to build distributed applications that are secure
by construction, satisfying strong, end-to-end policies for confidentiality, integrity and
availability. The new techniques are designed to solve the problem of how to spec-
ify, analyze and enforce end-to-end availability policies in distributed settings, without
jeopardizing the enforcement of confidentiality and integrity policies. This thesis also

presents a correctness proof for these techniques.
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Chapter 1
Introduction

Distributed computing systems are ubiquitous, yet it is currently difficult to make strong
statements about the security provided by a distributed system as a whole, especially if
some of the participants in a distributed computation do not trust other participants or the
computing software and hardware they provide. Distributed systems serving mutually
distrusting principals include clinical and financial information systems, business-to-
business transactions, and joint military information systems.

This thesis proposes a unified approach (within a common framework of program
analysis and transformation) to building distributed programs that entrdeo-end
confidentiality, integrity and availability policies, in a system with untrusted hosts.

Informally, an end-to-end confidentiality policy of dafaspecifies who can learn
aboutd; an end-to-end integrity policy af specifies who can affeet an end-to-end
availability policy ofd specifies who can makéunavailable { is availableif the issuer
of an authorized access requestitwill eventually get the value of). These policies
regulate the behaviors of the whole system and can be viewed as an application of the
end-to-end principle [74] to specifying security policies.

End-to-end confidentiality and integrity policies are also known as information flow
policies, since they impose restrictions on how information is propagated throughout the
system. Dynamic information flow control mechanisms, including mandatory access
control (MAC) [9, 19], use run-time checks to ensure that information does not flow to
a place protected by a weaker confidentiality policy or a stronger integrity policy. Al-
though widely used in practice, those dynamic mechanisms suffer from high run-time
overheads and covert exception channels associated with run-time security checks. Fur-
ther, these dynamic mechanisms abort the programs that fail a run-time check, making

it difficult to enforce availability policies. Denning [18] showed how to use static pro-



gram analysis to ensure that programs do not violate its information flow policies, and
this approach has been instantiated in a number of languages in which the type system
implements a similar static analysis (e.g., [88, 34, 102, 70, 7, 73]). Although static in-
formation flow control does not have the shortcomings of those dynamic mechanisms, it
remains a challenge to developaundstatic analysis for distributed programs running

in a system with untrusted hosts.

End-to-end availability policies specify availability requirements in terms of which
principal can make the concerned data unavailable. The expressiveness of availabil-
ity policies thus depends on the expressiveness of principals, which can represent not
only users but also hardware, attacks or defense mechanisms, as shown in the following

examples:

e power: the main power supply of a system, whose failure may bring down the

entire system.

e hostset(n): a host set containing hosts. This principal can be used to specify
the minimum numberr( in this case) of host failures needed to bring down a

system. This is a common way of specifying availability requirements [75].

e puzzle: the puzzle generated by a puzzle-based defense mechanism [41] for DoS
attacks. This principal can be used to specify the availability requirement that the

system tolerates DoS attacks from attackers who cannot feasibly solve the puzzle.

Intuitively, end-to-end availability policies prevent attackers from making data unavail-
able. However, these policies do not ensure data to be available eventually. For example,
a system may contain an infinite loop (such as an event handler), and any output to be
produced after the loop will not be available, even if there are no attacks. A theoreti-
cal implication is that enforcing such availability policies does not require solving the

halting problem [38].



1.1 Security by construction

Following the idea of static information flow control, a straightforward approach to
building a secure distributed program is to develop a static program analysis that can
determine whether a distributed program enforces its security policies. However, this
analytic approachs not appealing for distributed systems composed of hosts that are
heterogeneously trusted by different principals. In such a system, the distribution of
data and computation depends on thest configuration that is, the trust relationship
between principals and hosts. For example, Alice’s confidential data can only be dis-
tributed to hosts that are trusted by Alice to protect data confidentiality. Such security
concerns may be orthogonal to application logic, increasing the burden of software de-
velopment. In addition, with this approach, programmers have to figure out how to adapt
a program to changing trust configurations, and thus the burden of software maintenance
is also increased.

This thesis pursues eonstructive approachwhich allows programmers to write
high-level source program as if the program would be run on a single trusted host, and
uses a compiler to translate the source program into a secure distributed program with
respect to a given trust configuration. Programmers can thus focus on the application
logic. Moreover, if the trust configuration changes, a mere recompilation of the source
code with respect to the new configuration will generate a new secure distributed pro-

gram.

1.1.1 Example

The advantages of the constructive approach can be illustrated by a simple example.
Suppose Alice tries to bid for something from Bob, and Bob has three items that satisfy

Alice’s requirement and offers a price for each item. The offers are stored in an ordered



2. chage(cci#hid)

(A) (B)

2. chage(accthid)

2. chage(accthid

1. offers

2. chage(accthid)

(®) (D)

Figure 1.1: Distributed implementations of the bidding application

list, and Alice is forced to accept the first offer in the list that is lower than or equal to
her bid. During the transaction, Alice and Bob should not be able to update the bid or

the offers, and they should not be able to abort the transaction alone.

Using the analytic approach

Figure 1.1 shows several distributed implementations of the application. For simplicity,
only network messages are shown, which are labeled with sequence numbers indicating

their order of occurrence. The computations done at each local host are described below:

(A) Hosth, (a host fully controlled and trusted by Alice) sends Alice’s credit card
number and bid to hogtz (a host fully controlled and trusted by Bob). Thep
compares the bid with Bob’s offers and sends a payment request thyoghich
handles charging Alice’s credit card account. Ohgegets a response fromp,

it sends the offer number to,. This implementation corresponds to the common



(B)

(©)

(D)

scenario in which Alice places the bid on a web site managed by Bob.

There are several security problems with this implementation. First, Alice may
not trusth g to keep her credit card number confidential. Second, Bob has the full
control of hz, and is able to change the bid and the offers, or simply abort the

transaction.

Suppose host is trusted by both Alice and Bob. Then, andhz can send
all the data toh, which compares Alice’s bid with Bob’s offers and sends the
payment request thp. This implementation relies on the existence of a host fully

trusted by all the participating principals.

Suppose the system is composed of olly hg andhp. There are still ways

to improve security over implementation (A). First, Alice’s credit card number is
simply a reference to Alice’s payment account, and it is possible to use a public
identifier acct as the account reference, such as the email address in the Pay-
Pal service. Second, the data (including the bid and the offers) and computation
can be replicated oh, andhg, which both send the payment requestita If

the requests fromh 4 andhp are not the saméyp can detect that some host is
compromised and abort the transaction. Therefore, Alice or Bob cannot modify
the bid and the offers without being detected. The main problem with this im-
plementation is that eithér, andh g can send a fabricated request and cause the

transaction to be aborted.

Suppose Alice and Bob do not fully trust. Instead, they trust that at most one
host amongd 4, hz andh; might fail. Then Alice and Bob would be satisfied with
the security assurance of this implementation, in which the data and computation
is also replicated oh 4, hp andhy, and hosthp accepts the payment request if

the request comes from bokh, andhg or from Ay



t :=0; a := -1;

while (t < 3) do
if (bid >= offer[t]) then acct := acct - bid; a := t; break;
else t =t + 1;

result := a;

a b~ W NP

Figure 1.2: Bidding program

As Figure 1.1 shows, determining how to securely distribute and replicate data and
computation may be subtle and error-prone. Further, if the corresponding trust config-
uration changes, a distributed program may need to undergo significant modification to
adapt to the new configuration. For example, in (B)uif is detected to be compro-
mised, and there are no other hosts trusted by both Alice and Bob, then the program

needs to be redesigned.

Using the constructive approach

Although the implementations in Figure 1.1 are different, they all try to perform the
same computation, which can be described by the sequential program shown in Fig-
ure 1.2. Using the constructive approach, this simple program is all that needs to be
written by programmers.

As Figure 1.3 shows, given the source program and a trust configuration, a compiler
generates a secure distributed program or report an error when there are not enough
trusted hosts in the system. With this approach, programmers can focus on application
logic, since the trust configuration of the system is transparent to them. Further, only

recompilation is needed to cope with changing trust configurations.

1.1.2 Secure program partitioning and replication

Earlier work on the Jif/split system [104, 105] explored the constructive approach, us-

ing end-to-end confidentiality and integrity policies to guide automatic partitioning and



t:=0;a:=-1,
while (t < 3)do
if (bid > offer[t]) then
acct:= acct- bid;
a:=t; break;
elset:=t+1,
result:=a;

Alice trusts h4, and h; Bob
trustsh g andht; Alice andBob
trusth p to beavailable

Alice trustsh 4; Bob trustshpg;
Alice and Bob trust hp to be
available, and they believe that
atmostonehostamongh 4, hp
andh would fail

Alice trusts h4 and hy; Bob
trustsh g andhr; Alice andBob
trusth p to beavailable

2. chage(acctbid)

2. chage(accthid)

1. offers

2. chage(acctbid)

Error: trustconfigurationtoo weak

Figure 1.3: Security by construction

replication of code and data onto a distributed system.

In the Jif/split system, source programs are written in Jif [62, 65], which extends

Java with type-based static information flow control. The Jif/split compiler translates

a source program into a distributed Java program that enforces the information flow

policies specified as type annotations in the source.

1.1.3 Whatis new

The Jif/split system demonstrates the feasibility of the constructive approach to building

secure distributed programs. However, the Jif/split system does not support end-to-end

availability policies, and there is no correctness proof for the translation algorithm of

the Jif/split compiler, partially because of the complexity of the Jif language.

In comparison to the work on the Jif/split system, this thesis makes two major contri-



butions. First, this thesis proposes a way of analyzing and enforcing availability policies,
based on the idea of static information flow control. Second, this thesis formalizes the
core part of the Jif/split translation, extends it with support for availability, and proves

the correctness of the translation.

1.2 Enforcing availability policies

Although availability is often considered one of the three key aspects of information
security (along with confidentiality and integrity), availability assurance has been largely
divorced from other security concerns. This thesis starts to bridge the gap by providing a
unified way of specifying, analyzing and enforcing end-to-end confidentiality, integrity
and availability policies.

End-to-end confidentiality and integrity policies can be enforced by ensuring that the
system obey noninterference [31]. In general, an end-to-end availability policy on some
datad specifies that principalg,, ..., p, can maked unavailable, and such a policy
can also be enforced by a form of noninterference: principals othergthan. , p,, do
not interfere with the availability of. This suggests that the idea of static information
flow control can be applied to availability too. This thesis introduces a sequential lan-
guage Aimp with a security type system that ensures a well-typed program satisfies the
noninterference properties that enforce the end-to-end policies (including availability
policies) specified as type annotations.

An interesting challenge in designing the Aimp type system is to analyze the depen-
dencies between integrity and availability. Consider the code in Figure 1.2. Attackers
can make the outputesult unavailable by compromising the integrity of(making
t always less than 3). Intuitively, the integrity policy oineeds to be as strong as the
availability policy ofresult. To enable comparing an integrity policy with an availabil-

ity policy, this thesis proposes a universal label model, in which confidentiality, integrity



and availability labels have the same form and the same interpretation.

To enforce availability policies in a distributed setting, this thesis presents the DSR
(Distributed Secure Reactors) language for describing distributed, concurrent computa-
tion on replicated hosts. The DSR language makes the following specific contributions

related to enforcing availability policies:

e The DSR language supports quorum replication [30, 35], which is extended to be
guided by explicit security policies. Voting replicas can enforce both integrity and

availability policies.

e A novel timestamp scheme is used to coordinate concurrent computations running

on different replicas, without introducing covert channels.

Applying the constructive approach, this thesis presents a translation from Aimp to
DSR, which generates a secure distributed DSR program from an Aimp program and a
trust configuration. The translation automatically figures out how to replicate data and

code in quorum systems to enforce integrity and availability policies.

1.3 Proving correctness

In Aimp and DSR, security policies are explicitly defined uslabelsthat annotate

data items, computations, hosts and principals with security levels. In a system with
mutually distrusted principals, attackers are treated as principals that have the power
to affect certain behaviors of the system. The power of attackers is represented by a
label l,. A label islow-securityif it is lower than or equal td,, and high-security
otherwise. Intuitively, the policies specified by labels require that attackers cannot learn
information about data with high-confidentiality labels, affect data with high-integrity
labels, or make data with high-availability labels unavailable. Thus, a system is secure

if the following three noninterference [31] properties are satisfied:



Proving thetrustworthinessof P

S is well-typed S satisfiedNI 4

)] —

DSR
®)

P satisfiedNI;
()]
P preseres the high-| (5) [P satisfieiI 4

integrity semanticsand
availability of S

Figure 1.4: Trustworthiness by construction

e Confidentiality noninterferenc&i{.): attackers cannot infer high-confidentiality
data, or high-confidentiality inputs cannot interfere with low-confidentiality out-

puts that are observable to attackers.
¢ Integrity noninterferencal( ;): attackers cannot affect high-integrity data.
¢ Availability noninterferenceNI 4): attackers cannot affect the availability of data

with high-availability labels.

With these concepts, our goal is to prove that the Aimp-DSR translation generates dis-
tributed programs that satisfff -, NI;, andNI 4.

Figure 1.4 shows the proof strategy. A well-typed progrém Aimp is translated
into a DSR progranP, and the translation is denoted p§] = P. The proof thatP

satisfies the noninterference properties is done in the following steps.
(1) We show that the type system of Aimp ensures that a well-typed program satisfies
the noninterference properties. Singées well-typed,S satisfieNT 4.

(2) We show that the translation preserves sound typing. TRus,well-typed be-

causesS is well-typed.

(3) We show that the type system of DSR enforces the confidentiality and integrity

10



noninterference properties. Therefofesatisfie?NI~ andNI;, because’ is well-

typed.

(4) We show thatP always produces the same high-integrity output§ aespite at-
tacks from low-integrity hosts, anft can achieve the same level of availability
asS. In other words, ifS produces a high-availability output, théhalso pro-
duces that output, although the output may be different if it is low-integrity. The
proof relies on the fact tha® satisfiesNI;, which means attackers cannot affect
the high-integrity outputs even if they can compromise some low-integrity hosts

and launch attacks from them.

(5) We show thatP satisfiedNI 4, based on thaP can achieve the same availability

ass, andS satisfieNI 4.

1.4 Limitations

The Aimp/DSR instantiation of the constructive approach to building secure distributed
programs has a few limitations. First, source language Aimp is a sequential language
and cannot be used to express concurrent computation. However, many useful applica-
tions, including the bidding example in Figure 1.2, are sequential.

Second, the DSR type system does not deal with timing channels. Since Aimp is
sequential, a target DSR program generated from an Aimp program does not cause
race conditions and internal timing channels [103]. Attackers may still be able to infer
confidential information by timing the network messages they can observe. However,
this kind of timing channels is more noisy than internal timing channels, and it is largely
an orthogonal issue, partially addressed by ongoing work [3, 72].

Third, in a distributed system, attackers can cause certain execution paths to diverge

(going into an infinite loop or getting stuck) by compromising some hosts, and create

11



termination channels. This issue is also not addressed in this thesis, partly because
termination channels generally have low bandwidth.

Finally, in this thesis, the formal notion of availability glosses over another aspect of
availability: timeliness. How soon does an output have to occur in order to be considered
to be available? For real-time services, there may be hard time bounds beyond which
a late output is useless. Reasoning about how long it takes to generate an output adds

considerable complexity, and this is left for future work.

1.5 Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the universal
label model for specifying end-to-end security policies. Chapter 3 describes source lan-
guage Aimp. Chapter 4 describes the features and mechanisms in DSR, which support
performing secure distributed computation. Chapter 5 presents the formal semantics of
DSR and proves the type system of DSR enforces confidentiality and integrity noninter-
ference properties. Chapter 6 presents a translation from Aimp to DSR, and prove that

the translation generates secure distributed programs. Chapter 7 concludes.

12



Chapter 2
Universal decentralized label model

A label model describes how to specify and analyzeurity labelswhich are associated
with data to describe the security levels of data and help characterize the restrictions on
data generation and uses. Formally, a label model is a set of |4beith a partial
order relation<. For example{public,secret} with < being{(public,public),
(public, secret), (secret, secret)} forms a simple confidentiality label model, in
which secret represents a higher confidentiality level thamlic.
The decentralized label mod€DLM) [64] allows different users to specify their
own information flow policies in a security label. The DLM is suitable for a system with
mutual distrust, in which different users might have different security requirements.
This chapter introduces a universal DLM, which extends the DLM with support for
specifying and analyzing availability labels. The universal DLM is composed of a set of
decentralized labe/seach of which can be used as a confidentiality, integrity or avail-
ability label. This is possible due to a uniform semantics for decentralized labels, which
interprets a label as a security assumption. Besides simplicity, the major benefit of the

universal DLM is to support analyzing interactions between integrity and availability.

2.1 Security properties, labels and policies

This thesis focuses on the three core security properties on information: confidentiality,
integrity and availability. In the security literature, the three properties (especially in-

tegrity and availability) have many different meanings [69, 12]. In this thesis, a security
propertyp, which may represent the confidentiality, integrity or availability of datis

written and interpreted as follows:

e confidentiality(d), meaning that attackers cannot learn about data

13



e integrity(d), meaning that attackers cannot affect the valué, ofr

e availability(d), meaning that attackers cannot makenavailable.

A security property is often treated as a predicate on the set of all traces of a system.
For example, Zakinthinos and Lee [100] define a security (confidentiality) property as
a predicate that a system satisfies if and only if for any tracé the system, the set
of traces that attackers cannot distinguish frosatisfy another specific predicate. In
particular, their work shows that a noninterference property can be defined as such a
predicate. The security properties considered in this thesis are also closely related to the
notion of noninterference. Intuitively, a system enforcesfidentiality(d) if and only if
the value ot/ does not interfere with any data observable to attackers; a system enforces
integrity(d) and availability(d) if and only if attackers cannot interfere with the value
and availability ofd, respectively. Therefore, a security propestgan also be viewed

as a predicate on the set of all traces of a system.

Security assumptions as labels

It is infeasible to enforce a security property if attackers have unconstrained power, and
security rests on assumptions that constrain the power of attackers. For example, secu-
rity commonly depends on a trusted computing base (TCB), which is assumed immune
to attacks. Furthermore, security assumptions help define the restrictions on the use of
data. For example, consider enforciwnfidentiality(d) under the assumption that user
root is trusted, which says thabot is not controlled by attackers. According to the
assumptionroot may be allowed to learn abodt but not other principals. Defining

the restrictions on the use of data is also the purpose of security labels. Thus, it is nat-
ural to specify security assumptions as labels. Formally, if a lalseassociated with
propertyp, then the semantics ofwritten as[l], describes the security assumptions for

enforcingp.

14



Security policies

A label [ specified on property defines asecurity policy(p: ), which is enforced by a
systems if and only if S satisfiesp under the assumptidfi], or more formally,[{] =
p(S), wherep(S) denotes thatS satisfiesp, and= means “implies”. For example,
(confidentiality(d) : [) is a confidentiality policy oni, and it is enforced if attackers
cannot learn about under the assumptiofi]. Enforcing the policy(p : ) is also
called “enforcingl on p”, or simply “enforcing!” if there is no ambiguity aboup.
For brevity, in a logical proposition, we write for p(S) if it is clear which system is
under consideration. For examp|é] = p(S) can be written a§l] = p if there is no
ambiguity aboutS.

In this thesis, a system is considergetureif it does not violate any policy of the

form (p:1) specified on its data.

2.2 Dependency analysis and noninterference

A computing system processes inputs and produces outputs, creating dependencies be-
tween security properties of those inputs and outputs. Such dependencies capture the
system vulnerabilities that can be exploited by attackers to compromise security proper-

ties. For example, consider a system running the following pseudo-code:
while (¢ > 0) skip;
0 = 1;

This program assigns the inpito the outputb if the value ofi is not positive. Oth-
erwise, the program diverges and the output is unavailable. Thus, the availabiity of
depends on the integrity 6f An attacker can try to exploit this dependency: making

unavailable by affecting the value 6fo make it positive.

15



In a systemsS, propertyp depend®np;, V...V p,, writtenp; V...V p, ~ p, if the
proposition—(p1(S) V...V p,(S)) = —p(S) holds, that is, if all propertieg; through
pn arenotsatisfied inS, thenp is notsatisfied inS. In general, the dependencies caused
by a system can be identified by statically analyzing the code of a system. For example,
by analyzing the code of the above system, we know that the valuésoftomputed
using the value of, and the availability ob is affected by the value af Therefore, the

system causes the following dependencies:

confidentiality(o) ~ confidentiality(i)
integrity(i) ~ integrity(o)
availability(i) ~» availability(o)
integrity(i) ~ availability(o)

We assume that an attacker can interact with a system only by affecting the inputs
and observing the outputs. The interactions between attackers and inputs/outputs of a
system always mean that some security properties are compromised: if attackers can
observe an output, then the confidentiality of the output is compromised; if attackers
can affect the value of an input, then the integrity of the input is compromised; and
if attackers can affect the availability of an input, then the availability of the input is
compromised.

In addition, we assume that a policy is enforced in a system if the enforcement of
the policy is affected not by the system, but by the external environment. In particular, a
system cannot affect how its inputs are generated and how its outputs are used, and thus
the integrity and availability policies on inputs, and the confidentiality policies on out-
puts are assumed to be enforced. This is calledfie environmerdassumption. Based
on this assumption, we have the following theorem, which gives a sufficient condition

for ensuring that a system is secure.

Theorem 2.2.1 (Dependency)Let [, be the label specified on propepty A system is
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secure if it satisfies the following condition:

V0,15 e (01 VoV pro p) = (] = e Ve VD (DP)

Proof. Suppose, by way of contradiction, that the system is not secure and violates a
policy (p:1,). Then[l,] = p does not hold, which implief,,| A —p. Since[l,] holds,

by the safe environment assumption, attackers cannot comprenasectly without
exploiting the system. Thereforg,is compromised because of some interactions be-
tween attackers and the system. As discussed above, those interactions mean that a set
of propertiesps, ..., p, are compromised directly, and for alin {1,... n}, the en-
forcement of policy(p; : {,,) is not affected by the system. By the safe environment

assumption{p; : {,,) is enforced, andl,,] does not hold for alf € {1,...,n}. Since
p iIs compromised due to those interactions, we hawe A ... A —p; = —p, that is,
p1V...Vp,~ p. ByDP,we havdl,] = [l,,]V...V][l,.], which contradicts the fact

that[/,] holds, and/,,] does not hold foi € {1,...,n}. O

By Theorem 2.2.1, a system is secure if it satisfies the following condition that is

equivalent to DP:

Vo1, ppsp- ()] A [V VLD = Ve Vb p (NI

The condition NI says thai does not depend om, V ... V p,, unless their labels
satisfy [I,] = V,<;<,[l,:]- The notion of independence between properties is often
formalized a noninterference [31] property. In practice, DP helps construct a program
dependency analysis and identify the label constraints that need to be verified, while
NI is often used as a semantic security condition in proving the correctness of an en-
forcement mechanism. For both conditions, we only need to reason about the label
constraints of the fornil] = [i1] Vv ... V [i,,] and the dependencies between security

properties. In particular, we do not need to directly reason whéthes p holds.
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2.3 Universal decentralized label model

In the security model discussed in Section 2.1, a security label is interpreted as a secu-
rity assumption, regardless of what kind of security property that the label is specified
on. As aresult, it is possible to construct a universal label model applicable to confiden-
tiality, integrity and availability simultaneously. This is desirable because it allows us
to compare labels specified on different kinds of properties. For example, we can com-
pare an integrity label with an availability label, and reason about dependencies between
integrity and availability.

This section extends the DLM to make it universally applicable to confidentiality,

integrity and availability. And a uniform semantics for labels is presented.

2.3.1 Owned labels

The DLM is designed to let users specify and manage their own confidentiality and
integrity labels. Thus, it is necessary to be able to identify the owner of a label. To
achieve this ability, the DLM is built oowned labelsin which label owners are spec-
ified explicitly. An owned labelD has the formu : p, where user principalk is the
owner of the label, angd is a principal, representing the system entities thabnsiders
non-compromised (not falling under the control of attackers).

This section describes the syntax and semantics of owned labels. The formalization
borrows some ideas from the access control calculus [1] designed by Abadi, Burrows,

Lampson and Plotkin.

Principals

Formally, principals are specified using the following syntax:

Principals u,p == a | * | piAps | p1Vpe
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The meta-variable is an abstract name representing an atomic entity that may affect
the behavior of a system. For examplemay be used to represent a user, a host, the
power supply or other system components. Princiial a top principal whaacts for
every principal. In general, principal acts for principal,, written asp; = p», if p;

can act with the full authority g#,, or in other words, any behavior lpy can be viewed

as a behavior by,. The> relation is reflexive and transitive.

Another useful relation between principals is gpeaks-forelation [1]: p; speaks
for p, if any claim made by, can be viewed as a claim made by Intuitively, the
acts-for relation is stronger than the speaks-for relation, since making a claim is just one
kind of behaviors that a principal may perform.

Itis possible to construct more complex principals using conjunction and disjunction
operators [1]:A andV. The composite principal; Ap- is the principal with exactly the
authority of bothp; andp,. Any behavior by bothy; andp, is viewed as a behavior by
p1/Ap2, and vice versa. It is clear that Ap- is the least upper bound pf andp, with
respect to the- ordering. More concretely; Ap, acts forp; andps; and if principalp
acts forp; andp,, thenp also acts fop; Ap-.

Another constructox is used to construct a group (disjunction): any behavior by
p1 Of po is considered a behavior @f V p,, and vice versa. There are other meaning-
ful principal constructors such ag ‘as R” (the principala in role R) [1, 25], and—a
(the negativeprincipal of a), which represents the principal who has all the authorities
thata does not have. The negative principal can be used to specifyetberation of
duties[14]. Suppose datd can be read only by principal, and datad’ only by —a.

Then no principal other than the top principal can read liotimdd’. This thesis only
considers the conjunctive and disjunctive connectors because these two connectors are
sufficient for specifying expressive end-to-end policies.

We assume that a principal is either compromised or non-compromised. A compro-
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mised principal is controlled by attackers, while a non-compromised principal is not.
More formally, letA be the principal representing all the attackers. Then a pringial

compromised if and only ik > p.

Semantics

The owned label : p explicitly expresses the assumptiondbthatp is non-compromised.

As the label owner, useris able to affect the implications of this label by making claims
about the acts-for relations or whether other principals are non-compromised. For ex-
ample,u may claimp’ > p. Then labek: : p also implies thap’ is non-compromised. In
general, label: : p conveys an implicit assumption thats honest meaning that every
claim made by is true.

Note that a non-compromised principal is not necessarily honest. Furthermore, we
do not assume that a compromised principal is dishonest because the assumption is not
essential, albeit intuitive.

Formally, a security assumption can be expressed by a propositiath the fol-

lowing syntax:
o =goodp | psayso | honestp | py = py | o1Aoy | 01Voy

The interpretation is straightforwardgood p means thap is non-compromised;
p says o means thap claimso; honest p means thap is honest {o. p says 0 = 0);
p1 = p2 means thap; acts forp,. The connectors andV are the standard propositional

“and” and “or”. With this language, the semantics of labep is as follows:
[w:p] = honestu A good p

By the meaning ofp; > po, it is clear thatp; > p, implies good p» = good p1,

p1 says o = py says o, andhonest p; = honest p,. By the definition ofp; A p,, we
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immediately have the following inference rules:

R1. goodp, V good p; < good (p1 Aps)

R2. p; sayso A ps says o < p1 Aps says o

Dually, we have the following rules withy, Vp,:

R3. good p; A good py < good (p1Vps)

R4. p, sayso V py says o < p1Vps says o

By rule (R4), we can prove the following lemma:
Lemma 2.3.1. honest p; V ps < honest p; /\ honest ps

Proof.

honest py V ps

Vo.p1Vpy sayso = o

Vo. py sayso V ps sayso = o

Vo. (p1 sayso = o) A (pg sayso = o)

(Vo.p1 sayso = o) A\ (Vo. py sayso = o)

r ¢ ¢ T 2

honest p; A\ honest py

2.3.2 Decentralized labels

Owned labels allow different principals to specify and manage their security require-
ments. Multiple owned label®,, ..., O, may be specified on the same security prop-
erty p. A secure system needs to enforce all these labgls. . , O,, on p, which amounts
to ensuring?i € {1,...,n}. [O;] = p, or equivalently(\/,_,,[O:]) = p.

Based on this observation, we can wribg, . . ., O,, together as a single lab&l=
{O1,...,0n} and let[l] = V,.,.,[O:]. Then specifying and enforcing,, ..., 0, on

p is equivalent to specifying and enforcin@n p. The labell is called adecentralized
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labelbecause it incorporates security requirements of different principals that generally
do not fall under a centralized authority. Now the security requirements with regard to
a security property can be described by a single label, even in a distributed system with

mutual distrust. This greatly simplifies security analysis.

2.3.3 Comparing labels

A label [, is as high as another labkl| written asl; < [,, if the enforcement of, on
any propertyp implies the enforcement @f on p. Intuitively, if p is enforced under a
weak assumption, themis also enforced under a strong assumption. Therefpre,l,

if and only if [{,] is as strong a§l,], or [I;] = [l2]. By the semantics of owned labels,

the following rule for comparing owned labels immediately follows:

Ug = U1 P2 = P1
Up:pr < Ug:iPo

Consider two decentralized labé|sand/,. Intuitively, if for any owned labeD in
l1, there exists an owned labeliinthat is as high a®, thenl, is as high ag,. Formally,
it is easy to show thatvO € [;. 30’ € I,. O < O') implies[l;] = [lz]. Thus, we have
the following inference rule for comparing decentralized labels:

VO €l,.30" €l,, 0O <O
L <l

The set of all the decentralized labels form a lattice with the followjioig (L) and

meet(7) operations:
Luly=101LUl
ll M lg = {ul\/Ulel\/pz ‘ Up:p1 € ll A Ug:py € lQ}
The join and meet operations are well-defined because of the following theorem, which

implies thatl; LI [, is the least upper bound &f andl, with respect to the< ordering,

andl; M, is the greatest lower bound fandl,.
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Theorem 2.3.1.[1Ul'] = [{] v [I']and[i 1 I'] = [I] A [V]-

Proof. Supposé = {O;,...,0,} andl’ = {Oy,...,0,,}, andO; = u;:p; andO; =
ui:py. Thenl Ul = {Oy,...,0,,0,...,0,,}. Thus,

[Ul]l = (VicicnlOD) V (Vicj<nlO5D) = 1T v [V]-
Forl ', we have the following deduction:

[ = H{uiVuy:pivpjll <i<n, 1<j<m}]
= Vi<i<n, 1<j<mlwi Vg :piVp;]
= V1§i§n, 1<j<m honest ui\/u;- A goodpi\/p;-
= Vlgign, 1<j<m honestu; A honest u; A good p; \ goodp;- (By Lemma 2.3.1 and R3
= Vi<i<n, 1<jemltipi] A fuf:p)]
= V1§i§n([[ui tpi] A \/1§j§m[[ug' p;]])
= Vi<icn(luizp] ATUT)
= (\/1gi§n[[ui :pil) A U]
=[A[]
O

By the definition of the join operation, = () is the bottom of the decentralized label
lattice, sincevl. ) LI I = [. Intuitively, the bottom label represents the strongest security
assumption, and thyg] is the propositiorfalse. The top element of the decentralized
label lattice isT = {x:x}, because for any owned labelp, we haveu:p < x:x.

Having a lattice of labels supports static program analysis [18]. For example, con-
sider an addition expressian + e;. Let A(e;) and A(e;) represent the availability
labels of the results of; ande,. By condition DP, we havel(e; + e3) < A(e;) and
A(e; +e) < Aleq), since the result of; + e, is available if and only if the results ef
ande, are both available. Because the labels form a lattice; + e;) = A(eq) M A(es)
is the least restrictive availability label we can assign to the result efe,. Similarly,

I(e; +e2) = I(e1) M 1(ey) is the least restrictive integrity label for the resultepft e,,
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wherel(e;) and(e;) are respectively the integrity labels@fande,. Dually, if C'(e;)
and C(ey) are the confidentiality labels af, ande,, thenC(e;) < C(e; + e3) and
C(es) < C(e1 + e2). The least restrictive confidentiality label that can be assigned to
the result ofe; + e is C'(eg) U C'(ea).
In addition, with a lattice label model, the DP and NI conditions can be written as:
Vo, 1, s (1 V o N pp~ap) = (L, <1, UL UL, (DP)

Vo, p1,ooapne (L L, U UL )= p1 V... Vp,obp (NI)

2.3.4 Information security labels

In general, a system will need to simultaneously enforce labels on confidentiality, in-
tegrity, and availability for the information it manipulates. These labels can be applied
to information as a single security label, which have the following syntax:

Property namesa € P

Security labels ¢ = {a;=1,...,0, =1,}
Essentially, an information security labél= {«; = [3,...,«, = [,} incorporates
labels on various security properties about a piece of information: names., o,
from a name spack identify the security properties, ands the decentralized label on
the property identified by;. The security labef is composed of decentralized labels,
but does not belong to the DLM itself. To distinguish these two kinds of labels, we call
a decentralized labéla base label The name spacP contains at least’, 7 and A,
representing the confidentiality, integrity and availability properties, respectively. Label
¢ usually has the forfdC'= [;, = [, A= I3}, but can also contain base labels for other
security properties. For example, in a real-time system, we may want to etifoiog
integrity, which means that attackers cannot affect when a piece of data is generated.
Then we can use the nanTé to represent the timing integrity property and specify a
base label on TI to prevent attackers from compromising timing integrity under the

assumptiorj!].
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Given a label, let «;(¢) denote the base label component corresponding.téor
example,C(¢), 1(¢), and A(¢) represent the respective confidentiality, integrity, and
availability components of.

It is convenient to have a single label to incorporate base labels on different proper-
ties. For example, this leads to a more succinct label constraint when analyzing infor-
mation flows. An information flow from datd; to datad, means that the value af,
may depend on the value df. The security implications are that the confidentiality of
d, depends on the confidentiality @f, and the integrity otl, depends on the integrity
of d,. Let/; and/; be the labels ofl; andds, respectively. The dependencies caused by

the information flow impose the following label constraints:
Clh) <C(lz)  I(lz) < I(6)

Based on the two constraints, we can define an information flow orderingr(labels:

Cl) <C(ly)  1(ly) < 1(fy)
0Ty

Information flow fromd; to d, is secure if and only i¥; C /5. In addition, we can

define a join (U) operation on security labels:
LUl ={C=C(L)UC(by), I=1(r) N 1(lz), A= A(ly) M A(l2)}

The join operation is useful in analyzing computation. For example, suppose expres-
sionse; ande, have security labelé;, and/,, respectively. Therd; LI /, is the least
restrictive label that can be assigned to the resul &f e,, as discussed in the previous
section.

It is easy to show that (1, C ¢, Uy andly T ¢y U ly; (2) 41 E fandly, C 4
imply ¢, L4y C ¢, Thus,/; U 4, is a least upper bound éf and/, with respect to thé&-
ordering. Based on the definition of the join operation on information labels, the bottom
label for theC orderingisL = {C'= 1, I =T, A= T}, which satisfiesL Ll ¢ = ¢ if
C={C=1y, I=1y, A=13}.
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2.4 Example

Consider the example in Figure 1.2. Now we can assign formal security labels to vari-

ables accessed by the program:

bid, offer,t,a, result : £y acct: £y

where

lp = {C'=AAB:AVB, = AAB:(AAB)V(BAT)V(AAT), A=1}
¢y ={C =A:A, [ =A:AV(BAT), A=1}

| = AAB:(AAB)V(BAT)V(AAT)V(CLAC2)V(CLAC3)V (C2AC3)

The label ofbid is ¢, in which A represents AliceB represents Bob, ariis a third
party helping to mediate the transaction. The confidentiality lab&l: AVB means that
bothB andA can learn the values of these variables with lalgelThe integrity label
indicates that affecting the value irid requires the cooperation of at least two parties.
For exampleAAB can cooperatively affectid, since they are the two directly involved
parties. IfA andB disagree on the value dfid, the mediatol can keep the transaction
going by agreeing with the value claimed by eitBer A. As a result, botAAT andBAT
can affect the value afid.

The availability component(¢,) is [, which assume8 A A, BAT, AAT, CLAC2,
C1AC3 andC2AC3 to be non-compromised, whete, C2 andC3 represent three clusters
of hosts, and hosts in the same cluster are supposed to share the same failure causes.
PrincipalC1 fails if and only if all the hosts irc1 fail; the same holds fo€2 andC3.
This label assumes that at most one cluster anadang2 andC3 would fail, effectively
specifying a failure model. Because all the variables share the same availability, label
the availability label ofresult cannot be violated by making other variables unavail-
able. Sincd < I(¢,), the availability label cannot be violated by compromising the
integrity of t.

The label ofacct is /1, which has a confidentiality component A, meaning that
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Alice allows only herself to learn aboutct. The integrity label okcct isSA:AV(BAT),
meaning that as well a8 AT can affect the value afcct, because the transaction can

proceed to chargecct as long a® andT cooperate.

2.5 Related work

Security labels have been widely used in security models and mechanisms for control-
ling information flow. Such security models include the Bell-LaPadula model [10], the
secure information flow model [16], and the multilevel security model [23]. More re-
cent models for information flow have defined various security properties that ensure
the absence of insecure information flows, such as noninterference [31] for determin-
istic systems, possibilistic extensions of noninterference including nondeducibility [82]
and generalized noninterference [54], and probabilistic extensions of noninterference
including the Flow Model [57] and P-restrictiveness [32].
According to Denning [16], information flow control mechanisms fall into four cat-

egories based on whether they support static or dynamic binding of objects to labels and

whether they are run-time or compile-time mechanisms.

e Run-time static-binding mechanisms include the access control mechanism of the
MITRE system [9], which checks static-binding labels at run time to enforce the
“no read-up and no write-down” rule. The Data Mark Machine proposed by Fen-
ton [24] has an interesting run-time enforcement mechanism, in which labels are
static except for the program counter label that is associated with the program
counter of a process and may be updated at run time to control implicit flows.
Recently, run-time label checking has been formalized as explicit language struc-
tures, and type systems [86, 106] have been developed to analyze run-time label

checks statically.
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e Compile-time static-binding mechanisms include the program certification mech-
anism proposed by Denning and Denning [18], and type-based information flow

analyses [88, 34, 101, 70, 7].

e Run-time dynamic-binding mechanisms update the label of an object according
to the changes to the contents of the object. This type of mechanisms was used in
ADEPT [94], and more recently the IX system [55], the Flask security architec-
ture [80] and the Asbestos system [20].

e Compile-time dynamic-binding mechanisms have been studied recently. Amtoft
and Banerjee [6] developed a Hoare-like logic to track the independence relations
between variables. Given a variahlethe set of variables that depend on can
be viewed as the security label of which may be different at different program
points. Hunt and Sands [39] proposed a flow-sensitive type system for analyzing
information flows. In the flow-sensitive type system, a variable may be assigned

different types (including security labels) at different program points.

Owned-retained access control (ORAC) [53] uses owner-retained ACLSs to label ob-
jects and enables flexible label management by allowing the owner of an object to mod-
ify its own ACL about the object.

Myers and Liskov proposed the decentralized label model for specifying information
flow policies [63]. This thesis generalizes the DLM to provide a unified framework for
specifying confidentiality, integrity and availability policies.

Focardi and Gorrieri [27] provide a classification of security properties in the set-
ting of a non-deterministic process algebra. In particular, the BNBi€inulation-
based non-deducibility on compositidmsoperty prevents attackers from affecting the
availabilities of observable process actions. However, the BNDC property requires ob-
servational equivalence, making it difficult to separate the concerns for integrity and

availability.
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Yu and Gligor [99] develop a formal method for analyzing availability: a form of
first-order temporal logic is used to specify safety and liveness constraints on the inputs
and behaviors of a service, and then those constraints can be used to formally verify the
availability guarantees of the service. The flexibility and expressiveness of first-order
temporal logic come at a price: it is difficult to automate the verification process. The
approach of formalizing and reasoning system constraints and guarantees in terms of
logic resembles the rely-guarantee method [40], which was also applied to analyzing
cryptographic protocols by Guttman et al. [33].

The formalization of owned labels is inspired by the access control calculus [1],
which introduces the formuld says s (principal A sayss), and a principal logic with
conjunctive and disjunctive principals. The purpose of the access control calculus is
to determine whether access requests should be granted given a set of access control
policies formalized as formulas in the calculus. In comparison, the universal DLM

focuses on comparing decentralized labels.
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Chapter 3
The Aimp language

As discussed in the previous chapter, security policies can be enforced by noninterfer-
ence. Itis well known that noninterference in terms of confidentiality and integrity can
be enforced by static, compile-time analysis of program text [88, 34, 102, 73]. The
new challenge is to apply the same approach to availability. This chapter presents the
Aimp language with a security type system enforcing noninterference for three security

properties: availability, along with confidentiality and integrity.

3.1 Syntax

The Aimp language is a simple imperative language with assignments, sequential com-

position, conditionals, and loops. The syntax of Aimp is as follows:

Values v = n
Expressionse == v | !m | e; + ez
Statements s = skip | m:=e | S1;5

| if ethenS) else Sy | whileedo S

In Aimp, a value is an integet. An expression may be a value a dereference ex-
pressionim, or an addition expressian + e,. A statement may be an empty statement
skip, an assignment statement := e, a sequential compositiofi;; Sz, or anif or
while Statement.

A program of Aimp is just a statement, and the state of a program is captured by a
memoryM that maps memory references (memory locations) to values. For simplicity,
we assume that memory is observable and use memory references to model 1/0 chan-
nels. A reference representing an input is calledrgut referenceand a reference

representing an output is called aantput reference To model availability, a memory
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reference may be mapped to two special values:

e none, indicating that the value of the reference is not available, and

e void, indicating that the reference itself is not available.

Intuitively, if a referencen is mapped tmone, then a dereference operationanwill

cause the running program ¢et stuck'cannot be further evaluated);if is mapped to

void, then either a dereference or assignment operation will cause the running program
to get stuck. In particular, an output reference mappetbt® represents an unavail-
able (not yet produced) output, and an input reference mappeditbrepresents an

unavailable (remaining so during execution) input.

3.2 Operational semantics

The small-step operational semantics of Aimp is given in Figure 3.1 M eepresent

a memory that is a finite map from locations to values (includiege andvoid), and

let (S, M) be a machine configuration. Then a small evaluation step is a transition from
(S, M) to another configuratioS’, M’), written (S, M) —— (S’, M’).

The evaluation rules (S1)—(S7) are standard for an imperative language. Rules (E1)—
(E3) are used to evaluate expressions. Because an expression causes no side-effects to
memory, we use the notatidn, M) |} v to mean that evaluatingin memory)/ results
in the valuev. Rule (E1) is used to evaluate a dereference expressiom rule (E1),

Let M [m] represent the value that is mapped to inV/. ThenM (m) is computed as

follows:

M (m) n if Mim]=n
m) =
none if M[m] = none or M[m] = void

Dereferencing a reference that is mappebioe or void produces an unavailable value,

represented byone.
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M(m)=v

(EL) (Im, M) | v

(e1, M) | vy (€2, M) I vo v =] D vy

(E2) (e1+e2, M) Yo
(E3) (v, M) J v
(e, M) | n M[m] # void
(S1) (m :=e, M)+ (skip, M[m~— n])
<Sl> M> — <Sia M/>
(52 (1: 52, M) — (1; 55, M)
(S3) (skip; S, M) — (S, M)
(e, M) I n n>0
(54) (if e then S else Sy, M) — (S1, M)
(e, M) | n n <0
(S5) (if e then S; else So, M) —— (Sy, M)
(e, M) I n n>0
(S6) (whileedo S, M)+ (S;whileedo S, M)
(s7) (e, M) I n n<0

(while edo S, M) — (skip, M)

Figure 3.1: Operational semantics for Aimp

Rule (E2) evaluates addition expressions. Intuitively, the sum of two valuasd
vy IS unavailable ifv; or vy is unavailable. Accordingly, i#; ande, are evaluated to,

andus, e; + e5 is evaluated t@; ¢ v,, which is computed using the following formula:

ni + neo if V1 =N and’UQ = N2
v D vy =
none if ©v; = none Orv, = none

Rules (S1)—(S7) are mostly self-explanatory. In rule (S1), the assignmentsm
be accomplished only if. does not fail {/[m] # void). Rules (S1), (S4)—(S7) show
that if the evaluation of configuratioft, /) depends on the result of an expression

it must be the case th&t, M) || n. In other words, ifle, M) | none, the evaluation of
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(A) mo:='mgq; mey:= 1;
(B) while (!mq) do skip; me:=1;

(C) if (!my) then while (1) do skip; else skip;
mey:=1;

(D) if ('mq) then m,:=1 else skip;
while (!mg) do skip;
My :=2;

Figure 3.2: Examples

(S, M) gets stuck.

3.3 Examples

The Aimp language focuses on the essentials of an imperative language. Figure 3.2
shows a few code segments that demonstrate various kind of availability dependencies,
some of which are subtle. In all these examples represents an output, and its initial
value isnone. All other references represent inputs.

In code segment (A), ifn; or my is not available (mapped twid), execution gets
stuck at the first assignment. Therefore, the availability.ptlepends on the availability
of m; andms.

In code segment (B), thehile statement gets stuck if the valueref is not avail-
able. Moreover, idiverges(goes into an infinite loop) if the value ok, is positive.
Thus, availability ofm, depends on both the availability and integrityrof.

In code segment (C), thief statement diverges if the value of; is positive, so the
availability of m, depends on the integrity o .

In code segment (D)p, is assigned in one branch of the statement, but not in the
other. Therefore, when thief statement terminates, the availability.of, depends on
the value ofm;. Moreover, the program executesiaile statement that may diverge

beforem, is assigned the value 2. Therefore, for the whole program, the availability of
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1 t :=0; a:=-1;

2 while (!t < 3)

3 if (!bid >= loffer[i]) then

4 acct := lacct + lbid; a := t;
5 t :=5

6 else t := 1t + 1;

7 result := la;

Figure 3.3: Bidding example

m, depends on the integrity of,. Similar to (B), the availability ofn, also depends
on the availability and integrity afi,.

The Aimp language is expressive enough to write the bidding program in Figure 1.2,
as shown in Figure 3.3. The arrayfer can be viewed as syntactic sugar for three ref-
erencesfferi, offer2 andoffer3 that are accessed based on the value deref-

erencing variables is now represented explicitly with the opetator

3.4 Type system

Let [ range over a lattic&€ of base labels, such as the set of combined owned labels
discussed in Section 2.3.2. The top and bottom elemenfsané represented by and

L, respectively. The syntax for types in Aimp is shown as follows:

Baselabels | € L
Labels ¢,pc = {C=1, =1, A=13}
Types 7 == inty | int,ref | stmtp
In Aimp, the only data type isnt,, an integer type annotated with security labgel
which contains three base labels as described in Section 2.3.4. Supdse,. Then
we use the notationS(r), I(7) andA(7) to represen€'(¢), 1(¢) andA(¢), respectively.
A memory referencen has typeint, ref, indicating the value stored at has type

int,. In Aimp, types of memory references are specified lbypang assignment that
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maps references to types so that the typea$ 7 ref if I'(m) = 7.

The type of a statemerit has the formstmtz whereR contains the set of unas-
signed output references wheéhterminates. Intuitively,R represents all the outputs
that are still expected by users afteterminates.

The type system of Aimp is designed to ensure that any well-typed Aimp program
satisfies noninterference. For confidentiality and integrity, the type system performs a
standard static information flow analysis [18, 88]. For availability, the type system tracks
the set of unassigned output references at each program point. And the availability of
an unassigned output reference at a program point depends on whether execution gets
stuck at that program point. Such dependency relations induce label constraints that the
type system of Aimp enforces, as the DP condition of Section 2.2 requires.

To track unassigned output references, the typing environment for a statément
includes a componerR, which contains the set of unassigned output references before
the execution of5. The typing judgment for statements has the fofm®R ;pc - S :
stmtg,, meaning thatS has typestmtr, with respect to the typing assignmdntthe
set of unassigned output referen@@sandpc, the program counter label [17] used to
indicate security levels of the program counter. The typing judgment for expressions
has the fornT"; R + e : 7, meaning that has typer with respect td” andR.

The typing rules are shown in Figure 3.4. Rules (INT) and (NONE) check constants.
An integern has typeint, wherel can be an arbitrary label. The valuene represents
an unavailable value, so it can have any data type. Sinecds the only data type in
Aimp, none has typeint,.

Rule (REF) says that the type of a referencés r ref wherer = I'(m). In Aimp,

['(m) is always an integer type.
Rule (DEREF) checks dereference expressions. It disallows dereferencing the refer-

ences inR, because they may be unassigned output references.
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(INT) I'yREn:int,
(NONE) I';R - none : inty

L(m)=r1

(REF) I'yREm:7ref

m¢R I'(m) = inty

(DEREF) I';RE!m : inty
I'REe:inty I':REes:inty
ADD ’ ! ’ 2
( ) I'sREer +ea:inty iy,
(SKIP) I';R;pct skip : stmtg
I';Ri;pck S :stmtg,
I';Ri;pck Sy : stmt
(SEQ) Rpet St stmt
P,'R7pC|—Sl,SQ.StmtR2
I';REm: inty ref I'yREe: inty
Clpe) UC(l) < C(0) 1(€) < I(pe)TTI(L)
Ar(R) < A(¢) N A(0)
(ASSIGN)
I'SRipekEm:=e:stmtr_{m)
I'yREe:inty Ar(R) < A(Y)
I I'sRipcUlE S -1 ie{l,2}
(IF) I';R;pct if ethen Sy else So: 7
I'Fe:inty I';RipclUl =S stmtr
Apr(R) < I(&)nI(pc)1 A
WHILE) £(R) < 1) 1 1(pe) 1 A()
I';R;pck whileedo S : stmtp
(SUB) I';Ri;pckS:T I';Ripet7<7

I'sRipekS:7
Figure 3.4: Typing rules for Aimp

Rule (ADD) checks addition expressions. As discussed in Section 2.3.4, the label of
e1 + ey is exactlyl; L ¢, if e; has the labet; fori € {1,2}.

Rule (SKIP) checks thekip statement, which does not have any effects. Thus, the
unassigned output references are Rilhfter executingkip.

Rule (SEQ) checks sequential statements. The premige; pc - S; : stmtg,
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means thalRk; contains the set of unassigned output references &fterminates and
beforeS; starts. Therefore, the typing environment fris I'; R ; pc. It is clear that
S, andSy; S, terminate at the same point. Thug; S, has the same type &5.

Rule (ASSIGN) checks assignment statements. The statemest e assigns the
value ofe to m, creating an explicit information flow fromto m and an implicit flow
from the program counter tm. To control these information flows, this rule requires
C(¢)U C(pe) < C(I'(m)) to protect the confidentiality aof and the program counter,
and/(I'(m)) < I(pc) N I(¢') to protect the integrity ofn.

If the value ofe is unavailable or the reference fails, the assignment. := e will
get stuck. Therefore, rule (ASSIGN) has the premis¢R) < A(¢') 1 A(¢), where
Ap(R) = |,,exr A(I'(m)), to ensure the availability labels efandm is as high as the
availability label of any unassigned output reference. For example, in the code segment
(A) of Figure 3.2, the type system ensures thal' (m,,)) < A(I'(mq)) N A(T(my)).

When the assignment := e terminates,n should be removed from the set of
unassigned output references, and thus the statement hastiye ().

Rule (IF) checksif statements. Consider the statemett:e then S; else Ss.
The value ofe determines which branch is executed, so the program-counter labels for
branchesS; and .S, subsume the label efto protecte from implicit flows. As usual,
the if statement has type if both S; and S, have typer. As in rule (ASSIGN), the
premiseAr(R) < A(¢) ensures that has sufficient availability.

Rule (WHILE) checksihile statements. In this rule, the premide(R) < I(¢) N
I(pc) 11 A(¢) can be decomposed into three constraidis(R) < A(¢), which ensures
thate has sufficient availabilityAr(R) < I1(¢), which prevents attackers from making
thewhile statement diverge by compromising the integrityepnd Ar(R) < I(pc),
which prevents attackers from affecting whether the control flow reacheshtiie:

statement, becausesaile statement may diverge without any interaction with attack-
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ers.

For example, consider the code segments (B) and (C) in Figure 3.2, in &hieh
{m,}. Suppose base labklrepresents the security level of attackers, adt(m,)) £
ly. In (B), the constraintdp(R) < I(¢) of rule (WHILE) ensured (I'(m;)) £ l,, SO
attackers cannot affect the valuernf, or whether therhile statement diverges. In (C),
the constraintAr(R) < I(pc) guarantees(pc) £ l,, and thus/(I'(m;)) £ [, holds
becausd (pc) < I(I'(m,)). Therefore, attackers cannot affect which branch ofithe
statement would be taken, or whether control reachesithee statement.

Rule (SUB) is the standard subsumption rule. LefR ; pc - 7 < 7/ denote that
is a subtype of’ with respect to the typing environmerit R ; pc. The type system of
Aimp has one subtyping rule:

R'CR'CR
Vm, m e R" —R' = A(T'(m)) < I(pc)

ST
S I[';R;pctk stmtrs < stmtgy

Supposd’; R ; pc F stmtrs < stmtgy andl’; R ;pct S : stmtg,. Thenl'; R ; pc -
S : stmtr- by rule (SUB). In other words, iR’ contains all the unassigned output
references aftef terminates, so doeR”. This is guaranteed by the premigé C R”
of rule (ST). The reference s&t contains all the unassigned output references be&fore
is executed, so rule (ST) requir®s’ C R. Intuitively, the statement can be treated as
having typestmt~ because there might exist another control flow path that byp&sses
and does not assign to reference®Rih— R'. Consequently, for any. in R” — R/, the
availability of m may depend on whethér is executed. Therefore, rule (ST) enforces
the constraint/m, m € R" — R’ = A(I'(m)) < I(pc).

Consider the assignment, := 1 in the code segment (D) of Figure 3.2. By rule
(ASSIGN),I" ;{m,} ; pc = m, := 0 : stmty. For theelse branch of theif statement,
we havel ;{m,};pc - skip : stmty,,. By rule (IF),I';{mq};pc F m, := 0 :

stmty,,,} needs to hold, which requirds;{m,};pc - stmty < stmty,, ;. In this
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example, the availability of:, depends on which branch is taken, and we need to ensure
A(T'(m,)) < I(I'(my)). Indeed, if (D) is well typed, by rules (ST) and (IF), we have
A(L(m,)) < I(pe) < I(I'(ma)).

This type system satisfies the property of subject reduction, or type preservation, as

stated in the following theorem, which is proved in the next section.

Theorem 3.4.1 (Subject reduction).Supposel';R;pc - S : 7, anddom(I") =
dom(M). If (S, M) — (S’, M’), then there exist®’ such that’; R';pc - 5" : T,
andR’ C R, and for anyn € R — R/, M'(m) # none.

3.5 Security by type checking

As discussed in Section 2.2, security policies can be enforced by noninterference. This
section shows that the type system of Aimp can enforce the security policies specified
by type annotations (labels), by proving that every well-typed program satisfies nonin-

terference.

3.5.1 Noninterference properties

In general, a program can affect three security properties: the confidentiality of an in-
put, the integrity of an output and the availability of an output. Thus, the notion of
noninterference can be formalized as three more specific noninterference properties,
corresponding to the three security properties. Although this formalization is done in
the context of Aimp, it can be easily generalized to other state transition systems.

For both confidentiality and integrity, noninterference has a simple, intuitive descrip-
tion: equivalent low-confidentiality (high-integrity) inputs always result in equivalent
low-confidentiality (high-integrity) outputs. The notion of availability noninterference

is more subtle, because an attacker has two ways to compromise the availability of an
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output. First, the attacker can make an input unavailable and block computation that
depends on the input. Second, the attacker can try to affect the integrity of control flow
and make the program diverge (fail to terminate). In other words, the availability of an
output may depend on both the integrity and availability of an input. The observation is

captured by this intuitive description of availability noninterference:

With all high-availability inputs available, equivalent high-integrity inputs

will eventually result in equally available high-availability outputs.

This formulation of noninterference provides a separation of concerns (and policies) for
availability and integrity, yet prevents the two attacks discussed above.

The intuitive concepts of high and low security are based on the power of the poten-
tial attacker, which is represented by a base Igbéh the DLM,l, = {* : piA.. . Ap, T},
if the attacker can act fqr, ..., p,. Given a base labé| if [ < [, then the label rep-
resents a low-security level and is not protected from the attacker. Otheiwsse,
high-security label.

For an imperative language, the inputs of a program are just the initial memory and
the outputs are the observable aspects of a program execution, which is defined by the

observation modedf the language. In Aimp, we have the following observation model:

e Memories are observable.

e The valuenone is not observable. In other words, M (m) = none, an observer

cannot determine the value of in M.

SupposeS is a program, and/ is the initial memory. Based on the observation model,
the outputs ofS are a setZ of finite traces of memories, and for any tréfein 7,
there exists an evaluatioft, M) —— (S, M) — ... — (S,, M,) such that

T =[M, M,,..., M,]. Intuitively, every trace ir¥ is the outputs observable to users at

some point during the evaluation ¢, M), and7 represents all the outputs ¢f, M)

40



observable to users. Since the Aimp language is deterministic, for any two tra€es in
it must be the case that one is a prefix of the other.

In the intuitive description of noninterference, equivalent low-confidentiality inputs
can be represented by two memories whose low-confidentiality parts are indistinguish-
able. Suppose the typing information of a memaddyis given by a typing assign-
mentI". Thenm belongs to the low-confidentiality part a¥/ if C(I'(m)) < I,
whereC(I'(m)) = C(¢) if I'(m) = int,. Similarly, m is a low-integrity reference
if I(I'(m)) < l,, a high-integrity reference if(I'(m)) £ l,, and a high-availability
reference ifA(I'(m)) £ l,. Letv; = v, denote that;, andv, are indistinguishable. By
the observation model of Aimp, a user cannot distinguishe from any other value.
Consequentlyy; =~ v, if and only if v; = v,, v; = none Or v, = none. With these
settings, given two memorie®/; and M, with respect tal’, we define three kinds of

indistinguishability relations betweeW; and ), as follows:

Definition 3.5.1 " - M; ~c<;, Ms). The low-confidentiality parts ob/; and M/, are
indistinguishable, writted’ = M, ~c<;, M,, if for anym € dom(T"), C(I'(m)) < I,
implies M;(m) ~ My(m).

Definition 3.5.2 " - M; ~4;, Ms). The high-integrity parts ofl/; and )/, are indis-
tinguishable, writted’ - M, ~;4;, M,, if foranym € dom(I"), I(I'(m)) £ [, implies
M (m) =~ My(m).

Definition 3.5.3 " = M; ~ay4, M,). The high-availability parts ofi/; and M, are
equally available, writted' = M; ~ a4, M, if forany m € dom(I'), A(I'(m)) £ I,

implies that)M; (m) = none if and only if M;(m) = none.

Based on the definitions of memory indistinguishability, we can define trace indis-
tinguishability, which formalizes the notion of equivalent outputs. Intuitively, two traces

are indistinguishable if they may be produced by the same execution. First, we assume
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that users cannot observe timing. As a result, tra¢&s\/| and[M] look the same to a
user. In general, two tracds andT; are equivalent, writtefi; ~ 75, if they are equal
up to stuttering, which means the two traces obtained by eliminating repeated elements
in 77 andT; are equal. For exampl@)y, My, M,] =~ [My, My, Ms]. SecondT; and
T, are indistinguishable, if; appears to be a prefix @, because in that casg, and
T, may be generated by the same execution. This implies that trace indistinguishability
is not an equivalence relation because two distinguishable traces may share the same
prefix.
Given two traces/; and7; of memories with respect t6, letI' - T} ~c<, Tb
denote that the low-confidentiality parts df and7; are indistinguishable, and +
Ty =14, T> denote that the high-integrity parts @f and7; are indistinguishable.

These two notions are defined as follows:

Definition 3.5.4 " = T ~¢<;, T»). Given two traced’ and”ls, I' - 11 ~c<, Ts if
there existl] = [M;, ..., M,]andT; = [M], ..., M/ ] such thatl} ~ 77, andT, ~ T,

andl' - M; ~c<;, M/ foranyiin {1,...,min(m,n)}.

Definition 3.5.5 " - T} =4, 13). Given two traced’; andTs, I' = T ~;4, T if
there existl] = [My,..., M, andTy = [M7, ..., M/ ] suchthatl} ~ T}, andT; ~ T,

andl’ = M; ~;4, M/ foranyiin {1,...,min(m,n)}.

Note that two executions are indistinguishable if any two finite traces generated by
those two executions are indistinguishable. Thus, we can still reason about the indistin-
guishability of two nonterminating executions, even thoagh;, and~.<;, are defined
on finite traces.

With the formal definitions of memory indistinguishability and trace indistinguisha-
bility, it is straightforward to formalize confidentiality noninterference and integrity non-

interference:
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Definition 3.5.6 (Confidentiality noninterference). A programsS has theconfidential-
ity noninterferenceproperty w.r.t. a typing assignment writtenT" - NI (.S), if for
any two traced; and7, generated by evaluating, M) and (S, M), we have that
I'- M =c<, MyimpliesT' =Ty =ec<, Th.

Note that this confidentiality noninterference property does not treat covert channels
based on termination and timing. Static control of timing channels is largely orthogonal

to this work, and has been partially addressed elsewhere [79, 3, 72].

Definition 3.5.7 (Integrity noninterference). A programsS has thantegrity noninter-
ferenceproperty w.r.t. a typing assignment writtenT" - NI;(.S), if for any two traces
Ty andT; generated by evaluating, A;) and(S, M,), we have thal' - M; ~;4, M,

impliesI" = T ~r4, Ts.

Consider the intuitive description of availability noninterference. To formalize the
notion that all the high-availability inputs are available, we need to distinguish input
references from unassigned output references. Given a pragrétiR denote the set
of unassigned output references. In general, referencRsaire mapped taone in the
initial memory. Ifm ¢ R, then referencen represents either an input, or an output
that is already been generated. Thus, given an initial membrthe notion that all the
high-availability inputs are available can be formalized/as (A(I'(m)) £ ly, Am &

R) = M(m) # none, as in the following definition of availability noninterference:

Definition 3.5.8 (Availability noninterference). A program$' has theavailability non-
interferenceproperty w.r.t. a typing assignmehtand a set of unassigned output ref-
erencesRk, written T'; R + NI,(S), if for any two memories\/;, M, the following

statements

[ F l_ M1 %[zlA M2

e Fori € {1,2},Vm € dom(I"). A(I'(m)) £ [, A\m ¢ R = M;(m) # none
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o (S, M;) —* (S!, M) fori e {1,2}

imply that there existS!, M) fori € {1,2} such that S}, M/) —* (S, M) and
'k M{, %AﬁlA Mé/

3.5.2 The Aimp* language

The noninterference result for Aimp is proved by extending the language to a new lan-
guage Aimp*. Each configuratioff, M) in Aimp* encodes two Aimp configurations
(Sy, M) and(S,, M,). Moreover, the operational semantics of Aimp* is consistent
with that of Aimp in the sense that the result of evaluatifg M) is an encoding of the
results of evaluatingS;, M;) and(S,, M,) in Aimp. The type system of Aimp* en-
sures that if S, M) is well-typed, then the low-confidentiality or high-integrity parts of
(S1, My) and(S,, M) are equivalent. Intuitively, if the result @f, M) is well-typed,
then the results of evaluating;, M;) and(S,, M) should also have equivalent low-
confidentiality or high-integrity parts. Therefore, the preservation of type soundness in
an Aimp* evaluation implies the preservation of low-confidentiality or high-integrity
equivalence between two Aimp evaluations. Thus, to prove the confidentiality and in-
tegrity noninterference theorems of Aimp, we only need to prove the subject reduction
theorem of Aimp*. This proof technique was first used by Pottier and Simonet to prove
the noninterference result of a security-typed ML-like language [70].

What is new here is that the availability noninterference theorem of Aimp can by
proved by gorogressproperty of the type system of Aimp*.

This section details the syntax and semantic extensions of Aimp* and proves the key

subject reduction and progress theorems of Aimp*.
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Syntax extensions

The syntax extensions of Aimp* include the bracket construct, which is composed of

two Aimp terms and captures the difference between two Aimp configurations.

Values v == ... | (v1]v9)

Statements S = ... | (S1]|S2)

Bracket constructs cannot be nested, so the subterms of a bracket construct must be
Aimp terms. Given an Aimp* statement let | S|, and|S |, represent the two Aimp
statements thaf encodes. The projection functions satisfys; | S2)]; = S; and are
homomorphisms on other statement and value forms. An Aimp* memérgnaps
references to Aimp* values that encode two Aimp values. Thus, the projection function
can be defined on memories too. ko {1,2}, dom(| M |;) = dom(M ), and for any

m € dom(M), | M|;(m) = |M(m)];.

Since an Aimp* term effectively encodes two Aimp terms, evaluation of an Aimp*
term can be projected into two Aimp evaluations. An evaluation step of a bracket state-
ment(S; | S2) is an evaluation step of eithéf or .Sy, and.S; or S, can only access the
corresponding projection of the memory. Thus, the configuration of Aimp* has an index
i € {e,1,2} that indicates whether the term to be evaluated is a subterm of a bracket
expression, and if so, which branch of a bracket the term belongs to. For example, the
configuration(S, M), means that belongs to the first branch of a bracket, ahdan
only access the first projection 8f. We write “(S, M)” for “ (S, M),”, which means
S does not belong to any bracket. To abuse notation a bitSlet= S and|v|, = v.

The operational semantics of Aimp* is shown in Figure 3.5. It is based on the
semantics of Aimp and contains some new evaluation rules (S8)—(S9) for manipulating
bracket constructs. Rules (E1) and (S1) are modified to access the memory projection
corresponding to index The functionuv[v’/;] returns the value obtained by replacing

theith component ob with v’. The rest of the rules in Figure 5.2 are adapted to Aimp*
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M)} = v

(El) <‘m, M)z U v
(s1) (e, M); y v |v]1 # none |v]2 # none | M[m]|; # void

(m:=e, M); — (skip, M[mw— M[m][v/m]])i
(88) <€7 M> U’ (nl ‘ 7’L2)

(if e then S else Sy, M) —
((if ny then [S1]; else | S2]1 |

if mg then |51 ]2 else |S2]2), M)

(s9) (Si, M)i — (S, M), S; =57 {i,7} ={1,2}

((S1]82), M) — ((S1 ] 53), M)
(S10 ((skip|skip), M) — (skip, M)
[Auxiliary functions]

op'/m] =0 w[p'/m] = (0" [v]2)  w[v'/me] = (lv]1[)
Figure 3.5: The operational semantics of Aimp*

by indexing each configuration with The following adequacy and soundness lemmas
state that the operational semantics of Aimp* is adequate to encode the execution of two
Aimp terms.
Let the notation(S, M) ——T (S’, M’) denote that/S, M) —— (S, M;) ——

> (8, M) — (S', M') andT = [M, M,...,M,,M'],orS = S andM =
M’ andT = [M]. In addition, let|T’| denote the length df’, andT; & 75 denote the
trace obtained by concatenatifig and7,. Suppose€l; = [My,..., M,] andTy, =
(M,..., M ]. If M,, = Mj, thenTy & T, = [My, ..., M,, M), ..., M!]. Otherwise,
Ty@®Ty=[M,..., M, M. .. M)

Lemma 3.5.1 (Projection i). Suppos€e, M) | v. Then(|e|;, | M ];) | |v]; holds for
i€ {1,2}.

Proof. By induction on the derivation df, M) |} v.

o Case (E1)vis M(m). Thus,|v]; = [ M(m)]; = | M];(m).
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e Case (E2). By induction)|e; |, |M|;) | |vi]; and{|ez2];, | M ];) I |v2];. Thus,
(ler +e2li, 4) v @ va]s.

e Case (E3)eisw. Thus,(|v];, [M];) I |v]:-
0

Lemma 3.5.2 (Projection ii). SupposeV/ is an Aimp* memory, and M |; = M, for
i € {1,2}, and(S, M;) is an Aimp configuration. ThefS, M;) — (S’, M) if and
only if (S, M); — (S, M"); and| M']|; = M.

Proof. By induction on the structure df. O]

Lemma 3.5.3 (Expression adequacy)Suppos€e;, M;) || v; fori € {1, 2}, and there
exists an Aimp* configuratioke, M) suchthafe]; = e; and|M |, = M, fori € {1, 2}.
Then(e, M) || v suchthatv|; = v;.

Proof. By induction on the structure of H

Lemma 3.5.4 (One-step adequacy)lf for i € {1,2}, (S;, M;) —— (S}, M}) is
an evaluation in Aimp, and there existS, M) in Aimp* such that|S|; = S, and
| M |; = M;, then there exist§S’, M') such that S, M) —T (S’, M’), and one of the

following conditions holds:

i. Forie {1,2}, |T|; =~ [M;, M!]and|S’|; = S..
i. For{j,k} ={1,2}, |T]; = [M;]and|S"|; = S;, and |T'|; ~ [M,, M]] and

LS|k = Sk

Proof. By induction on the structure df.

e Sisskip. ThenS; andS; are alsaskip and cannot be further evaluated. There-

fore, the lemma is correct because its premise does not hold.
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e Sism := e. Inthis caseS; ism := |e];, and we havém = |e];, M;) —
(skip, M;[m— v;]) where(|e],;, M;) || v;. By Lemma 3.5.3, we have, M) |}
vand|v|; = v;. Therefore,(m := e, M) —— (skip, M[m — v]). Since

| M |; = M;, we have| M [m— vl]]; = M;[m— [v];].

e Sisif ethen S| else SY. Suppos€e;, M;) | n;. By Lemma 3.5.3{¢e, M) | v
such thafv|; = n; fori € {1,2}. SinceS; is if |e]; then |S]]; else | S} |; for
i € {1,2}, Sjis |57 |; wherej; € {1,2}. If v = n, then(S, M) —" (57, M)
for somej in {1,2}, andj; = j fori € {1,2}. If v = (n;|ny), then(S, M) —T
(LS} 11 | 1S7,12), M), wherej,,j, € {1,2}. In both cases|S;]; = S; for

ie{1,2} andT ~ [M, M].
e Siswhile edo S”. By the same argument as the above case.

e Sis.S;;5,. There are three cases:

— Ss is skip or (skip | skip). Then(S, M) —T (S,, M), andT ~ [M].
Fori € {1,2}, sinceS; = skip; |Sy]s, (Si, [ M]:) —* (| S4ls, | M]s).
Therefore, the lemma holds for this case.

— S3is (S5 | skip) or (skip | S5) whereSs is notskip. Without loss of gener-
ality, supposeds is (55 | skip). ThensS; is Ss; | S4]1, andsSs is skip; | S4]1.
Since(Ss; [Sal1, [M]1) — (51, Mq), we have(Ss, [ M ]1) — (S5, M)
and 57 is Si; | S4]1. By (S9) and Lemma 3.5.2, we hav&, M) —
((S% | skip); Sy, M'), and [ M’ |, = M{, and | M']y = [M |y = M,. It
is clear that condition (ii) holds.

— Fori € {1,2}, |Ss]; is notskip. Fori € {1,2}, becausds;, M;) —
(S, M!) andS; = [Ss]i; [Sa]i, we have(|Ss];, M;) — (Ss;, M/). By
induction, (S3, M) ——T (S%, M’), and condition (i) or (ii) holds fofl" and
S5. Suppose condition (i) holds. Then foe {1,2}, |T|; ~ [M;, M/] and
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|S4]; = Ss;. By evaluation rule (S2)(S, M) ——T (S4:S,, M’). More-
over, both|S%; Sy|; and S are Ss;; | Sy, for i € {1,2}. Therefore, the
lemma holds. For the case that condition (ii) holdsfoand Sz, the same

argument applies.

e Sis(S)|Ss). Since(S;, M) — (Si, M’") fori € {1,2}, we have(S;, M), —
(S}, M")y and(Sy, M"Yy —— (S}, M')5. Therefore(S, M) —T ((S]|S5), M)
whereT = [M, M", M']. By Lemma 3.5.2|T|; ~ [M;, M/] fori € {1,2}.

]

Lemma 3.5.5 (Adequacy).Suppose.S;, M;) —Ti (S, M) fori € {1,2} are two
evaluations in Aimp. Then for an Aimp* configurati@s, M) such thaf S|, = S; and
| M|; = M, fori € {1,2}, we have(S, M) —T (S’, M') such thayT|; ~ T; and

| T | = T}, whereT} is a prefix of T}, and{k, j} = {1, 2}.
Proof. By induction on the sum of the lengths Bf and75: |71} | + |T3|.

o |T1| + |T5] < 3. Without loss of generality, suppo$g | = 1. ThenT; = [M,].
Let T = [M]. We have(S, M) —T (S, M). Itis clear that|T'|, = T}, and
| T |2 = [ M) is a prefix ofT5.

o |T1| + |T3| > 3. If |T}| = 1 or |T3| = 1, then the same argument in the above
case applies. Otherwise, we hai&, M;) — (S”, M!") —T (S! M!) and
T, = [M;] @ T/ for i € {1,2}. By Lemma 3.5.4{S, M) —"" (S”, M") such

that

i. Fori € {1,2}, |T"]; =~ [M;, M/} and |S"]; = S!'. Since|T]| + |T3| <
|Ty| + |T»|, by induction we havés”, M") —T" (S’ M') such that for
{k, 7} ={1,2}, [T"]; = Tj and [ T" ]}, =~ T}/, andT}! is a prefix of 7. Let
T=Ta&T" Then(S, M) —T (S', M"),and|T'|; ~ T;, and|T |, ~ T},

whereT] = [My, M}| & T} is a prefix ofl}.
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ii. For{j,k} ={1,2}, |T"|; =~ [M;] and|S]; = S;, and|T"|; ~ [My, M]]
and| S|, = s;. Without loss of generality, suppoge= 1 andk = 2. Since
(S1, My) =" (S], Mj) and(Sy, M") —"% (S), M3), and|S'], = S
and| S’ |, = SY, and|T3| < |T3|, we can apply the induction hypothesis to
(S”, M"). By the similar argument in the above case, this lemma holds for

this case.

Typing rules

The type system of Aimp* includes all the typing rules in Figure 3.4 and has two ad-
ditional rules for typing bracket constructs. Both confidentiality and integrity noninter-
ference properties are instantiations of an abstract noninterference property: inputs with
security labels that does not satisfy a conditionannot affect outputs with security
labels that satisfieS. Intuitively, ¢ represents “low-confidentiality” or “high-integrity”.

Two Aimp configurations are calledconsistent if the terms and memory locations with
security labels that satisfyare indistinguishable. Another way to put the abstract non-
interference property is that theconsistency relation between two configurations is
preserved during evaluation.

The bracket constructs captures the differences between two Aimp configurations.
As a result, any effect and result of a bracket construct should have a security label that
does not satisfy. Let((¢) and((int,) denote that satisfies(. If v; andv, are not
none, rule (V-PAIR) ensures that the valde, | v;) has a label that does not satisfy
otherwise, there is no constraint on the label«@f| v,), because the unavailable value
none is indistinguishable from other values. In rule (S-PAIR), the premigépc)
ensures that the stateméist | S2) may have only effects with security labels that do

not satisfyC.
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ko7 IP'Foy:r
—((7) or v; = none Of vy = none

(V-PAIR) Lk (v |vg):T
I;|Rli;pd BSy 7
I:;|R|a;pcd Sy -((pc
(S-PAIR) [R]2;p 2T ¢(pc’)

I'sRipek (S1]82):7

The key observation is that the inputs with labels not satisfyimp not interfere
with the outputs with labels satisfying as long as all the bracket constructs are well-
typed.

An important constraint that conditignneeds to satisfy is that(¢) implies—¢(¢U
(") forany?’. In Aimp*, if expressiore is evaluated to a bracket val(e, |n,), statement
if ethenS) else S, would be reduced to a bracket statemgit| S,) whereS! is either
S1 or S,. To show(S] | S%) is well-typed, we need to show th&t and .S, are well-
typed under a program-counter label that satisfytiggand we can show it by using the
constraint on-¢. Suppose has typeint,, then we know that; andS; are well-typed
under the program counter lalget LI /. Furthermore/ satisfies—~( because the result
of e is a bracket value. Thus, by the constraint that/) implies - (¢ U ¢'), we have
—((pcll?).

Supposd™; R;pc + (S1]S2) : 7, andm € R. By the evaluation rule (S9), it is
possible that/(S; | S2), M) ——* ((S7 | S2), M') and M’'(m) = (n | none), which
means thatn still needs to be assigned {3, but not inS]. Assume there exis®’ such
thatl'; R';pc F (S] | Se) : 7. Then by rule (S-PAIR), we havié;|R'|,;pck Sy : 7
andT';|R'|2;pc F Sy : 7. Intuitively, we want to haven ¢ |R’|; andm € |R'],,
which are consistent witd/’. To indicate such a situation, a referenaein R may
have an indexm! or m? means thatn needs to be assigned only in the first or second

component of a bracket statement, antlis the same as:. The projection ofR is
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computed in the following way:
R]li={m | m'e RVvm e R}

Note that indexed references are not allowed to appear in a statementtytppe To
make this explicit, we requiretmty is well-formed only ifR does not contain any in-
dexed referencen’. For convenience, we introduce two notations dealing with indexed
reference sets. Let the notati@h < R’ denote|R|; C |R']; and|R]2 C [R/]s,
and letR — m‘ denote the reference set obtained by eliminatitigrom R, and it is
computed as follows:
R/ if R=RU{m/} Ni€{j e}
R—m'={ Ru{mi} fR=RU{m}A{ij}={1,2}

R if otherwise
Subject reduction
Lemma 3.5.6 (Update).If I'; R Fv:7andl'; R o : 7, thenl' ;R - v[v'/m;] : 7.

Proof. If i is e, thenv[v'/m;] = ¢/, and we havd” - o' : 7. If i is 1, thenv[v' /7] =

(v"| |v]2). Sincel' v : 7, we havel' - |v ], : 7. By rule (V-PAIR),T"' F (V| |v]2) : T.
Similarly, if 7 is 2, we also havé' - v[v' /7] : 7. O
Lemma 3.5.7 (Relax).If I';R;pcUlF+ S :7,thenl';R;pck S : 7.

Proof. By induction on the derivationdf ; R ;pcU/F S : 7. O

Lemma 3.5.8.Supposd™ ;R e : 7,andl’' - M, and{e, M) |} v. ThenT'; R F v : 7.
Proof. By induction on the structure of O

Lemma 3.5.9. Supposd; R ;pc - S : stmtg.. If m* € R wherei € {1,2}, then
m ¢ R’

Proof. By induction on the derivation df ;R ;pcF S : stmtg/. H
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Definition 3.5.9 (Well-typed memory). Memory M is well-typed inI", writtenI" - M,
if dom(I") = dom(M), and for anym € dom(I'), I'; R = M(m) : I'(m).

Definition 3.5.10 "; R = M). A memoryM is consistent witi", R, writtenT"; R +
M, if ' = M, and for anym in dom(M ) such thatAr(m) £ L, M (m) = none implies
m € R, andM(m) = (none | n) impliesm! € R, andM(m) = (n | none) implies

m? € R.

Theorem 3.5.1 (Subject reduction).Supposd™;R;pc - S : 7, andl' - M, and
(S, M); — (S', M');, andi € {1,2} impliesV (pc). Then there exist®’ such that

the following conditions hold:

i. 'R ;peck S :m,andR' < R, andl’ - M'.
ii. Foranym’ € R — R/, |[M'|;(m’) # none.
iii. Supposé/(¢)isI(¢) < L. ThenI';RF |M];impliesI';R' F |M'],.

iv. If [M ];(m) = none,and|M’|;(m)=n,andA(I'(m)) £ I(pc), thenm ¢ R'.

Proof. By induction on the evaluation stefy, M), — (S, M’),. Without loss of
generality, we assume that the derivatiom' ofR ; pc - S : 7 does not end with using the
(SUB) rule. In fact, ifl'; R ; pc = S : stmtg, is derived byl'; R ; pc - S : stmtg, and
[';R;pct stmtr, < stmtg,, and there existR” such that conditions (i)—(iv) hold for
[';R;pck S : stmtg,, then by Lemma 3.5.9, we can show tidt= R" U (R, — R4)

satisfies conditions (i)—(iv) for ; R ; pc = S : stmtg,.

e Case (S1) In this case,S ism := ¢, S’ is skip, and7 is stmtr_(m,}. By
(S1), M’ is M[m — M(m)[v/m;]]. By Lemma 3.5.8, we haveé + v : I'(m),
which implies thatV/ (m)[v/m;] has typel’(m). ThereforeI' = M’. The well-
formedness of implies thatR does not contain any indexed references. Rét

beR —{m}. Itis clear thatR’ < R. By rule (SKIP),I'; R’ ; pc I skip : stmtg:.
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Because|M'|;(m) = v # none, andR — R’ = {m}, condition (ii) holds.
Since|M'|;(m) = nandR — R’ = {m}, we have thal'; R - | M |; implies
'R L (| M,

Case (S2) Obvious by induction.

Case (S3) Trivial.

Case (S4) In this caseS is if e then S; else S,. By the typing rule (IF), we
havel';R;pcU/l, - Sy : 7. By Lemma 3.5.7];R;pc - S; : 7. In this case,
M’ = M andR’ = R, so conditions (ii) and (iii) immediately hold.

Case (S5) By the similar argument of case (S4).

Case (S6) In this caseS iswhile e do Sy, andr is stmtk. By rule (WHILE),
['sR;pcUl Sy : stmtr, wherel is the label ofe. By the typing rule (SEQ),
[';R;pcll F Si;whileedoS; : stmtk. SinceM’ = M andR’ = R, conditions
(iy—(iv) hold.

Case (S7) In this case S’ is skip, andr is stmtr. We havel'; R ; pc - skip :

stmt. Furthermore)’ = M andR’ = R. Thus, conditions (ii)—(iv) hold.

Case (S8) In this caseS is if e then S; else Sy, andi must bee. Suppose
'+ e: inty. By Lemma 3.5.8] - (n; | n2) : int,. By rule (V-PAIR), V (¢)
holds, which impliesV(pc U ¢). By rule (IF),T';R;pcl ¢ F S; : 7, which
impliesI'; R;pc U ¢ F if n; then |S;]; else [S:]; : 7. By rule (S-PAIR),
I'sR;pct S : 7. Again, sinceM’ = M andR’ = R, conditions (ii) and (iii)
hold.

Case (S9) In this case,S is (S; | S2). Without loss of generality, suppose
(S1, M), — (S1, M')1, and(S, M) —— ((S] | S2), M"). By rule (S-PAIR),
[';|R|1;pck Sy : 7. By induction, there exist® such thatl; R ;pc - S} : 7,
andR| C |R]y, andl' - M'. Let R’ beR) e | R |2, which is computed by the
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formula:
Rl.Rg = {m ‘ mEleRQ} U

{m' | me R, — Ry} U

{m* | m € Ry —Ru}
Since|R']; = R} and|R']s = [R ]2, we havel';|R'|,;pc - 57 : 7. By rule
(S-PAIR),T'; R';pc + S’ : 7 holds. Sincé R’ |, = |R s, foranym’ € R — R/,
it must be the case that= 1, andm € |R |, — R}. By induction,| M'],(m) #

none. Therefore, condition (ii) holds.

If I';R - M, thenT';|R|,  |M]|;. By induction,I"; R} + | M’];. Therefore,
I';R' = M’ holds.

Case (S10) In this case,S is (skip | skip). We havel';|R|;;pc - skip :
stmt |z, for i € {1,2}. By rule (S-PAIR),I';|R];;pc’ - skip : 7. Therefore,
I';|R]i;pc F stmt ||, < 7. By the subtyping ruler = stmt|z|,. SO[R]; =
|R]2 = R andr = stmtg. By rule (SKIP),I'; R ; pc - skip : 7.

Progress

Lemma 3.5.10 (Expression availability).Supposd™; R e : 7andl';R - M. Then

(e, M); || v such thaw is available.

Proof. By induction on the structure of

e cisn. Obvious.

e cis!m. Sincel'; R+ M, | M |;(m) is eithern or (n; | ng).

e cise; + ey. Then(e, M); || v;. By induction, bothy, andw, are available. Thus,

v1 + vy IS an available value.
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Theorem 3.5.2 (Progress)Let ((¢) beI(¢) £ 1,, and let|S| represent the size of the
statemenp, i.e. the number of syntactical tokensdnSupposé’; R ; pc - S : stmtg/,
andl'; R + [M];, andS is notskip, andAr(R) £ I, andi € {1,2} implies(pc) <
ly. Then(S, M), — (S', M’);. Furthermore, ifS is (S; | S2); S5 or (S1 | Sa), then
1S < |S].

Proof. By induction on the structure df.

e Sism := e. SupposeA(R) £ [,. By Lemma 3.5.10{¢e, M); | v andwv is
available. By rule (S1)m := e, M); — (skip, M[m~— M (x)[v/m]]):.

e SisSy; 5. Supposed; is notskip. By induction,(S;, M); — (S}, M);. By
(S2),(S1; Sa, M); — (S}; Sa, M);. Moreover, by induction|,S’; S| < |S1; Sal.
If Sy is skip, then(Sy; Sy, M); — (S, M),;.

e Sisif ethen S) else Sy. By Lemma 3.5.10{e, M); || v, andv is available.
If v = n, then(if e then S; else Sy, M), — (S;, M); wherej € {1,2}. If

v = (n1 | ng), then|R|; = | R], because is not a pair statement.

e S iswhile e do S;. By Lemma 3.5.104¢, M); | v, andwv is available. If
v = n, then(while e do Sy, M); — (skip, M), or (while edo Sy, M); —
(S1;while e do Sy, M);. If i € {1,2}, thenI(pc) < [,. By the typing rule
(WHILE), A(R) < [, contradictingA(R) £ [l,. Thereforej is o, which implies
[R1=[R]a.

e Sis (S |Ss). If S; andS, are bothskip, then(S, M) — (skip, M). Other-
wise, without loss of generality, suppaSgis notskip. By (S-PAIR),[';|R | ; pc’ F
Sy : 7, wherel(pc’) < [, holds. By induction,(S,, M), — (S, M'),. By
I(pcd) < lyandA(R) £ l,, S; is not awhile statement. ThugS;| < |S;|. By
(S9),(S, M) — ((S] | S2), M"). In addition,|(S] | S2)| < |S]-
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3.5.3 Noninterference proof

Theorem 3.5.3 (Confidentiality noninterference).If I';R;:pc = S : 7, thenl +
NIo(S).

Proof. Given two memories\/; and M, in Aimp, let M = M; & M, be an Aimp*
memory computed by merginy; and )/, as follows:

V) — { M (m) it My(m) = Ma(m)

(Myi(m) | My(m)) it Mi(m) # Maz(m)

Let ((¢) be C(¢) < l,. ThenD' F M; =~¢<, M, implies thatl’ - M. Suppose
(S;, M;) —Tv (S, M) for i € {1,2}. Then by Lemma 3.5.5, there exists’, M’)
such thats, M) —7 (S’, M), and|T|; =~ T; and|T'| =~ T} where{j, k} = {1,2}
and7} is a prefix of7},. By Theorem 3.5.1, for each!’ in 7", I = M’, which implies
that| M'|; ~c<;, |M']2. Therefore, we have - T; ~c<j, 1. Thus,I' = NIo(S). O

Theorem 3.5.4 (Integrity noninterference).If I'; R ;pc = S : 7, thenI' = NI/ (S).

Proof. Let((¢) bel(¢) £ [,. By the same argument as in the proof of the confidentiality

noninterference theorem. O

Lemma 3.5.11 (Balance).Let ((¢) be I(¢) £ l,. Supposd';R;pc - S : 7, and
I';RE M. Then(S, M) —* (S’, M') such thal’ - | M'|y =az, [M'|s.

Proof. By induction on the size aof.

e |S| = 1. In this case,S must beskip. However,I';R;pc | skip : stmtg
implies |R |1 = [R ]2, which is followed byI' - |M|; ~4q, [M |, because
I'yRE M.

e |S| > 1. By the definition of ;R = M, I' = |M]; %#agr |M], implies
|R]1 # |R|2. By Theorem 3.5.2{S, M) —— (S', M') and|S’| < |S|. By
Theorem 3.5.1, there exis® such that™; R';pc - 5" : 7andl'; R' = M’'. By
induction, (5", M") —* (8", M") andl' - | M" |1 =z, [ M"],.
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O]

Theorem 3.5.5 (Availability noninterference). If I';R;pc = S : 7, then'; R +
NIA(S9).

Proof. Let ((¢) be I(¢) £ [,. Given two memories\/; and M, in Aimp such that
I' = My =14, M, andforanym in dom(I'), m ¢ R andA(I'(m)) £ Iy imply M;(m) #
none. To provel’ - NI4(S), we only need to show that there exist§, M) such that
(S, M;) —* (S, M), and for any(S/, M) such that(S!, M) ——* (S/ M),
'+ M =4z, M} holds.

Let M = M, W M,. Intuitively, by Lemma 3.5.11, evaluating, M) will eventually
result in a memony\/’ such that” - | M’ |; ~a4, [M']2, and if any high-availability
referencem is unavailable inV/’, m will remain unavailable. This conclusion can be
projected to(S, M;) fori € {1,2} by Lemma 3.5.2.

Suppos€sS, M) —* (S’ M') such that for anyn with Ar(m) £ 1, | M'];(m) #
none for i € {1,2}. By Lemma 3.5.2(S, M;) —"* (|.S’|;, | M'];). Moreover, for any
(Si, M!)y suchthat(|S’|;, |[M'];) —* (S;, M]), and anym with Ap(m) £ L, it must
be the case that//(m) # none. Therefore[' - M| ~ 44, M.

Otherwise,(S, M) —* (S’, M’) such that there exista with A(I'(m)) £ [, and
| M’|;(m) = none for somei € {1, 2}, and for any(S”, M") such that.S’, M') —*
(8", M"), T+ |M'|; ~ag, |M"];. By Lemma 3.5.111" - [ M'], ~ag, | M'|, must
hold. Assumd™ - [ M']; ~44, | M'], does not hold. Then there exists”, M") such
that (5", M') —* (S”, M") andT' - |M" |1 ~aq, |M"].. Because foi € {1,2},

I' = [M']; =ag, [ M"];, we havel' = | M|, ~aq, | M|, which contradicts the
original assumption.

In addition, we can show thats’, /') would generate an evaluation of infinite
steps, and both projections of the evaluation also have infinite steps so that they always

cover the evaluations df5, M,) and(S, M,). By Theorem 3.5.1, there exis®& such
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thatl'; R ;pc F S’ : 7, andl'; R’ = M'. Itis clear thatA(R') £ [, holds, because
there existsn such thatA(I'(m)) £ [, and | M’|;(m) = none for somei € {1,2}.
By Theorem 3.5.2(S", M') — (S”, M"). Sincel' - |[M'|; ~aq, |[M"]; fori e
{1,2}, (S”, M") can make progress by the same argument. TherefSte)M’) will
generate an evaluation of infinite steps. Suppose the first projection of the evaluation
is finite. Then(S’, M’) —* (Sy, My) — (S, My) — ... — (S, M,) ..., and
| (Sj, M;) |1 = [(S1, My)]; for any j. It must be the case that is (57 | S5); S5 or
(51 1S%). This contradicts Theorem 3.5.2, which impligs.., | < |.S;| for any .

By Lemma 3.5.2, the projections of the evaluation are Aimp evaluations. Therefore,
fori € {1,2}, there existg S/, M/) such that{S’, M') —* (5", M") and | M"|; =
M. Sincel' = M =aq, |M'|;forie {1,2}, '+ M{ =44, M; holds.

3.6 Related work

Using static program analysis to check information flow was first proposed by Denning

and Denning [18], and is one of the four classes of information flow control mechanisms

as discussed in Section 2.5. Later work phrased the static information flow analysis as
type checking (e.g., [66]). Noninterference was later developed as a more semantic
characterization of security [31], followed by many extensions. Volpano, Smith and

Irvine [88] first showed that type systems can be used to enforce noninterference and
proved a version of noninterference theorem for a simple imperative language, starting
a line of research pursuing the noninterference result for more expressive security-typed
languages. Heintze and Riecke [34] proved the noninterference theorem for the SLam
calculus, a purely functional language. Zdancewic and Myers [102] investigated a se-
cure calculus with first-class continuations and references. Pottier and Simonet [70]

considered an ML-like functional language and introduced the proof technique that is

59



extended in this paper. A more complete survey of language-based information-flow
techniques can be found in [73, 107]. Compared with those previous work, the main
contribution of Aimp is to apply the security-typed language approach to enforcing

availability policies.

Volpano and Smith [87] introduce the notion tefmination agreementvhich re-
quires two executions indistinguishable to low-confidentiality users to both terminate
or both diverge. The integrity dual of termination agreement can be viewed as a special
case of the availability noninterference in which termination is treated as the only output
of a program.

Lamport first introduced the concepts sd#fetyandlivenessproperties [46]. Being
available is often characterized as a liveness property, which informally means “some-
thing good will eventually happen”. In general, verifying whether a program will even-
tually produce an output is equivalent to solving the halting problem, and thus incom-
putable for a Turing-complete language. This work proposes a security model in which
an availability policy can be enforced by a noninterference property [31]. It is well
known that a noninterference property is not a property on traces [58], and unlike safety
or liveness properties, cannot be specified by a trace set. However, a noninterference
property can be treated as a property on pairs of traces. For example, consider a trace
pair (71, T3). It has the confidentiality noninterference property if the first elements of
T, andT; are distinguishable, dF, andT; are indistinguishable to low-confidentiality
users. Therefore, a noninterference property can be represented by a set of trace pairs
‘P, and a program satisfies the property if all the pairs of traces produced by the program
belong toP. Interestingly, with respect to a trace pair, the confidentiality and integrity
noninterference properties have the informal meaning of safety properties (“something
bad will not happen”), and availability noninterference takes on the informal meaning

of liveness.
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Li et al. [47] formalize the notion that highly available data does not depend on low-
availability data. However, their definition isrmination-insensitivg§7 3], which makes
it inappropriate to model availability noninterference.

Lafrance and Mullins [45] define a semantic security propamnyassivityfor pre-
venting DoS attacks. Intuitively, impassivity means that low-cost actions cannot inter-
fere with high-cost actions. In some sense, impassivity is an integrity noninterference
property, if we treat low-cost as low-integrity and high-cost as high-integrity. With the
implicit assumption that high-cost actions may exhaust system resources and render a
system unavailable, impassivity corresponds to one part of our notion of availability
noninterference: low-integrity inputs cannot affect the availabilities of highly available

outputs.
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Chapter 4
Secure distributed computation

A static analysis like the type system of Aimp described in the previous chapter can
check for potential security violations in a program that is executed on a trusted comput-
ing platform. This chapter considers how to perform secure computation in a distributed
system with untrusted hosts. The main result is a programming language DSR, which is
designed for writing secure distributed programs and has some novel features compared

to other security-typed process calculi [37, 103]:

e Dynamic label checkingwhich combines static analysis and dynamic mecha-

nisms needed to deal with untrusted hosts,

e Quorum replicationwhich is built into the syntax and type system of DSR, mak-
ing it possible to reason about the security assurances provided by this replication

technique,

e Multilevel timestampa novel timestamp scheme used to coordinate concurrent

computations running on different replicas, without introducing covert channels.

This chapter gives an overview of the key mechanisms of DSR and how they can be

used to build secure programs. A formal description of DSR is found in Chapter 5.

4.1 System model

A distributed system is a set of networked host machines. Each host can be viewed as a
state machine that acts upon incoming network messages, changing its local state and/or
sending out messages to other hosts. Figure 4.1 shows a distributed system composed
of five hosts, which communicate with each other through messages such as ;.

As the close-up of host; shows, a host is composed of a memafy a thread poob,
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Figure 4.1: System model

a set ofreactorsthat specifies the code to be executed in reaction to incoming messages,
and a set ofeactor closureghat contains data (parameters) needed to execute code in
corresponding reactors.

Each reactor has a unique naaand a program statementWhen invoked by a net-
work message, reactorspawns a new thread to execute its statement. Each invocation
message carries an integer identifijecorresponding to aimvocation contextwhich is
embedded in a reactor closure on the receiving host and contains parameters needed to
handle the invocation. A context identifieris unique for a given reactor, so the pair
(¢, m) uniquely identifies a closure, and is calledlasure identifier For simplicity, we
use the term “closuré:, n)” to denote the closure identified Ry, n). Every invocation
message for reactorcarries a context identifierand can be viewed as invoking the clo-
sure(c, n). For example, as shown in Figure 4.1, message- [exec (cy, N12) == ...
requests executing (invoking) the closyre, 7:2), and a new thread is spawned to ex-
ecute the code af,. Since an invocation context is associated with a particular invoca-

tion, a reactor closure can be invoked only once.
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Intuitively, a reactor is like a function that can be invoked remotely, and a reactor
closure is like a function closure. Closure [71, 77, 61] is a well-known mechanism for
handling first-class functions with lexical scoping. Introducing closures explicitly makes
DSR different from other process calculi [59, 60, 29] with an evaluation model based on
substitution. The substitution needs in general to happen on code located on a different
host than the current one, and it is an implicit distributed operation. In comparison,
representing closures explicitly is more faithful to the way that computation occurs in a
real distributed system, and this treatment makes the security of DSR clear.

We assume that each hdsthas a labelabel(h) = ¢ that specifies the security
level of the host. LeC'(h), I(h) and A(h) respectively represent the confidentiality, in-
tegrity and availability components &ibel(h). Intuitively, these base labels place upper
bounds on the base labels of data processéd bpr example, host is trusted to pro-
tect the confidentiality of data with a confidentiality label less than or equ@( 9. Let
H be a set of hosts. We often need to compute the join and meet of base labels of hosts
in 4. Thus, we introduce the following notation€',(H) = | |,c C(h), Cn(H) =
Mher C0), Iu(H) = Uy 1), Tn(H) = Mye (), Au(H) = Uyey A(h), and
An(H) = I_lheHA(h>-

4.2 Reactors

A distributed program is simply a set of reactor declarations written in the DSR language

with the following (simplified) syntax:

Reactor declarationsr

c{pc, loc, z77,, \y:7.s}

Statementss = skip | m:=e | s1;82 | if e then s; else s9
| exec(e, 1, pc, loc, €) | chmod(c, 1, pc, loc, {)
|  setvar({c, n).z, €)

A reactor declaration contains the following components:
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¢, the reactor name.

pc, a lower bound (with respect to the label orderinyto the labels of any side

effects generated by the reactor.

loc, the location ofc. In DSR, a reactor may be replicated on multiple hosts to
achieve high integrity and availability. Thukc may be a single host, a set of

hosts, or a more complicated replication scheme.

Z:T., a list of variable declarations, : 7.1,..., 2, : 7.x. Variablesz are free
variables of the code to be executed when the reactor is invoked, and are bound to
the values provided by the invocation context. For simplicity, an empty variable

list, denoted by, may be omitted from a reactor declaration.

A\y-7.s, thereactor body in which statement is the code to be executed when

the reactor is invoked, angt 7 is a list of variable declarationg; : 7, ..., ¥, : Th.
Variablesy are free variables of, and are bound to the value arguments carried by
an invocation message. The reactor body resembles a lambda term, since invoking

a reactor is like invoking a function.

A message invoking reacterhas the formexec (¢, n) :: pc,, loc, t|, wherev is

a list of values to which variableg of reactorc are bound, angc, loc andt are the

program counter label, location and timestamp of the sender, respectively. In general, a

network messagg has the forma :: 3], wherea is themessage heaspecifying the

purpose and destination of the message, /amglthemessage bodgontaining specific

parameters. Both and( are lists of components.

When reactor receives the invocation message= [exec (¢, n) :: pc, T, loc, t],

it needs to check the validity of the message, because the message may be sent by a

host controlled by attackers. Therefore, the closte)) contains araccess control

label acl(c,n) = ¢, and the constrainic C ¢ is checked to ensure that implicit flows

from p to the thread ofc, n) are secure. Other validity checks are discussed later in
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Section 5.2. If request is deemed valid, theacreates a new thread to executeith

all the variables iy replaced by certain values: variabfeare replaced by values and

variablesz are replaced by values from the closyten). The closure bound t¢:, n)

has the form(c,n, ¢, A, @), where/ is the access control label is a record that maps

variablesz to values, and is a list of additional attributes discussed later in Section 5.2.
In DSR, a statement may be empty statemeskip, the assignment statement

m := e, a sequential composition; s,, anif statement, or one of three primitives for

invoking a reactor closure or updating the state of a closure:

e exec(c, 1, pe, loc, €). Theexec statement sends atec messagéexec (¢, 1) ::
pc, T, loc, t] to the hosts where is located. The list of values are the results of
e, andt is the timestamp of the current thread. After runningdkec statement,
the current thread is terminated. Thus, theec statement explicitly transfers
control between reactors, which may be located on different hosts. As in other
process calculi (e.g., [60, 29]), reactors do not implicitly return to their invokers. A
return from an invoked closure requirese&tec statement, and the return address

(closure) must be sent to the closure explicitly.

e chmod(c, 1, pc, loc, ¢). The chmod statement sends a messaggmod (¢, 1) ::
pe, 4, loc, t] to the hosts of. The purpose is to sétas the access control label
of closure(c, n). This statement essentially provides a remote security manage-
ment mechanism, which is useful because a remote reactor may have more precise

information for making access control decisions than a local one.

e setvar((c, n).z, ). Suppose value is the result ofe. Then thesetvar state-
ment sends a messagetvar (c, n).z :: v, t] to the hosts te to setv as the value

of variablez in closure(c, 7).
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4.2.1 Example

Figure 4.2 shows a DSR program that computes=!m;+!ms,. In this figure, mes-
sages and closures are labeled with sequence numbers indicating their order of occur-
rence. Assume memory references, m, andm are located at hosts,, h, andhs,
respectively. Reactat; on hosth; delivers the value ofn; to hs; reactorc, on host

hs delivers the value ofn, to hs; reactorcs on hosths computes the sum and updates

m. In Figure 4.2, reactar; is invoked with a context identifief. Then the program is

executed as follows:

(1) The thread of(c;, ) executes the statemesdtvar((cs, cid).z3, !my). In this
statement, variableid represents the context identifier of the current thread and
is bound toy. Thus, thesetvar statement sends the messggevar (c;, 7).23 =

v1, t1] to hz wherev, is the value ofn;.

(2) Upon receiving thesetvar messagehs; updates the closurgs;, 1) to mapz to

V1.

(3) Concurrently with (2), the thread &f,, 1) invokes(c,, 1) by executing the state-

mentexec(cs, cid, pc, hy).

(4) The thread of(cy, 1) invokes closurecs, ) by executing theexec statement
exec(cs, cid, pc, ha, !my), which sends the messa@gec (cs, ) :: pc, v, ha, t4]
to hs, wherew, is the value ofm,. Once invoked,cs, n) spawns a thread to

execute the statement := 2 + y with z andy bound tov; anduv,, respectively.

An alternative way to implement. :=!m;+!m5, would be to make reactes; send
the valuev; to ¢, as an argument in the invocation request, and.Jl@omputev,+!m.
and send the result t§. This implementation does not need the closure-based variable
binding mechanism. However, the valueraf is sent toh,, imposing an additional

security requirementh, must be able to protect the confidentialityraf. In essence,
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(1) [setvar (c3, n).z :: v1, 1] hs

hy
ca{pe, h1, A cs{pc, hs, z:inty,
npe i, A Ay:inte.m:=z+vy }
setvar((cs, cid).z,!ma)

exeC(Ch cid, pc, hl) } \ hQ //7(2) <c37 n, pc, {z : Ul}, .. >
(3) [exec (e, 7) = pe, ha, 1] c2{pe, ha, A (4) [exec (cs. m) = pe, v2, ha, ]

exec(cs, cid, pc, ha, !m2)}

Figure 4.2: A distributed program

the closure-based binding mechanism enables the separation of data flow and control

flow, providing more flexibility for constructing secure distributed computation.

4.3 Dynamic label checking

As shown in the previous section, the DSR language provides a dynamic label checking

mechanism, which is composed of three elements:

e Dynamic labelslabels with run-time representations, including the access control
label (mutable) in a reactor closure, and the program counter labelssinor

chmod statements and messages.

e Dynamic label checkssuch as checking the constrajnt, = acl(c,n) when re-
ceiving anexec message for (c, ). The labelpc,, is the program counter label

of u.

e Dynamic label updatesuch as thehmod statements that can be used to change

the access control label of a reactor closure.

The dynamic label mechanism is necessary because static program analysis alone cannot
guarantee that untrusted hosts behave correctly. This section discusses how the dynamic
label mechanism is used to enforce information security.

Suppose a message= [exec (c, 1) :: pc,, v, loc, t] is sent to invoke a closure, )
on hosth. The security implication of this invocation is to cause information flows and

dependencies between the sender thread and the thréad)pf Let pc. represent the
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program counter label af. Then the following constraints are sufficient to ensure the

security of this invocation:
I(pe,) < I(loc) M I(pc,) C(pe,) < C(pe,)

The first constraint ensures that the sender thread and the sender hosts have sufficient
integrity to cause the effects produced by the thread-of)). The second constraint
prevents information about the program counter of the sender thread from being leaked
through the effects of the thread @f, n). Dually, the confidentiality constraint should
beC(pc,) < C(pc,) M C(loc.) whereloc, is the location of. This constraint prevents
the information about the program point wherés sent from being leaked by hosts in
loc. and the effects of the thread ¢f, ). In general, the host of a reactoeishould
always have sufficient confidentiality level to read the information processegdand
the corresponding constrait(pc,) < C(loc,) is enforced by static program analysis.
Therefore, the constraiit(pc,) < C(pc,)MC(loc.) is equivalent ta”(pc,) < C(pc.).
Although the two constraints are sufficient to enforce confidentiality and integrity,
they may be overly conservative and lead to the infamous “label creep” problem [17]:
the integrity of control flow can only be weakened and may eventually be unable to
invoke any reactor.
A static information flow analysis such as the Aimp type system solves the label
creep problem by lowering the program counter label at merge points of conditional

branches. For example, consider the following code:
if e then S; else Sy; S3

Supposéd’; R ;pc if ethenS; else S, : 7. ThenS; andS, are checked with respect
to the program counter labpt LI /.. However,S; can still be checked witpc because
both branches would transfer control$g, and the fact that control reach&sdoes not

reveal which branch is taken.
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Similarly, in a distributed setting, it may be secure to allow a mesgageinvoke
(c, m) even withpc, [Z pc,, if {(c, ) is a merge point for high-confidentiality and low-
integrity (with respect tgc.) branches, or thenly invokable closure at or above the
security levelpc,, which is also called anear entry.

Formally, a closuréc, n) is a linear entry if there are no threads running at or above
the levelpc, and(c, n) is the only closure such thati(c,n) Z pc andpc, C pc, which
mean that(c, ) may be invoked by a messagesuch thatpc, [Z pc,. In terms of
integrity, the existence of a high-integrity linear entry implies that high-integrity com-
putation is suspended, and attackers cannot harm the integrity of computation by invok-
ing a high-integrity linear entry, because that is the only way to continue high-integrity
computation.

Using thechmod statement, a distributed program can set up linear entries and al-
low low-integrity (or high-confidentiality) messages to invoke high-integrity (or low-
confidentiality) reactors. In general, the creation of a linear entry always happens when
a high-integrity reactor, invokes a low-integrity reactaf;, but eventually control re-
turns to a high-integrity reactes. In this case, the program counter labelsgfc; and
cy satisfypc,, U pc, T pc, andpc,, £ pc. . To set up the linear entrie,, i), the
thread of(cy, 1) sends a messagenmod (cs, 1) :: pc,,, pc,,, . - .| to the host of,. The
chmod message changes the access control labghof) to pc., such that, is able to
invoke (co, ). Moreover, after running thehmod message, the thread @f;, n) must
be running at the program counter leye]. so that there are no high-integrity threads
running. Thus,(cs, ) becomes a linear entry. When receivinglanod message:
for closure(c, 1), a host performs the same label cheek C acl(c,n) as that for an
exec message, ensuring that the sender has sufficient integrity. When a closyye
is first created, its access control label is sgp@sso that the access check enforces the

constraintpc, C pc,.

70



(1) [chmod (c2, ) :: £o, 41, ..

ho
h
co{lo, ho, A 2
if 1bid > lofferthen c2{lo, ha, \. a:=lt;. . .}
chmod(cz, cid, £o, ho, Z1)

exec(c1, cid, £1, ho,!bid)

/'(2) <627 m, el, .. )
elseexec(cs, cid, 2, ho) } Iy
c1{f1, h1, A\(amtinty,). (4) [exec (c2, m) 2 41, .. ]
(3) [exec (er, m) s b1, ] acct:=lacct+amt;

exec(c, cid, l1,h1) }

Figure 4.3: Linear entry creation

Figure 4.3 illustrates the creation and invocation of a linear entry. The distributed
program in Figure 4.3 performs the same computation as lines 3—4 in Figure 3.3. As-
sume memory locatiorsid andoffer are located at ho#ty, acct is located at host,
anda andt are located at hogt,. Reactorc, on hosth, invokes reactot; or ¢; based
on whether the value afid is greater than or equal to the valueddffer. Reactorc,;
updatesacct and invokes:, which assigns the value afto a. Suppose; is invoked
with a context identifier), and the value obid is greater than or equal to the value of

offer. Then the program is executed as follows:

(1) The thread of(cy, 1) executes the statemetiimod(cs, . ..) to send the message

[chmod (ca, 1) :: 4o, 1, .. .] tO ho.

(2) On receiving thechmod messageh, changes the access control labelef, 1)
to /,. Note that the program counter label of the messadg iwhich passes the

access control check singel(cz, n) is ¢, initially.

(3) Concurrently with (2), the thread d€,, n) invokes({c;, n) by running the state-
mentexec(cy, cid, {1, ho, 'bid). The program counter label of theec statement
is /; instead of, since the program counter label is boundedlgfter thechmod

statement.

(4) The thread ofc;, n) invokes(c,, n) after updatingicct. The invocation message

lexec (c9, 1) :: £4,...] Is accepted becaugel(cs, n) is /5.
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4.4 Replication and message synthesis

Replicating code and data is an effective way to achieve fault tolerance and ensure in-
tegrity and availability. In DSR, both reactors and memory references may be replicated
on multiple hosts. Suppose reactors replicated on a set of hosfé§. Then other

reactors interact with as follows:

e Any message for is sent to all the hosts iH.

e The replicas ofc process incoming messages independently of each other. To
make this possible, all the program stateslofve a local copy on every hostih
In particular, every memory reference (location) accessedibyalso replicated

onH.

¢ If invoked with the same context identifier, the replicas:@ire supposed to pro-
duce the same messages. Thus, the receiverfho$tsuch a message may
receive the replicas g from different hosts inH. The redundancy is crucial
for achieving fault tolerance. Some hostsiinmay be compromised, and these
bad hosts may send corrupted messages or simply not send anything. In general,
the replicas ofu received byh contain some correct ones, which are the same,
and some bad ones, which can be arbitrarily inconsistent. It is agdadentify
the correctu from those message replicas. This process is catlegsage syn-
thesis and the algorithm for identifying the correct message is calleteasage

synthesizer

For example, consider the program in Figure 4.4, which computes:!m;+!ms;
like the program in Figure 4.2, except that is replicated on three hosts,, hy, and
hes. Accordingly, the reactor, that reads the value ofi, is also replicated on hosts
ha1, hos @ndhsys. To invokec,, the statemendxec(c, cid, pc, hy) of ¢; sends arxec

message to all three hosts wheses replicated. Then each replica@fsends arxec
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(1) [setvar (c3, n).z :: v1, ...

}LQ] h3

ca{pc, ha, A\
exec(cs, cid, pe, H, !m2) }

cs{pc, hs, z:inty,

hy Ay:inte.m:=z+vy }

ci{pe, h1, A
setvar((cs, cid).z,!m1)
exec(c1, cid, pc, h1) }

has (4) [exec (c3, ) == pe, va1, .. ] (2) (c3,m,pe,{z 1 v1},...)

c2{pc, ha, .

exec(cs, cid, pc, H, Ims) }\ J (5)[exec (c3, n) =2 pc, va, . . ]
(4) [exec }

(c3, m) it pc,v2z,...]

has

c2{pe, ha, A. (4) [exec (c3, ) = pc, v2s, .. ]
exec(cs, cid, pc, H, !m2) }

(3) [exec (c2, 1) = pe, .. ]

Figure 4.4: Replication example

message containing the local valuernof to hs. Theexec messages from,,, hyy and
hos are synthesized into a single mességec (c3, 1) :: pc,ve, . . .| by the synthesizer
7 on hs. By doing a majority voting, the synthesizeican produce the correct message

if only one host ofhiy;, hes andhyz is compromised.

4.4.1 Analyzing security assurances of message synthesizers

Intuitively, the main goal of a message synthesizer is to identify the correct message.
By “correct”, we mean “with sufficient integrity”. Lei(u) be the integrity label of,
specifying the integrity level of the contents pf When receiving the replicas ¢f,
message synthesizeiis intended to produce the correctif (i) £ [, which says that

w is a high-integrity message and should not be compromised by attack&fs) K 1,
then i is a low-integrity message, and the system is considered secure enes if
compromised, as discussed in Chapter 2. In other words$uif < [,, the synthesizer

7 is under no obligation to ensure the correctnesg.ofherefore, ifr determines that
I(px) < I, holds, it has two options: (1) reporting an error, and (2) produginghile
knowing thatu might be incorrect. Both options do not reduce the integrity assurance.
But the first option effectively makes the message unavailable, reducing availability

assurance. Therefore, the second option is generally preferred.
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Now we demonstrate how to analyze the security assurances of a message synthesis
algorithm. Consider the synthesizerin Figure 4.4. Suppose producesu using the
following algorithm, which returngexec (cs, n) :: pc,vay, .. .| if v9, vog ANdvy3 are
equal, and otherwise returasne, which means that the message is unavailable.

if (vg; = U9y && V91 = wvy3) then return [exec (c3, 1)) :: pc, Va1, .. .|

else return none
With this algorithm, attackers can convine¢o produce a messagecontaining a fabri-
cated value by compromising the integrity of all three hasts ho; andhss. Therefore,

this algorithm imposes the following label constraint:
I(M) S I(th) L I(hgg) L ](h23)

At the same time, if attackers compromise the integrity of one host and send a message
replica inconsistent with the other twg, is unavailable according to the algorithm.

Thus, the algorithm places an upper bound on the available #helof p:
A(,u) S [(hgl) M ](hgg) M I(th)

To increase the availability assurance at the expense of integrity assuraace,se
the following algorithm:
if (vg; = wvag || wey = wy3) return [exec(cs, ) :: pc, vy, .. .|
if (vg = w93) return [exec(cs, M) :: pc,vog, .. ]
else return none
in which, 7 produces messageif two of vy, v92 anduvyz are equal. Attackers can com-
promise the integrity ofi by compromising the integrity of two hosts. At the same time,
to makey unavailable, attackers only need to make v,, andw,z all different from
each other by compromising the integrity of two hosts. Thus, the algorithm imposes the
follow constraints:
I(p) < (L(ha1) U I(ha2)) M (I (ho2) U I(R23)) 11 (1 (ho1 U 1 (ha3))
A(p) < (Z(ho1) U I(h22)) 1 (1(ha2) U I (has)) M (1 (hor U I(has))
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Suppose the integrity constraint holds, and v,, andw,s differ from each other. Then
I(p) <, can be concluded. There are only two cases in which attackers carvmake
v andwyg differ from each other. First, the values are computed using low-integrity
data. In this case, the type system of DSR ensiifg$ < [, as discussed in the next
chapter. Second, attackers are able to compromise two hdsts 6f, andh,3. Without

loss of generality, suppose attackers compromise the integribys,;0dnd h95. Then
I(ho1) U I(hge) < I, which implies/(x) < I, by the above integrity constraint. Based
on the discussion at the beginning of this sectiorgan choose to return a message
with an arbitraryv, without reducing integrity assurance. This idea is applied to the

following algorithm:

if (vg; = wvge || w9y = wy3) return [exec (cs, ) :: pc, v, . ..
if (vg = w93) return [exec(c3, M) :: pc,vag, .. .|
else return [exec(cs, 1) :: pc,0,.. ]

which returns a message with a default valuéthe three incoming message replicas
differ from each other. This algorithm provides higher availability assurance than the
last one without sacrificing integrity assurance. In fact, the algorithm is bound to return
some message. Thus,u is available as long as hoshs;, hs, andhys are available.
Therefore,

A(M) = A(hgl) M A(hgg) M A(h23)

Qualified host sets

In general, given a message synthesizea host sef{ is qualifiedwith respect taor,
written asqualified _(H ), if receiving messages from all the hostsfihguarantees
will produce a message. For examplég, oo, hos} is a qualified set for the third syn-
thesizer algorithm discussed above. Suppose a reactor replicalédends a message
to be synthesized by. Then the availability of: is guaranteed if a-qualified subset

of H is available. ThusA(yu) is enforced ifA(p) < A(H, ), whereH is the sender set
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of u, andA(H, ) is computed as follows:

A(H, ) = | | An(H')

H'CH A qualified _(H")

4.4.2 Label threshold synthesizer

The label threshold synthesizet|(], parameterized with an integrity labklproduces

a message if it receivesy from a set of hostd? satisfyingl < [,(H), or if it can
determine from the incoming messages that [, holds. Using the label threshold
synthesizer to handkexec messages allows a reactor to be invoked by any host set with
sufficient integrity. This flexibility is important because a reactor, like a remote function,
may be invoked by different callers.

The components of a message may have different integrity labels. THissyn-
thesizes the message components separately. For example, sUpposzeives mes-
sageu; = [exec (¢, n) :: pc;, T;, loc;, t;] from hosth; for i € {1,...,n}, and produces
a message. = [exec(c, n) :: pc,T,loc,t]. ThenLT[l] usespc,,...,pc, to produce
pc, anduyy, . .., v, to producev;, and so on. Intuitivelyl.T[/] produces messages with
an integrity level upper bounded lby Therefore, the integrity label of every message
component is bounded By

First, let us consider howT|[!] synthesizes the corresponding components. . , v,
into v, wherev; belongs to message sent by host,;. This synthesis algorithm can be

described by the following pseudo-code.

LTUICH, vy, ..., v,) {
if JH'C H. (1< I (H') N Yhj€ H'. v; =v)
return v

if (qualifiedpTy(H)) return vy
else return none

3

First, this algorithm returns value if v is sent by a host set/’ satisfying the label

constraint:l < [,(H'). Second, if no subset df with sufficient integrity endorses the
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same value, and/ is LT[/]-qualified, then the algorithm returns a default valye In
this case, returning a default value is justified because the following qualified condition

for LT[{] implies!’ < [,, wherel’ is the integrity label of the component.

H is LT[/]-qualified if and only if4 cannot be partitioned into two disjoint

setsH; andH, such that £ I,,(H,) andl £ I,,(H,).

Now we show that the qualified condition impli8s< [, if there does not exist a subset
H’ of H such that for any:; € H', v; = v, andl < I,,(H'). Suppose, by way of con-
tradiction,!’” £ [,. Then attackers can only compromigseby compromising:;. Then
the setH, of good (high-integrity) hosts send the same value. Therefoge [ ,(H,)
holds, which implied < I,(H,) whereH, = H — H, is the set of bad hosts, since
H satisfies the above qualified condition far|/]. Therefore] < [,, which contradicts
UL AU <L

In some sense, ther[/]-qualified condition is like the byzantine fault tolerance con-
dition, which require2f + 1 hosts to tolerat¢ failures. A set o2f + 1 hosts cannot
be partitioned into two disjoint sets such that either set may be composed of only failed
hosts, if there are at mogtfailures.

It is straightforward to construdtT|[/] for messages using tHeT[l] algorithm for
message components. Suppd$é| receives messages, . . ., i, from hostsH, and
Wi = [a v, ..., v ). Here notation is abused a bit; may be a value, a location or a

timestamp. The following pseudo-code describes hojlj synthesizes these messages.

LTUCH, py, ..y pn) {
if (V. LT{|(H, vj1,...,vn) =v; A v; # none)
return [a ::vq,..., U]

else return none
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4.5 Using quorum systems

The label threshold synthesizeT|[(] is based on the assumption that all replicas on
good hosts generate the same high-integrity outputs. The assumption requires that good
hosts agree on their local states. In particular, if the contents of a megsde@end
on the value of some memory referenaereplicas ofm on good hosts must have the
same value. Otherwise, the replicag:«afannot be synthesized usib@[/|. To maintain
the consistency (equality) between the replicas:afn good hosts essentially requires
that the updates ten are synchronized on all the hosts f However, this strong
synchronization requirement makes it difficult to guarantee the availability of a memory
write operation because all the hostsneneed to be available to synchronize a write
operation onn. To achieve high availability for both memory read and write operations,
we need more complex replication schemes and message synthesis algorithms.
Quorum systems are a well-known replication scheme for ensuring the consistency
and availability of replicated data [35, 51]. A quorum systénis a collection of sets
(quorums) of hosts, having the for(#, W,..., W,), whereH is all the hosts inQ,
and quorumsVy, ... W, are subsets off. Suppose a memory location s replicated
on a quorum system. Then an updatertas consideredtable(finished) if it is com-
pleted on a quorum of hosts. In DSR as in some other quorum systems [51], timestamps
are used to distinguish different versions of the same replicated memory location. A
read operation can get the most recent update by consulting withfaafdtosts inter-
secting every quorum. In some literature [52], edichis called awrite quorum andR
is called aread quorum Using quorum protocols, only a subset of hosts is needed to
finish either a read or write operation. That is why replicating a memory location in a
guorum system can potentially achieve high availability for both reads and writes.
This section describes how the DSR language incorporates quorum system proto-

cols.
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4.5.1 Tracking timestamps

In quorum protocols, timestamps play an important role: to distinguish different ver-
sions of the contents of a memory reference.

To track timestamps, DSR provides the following mechanisms:

e Thread timestamps
Each thread has a timestamp that is incremented with every execution step of the

thread.

e Message timestamps

When a thread sends a messagg the current timestamp @éfis embedded in.

e \Versioned memory
The contents of a memory reference are associated with timestamps that indicate
whether the contents are up to date. If a memory referenteassigned value
at timestamg, theversioned value@t is stored in the local memory as a version

of m.

A new version ofm does not overwrite old versions @f. This is necessary
because execution is asynchronous. It is possible that a thread ol inpdates
m at timet while another thread oh at a logically earlier time still needs to read

m. Old versions ofn resolve this write-read conflict.

In general, a local memory on a host maps a memory referente a set of
versioned values@t. A derereferencén evaluated at time results in the most

recent version ofn by the timet.

If m is replicated on multiple hostd, it is possible that some hosts #h may be
running behind, and they do not have an up-to-date version. ofhus, the type
system of DSR prevents a versioned value from being used in any computation,

since the value may be outdated. To compute using the valug afhost needs
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to obtain the replicas of: from sufficient number of hosts and figure out the most

recent version.

4,5.2 Quorum read

In general, to read the value of replicated on hosté/ = {hy,...,h,}, a program
invokes a reactor: replicated onH, and each: on hosth; will send back its local
versionv;@Qt; of m in a setvar messagésetvar (¢, n).z :: v;Qt;, t/]. After a host
h' of ¢ receives thoseetvar messages)’ uses a message synthesizer to produce a
messagegsetvar (¢, n).z :: v] such that@t is the most recent version af by the
time thosesetvar messages are sent. Af forms a quorum syster@, thenh’ uses a
quorum readsynthesizer, written a8 |[Q, [|, wherel is the integrity label ofn.

Suppose the most recent updatertdy the timec is invoked is stable. Then at least
all the hosts in one quorum @ complete the update. ThereforeQi[Q, ] receives
sufficientsetvar messages from every quorum @f it can identify the needed value
with sufficient integrity. Based on this insight, a host &eis QrR|Q, []-qualified if the

following condition holds:
VW € Q. qualified (W N R)

The condition requires that the intersection betwBend each quorurii’ is a qualified
set forLT[{]. Intuitively, the messages frofy N R are sufficient to determine the value
held by W, if W is the quorum holding the most recent versiommof Suppose the
quorumW holds the most recent valu€t. Then any good host i’ N R must provide
the valuev@t. Furthermore, any good host {d would not provide a value’@t’ such
thatt < t/, sincev@t is the most recent version.

TheQR[Q, []-qualified condition can be viewed as a generalization of the requirement
that the intersection of any read quorum and any write quorum has a size &tfleast

in order to toleratef byzantine failures.
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Supposeu; = [setvar (¢, ).z :: v;Qt;, ¢!

1

| (1 < i < n)from R are received.
Then the followingQR[Q, ] algorithm is able to return the appropriate versiomofvith
sufficient integrity, ifR is QR[Q, []-qualified.
QR[Qa l] (R) M1y, -y Mn) {
if qualifiedqgg(R)
if (RFvQt:[] and Vit <t; = R v;Qt;: D)
return [setvar (c, ).z :: V]
else return [setvar (c, ).z :: v4]

else return none

3

In this algorithm, the notatio®® - v@t : [ means that there exists a sub®0bf R such
that! < I,,(R’) and for any host; in R', v;@t; = v@t. Intuitively, the notation means

thatv@t is a version ofm with sufficient integrity. Essentially, this algorithm returns

the versioned value with sufficient integrity and the highest timestamp. If there does

not existv@t such thatk + v@Qt : [, thenl < [, must hold, which justifies returning a
message with a default value.

Applying the general formula fad (H, 7), the availability guarantee of a read oper-
ation on the quorum syste® = (H, W) is as follows:

A(H,QR[Q,1]) = | ] An(R)

RCH Aqualified g g 1 (R)

4.5.3 Quorum write

Similar to a quorum read operation, a write operation for referemeeplicated onQ
is performed by invoking some reactothat is also replicated o@ and contains an
assignment ton.

The quorum read synthesizer assumes that an updateidcstable by the timen
is read again. Suppose is replicated onQ and updated by reacter To maintain
the stability ofm, the reactorc’ invoked byc is required to wait for the invocation

requests from a quorum @. This ensures that the executionsfncluding the update
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to m, is completed on a quorum, and the update is therefore guaranteed to be stable
by the timem is read by another reactor. Recall thateec message has the form
lexec (¢, ) :: pc,T, loc, t], whereloc may be used to describe the quorum system of
the memory locations being written to by the sender reactor. So the receiver has all the
information to do the quorum-write check.

Essentially, an available quorum ensures that a write operation terminates. There-
fore, the availability guarantee of a quorum write is as follows:

Awrite(Q) = |_| AW (W)

weo

4.6 Multi-level timestamps

Timestamps introduce new, potentially covert, information channels. First, timestamps
are incremented at execution steps, and thus contain information about the execution
path. Second, in quorum protocols, timestamps can affect the result of a memory read.
We want to increment the timestamp so that (1) it stays consistent across different
good replicas, and (2) its value only depends on the part of the execution path with label
¢ such that? C pc (wherepc is the current program counter label). To achieve this,
DSR usesnulti-level timestampthat track execution history at different security levels.
To simplify computation local to a reactor, a timestamp has two partsgltiml part
tracks the invocations of reactors at different security levelsjdbal part tracks the
execution steps of a local thread. Formally, a multi-level timestamp is a {gpie, 0):
the global parfpc:n is a list of pairs(pc, : ni, ..., pc, : ng), wherepc,, ..., pc, are
program counter labels satisfying the constragiit C ... C pc,, andny, ..., n; are
integers. Intuitively, the componept; : n, means that the number of reactors invoked
at the levelpc; is n;. The local part is less significant than the global part in timestamp

comparison, and its concrete form will be discussed later in Section 5.2.
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When a multi-level timestamp is incremented at a program point with lakel
the high-confidentiality and low-integrity (with respectpo) components of are dis-
carded, because those components are not needed to track the time at the, lendl
discarding those components prevents insecure information flows. Furthermore, the lo-
cal part of a timestamp after the increment is reset to an initial statSuppose =
(pcy ina, ..., pc, iny; 9), andpe; E pcandpe,, , £ pc. Thenpe,, | :nq,...,pc,:ng
are low-integrity components to be discarded, and incrementatdevelpc is carried

out by the following formula:

‘ (pcy:ina,...,pc;in; + 1; dp) if  pc;, = pc
inc(t, pc) =
<p013n17---7pci:ni>190313 50> if pCi7épC
When comparing two timestamps, low global components are more significant than high

ones. Therefore, for arpye, we always have < inc(t, pc).

4.7 Example

Like Figure 4.3, the distributed program in Figure 4.5 performs the same computation
as lines 3—4 in Figure 3.3, except that referebte is replicated on a quorum system

Q. This example illustrates how to read a memory reference replicated on a quorum
system and how timestamps are tracked in a system. Reaetdbid is used to read

the value ofbid and send the value 1 so thatc; can computéacct+!bid. Reactor
readbid IS replicated on the same quorum systenpasce so that each replica of
readbid can read the local replica @irice and send it to host; using asetvar
message. Host, usesQRr|[Q, (] (specified in the declaration ef, and/ = I(¢;)) to
synthesize theetvar messages sent by replicasmfadbid. If QR[Q, ] produces a
messagésetvar (cy, n).amt :: v], then the value is recorded in the closurg;, n) as

the value ofamt.
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(1) [chmod {c2, 1) :: Lo, 41, ho, t1]

h3
c2{lo, h2, X &=l ..}
P(2) (c2,m, ba, - - - ta)
ho ) [exec (c2, m) :: 1, ha, t7)
co{lo, ho,QR[Q, ] > zbid:inty,,
. if zbid > lofferthen

cl{f1 ,h1,QR[Q, Z] >amt:intg,,
chmod(cz, cid, {o, ho, ¢1) . acct: lacct\L amt;

exec(readbid, cid, {1, ho) exec(cz,cid, £1,h1) }
elseexec(cs, cid, l2, ho) }
(4) [setvar (c1, n).amt :: v;@Qt], 4] > QR[Q, ] —>(5)(c1,7m, {1, {amt : v},...)
(3) [exec (readbid, n) :: {1, ho, t3] > LT[l]

readblt{ll, ,

A.setvar((c1, cid).z, !bid);
exec(ci, cid, f1, H' ) }
hl (6) [exec (c1, n) =: €1, H' , 6]
readbid /i, O, ..., }

readblc{él Q,..., }

Figure 4.5: Quorum replication and timestamps

To track the time globally, every message carries the timestamp of its sender. Sup-
pose the timestamp aty, n) isto = (¢ : 1;00). Then the timestamps are incremented

as follows:

(1) ¢, = (€ : 1;011). The local parby; is obtained by incrementing.

(2) to = inc(ty, by) = (€y:2;00). OnN receiving thechmod message, host; incre-
mentst, to obtaint, and storeg, in closure(cs, ). When(c,, n) is invoked
by a low-integrity messagg, the initial timestamp of the thread &f,, n) will
be ¢, instead of the timestamp obtained by incrementing the timestamp of the

low-integrity .
(3) t3 = (fy:1;d12). The local parb,, is obtained by incrementing; .

(4) ty = inc(ts, (1) = (lp:1,¢1:1;00). Since the program counter labelofadbid
is /1, the initial timestamp fofreadbid, 7) is obtained by incrementing at the

level /.
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(6) te = (€o:1,¢1:1;d61). The local party; is obtained by incrementing.

(7) t7 = (€o:1,¢1:2;671). The initial timestamp ofc;, n) is inc(tg, ¢1) = (¢o: 1,41 :
2; do). Thus,t; is obtained by incrementing the local part of the initial timestamp.
Note thatt, = inc(t7, ¢o), which means that if; is correct, the initial timestamp

of (¢y, 1) is the same as that obtained by incrementing

4.8 Related work

The design of the reactor model and DSR is inspired by concurrent process calculi and
by object-oriented programming [2]. Well-known examples of process calculi include
CSP [36], CCS [59], the pi calculus [60], and the join calculus [29]. In these calculi, pro-
cess communication is modeled by message passing. The key difference between DSR
and prior process calculi is that DSR provides explicit language constructs for replica-
tion and run-time security labels, allowing these mechanisms to be statically analyzed
by a type system.

There has been some work on type-based information flow analyses for process cal-
culi. Honda and Yoshida [37] develop a typeetalculus for secure information flow
based on linear/affine type disciplines. Zdancewic and Myers [103] present a security-
typed language2eR, which extends the join calculus with linear channels, and demon-
strate that internal timing attacks can be prevented by eliminating races. In these lan-
guages, linear channels provide additional structure to facilitate more accurate informa-
tion flow analyses. Linearity also plays an important role in security types for low-level
languages in continuation passing style [102]. In DSR, a closure can be viewed as a
linear continuation, since it can be invoked only once.

Quorum systems [84, 15, 35, 51, 8, 5] are a well studied technique for improving
fault tolerance in distributed systems. Quorum systems achieve high data availability

by providing multiple quorums capable of carrying out read and write operations. If
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some hosts in one quorum fail to respond, another quorum may still be available. Mar-
tin, Alvisi and Dahlin [52] proposed Small Byzantine Quorum protocols, which place
different constraints on read and write quorums, and require that every read quorum
intersects with every write quorum rather than every two quorums intersect with each
other.

The Replica Management System (RMS) [48] computes a placement and replication
level for an object based on programmer-specified availability and performance param-
eters. RMS does not consider Byzantine failures or other security properties.

Keeping multiple versions of the program state is a well-known approach to efficient
concurrency control, especially for providing consistency for read-only transactions [13,
92, 4]. This work uses the approach to provide consistency for reactor replicas running
behind.

Multipart timestamps have been used to providesetor clockscheme [90, 68, 11,

43, 44, 42], in which a timestamp contains multiple components tracking incomparable
times, such as the times of different processes. This work uses multiple components in
a timestamp to count events at different security levels.

Walker et al. [91] designedzap a lambda calculus that models intermittent data
faults, and they use it to formalize the idea of achieving fault tolerance through replica-
tion and majority voting. Howevehzapis designed for a single-machine platform with
at most one integrity failure.

The DSR language supports run-time labels, and the evaluation model of DSR re-
lies on run-time label checking to control information flows between hosts. Dynamic
information flow control mechanisms [94, 95] track security labels dynamically and use
run-time security checks to constrain information propagation. These mechanisms are
transparent to programs, but they cannot prevent illegal implicit flows arising from the

control flow paths not taken at run time. The Jif language [62, 65] is the first security-
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typed language with explicit language features for run-time labels and run-time security
checks. Some recent work focuses on presenting sound static analyses of run-time la-
bels. Tse and Zdancewic proved a noninterference result for a security-typed lambda
calculus @gp) with run-time principals [86]. Zheng and Myers proved a noninterference
result for a security-typed lambda calculuggc) with run-time labels [106].

Various general security models [56, 83, 28] have been proposed to incorporate dy-
namic labeling. Unlike noninterference, these models define what it means for a system
to be secure according to a certain relabeling policy, which may allow downgrading

labels.
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Chapter 5
The DSR language

This chapter formally describes the syntax and semantics of DSR and proves that the
type system of DSR can enforce the confidentiality and integrity noninterference prop-

erties.

5.1 Syntax

The syntax of the DSR language is shown in Figure 5.1. We use the hanrange
over a lattice of base label3 x, y andz to range over variable names,to range over
a space of memory locationk,to range over host names, ando range over reactor
names.

To facilitate writing generic code, reactors may be polymorphic. The full form of a

reactor declaration is:

clzzol{pc, Q, T>z 11, \y T3 S}

wherez=7 is a list of parameter declarations. If valuebave types, thenc[v] can be
used as the name of a reactor. Variajesdz may be used in statemesnt Variables
z are initialized bysetvar messages synthesizeddyln DSR, a message synthesizer
7 is either a quorum read synthesiz@fQ, (] or a label threshold synthesiZet|(]. For
simplicity, empty-list components may be omitted from a reactor declaration.

A valuev may be a variable, an integem, a context identifier;, a memory refer-
encem, a reactor[v], a remote variabléc[t], v).z, a versioned value@t, or a label
¢. Expressions and statements are standard except for the three reactor opexatipns
chmod andsetvar. In statementxec(v, vq, pc, Q, €) Or chmod(vy, vy, pc, Q, ¢),
value v, is either a reactor valugv] or a variable, and, is eithern or a variable. In

statemensetvar(v, e), valuev is either(c[t], n).z or a variable.
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Base labels l L
Labels &pC {C:ll,I: Iy, A= lg} | X
Timestamps t (pcm; ms)
Values v x| n|n| m| | (o], v).z | vQt | £
Expressions e v]le| e +es
Statements s skip | v:=e | $1;82 | if ethen s; else so

exec(vy, v2, pc, Q, €) | chmod(vy, ve, pc, Q, )
setvar(v, e)

clzzol{pc, Q, 7> z:T, \y:T.5}

QR[Q,1] | LT[]]

int | label | 7 ref | 7var
reactor[T:o|{pc, 7> z:71, T2}
reactor[Z:o|{pc, T2}

Reactor decls
Synthesizers
Base types

<

@ 3

WA= anm

Security types o B
Types T o | cQQ | stmty
Host sets H, W {h1,...,hp}
Quorumsystems  Q == (H,W) | h | H | &v | #v
Programs P = {r,...,rn}

Figure 5.1: Syntax of the DSR language

A base types can beint (integer),label (security label); ref (reference of type

T), T var (remote variable of type) and reactor typeeactor[z:a]{pc, 7>z 71, T2}
whose components are interpreted the same way as in a reactor declaration. A reactor
type may also have a simplified forreactor[z:a]{pc, 72}, which contains sufficient
typing information for checking the invocation, while providing polymorphism over the
argumentg.

A security typeo is a base typel annotated with security labél Like security
labels, replication schemes are also specified as type annotations. A locatedi@pe
indicates that data with this type is replicated on the quorum sy§lern general, a
quorum systen© has the form{ H, W). If Q is (H,¢) or ({h},¢), thenQ also has a
simplified form: H or h. In addition, ifv is a memory reference replicated @) then
&o represent®), and#wv representd! = |Q|, which is the set of hosts i@. The type
of a statement has the formstmt,, which means that afterterminates, the program
counter label is lower bounded Bywith respect to the ordering.

A timestampt has the formpc:n ; 7i5), where the list: of integers is the local part
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of t. In DSR, a progran® is simply a set of reactor declarations.

5.2 Operational semantics

In DSR, a system configuration incorporates the program states of all the hosts in the
system. A system configuration is a tugte, M, £) where®© is a thread poolM is
a global memory, and is a system environment that captures system state other than

memory, including messages and closures.

e The thread poob is a set of threads. A threadlis a tuple (s, ¢, h, c[v], n)
wheres, t andh are the code, timestamp, and location of the thread, respectively;

(c[v], n) identifies the closure of this thread.

e The global memory\ maps hosts to their local memories, and a local memory
maps references to lists of versioned values. TAd§,|[m] = v1@Qt,, ..., v,Qt,
means thav,Qt,, ..., v,Qt, are the versions ofn on hosth. If MI[h|[m] =
none@t, then the value ofn is unavailable on host. Unlike in Aimp, memory

failures are modeled by host failures instead of mapping references do

e The environmeng is a tuple(MT, CT) whereMT is amessage tablmapping
a host pairh,, h,.) to the set of messages frdmto h,., andC'T is aclosure table

mapping a tupléh, c[t], n) to the closurdc[v], n) onh.

To read and update various program states in a system configuration, the evaluation

rules of DSR uses the following notations:
e M[h,m,t]: the value ofn on hosth attimet. If v@t € M{[h][m], thenM[h, m,t] =
v. Otherwise M[h, m, t] is not defined.

e M(h,t): a snapshot oM on hosth at timet. SupposeM (h,t) = M. ThenM
maps references to versioned values, ahfdn] is the most recent version of

on hosth by the timet.
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(E1)

(S1)

(S3)

(S5)

(S6)

(87)

(S8)

(S9)

(G1)

(M1)

(M2)

(M3)

(A1)

(A3)

(!m, M) v

M(m)=v Eo (ei, M) bvi 1€{1,2} v=v1Puv2
€2 (e1 +ez, M) Jv

(E3) (v, M) |v

(e, M) yn M' = M[m~— n@Qt] (51, M, Q, t) — (s}, M', Q', t')

S2
(m =€, M, Q, t>'—><SkiP7 M’7 Qvt"’_l) (52) <51;527M7 Q, t>'—)<s,1;827Ml7 Q,7 t/>
(skip;s, M, Q, t) — (s, M, Q, t + 1) (S4) (fi;s, M, Q, t) — (s, M, Q, t>1)

(e, M) I n n>0

(if e then s1 else s2, M, Q, t) — (s1;£fi, M, Q, t<1)

(e, M) I n n <0

(if e then s1 else s2, M, Q, t) — (so;fi, M, Q, t< 1)

(e, M)y vr none ¢ U1

(exec(c[d], n, pe, Q, €), M, Q, t) — (halt, M, QU [exec (c[t], n) :: pc,¥1, Q, ], t + 1)
(chmod(c[v], 1, pc, Q, £), M, Q, t) — (skip, M, Q U [chmod {c[v], ) :: pc, £, Q,t], t + 1)

(e, M) v v # none

(setvar((c[v], n).z, €), M, Q, t) — (skip, M, QU [setvar (c[v], n).z :: v,t], t + 1)

(8, M, Q1) — (s, M/, Q) M(hyt) = M
&' = (if Y = QU {u} then E[messages(h) — p] else £)
{(s, t, b, cfol, MPUO, M, &) — ({{s', ', h, c[v], n)} UO, M[himy M), E)

& .closure(h, c[v],n) = {(c[v],n, ¢, A, t',on) P(c[v]) = c[v){pc, Q, 7> z:72, A\ 71.5}
Vz;.A(zi) # none &.messages(*, h, [exec (c[v], n) :: x]) = (H, h, 1)
LT[{](H, ) = [exec (c[?v], n) :: pc, U1, O, t] W e WCH pcC ¢ ko171
t" = (if pc C pc’ then inc(t, pc’) elset’) t/ #none =t <t/

&' = E[closure(h, c[v],n)— (c[v],n, ¢, A, t", off)] A" = A[g— v1][cid— n][nid— hash(t")]

(0, M, &) — (©U{(s[A], t", h, c[v], n)}, M, &)

& .closure(h, c[v],n) = (c[v],n, ¢, A, t, on)
€ messages(x, b, [chmod (c[o], n) = 2y, «l, 2 C £ C y, £ # ) = (H,h @)  IW € QW C H
LT[¢](H, ) = [chmod (c[v], 1) :: pc, €', Q, t] t" = (if pc C pc’ then inc(t, £) else t')
(6, M, &) — (0, M, Elclosure(h, c[o], m)r— (e[o], m, €, A, 7", om)])

& .closure(h, c[v],n) = (c[v],n, ¢, A,t, on) P(c[v]) = c[ol{pd, H', m>z:7, A\y:71.5}
A(z;) = none E.messages(x, h, [setvar (c[v], n).z; :: *]) = (H, h, 1)
mi(H, ) = [setvar (c[v], z;).m = v,t] T kFwo:7[v/T]

(©, M, &) — (O, M, E|closure(h, c[v],n) — (c[v],n, £, Alz;+— v],t’, on)])

I(h) <ly M(h,t)=M T(m)=0orocQQ I(hy<la Tkup
M' =M[m—v@Qt] Thv:o &' = Elmessages(h, k')~ p]
(©, M, &) — (8, Mlh M), &) " e M e — o M &)

A(h) <y
{(s, t, h, c[0], )} UO, M, ) — ({(abort, t, h, c[v], n)} UO, M, &)

Figure 5.2: Operational semantics of DSR with respe€t &md P
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e M(h,m): the most recent value of. on hosth. If M(h,m) = v, thenv@t €

M{h][m], and for any'@t’ € M[h|[m], t' < t.

e E[messages(h) —, p]: the environment obtained by adding fothe message
w sent byh. Supposef|messages(h) —, p] = &. Then& MTIh,b] =
E.MT|h,h']U{pu} foranyh’ € receivers(u), and for any other host pair;, ho,
E' "MT[hy, he] = E.MT]hq, hs]. Suppose is for reactor replicated orQ. Then

receivers(p) = | Q).

o E[messages(hy, hy)— p|: the environment obtained by addipgo £ as a mes-

sage sent from, to hs,.

e M[h—, M]: the memory obtained by incorporating infd the memory snap-
shotM on hosth at timet. SupposeM |[h+—, M| = M’'. ThenM|m| = vQt
implies thatM'[h, m, t| = v, and for any host’, timet’ and reference’, ' # h
ort’ # tor M[m'] # vQt impliesM'[h',m/, t'| = MW ,m/ t].

o &|closure(h, c[v],n) — k]: the environment obtained by mappik, c[v],n) to

closurek in the closure table of .

The operational semantics of DSR is given in Figure 5.2. The evaluation of a term
may need to use the reactor declarations (the progranesd the typing assignment
I' of memory, which maps references to types. For breVitgnd P are implicitly used
by the evaluation rules in Figure 5.2, though they are technically an (unchanging) part of
the evaluation relation defined by the operational semantics. In addition, three auxiliary
statements may appear during execution, although they cannot appear in programs. They
arehalt, indicating the normal termination of a threa#élport, indicating an availability
failure, andf i, indicating the end of the execution of a conditional statement.

Rules (E1)—(E3) are used to evaluate expressions on a single host. The notation

(e, M) |} v means that evaluatingin a local memory snapshat results in the value

92



v. These rules are standard. In (E1), the notalibfm ) represents the value of in M.

If M|m|= vQt, thenM (m) is computed as follows:

M(m) = v@t if ['(m) =0@Q
v if '(m) =0

In rule (E2),v; @ v, is computed as follows:

ni + neg if V1 =N andUQ = N2
vy vy =
none if v, = none Or v, = none

Rules (S1) through (S9) are used to execute statements on a single host, defining a
local evaluation relatiods, M, Q, t) — (s, M’, €', t'), where the outpuf) keeps
track of outgoing messages from the thread.of

Rules (S1)—(S6) are largely standard. The interesting part is the manipulation of
timestamps. Each evaluation step increments the local part of the timestavhh
is a list of integer components. To avoid covert implicit flows, executing a conditional
statement should eventually cause the timestamp to be incremented exactly once no
matter which branch is taken. When entering a branch, in (S5) and (S6), a new integer
component is appended to the local part;afhen exiting a branch in (S4), the last com-
ponent is discarded. Given= (pc:n; n},...,n}), the following auxiliary functions

manipulate local parts of timestamps:

t+1 = (pcim;ny,...,n,+1)
tal = (pc:m;ni,...,n,1)
tbl = (pc:n;ny,...,n_;+1)

Rules (S7)—(S9) evaluate the three reactor operations. They all send out a network
message encoding the corresponding command. In rule (S7gxtrestatement pro-
duces the message(v], n, exec :: pc, 7, Q,t], whereQ is a quorum system of the

current thread that potentially contains an unstable memory update. The destination
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hosts of this message are determined:ly. After executing arexec statement, the
current thread is terminated, evaluatinghtd t.

A global evaluation step is a transitid®, M, &) — (©’, M’, £'). Rule (G1)
defines global transitions by lifting local evaluation steps, using changes to the local
memory and outgoing messages to update the system configuration.

Rule (M1) handlesxec messages. This rule is applicable when hastceivesxec
messages that can be synthesized into a valid invocation request for clogiire).

The following auxiliary function retrieves the set of messages with some property from
environment:

&.messages(h, hy, ji,C) = (h, W, i)

whereh, areh, arehost patternshat may be some hoat or a wild card representing

any host, or some variable /1 is a message pattern, a message with some components
replaced by or x; C is a set of constraints on the variables appearing in these patterns.
The result(h, I/, i) represents a list afh;, b/, 1;) tuples wheréh; andh/ are the sender

and receiver of:;, andp; matches the pattern and satisfiesTo abuse notation a bit,

h can be represented By = {hy,...,h,}, or h, if all the hosts ink areh,. For ex-
ample, in rule (M1), the functio&.messages(x, h, [exec (c[v], n) :: %]|) returns all the
messages i# that are sent té and have the message heagéc, (c[v], n)". The re-

sult of the function isH, h, i), whereH = {h4,...,h,}, and eacth; sendsy; to h.
Then H and7 can be fed to the message synthesizBf| (abbreviation forLT[I(¢)]),
where( = acl(c[v],n). This enforces the constrain{/) < I,(H), ensuring that the

set of sender hosts have sufficient integrity to invoke the closure. As discussed in Sec-
tion 4.2, a reactor closure has the fofmn, ¢, A,a). The extra attributeg include

t, the initial timestamp of the thread generated by invoking the closureseick, a

flag for the invocation state, which could be eithar(yet to be invoked on this host)

or off (already invoked). Supposk(c) is the declaration of reacter Then P(c[7])
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represents’(c)[v/z], wherex are parameters af. OnceLT[/] returns an invocation
requestiexec (c[t], n) :: pc, 71, Q, t], hosth verifies the following constraints to ensure

the validity of the request:

e Vz;.A(z;) # none. This constraint guarantees that varialdiese all initialized.

e JIW € Q.W C H. This constraint ensures that all memory updates of the sender

thread are stable.

e pc C /. This label constraint controls the implicit flows by ensuring the program
point of the sender thread has sufficient integrity and does not reveal confidential

information.

e I' - 77 : 7. Run-time type checking ensures that the arguments of the request
are well-typed. This check is necessary because bad hosts may send ill-typed

messages.

e t' #£none = ¢ < t. This constraint ensures that the invocation request is not out

of order.

After the request is validated, hdstcreates a new thread whose codg|id’], the
statement obtained by applying substitutidhto s. In particular, the current context
identifiercid is replaced by, and the new closure identifietd is replaced by the hash
of the current timestamyy, which is eithert’, or inc(¢, pc) if pc C pc’. The state of the
closure is set teff to prevent more invocations.

Rule (M2) handleshmod messages. Suppose itienod messages to be processed
are for closuréc[v], n). Like in (M1), the closuréc[v],n, ¢, A, ', on) is retrieved from
&; LT[/] is used to synthesize thehmod messages that attempt to change the access
control label of(c[v], n) from ¢ to ¢’ such that’ C ¢ and/ # ¢’. Thechmod messages
are extracted frorg by £.messages(x, h, [chmod (c[v], 1) :: z,y,*],x T L C y,l # y),

which produces onlghmod messages that are meant to chamgé-, n) to a label higher
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than/. Once a messagehmod (c[v], n) :: pc, V', Q, t] is produced by.T[¢], rule (M2)
verifies the quorum constraint and the label constradnt /, just like rule (M1). Once

the constraints are verified, the closure’s timestamp is initialized if necessary, and the
access control label of the closure is sef'to

Rule (M3) handlesetvar messages. Suppose the corresponding request is to ini-
tialize variablez; of the closure identified byc[v], ). Thenr; is the message synthe-
sizer to use, according to the declaratiorcief. If 7; returns asetvar request with a
well-typed initial valuev, andz; has not yet been initialized, thenis mapped ta in
the variable record of the closure.

In a distributed system, attackers can launch active attacks using the hosts they con-
trol. Rules (A1) through (A3) simulate the effects of those attacks. In general, integrity
attacks fall into two categories: modifying the memory of a bad host and sending mes-
sages from a bad host. Rules (A1) and (A2) correspond to these two kinds of attacks.
The constrainf (h) < [, indicates that the attacker is able to compromise the integrity of
hosth. In rule (Al), an arbitrary memory referengeon hosth is modified. Note that
we assume the attack does not violate the well-typedness of the memory. This assump-
tion does not limit the power of an attacker because the effects of an ill-typed memory
would either cause the execution of a thread to get stuck—essentially an availability
attack—or produce an ill-typed message, which a correct receiver would ignore. In rule
(A2), an arbitrary messageis sent from host. Again, we assume thatis well-typed
without loss of generality. Rule (A3) simulates an availability attack by aborting a thread

of a hosth whose availability may be compromised by the attacker.

5.3 Type system

This section describes the type system of DSR, which is designed to control information

flow in distributed programs.
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(STl) T1<Tp To<T] (STZ) Ty < Ty
71 ref < 1 ref 71 var < Ty var

m<T Tmm<7T pdCpc

(ST3)

reactor[T:o){pc, T> z:72, 71} < reactor([Z:o|{pd, T> z:74, T3}

(ST4) reactor[z:o|{pc, > z:72, 71} < reactor[z:o]{pc, 71}

< C C
Br < B2 1 Cly o1 < 09 (ST7) pcy & pey

ST5 ST6
(5T5) CE(B1)e, < (B2)e (5T6) 01QQ < 5,@Q stmtpe, < stmtp,

Figure 5.3: Subtyping rules

5.3.1 Subtyping

The subtyping relationship between security types plays an important role in enforcing
information flow security. Given two security types= (3,,, andr, = 3,,,, Suppose;

is a subtype of, written asr; < 7. Then any data of type, can be securely treated

as data of type,, and any data with labél may be treated as data with laldg] which
requiresl; C (s, thatis,C(¢;) < C(¢y) andI(ly) < I(¢1). In DSR, a label may be a
variable, and a label variableis incomparable with other labels except foitself.

The subtyping rules are shown in Figure 5.3. Rules (ST1)—(ST4) are about subtyping
on base types. These rules demonstrate the expected covariance or contravariance, as
reactors are like functions, and remote variables are like final fields in Java [81]. As
shown in rule (ST3), the argument types are contravariant, and the prpmise pc,

is needed because tlpe of a reactor type is an upper bound on fleof the caller.

Rule (ST4) says that any reactor of typeactor[z:a]{pc, 7> z: 72, 71} can be treated

as a reactor of typeeactor|[z:o|{pc,72}. Intuitively, it is safe to associate a more
restrictive program counter label with a program point, since it permits fewer implicit
flows. Therefore, a statement of typemt,. also has typetmt,., if pc, C pc,, as

shown in (ST7).
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5.3.2 Typing

The typing rules of DSR are shown in Figure 5.4. A progra&nis well-typed inT,
written asl" - P, if every reactor declarationin P is well-typed with respect td' and
P, writtenT"; P + r, wherel" and P provides the typing information for memory and
reactors, respectively.

A reactor declaration is well-typed if its body statement is well-typed. The typing
judgment for a statementhas the form*; P; Q;pc I s : 7, meaning that has type
7 under the typing environmeit; P ; Q ; pc, whereQ is the quorum system whesds
replicated, angbc is the program counter label. The typing judgment for an expression
e hasthe fornT'; P; Q F e : 7, meaning that has typer under the typing environment
I'; P; Q. For simplicity, a component in the typing environment of a typing judgment
may be omitted if the component is irrelevant. For example, in rule (INT), the type
of n has nothing to do with the typing environment, and thus the typing judgment is
simplified ag- n : int,.

Rules (INT), (CID), (LABEL), (VAR), (LOC), (ADD), (ESUB), (IF) and (SUB) are
standard for a security type system aimed to analyze information flows.

In DSR, only thechmod statement imposes a lower bound on the program counter
label after termination. Thus, the typesstfip, v := e, and theexec andsetvar state-
ments are the sameitmt, , which effectively places no lower bound on the program
counter label after termination, dsC pc holds for anypc.

Rule (REACTOR) is used to check reactor valtiel. The notations C o and

¢ C c@Qrepresent C (' if o = (y. Suppose|z:al{pc, Q, T>2z:71, A\Y:72. S}

is the declaration of in P. Then the list of parametefs must have type&|[v/z],
where the substitution is necessary becausey appear i@. The values of the reactor
parameters and the effects of this reactor depend on the reactor value itself/ Thus,

olv/z] andl C pc[v/z] are enforced. Since this reactor is replicated®n= Q[v/7],
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(INT) Fn:int, (CID) Fmn:inty (LABEL) F{C=11,I=12, A=l3}: labely

I'(m)=r I'ke;:inty, 1€ {1,2
(m) (ADD) i i {1,2}
T'Fm: (rref),

(VAR) T'Fz:I'(2) (LOC) [T —
P(c) =c[z7o){pc, Q, T>z:71, \Y:72. S}
I'Fv:cfv/z] LCov/z] £LC pclv/z

O (7i[B/2)) U Cu(m3[o/3]) U C(pel/a]) < Cr(Qo/a))

I'; P c[v] : reactor[v/z|{pc, 7> z:71, T2 }e

(REACTOR)

T'; PFc[v] : reactor{pc, 7> z:7, T2 }¢
Fov:inty FV(W)=0 (Cm 'Fov:o

AR V) ————————

(ARG) ;P E(c[v], v).z; : (m; @ T; var), (™) I';QFvQt: c@QQ
I'ke: (tref), readable(Q,T) I'sP;QFe:m 71 <12

DEREF ESUB —

( ) I';OHe: U4 ( ) I P;QFe: T

ko (rref), writable(Q,7)['Fe:0 base(t)=0c pcUlC o

(SKIP) T'; P;Q;pct skip : stmt (ASSI) T 0. pcr vi—c stmty

T';P;Q;pck s1 @ stmty, T';QOFe:inty
[';P;Q;pclify - s2 : stmty, L;P;Q;pcllbs;:7 i€{1,2}
SE IF
(SEQ) [';P;Q;pck s1582 : stmty 40, (IF) I';P;Q;pct if ethens; else sy : 7

I'; Py :reactor{pd, 7> 2z:7, T2 }¢
I';QOFwg:inty T'H£:labely I';P;QF€:7To
pcET pcC/

EXE
( ©) I'; P;Q;pct exec(vy, va, £, Q, €) : stmt
I'; PFowy :reactor{pd, 7> 2z:7, T2 }¢
I';QFwvy:inty, I'F£:1label, I;QFwv:(rvar), I';QFe:T
I'H/¢ :labely, pcCl LTV pcUlC T
(CHMD) (SETV)

I'; P; Q;pct chmod(vi, v2, £, Q, ') : stmt, I'; P;Q;pct setvar(v, e) : stmt

I, Z70,y 71,272, cid:intpe, nid:intpe; P; Qspek s : stmt

I';Prcloz|{pc, O, T>T z, A\Ty. s}

(RD)

D5 P;Q5pcks:m 71 <72
I';P;Q;pcks:m

(SUB)

[Auxiliary notations]

T®T: QR[Q]®c=0QQ LTI|®T=T

writable(Q,7): T=0QQ V (1t =0 A|Q| ={h})

readable(Q,7): (1 =0QQ' A|Q|=|Q|) V (=0 A|Q|={h})

Figure 5.4: Typing rules of DSR

any data processed by the reactor is observable to the hogXs ifihe last constraint

ensures that the hosts @ would not leak information abouf{).
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Rule (ARG) checks remote variable[t], v).z;. If the type ofc[v] shows that; has
typer; and synthesizert;, then the values used to initializehave typer; ® 7; such that
they can be synthesized byinto a value with type;. Therefore, the type di:[v], v).z;
is (m; ® ; var), wherel is the label of[7].

Rule (TV) checks versioned values.uhas typer, thenv@t has typer@QQ in the
typing environment'; Q, which indicates that the versioned value is evaluated. at

Rules (DEREF) and (ASSI) checks memory dereferences and assignments. These
two rules need to ensure that the involved memory reference is accessi@lelatu-
itively, if a memory reference. is replicated orQ, then a read or write operation needs
to be performed on all the hosts @ In rule (DEREF), the premiseadable(Q, 7) en-
sures thatQ contains the same set of hosts @swhere the reference of typeref
is replicated, or the reference is not replicated at all. In rule (ASSI), the premise
writable(Q, 7) ensures tha@ is the quorum system where the reference to be assigned
is replicated.

In rule (DEREF), ife has type(r ref),, then!e has typer LI £. We use the notation
By LI ¢ to represent, ,, andoc@QQ LI ¢ to represent LI /QQ. The labell is folded into
the type ofle because the result &f depends on the value ef

Rule (ASSI) says that := e is well-typed ifv has type(r ref),, ande has type
o = base(T), which strips the location part of The constrainpc U ¢ C o ensures the
safety of both the explicit information flow fromto referencey and the implicit flow
from the program counter ta

Rule (SEQ) checks sequential statements,. If s; has typestmt,,, thens, is
checked withpc LI /1, since/; is a lower bound to the program counter label after
terminates. If the type of; is stmty,, then the type 0§ ; s; iS stmty, s, as both/; and
/5 are a lower bound to the program counter label aftes, terminates.

Rule (EXEC) checkexec statements. It resembles checking a function call. The
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constraintgc C 75 andpc C ¢ ensure that the reactor to be invoked would not leak the
information about the current program counter.

Rule (CHMD) checks:hmod statements. The labélis meant to be the new access
control label of closurdvy, v,). After executing this statement, the program counter
label is lower bounded by, effectively preventing the following code from running
anotherchmod statement with label before(v;, v,) is invoked. The constrairt C ¢/
impliespc C ¢, ensuring the new program counter label is as restrictive as the current
one.

Rule (SETV) is used to check thestvar statement. Value has type(r var),,
representing a remote variable. The value of expressisnsed to initialize the remote
variable, and thus has typer. The constrainpc U ¢ C 7 is imposed becauseand the

program counter may affect the value of the remote variable.

Rule (RD) checks reactor declaration$z:a|{pc, Q, 7> z: 75, \y:71.5} is well-

typed with respect td' and P as long as the reactor bodys well-typed in the typing

environment, 770,771,z 72 ; P; Q; pc.

5.3.3 Subject reduction

The type system of DSR satisfies the subject reduction property, which is stated in the
subject reduction theorem, following the definitions of well-typed memories and con-

figurations.

Definition 5.3.1 (Well-typed memory). M is well-typed inT, writtenT" - M, if for
anym in dom(I') and any host and any timestamp, M|h, m,t] = v andI'(m) =

ocorc@QQimplyl'uv:o.

Definition 5.3.2 (Well-typed memory snapshot) M is well-typed inl", writtenI" = M,
if for any m in dom(T"), = M (m) : T'(m).
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Definition 5.3.3 (Well-typed environment). £ is well-typed inl" and P, writtenl"; P -
&, if for any closure(c[v],n, ¢, t, A, ) in £ and anyr € dom(A), - A(z) : 7~ wherer is
the type ofr based o andc[v], and for anyu in £, we havel'; P - u, which means

the contents of; are well-typed. The inference rules for P - ;. are standard:

I'; PF c[] : reactor{pc, 7> z:71, T2} Forc T
(M-EXEC) - —
T'; Pk [exec(c[v], n) :: pc,v1, Q, t]
T'; PF c[v] : reactor{pd, 7> z:71, T2
o) 7 ( )

I'; P+ [chmod (c[t], n) :: pc, ¢, O, t]

I';PE{(D]),n).z: (Tvar), Fuoi:7
I'; P [setvar (c[v], ).z :: v1, 1]

(M-SETV)

Definition 5.3.4 (Well-typed configuration). (0, M, &) is well-typed inT" and P,
writtenT'; P - (©, M, &),if ' - M, andl"; P + &, and for any(s, t, h, c[v], n) in
0,I';P;Q;pcks:T.

Lemma 5.3.1 (Expression subject reduction)Supposd” I~ (e, M) |} v, andl"; Q +-
e:T,andl’ - M. Thenl'; QFwv: 7.

Proof. By induction on the derivation dfe, M) |} v.

e Case (E1). In this case,is !m, and7 isI'(m), andv is M (m). If I'(m) = int,,
thenM (m) = n while M[m] = n@t, andT"; Q - n : int,. OtherwiseI'(m) =
int,QQ, andM (m) = M|m| = n@t. We havel'; Q - n@Qt : int,QQ.

e Case (E2). By inductiori,; Q - v; : inty, fori € {1,2}. Thus,I'; Q F vy + vy :
intglug2.

]

Lemma 5.3.2 (Substitution). Supposel - v : 7. Thenx : 7,I';P;Q F e : 7/
impliesT[v/z]; P; Qv/x] - e[v/x] : T'[v/x], andz : 7,T"; P; Q;pc + s : 7/ implies
Plo/z]; P; Qlv/a]; pelv/x] b s[v/a] : 7'[v/x].
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Proof. By induction on the structure efands. Without loss of generality, assume that

the typing derivations of ands end with applying rule (ESUB) or (SUB).

eisy. If y = z, thene[v/z] = v, andz does not appear im. Therefore,
'k efv/x] : 7'[v/z] immediately followsl' - v : 7. If y # z, thene[v/x] = v,
andy:7'[v/z] belongs td'[v/z]|. Thus,I'[v/x] -y : 7'[v/z].

eisn,n, ¢, orm. This case is obvious.

e cisc[v], (c[v, v).z,v@t, le Or e; + e5. By induction.

e sisv := e. By induction,I'[v/x]  v'[v/x] : 7" refylv/z], and'v/z]|
elv/z| : olv/x]. Sincebase(rt") = o, we havebase(t"[v/z]|) = o[v/z]. In addi-
tion, writable(Q, ") implies writable( Q[v/x], 7"[v/x]), andpc U ¢ C o implies

pclv/x) U llv/z] C o[v/x]. Thereforel'[v/z]; P; Qv/x] - s[v/x] : T'[v/x].

® 5iSsy; sy Orif ethen s else so. By induction.

]

Lemma 5.3.3 (Subject reduction).Suppose(s, M, Q, t) — (s, M', ', '), and
'-M,andl'; P+ Q,andl’; P; Q;pct s: 7. Thenl'; P; Q;pct s : 7andl' - M’
andl'; P+ (.

Proof. By induction on the derivation dfs, M, Q, t) — (s', M', O/, t').
e Case (S1). By rule (ASSI';Q F m : (7 ref), andI';Q F e : 7. By
Lemma5.3.1]"; Q F v : 7. Therefore' = M [m— v@t].

e Case (S2). By induction.

e Case (S3)sisskip;s’. Sincel'; P; Q;pct skip;s' : 7,we havd"; P; Q;pc
skip: stmt,andl’; P; Q;pcU/l F s : 7, whichimpliesthal; P; Q;pck s :

T.
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e Case (S4). By the same argument as case (S3).

e Case (S5)sisif e then s; else s9. By the typing rule (IF)I"; P; Q;pcU (.
s1: 7, which impliesI'; P; Q:pct sy : 7.

e Case (S6). By the same argument as case (S5).

e Case (S7). Supposfr| has typereactor{pc, Q' , 7>7z,77}. By Lemma5.3.1,
'O F vy @ 7. By (M-EXEC), I'; P F [exec(c[t], n) :: pc, 77, Q,t], which
impliesT"; P+ .

e Case (S8). Since[y] is well-typed, thechmod message sent in this step is also

well-typed.

e Case (S9). By Lemma 5.3.%, is of the correct type, and the&tvar message is

well-typed.
0

Theorem 5.3.1 (Subject reduction).Supposd™; P + (6, M, &) — (6, M’  £’)
andl'; P+ (©, M, ). Thenl'; P+ (&', M’, &).

Proof. By induction on the derivation df©, M, &) — (0', M’, £').

e Case (G1). The evaluation step is derived fromM, Q, t) — (s, M', ', )
on hosth, and M’ = M[h+, M']. SinceM’ and M are well-typed M’ is also
well-typed. IfQ' = Q, then&’ = £ is well-typed. Otherwise)’ = Q U {u}, and

&' = E[messages(h) — p]. Sincew is well-typed,&’ is well-typed.

e Case (M1). In this case, we only need to prove that the newly created thread is
well-typed. Sincel' - 77 : 7. By I' - o7 : 7[v/Z], we havel” - A’. By
Lemma5.3.2]" - s[A'] : 7.

e Case (M2). In this case, only the access control label of a closure is changed,

which does not affect the well-typedness of the closure.

104



Case (M3). In this case, we need to prove tHat; — o] is well-typed. By the
run-time type checking in rule (M3), we haVe- v : 7;[v/z]. FurthermoreA is

well-typed. Thus,A|z;— v] is well-typed.

Case (Al). By the premisét v : I'(m) in rule (Al).

Case (A2). By the premisé - p.

Case (A3). The statemeabort is considered well-typed.

5.3.4 Preventing races

In DSR, a race is used to refer to the scenario that two threads with different closure
identifiers are running at the same timestamp or sending messages with the same mes-
sage head. A race makes it possible for attackers to choose to side with one of the two
racing threads, and affect execution that the security policies do not allow them to af-
fect. Furthermore, message races increase the complexity of maintaining consistency
between reactor replicas. Therefore, it is desirable to prevent races in DSR programs.

According to the evaluation rule (S7) of DSR, a thread is terminated after sending
out anexec message. As a result, if the execution of a distributed program starts from
a single program point, then threads generated from normal execution can be serialized,
and so can the memory accesses by those threads.

We now discuss how to prevent the races between messages. Races katvwden
messages are harmless becatls®d messages with different labels are processed sep-
arately, and the type system of DSR ensures that no two diffehaiet requests would
be issued by the same thread at the same program counter label. As for preventing races

between other messages, our approach is to enforce the following linearity constraints:

e A closure can be invoked by at most one reactor instance.
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e A remote variable can be initialized by at most one reactor instance.

These constraints can be enforced by a static program analysis, which tracks the uses
of communication terms, including reactor names, closure identifiers, context iden-
tifiers and remote variables. Given a statemer@nd the typing assignment for

that statement, 1eRV (s,I") represent the multi-set of communication terms appear-
ing in theexec andsetvar statements is. Note thatRV (s, I") is a multi-set so that
multiple occurrences of the same value can be counted. Given a reactor declaration
r =c[z7ol{pc, Q, 7> z:7, \y:7.s}, let RV (r,T") denote the multi-set of communica-

tion terms appearing inwith respect td". Then we have

RV (r,I') =RV (s, I''T70,y:11,2:72)

Given a progranP such thaf’ - P, we can ensure that there are no races between

messages by enforcing the following three conditions:

e RV1. Foranyrin P, RV (r,I') is a set.

e RV2. If (c[v], v).z € RV (r,I'), thenuv is eithercid ornid, and for any other’
in P, (c[v], cid).z ¢ RV (r',I"). Furthermore, ifv is cid, thenc has no reactor

parameters, andcontains no variables.

e RV3. If (c[v], v) € RV(r,I'), thenv is a variable. Furthermore, if may be

invoked byc directly or indirectly, ther isnid.

The first condition ensures that a reactor can perform at most one operation on a com-
munication term. The second condition ensures that only one reactor is allowed to have
(c[v], cid).z inits body. According to (RV2), ifc[v], cid).z appears in reactef, then

¢ has no parameters. Therefore, only closlafen) can usgc[t], n).z without receiv-

ing the variable from its invoker. By (RV1)¢/, n) can either initialize the variable or

pass it on to another closure, ensuring that only one reactor may initialize n).z.
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The third condition (RV3) ensures that no two threads created by normal execution with
different closure identifiers can invoke the same closure. Suppose two threads with dif-
ferent closure identifier&, n;) and(c,, 7,) invoke the same closure, n). If the two
threads are created by normal execution, then»,) and(c,, n;) can be serialized.
Without loss of generality, suppose, 7,) is invoked first. Since the thread ¢f;, ;)
invokes(c, n), the thread ofc, n) invokes(cs, 1,) directly or indirectly. By (RV3),;
is the value ofid for the thread of(c,, 72). This contradicts the assumption that the
thread of(c;, 1) invokes(c, n), sincen is unique for the thread gf:, 7.).

We say that a prograifi is race-freef P satisfies (RV1)—(RV3), and use the notation

I' Ik P to denote thaP is well-typed and race-free.

5.4 Noninterference

This section formalizes the properties of confidentiality and integrity noninterference for
the execution model of DSR, and proves that a well-typed and race-free DSR program
satisfies the noninterference properties.

Unlike a trusted single-machine platform, a distributed system may be under active
attacks launched from bad hosts. Possible active attacks are formalized by the evalua-
tion rules (A1)—(A3), as discussed in Section 5.2. Since we ignore timing channels, the
availability attack in rule (A3) does not produce any observable effects, and is irrele-
vant to confidentiality or integrity noninterference. The attacks in rules (Al) and (A2)
only produce low-integrity effects. Thus, those attacks do not affect the integrity non-
interference property. For confidentiality, the attacks may be relevant because they may
affect low-integrity low-confidentiality data, and generate different low-confidentiality
outputs. However, such attacks can be viewed as providing different low-confidentiality
inputs. Therefore, we assume that attackers would not affect low-confidentiality data

when considering the confidentiality noninterference, which ensures that a program pro-
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t1 =ta = v1 R v
v1Qt1 & v2Qtoy

(VE1l) v=v (VE2) none =~ v (VE3)

(c[v])) = c{pc, Q, > z:7, ATi71.s} Vi.((T15) = v14 = v
[exec (c[T], n) :: pc, o1, Q, ] =¢ [exec (c[T], 1) :: pc, U2, Q, 1]

P
(MSE1)

C(pe) = 41 =42
[Ch'm°d <C[E]a 77> i pe, Ela Q7 t] ¢ [Chm°d <C[ﬁ], 7]) i pe, 627 Q» t]

(MSE2)

((cv].z) = v1 ~ w2

(MSES3) [setvar (c[v], ).z :: v1,t] =¢ [setvar (c[v], n).z :: v2, 1]

th ha,m,t. C(mvhl) A C(mth) ANt < min(l]-l(hlvt)vﬁ(h%t)) = Ml[hlvmvt] = MQ[h27mvt]
Vhi, ho,m. C(m, h1) A C(Tm7 hg) = Ml[hl,’m,to} ~ Mg[hg,m, to]

ME
M) L (M1, Th) =¢ (M2, T2)
cE varmap (P, c[v]) F A1 =¢ A2 ((c[7]) = t1 = t2
8 PEeRln 1, A1, t1,7) ~c (elol,m, €, Ao £2,%)
Vhi, ho. Vt < min(']i(h1,t),7-2(h2,t)).
(37 € {1,2}. (hj, b, pj) € Ej.messages(hy, *, [ = *,]) AVi € {1,2}. C(uy, b)) =
(Vi € {1,2}. & .messages(h, , [* =2 *,t]) = (hq, hj, i) A p1 ~¢ p2
Vhi, ha. V{c[t], n). ¢(c[D], h1) A ¢(c[D], h2) = P+ &Er.closure(hi,c[v],n) ~¢ E2.closure(hz, c[v],n)
EE
8 PE (&1, Th) ~¢ (&2, T2)
t1 =~ to
TE
( ) (Slytlvhlvc[ﬁ}vn> ¢ <527t27h27c[ﬂ]77’/>
vt' < t.Vhy,ho. (Vi € {1,2}. C(t/, hi) A @i(hi,t/) =6;)=6; ¢ 02
(Vt' <t.(3h.3j € {1,2}. ©;(h,t') =0 A((t',h)) = Vie {1,2}. stablec(©;, Q, t')
(TPE)
tH©, R 09
Vi € {1,2}. 7; = timestamps(©;,&;,¢) T = (M1, Th) m¢ (M2, T2) T+ (&1, Th) =¢ (E2,T2)
min(max(7y,¢), max(72,¢)) - ©1 ~=¢ O2
(SB)

I'F(©1, My, &1) =¢ (O2, Mo, E2)

[Auxiliary definitions]

3H. (Vh; € H.¢(t,h) = ©O(hs,t) = (si, ti, hi,c[0],n) AT;Q;pe; b sy : 7 A=C(pe;) AN IW € Q. W C H)
stable¢ (©, Q, t)

Figure 5.5:¢-Equivalence relation

duces the same low-confidentiality outputs only if the program receives the same inputs.
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5.4.1 (-Consistency

As discussed in Section 3.5.2, both confidentiality and integrity noninterference proper-
ties can be viewed as the preservation aoasistencyelation between the program
states that satisfies @ condition, which intuitively represents low-confidentiality or
high-integrity. In DSR, two system configurations greonsistentif their { parts are
consistent, meaning that it cannot be determined that the two configurations belong to
different executions by examining theimparts.

For confidentiality, th& condition is defined as follows:

C(x) <l if xis a label
((x) =

C(label(x)) <, otherwise

wherelabel(x) denotes the label of, which is a program term such as typeaeference

m, hosth, timestamp and messagg. The definition oflabel(x) is shown below:

e label(h) is the label specified on hokt

e label(r)ist,if 7 = Gy orT = (3,QQ.

label(p) is pc if p is anexec or chmod message angc is the program counter
label of 11, andlabel(y) is ¢ if p is asetvar message and is the label of the

remote variable targeted by

label(t) is the lastpc component of the global part of

label(c[v]) is the program counter label offt].

Whether a termx satisfies th&€ condition may depend on the host whereesides.
For instance, any term on a low-integrity host is also low-integrity. In general, whether
termx on hosth satisfies, can be determined by(label(z)Mlabel(h)), which is written

as((x,h).
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For integrity, the! condition represents the notion of high-integrity and is defined as

below:
I(x) L1, if xis a label

((x) =
I(label(x)) £ Iy otherwise

The key issue in formalizing the noninterference properties is to défaomsistency
between system configurations, which depends ort{bensistency relations between
thread pools, memories, and environments. Figure 5.5 shows the definitions of those
¢-consistency relations in the form of inference rules.

Rules (VE1)—(VE3) define a consistency relaties) etween values. Intuitively,

v & v, Mmeans they may be used in the same way and in the same execution. More
concretely,y; andv, may be assigned to the replicas of a memory reference, and they
may appear as the same component in the replicas of a message. Rule (VEL1) is standard.
Rule (VE2) says thatione is consistent with any value becauseione represents an
unavailable value that cannot be used in any computation to generate observable effects.
Rule (VE3) says that two versioneg@t¢; andv,@t, are consistent if; = t, implies

v &~ ve. Two versioned values with different timestamps are considered consistent,
because they may be used in the same way and in the same execution.

Rules (MSE1)-(MSE3) define theconsistency between messages. Rule (MSE1)
says that two messaggskec (c[v], n) :: pc, 771, Q, t] and[exec (c[v], n) :: pc, Tz, Q, t]
are(-consistent if any two corresponding argumemtsandvy; are consistent on con-
dition that ((7y;) holds. Intuitively, =((m;) means that values with type; can be
distinguishable. Rules (MSE2) and (MSEZ2) are interpreted similarly.

Rule (ME) defines memory-consistency. Intuitively, two global memoriest;
and M, are considered-consistent with respect to the typing assignmenif for
any hostsh; and hy, any referencen, and any timef, {(m, hy) and{(m, hy) imply
Mi[hi,m,t] = MlJhy, m,t]. However, with knowledge of thread timestampst;

and.M, may be distinguishable i#1,[h,, m, t] = n andM;|he, m, t] = none, because
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Mlhy, m, t] = none can be determined by reading the most recent versientof ¢ on
hosth,. If there exists a thread g with a timestamp’ such that’ = ¢ (the global parts
of t andt’ are equal) and < ¢/, thenM; and M, must belong to different executions.
Therefore, the-consistency ofM; and M should be considered with respect to the
timing information, which is captured by a timing ma@pthat maps a hogi to the set of
timestamps of the threads énLet 7 (h, t) be the timestamp in 7'[h] such that ~ ¢'.
Then M, [hy, m,t] and Mslhe, m, t] need to beequalif ¢ < min(7;(hq,t), T2(ha,t)),
which means the two threads on hoktsand h, have reached timeé Therefore, ifm

is updated at time in one thread, them should also be updatediin another thread.
Otherwise, the two threads, along witi; and M, belong to different executions. Rule
(ME) also requires that; and M, have(-consistent states at the initial timg= ().
The second premise of rule (ME) sa¥4; [k, m, ty] and Ms[hy, m, to] are equivalent
if ((m, h;) holds fori € {1,2}.

Rule (CE) defines the equivalence relationship between reactor closures. Two clo-
sures are equivalent if they have the same closure identifigr, ) and {-consistent
variable records. In this rule, the notatioarmap(P, c[v]) represents the local typing
assignment” of ¢[v] with respect taP, mapping local variables efv] to types. The no-
tationI” - A; ~. A, means that for anyin dom(I"), ((I"(z)) impliesA; (z) = Ax(z).

Rule (EE) defines the equivalence relationship between environments. Intuitively,
two environments are equivalent if the corresponding (with the same timestamp) mes-
sages in the two environments areonsistent, and the corresponding (with the same
reference) closures ageconsistent. Like in rule (ME), we need to take into account the
case that there exists a message at tirmeone environment, but there does not exist
such a message in the other environment. Similg@rgpnsistency between two envi-
ronments; andé&s is considered with respect to the corresponding timing mMa@sd

7,. Formally, given two hosta; andh,, and some timestanthat is less than or equal
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to 7;(h4, t), if there exists a message in &; such that:; has the timestampand the
program counter labgic, . such that (pc,, ,,,) holds fori € {1, 2}, then in both¢; and
&,, exactly one messagg(andy., respectively) is sent at timg andy;, ~¢ po. Fur-
thermore, for any hosts; andh, and any closure reference{v], n), if ((c[v], h;) and
((c[1], hy), then the closures identified y[v], ) on hostsh; andh, are(-consistent.

Rule (TE) defines the equivalence between threads. Two threads are equivalent if
they correspond to the same reactor instance, and their base timestamps are the same.

Rule (TPE) defineg-consistency between thread pools. Two thread pé&gland
O, are equivalent with respect to their corresponding timing statemd 7;, written
(©1,71) =¢ (02, T), if two conditions hold. First, any two hosts andh,, and any
timestamp’ satisfyingt’ < t wheret is the smaller of the largest timestamps satisfying
¢(t) in 7y and Ty, if (', h;) and there exists a thredd on h; and with timestamp,
such that; ~ ' in ©;, thenf; ~. 6,. Second, for any timestampless than, if there
exists a thread at in either®, or ©,, then the threads at timtéarestablewith respect
to the quorum syster@ and the conditiorg in both©; and©,. Intuitively, these two
conditions ensure that both; and©, have reached, and the corresponding threads
beforet are equivalent.

Rule (SE) defines the equivalence relationship between system configurations. Two
configurations are considered equivalent if their corresponding components are equiv-
alent with respect to their timing states, which are computedibystamps(©, &, ().
Supposel = timestamps(©,E, (). ThenT[h,t| = ' means that one of the follow-
ing cases occurs. First, there exists a thread avith timestampt’ such that’ =~ ¢,
and for any thread o with timestampt”, t” =~ t impliest” < t'. Second, there
exists a closure on with timestampt’ and access control labélsuch that((¢) and
t' ~ t, and there is no thread dnwith timestampt” such that” =~ t. The notation

current-time(7 , {) is the most recent timestamguch thatZ [k, t| = t and((¢, h). Intu-
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itively, min(max(7;, (), max(75,()) is the current timestamp of the lagging one of the

two configuration.

5.4.2 The DSR* language

To facilitate proving the noninterference results of DSR, we introduce a bracket con-
struct that syntactically captures the differences between executions of the same pro-
gram on different inputs. The extended language is called DSR*. Except for proving
noninterference, the DSR* language also helps reasoning about concurrent execution of
threads on different hosts.

Intuitively, each machine configuration in DSR* encodes multiple DSR local config-
urations that capture the states of concurrent threads on different hosts. The operational
semantics of DSR* is consistent with that of DSR in the sense that the evaluation of a
DSR* configuration is equivalent to the evaluation of DSR configurations encoded by
the DSR* configuration. The type system of DSR* can be instantiated to ensure that a
well-typed DSR* configuration satisfies certain invariants. Then the subject reduction
result of DSR* implies that the invariant is preserved during evaluation. In particular,
the invariant may represent tljeconsistency relation corresponding to a noninterfer-
ence result. For example, a DSR* configuration may encode two DSR configurations,
and the invariant may be that the low-confidentiality parts of the two configurations are
equivalent. Then the subject reduction result of DSR* implies the preservation of the
¢-consistency between two DSR local configurations. The proof technique is similar to

the one used to prove the noninterference result of Aimp in Section 3.5.2.
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Syntax extensions

The syntax extensions of DSR* are bracket constructs, which are composed of a set of

DSR terms and used to capture the differences between DSR configurations.

Values v == ... | (v1,...,0,)

Statementss = ... | (s1,...,8)

Bracket constructs cannot be nested, so the subterms of a bracket construct must be DSR
terms. Given a DSR* statementlet | s |; represent the DSR statements thanhcodes.

The projection functions satisfy(s, ..., s,)]; = s; and are homomorphisms on other
statement and expression forms. A DSR* memory M incorporates multiple DSR local
memory snapshots.

Since a DSR* term effectively encodes multiple DSR terms, the evaluation of a
DSR* term can be projected into multiple DSR evaluations. An evaluation step of a
bracket statemens, ..., s,) is an evaluation step of any, ands; can only access
the corresponding projection of the memory. Thus, the configuration of DSR* has an
indexi € {e,1,...,n} that indicates whether the term to be evaluated is a subterm of a
bracket term, and if so, which branch of a bracket the term belongs to. For example, the
configuration(s, M, Q, t); means that belongs to the first branch of a bracket, and
can only access the first projection of M. We writg,"M, Q, t)” for “ (s, M, Q, t),".

The operational semantics of DSR* is shown in Figure 5.6. Since DSR* is used to
analyze the local evaluation steps of DSR, only the evaluation rules for statements are
presented. An evaluation step of a DSR* statement is denotgd, M, 2, t); —

(', M, Q' t');. Most evaluation rules are straightforwardly adapted from the seman-
tics of DSR by indexing each configuration with The main change is that memory
accesses and timestamp increments are to be performed on the memory and times-
tamp projection corresponding to indéx In rule (S1), the updated memory’ N

M[m —,; v@|t|;], where|t]; is theith projection oft. Suppose Nin] = ¢'. Then
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M'[m] = (|v']1,...,vQ[t]; ..., |v'],). In DSR*, the local part of a timestanipmay
have the formm, or @, (77, . . ., ), which indicates that the execution deviates after

local timen. Supposeé = 7, (71, . . ., ig). Then we have

itli = n,m
t<;,1 = m,(ng,...,m<1,...,7g)
tr; 1 = m, (..., >1,...,7g)
tbl = n+1
wheren<1l =mn,1,andn>1=nq,...,np_1+ 1L, andn+1=nq,...,n+ 1. If t =7,

thent <, 1 =m, (e,...,1,...€).
There are also new evaluation rules (S11-S14) for manipulating bracket constructs.
The following adequacy and soundness lemmas state that the operational semantics of

DSR* is adequate to encode the execution of multiple DSR terms.
Lemma 5.4.1 (Projection i). Supposéde, M) |} v. Then(|e|;, [M];) |} |v]; holds for
ie{l,...,n}.
Proof. By induction on the structure of
e cisv. Then|e|; = |v];.
e cis!m. Then|e|; =!m, and(!m, [M];) | [M];(m), andv = |[M(m)]; =
[M]i(m).
e cis!l(my,...,m,). By (E4),v = (vy,...,v,), Wwherev, = |[M(m;)],. Moreover,
<!mi7 LMJJ I v
e ciSe; + e, By induction,(|e;|;, [M];) | [v;]; for j € {1,2}. Thus,(|e; +
ez)i, [M]i) U [v1 Wva]s.

]

Lemma 5.4.2 (Projection ii). Supposes is a DSR statement, and|; = M, and
1), = Q;and[t]|; = t;. Thenfori € {1,...,n}, (s, M, Q, t); —> (', M", Q' ¥);
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M(m)]; =v (e1, M)s bv1 (e2, M); fv2 v=1uv1Duv2

(E1) m My Vo (E2) (1 tea My b o (E3) (v, M); { |v];
[M(m;)]; = v
ED Wonr, ) M) T (1, o)
; s M, Q, ) — (sh, M/, Q7 t);
s1) (e, M); Lo s2) (s1 t) (s t')

(m:=e, M, Q, t);, — (skip, M[m—; vQ|t];], Q, t +; 1); (s1382, M, Q, t); — (s];52, M, ', t');
(S3) (skip;s, M, Q, t); — (s, M, Q, t); (S4) (fi;8, M, Q, t); — (s, M, Q, t1; 1);

(e, M); I n n >0
(if e then s1 else s2, M, Q, t); — (s1;fi, M, Q, t<; 1);

(S5)

(e, M); I n n<0

S6
(S6) (if e then s1 else s2, M, Q, t); — (s2;fi, M, Q, t<; 1);

(e M)i o1
(exec(c[ﬂ, m, pc, Q, E): M, Q, t)i L <ha1t: M, QU [exec <C[§L 77> i, pe, Qvﬁ]iv t+; 1>’L

(87

(S8) (chmod(c[v], n, pc, Q, £), M, Q, t); — (skip, M, Q U [chmod (c[7], n) :: t, pc, Q, £];, t +; 1);
(S9) (setvar({c[v], ).z, v), M, Q, t); — (skip, M, QU [setvar (c[v], ).z :: t,v];, t +; 1);
(S10) ((skip,...,skip), M, t) — (skip, M, ¢) (S11) ((fi,...,fi), M, t) — (skip, M, t> 1)

(e, M) J (v1,...,vn)
(if e then s1 else s2, M, Q, t) —— ((if v; then |s1]; else |s2]; |1 <i<n), M, Q, t)

(s12)

<Si7 M7 Qv t>l — (‘927 Mlv Qla t/>z
<(817---75i7---75n)7 M7 Qv t> — ((817"‘7823"'78’”)7 Mlv Q,7 t/>

(S13)

(S14) ((m1,...,mn) :=e, M, Q, t) — ((m1:= le]1,...,mn = |e]n), M, Q, t)
Figure 5.6: The operational semantics of DSR*

if and only if (s, M;, Q;, t;) — (s', M!, Q. t}) and|M'|; = M and | |; = Q. and

[']i =13

Proof. By induction on the derivation dfs, M, Q, t); — (s', M’, ', ¢),.

e Case (S1). In this case,ism := e. Then M = M[m —; vQ|t];], where
(e, M); { v. By Lemma 5.4.1{|e];, [M];) { |v];. Therefore M = M[m —
|v];@t;] = |[M'];. By (S1),t' = t +; 1, which implies that ¢]; = [t]; + 1 = t.

e Case (S2). By induction.
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e Case (S3)QY = Q, M = M andt’ = t. In addition,(skip; s, M;, Q;, t;) —
(s, M;, Qi t;).

e Case (S4). We havei; s, M;, Q;, t;) — (s, M;, Q;, t;> 1),

e Case (S5). Inthis casejsif ethens;elsesy, and(e, M) || n. By Lemmab5.4.1,
(e;, M;) | n. By rule (S5), we havéif e then s else so, M;, Q;, t;) —
(s1, My, Q, t; < 1).

e Case (S6). By the same argument as that of case (S5).

e Case (S7). By Lemma 5.4.1¢, M;) || |v1];. Therefore,(s, M;, ;, t;) —
(s, My, Q; U, t; + 1), andy, = |[exec (¢[D], 1) == t, pe, Q, 77 .

e Cases (S8) and (S9). By the same argument as that of case (S7).
0

Lemma 5.4.3 (Expression adequacy)Suppos€e;, M;) |} v; fori € {1,... n}, and
there exists a DSR* configuratiafa, M) such thate|; = e; and|M|; = M;. Then
(e, M) |} vsuchthatv|; = v;.

Proof. By induction on the structure ef O]

Definition 5.4.1 (Local run). A local run (s, M, Q, t) —* (s', M’, ', t') repre-
sents a list of consecutive local evaluation stefps:M, Q, t) —— (s1, My, Q4, t1),

(s1, M1, Q1, t1) — (59, Mo, Qo to), ..., (Sn, My, Qp, t,) — (s, M, Q' t'), where

M’ and M, may differ because the execution of other threads or active attacks may

change the local memory snapshot.

Lemma 5.4.4 (One-step adequacySupposes; = (s;, M;, Q;, t;) — (s;, M/, Q. t)
fori € {1,...,n}, and there exists a DSR* configuration, M, 2, ¢) such that for
all i, [(s, M, Q, t)|; = (s;, M;, Q;, t;). Then there exist¥y = (s, M, Q, t) —*

(s', M, Q¥ t') such that for any, | E|; < E;, and for somg, | E|; ~ E;.
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Proof. By induction on the structure of

e sis skip. Thens; is alsoskip and cannot be further evaluated. Therefore, the
lemma is correct in this case because its premise does not hold.

e siswv := e. Inthis caseg; is |v]; := |e];, and(|v]; := |e]:, My, Qi t;) —
(skip, M;[m; —, v, Q, t; + 1) wherem; = |v]; and(|e];, M;) | v;. By
Lemma 5.4.3{e, M) || v" and|v'|; = v;. If vism, then(v :=¢e, M, Q, t) —
(skip, M[m— v'Qt], Q, t + 1). Since|M|; = M;, we have|M[m+— v'Qt]|; =
M;[mw [v'@t[;]. In addition, we haves’|; = s, = skip. If vis (mq,...,m,),
then we have

E=(v:i=e M, Q)

— ((my = |e]1,...,m, = le]n), M, Q, t)

— ((skip,...,m, = |e],), M[mi—1 v1Qt1], Q, t +; 1)
Itis clearthat £ |, ~ F; and| F|; < E; for anyi.

e 5is if e then s| else sj. Therefore,s; is if |e|; then |s]]; else |s5];,. By
Lemma 5.4.3(e, M) || v. If v = n, then for somej in {1,2}, we haveE =
(5, M, Q1) —— (s7;£1, M, Q, ¢t < 1) . By Lemma 5.4.1(|e];, [M];) | n,
whichimplies(s;, M;, Q;, t;) —— ([s7]s; £1, My, Q;, ti<al). fv = (ng,... ),
then we have

E={(s, M, Q, t) — ((if n; then |[s;]; else [s2]; | 1 <i < n), M, Q, )
— ((s};£1,...,1f ng then |s1]y else [s2]1), M, Q, £ <; 1),
By Lemma 5.4.1{|e|;, M;) || n;. Therefore|F|, =~ E;, and|F|; < E;.

e siss!;sh. Inthis cases; = |s]:; |s5]:. There are four cases:

— | s{]: is notskip or £i for anyi. Then the lemma holds by induction.
— ] is skip or (skip,...,skip). Then(s, M, Q, t) —* (s§, M, Q, t).

Correspondingly(s;, M;, Q, t;) — (| s4|:, M;, Q, t;).
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— slisfior(fi,...,fi). Then(s, M, Q, t) — (s§, M, Q, t>1). In addi-
tion, (s;, M;, Q, t;) — (|s5]s, My, Q, ;> 1), and|t>1]; = [t];>1 =
t;> 1.

— 1 is (s11,...,51,), and there exists somg; that is neitherskip nor fi.
Then we haves;;, M, Q, t); — (s}, M", @', t);, and(s, M, Q, t) —
(511,814, »810); 85, M, Q' ). By Lemma 5.4.2(sy;, Mj, Q;, t;)
— (sy;, Mj, 5, t5), and [M'|; = M} and|Q]|; = Q) and|t']; = ).

It is clear that for any such that # j, |[M'|; = M; and |Q']; = §; and

e sisexec(c[v], n, pc, Q, €). Then(s, M, Q, t) — (skip, M, QU {u}, t + 1)
while ¢ = [exec (c[T], ) :: t,pc, Q, 77| and (e, M) |} 7. By Lemma 5.4.3,
(leli, M;) | |v1];. Therefore(s;, M;, Q;, t;) — (skip, M;, Q;U{p;}, t;+1),
andyu; = [p];.

e sischmod(c[t], n, pc, Q, {) or setvar({c[v], ).z, v). By the same argument as

in the previous case.

e sis (s1,...,8,). By Lemma 5.4.2, we havés, M, Q, t) — (s', M', ', )
such that| (s', M’, ', /)| = (s}, M], Q}, ¢;). By (S13),|(s', M", ', t'}|; =
(si, M;, Q;, t;) for anyi such that # 1.

]

Lemma 5.4.5 (Adequacy).Supposel; = (s;, M;, S, t;) —* (s;, M/, Q. t;) for
all i in {1,...,n}, and there exists a DSR* configuratidn, M, €2, ¢) such that for
all i, [(s, M, Q, t)|; = (s;, M;, &, t;). Then there exist¥ = (s, M, Q, t) —*

(¢, M', &, ¢') such that for any, | E|; < E;, and for some, |E|; ~ E;.
Proof. By induction on the total length of; through E,,. The base case is trivial.
The lemma holds immediately ifs;, M;, ;, t;) = (s}, M, Q, t’) holds for some

J7 70
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j. Suppose for all, (s;, M;, Q;, t;) — (s¥, M, QI ¢!y —* (i, M', QL t)). By
Lemma 5.4.4, there exists’ = (s, M, Q, t) —* (s, M", Q" ¢") such that F|; <
(si, My, i, t;) — (s, M/, Q7. t7), and for somej, |E|; ~ (s;, M;, Q;, t;) —
(s7, Mi, Q}, t7). Let B} = FE; — |E'[;. By induction, there exists a run” =
(", M", Q" ") —* (¢/, M, Q. ') such thaf E”|; < E! and for some’, | E"|; ~

E%. ThenE = E', E" is a run satisfying the lemma. O

Typing rules

T'hw:7 =¢(7) or Vi.v; =vVv; =none

(BV1) Tk (vy,..oyvn): T

ko, .7 T=0Q@Q K(vy,...,vp)

(BVv2) I'F(v1,...,0n):7
BS [D)is P Qslpclisi: [7]i - =C(pc')
(BS) I';P;Q;pck (S1,...,80) 0 T
I'; Pt c[t] : reactor{pc, 7> z:71, T2}
For:mm ie{l,...,n} = —((pc
(M-EXEC) 1071 {7 } 7((1’)
T'; P F [exec{c[t], n) :: pc, 71, O, t];
I'; Pt c[v] : reactor{pc, > z:71, T2}
F¢:labely —C(¢)
1€41,...,n} = ((pc
(M-CHMD) { 7} ¢(pe)
I'; P F [chmod {c[T], n) :: pc, £, Q, t];
Feolm:Ttvar Foi:7 ie€d{l,...,n} = —=((pc
wseryy e 1 {L.....n} = ~¢(po)

T'; P+ [setvar (c[7], n).z :: v1,t];

Figure 5.7: Typing rules of DSR*

The type system of DSR* is similar to that of Aimp* except for additional rules for
bracket terms, which are shown in Figure 5.7.

Intuitively, bracket constructs capture the differences between DSR terms, and any
effect of a bracket construct should not satigfy Let —=((x) denote thatc does not

satisfy(. Rule (BV1) says that a bracket valuas well-typed if its type satisfies(,
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or all the nonrone components in are equal, which implies that the components of

v are consistent asone is consistent with any value. Rule (BV2) is used to check
bracket values with located types that may satsfyihe key insight is that versioned
values with different timestamps may be consistent. Rule (BV2) relies on an abstract
function K (vq, ..., v,) to determine whether a bracket of versioned values can have a
type satisfying,. In other words, the type system of DSR* is parameterized With

Rule (BS) says that a bracket statement. . ., s,,) is well-typed if everys; is well-
typed with respect to a program counter label not satisfging

Rules (M-EXEC), (M-CHMD) and (M-SETV) introduce an additional premise:
{1,...,n} = =((pc), which says that if a message carries an index {1,...,n},
then((pc) is not satisfied because the message must have been sent by a statement in a
bracket.

In DSR*, a memory M is well-typed with respect to the typing assignniemtritten
I'FM,if I' = M(m) : I'(m) holds for anym in dom(M). If M [m| = (v,@ty, ..., v,Qt,)
andl’(m) = o, then Mm) = (vq,...,v,). The message sé€t is well-typed with re-
spect tol’ and P, writtenI"; P  ©, if any message in € is well-typed with respect to
['andP.

An important constraint that needs to satisfy is that((¢) implies—~((¢ LI ¢') for
any /'. The purpose of this constraint is best illustrated by an example. In DSR*, if
expressior is evaluated to a bracket valge, . . ., v,), statemenif e then s; else so
would be reduced to a bracket statemgijt. . ., s ), wheres, is either|s; |; or [s2];.

To show(s,...,s!) is well-typed, we need to show that eaghis well-typed under

a program-counter label that satisfying, and we can show it by using the constraint
on . Suppose: has typeint,, then we know that, is well-typed under the program
counter labepc U ¢. Furthermore;~((¢) holds because the resultois a bracket value.

Thus, by the constraint that{(¢) implies—( (¢ U ¢'), we have-((pc L {).
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Subject reduction

This section proves the subject reduction theorem of DSR*.

Lemma 5.4.6 (Expression subject reduction)Supposd™; P; Q F e : 7, andl' - M,
and{e, M); |l v. Thenl'; P; QF v : T.

Proof. By induction on the derivation afe, M); | v.

e Cases (E1). SincE - M, we havel' - M(m) : 7. According to rules (BV1) and
(BV2), T+ |[M(m)]; : 7.

e Case (E2). By induction'; P - v; : 7 fori € {1,2}, andr is not a located
type. If v; or vy is a bracket value, thensatisfiesRV () by rule (BV1), and thus
we havel'; P - v : 7 even thoughv is a bracket value. If neither nor v, is a
bracket value, then is not a bracket value either, which impliEsP - v : 7.

e Case (E3). Sinceisv, we havel; P; Q - v : 7, which impliesl'; P; Q  |v]; :
T.

e Case (E4). By the typing rule (DEREF) does not satisfy. Therefore, we have
['P;QF (vy,...,v,) : 7 by (BV1).

]

Theorem 5.4.1 (Subject reduction).Supposd™; P; Q;pc F s : 7, andl' - M, and
I';PFQ and(s, M, Q t); — (s, M', Q' t');, and: € {1,...,n} implies that
—=((pc). Thenl'; P; Q;pct s : r,andl' H M’, andl"; P I- (0.

Proof. By induction on the derivation ste, M, 2, t); — (s', M', Q' t');.

e Case (S1). Inthis casejsm := e; TiSstmt,; s’ isskip. We havd; P; Q;pc
skip : stmt,. By (S1), M is M[m +—,; v@t]. By Lemma 5.4.6, we have

I' = v : T(m). If iise, then M(m) is v or v@Qt according tol'(m), and in
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either case, the type of ¥n) is T'(m). Otherwise,~((I'(m)) holds, and thus
M’(m) has typd’(m) according to rule (BV1).

Case (S2). By typing rule (SEQ),; P; Q;pc k- s1 : stmt,e andl'; P; Q; pc’
sy 1 stmtpe. By inductionI'; P; Q; pc k- s} : stmt,. Therefore['; P; Q; pc
sh; $9 ¢ stmt,er. By induction,I' - M" andl'; P+ €Y.

Case (S3)sisskip; s’. By rule (SEQ)I'; P; Q;pct s : 7.

Case (S5)sisif ethens;elsesy. By typingrule (IF),['; P; Q; pclUl, - sy : T,
which impliesI'; P; Q;pct s; : 7.

Case (S6). By the same argument as case (S5).

Case (S7). In this cass,is exec(c[t], 1, pc, Q, €). By Lemma 5.4.6]";Q +
1 : 71, wWhere7 are the types of the corresponding argumentg[of Thus
['F [exec (c[t], n) :: pc, 71, O, t].

Case (S8). By the same argument as case (S7).

Case (S9). By Lemma 5.4.6.

Case (S10). We havé; P; Q;pct skip : 7.

Case (S12). Inthis caseis if ethens;elses; and(e, M) || (vy,...,v,). By the
typing rule (IF),['; Q F e : int,. By Lemma 5.4.6]"; Q I (vy,...,v,) : int,.

By the typing rule (BV1), we have((¢), which implies—((pcLI¢). Moreover, by
rule (IF),I'; Q;pcUl + [s;]; : Tfori € {1,...,n}andj € {1,2}. Therefore,
by rule (BS),I'; Q:pct s : 7.

Case (S13). By inductiorl; - M’ andT'; P + @/, andT"; P; Q;pc + s, : 7.

Thereforel'; P; Q;pct s : 7.

Case (S14)s’ is (mq := |e]1,...,my := |e],). Suppos@’; P+ (mq,...,m,) :

(int, ref),. By (BV1), =((¢'), which implies—=((¢). As aresultl'; P; Q;(

s T
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5.4.3 Noninterference proof

Let ©, represent the initial thread pool that is empty, &jdepresent the initial en-
vironment that contains only invocation messages for the starting reataring no

arguments) at time, = ().

Lemma 5.4.7 (Noninterference).Supposel’ I+ P, and E; = (0, M;, &) ——*
<@;, M;, 8{> fori € {1,2} If F,P F <@0, Ml, 80> ¢ <@0, MQ, 80>, thenF;P H
<@/17 lla g{> ¢ <@,2a /27 gé)

Proof. By induction on the total length of/, and E5: |E)| + |E2|. The base cases
are trivial. Without loss of generality, supposg;| < |E,| and (©, M;, &) —*
o1, M EN — (0, M, &) for i € {1,2}. Let7] = timestamps(©;) and
7" = timestamps(©). By induction,I'; P - (07, MY, &) =, (©,, M5, &). Then
we need to show thdt; P + (0], M}, &) ~¢ (05, M}, &) holds for all cases of

(8, MY, &) — (0], M, €1)

e Case (G1). In this case, the evaluation step is derived from/}, QY t/) —
(s', My, Q), t}) on some hosk;. We need to show that the local statergfin
configuration(®7, M/, &]) is still (-consistent with the local state of any hast
in (€}, Mj, &).
By examining rules (S1)-(S9), we only need to consider two casesM/(1)-
Mi[m v v}, and((m, h;) holds fori € {1,2}; (2) Q = Q) U {u}, and
¢(u, h;) holds fori € {1,2}. Suppose one of the two cases occurs. If there
exists no thread on, att] in ©), then the evaluation step does not affect the
(-consistency between the local statesipfindh,. Otherwise, consider the lo-

cal run of the thread &t on hosth;: E! = (s;, M;, 0, t) —* (s, M/, Q.. tl)

17 71
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fori € {1,2}. By rule (TPE), the two local runs correspond to the same closure
reference(c[v], ). Then we can show that = s[A]] andI” F A| ~. A,
whereI” is the local typing assignment for reactdp]. By (M1), we have

Al = A;[y— w][cid— n][nid— hash(t)], whereA; is the variable record in the
corresponding closure, andis the list of arguments in the invocation requests.

By induction,I” - A; ~. A,. If the type of anyy; satisfies th& condition, then

the program counter labels of the corresponding invocation also satiSinceP
satisfies (RV3), the invocation messages are sent by threads with the same closure
reference. By'; P = (©f, MY, &) ~. (©), M}, &), those messages afe
consistent, which implies that the arguments@uwonsistent with respect to their

types. Thereford)’ - A} ~; Aj,.

In addition, we can show - M; ~. M,, which means that for any. in dom(I"),
¢(T(m)) implies M;(m) ~ My(m). In fact, if ['(m) = ¢@Q, by induction and
(ME), we haveM;(m) ~ My(m). If T'(m) = o, then it must be the case that
M,[m] = Ms[m] or M;[m| = none for somej € {1,2}. Otherwise, there exists
some thread updating before timet such that this thread is completed in one

execution but not in the other. This contradicts (TPE).

Then we can construct a DSR* configuratipn M, (), ¢) such that s|;, = s; and
s and M are well-typed with the followind< condition: K (v, @ty ..., v,Qt,)
is true if for anys,j, v;Qt; ~ v;Qt;. By Lemma 5.4.5, there exists’ =
(5, M, 0, t) —* (s', M', ', t') such that| F’|; = Ej and | E']; = £ where
{i,7} = {1, 2}. Without loss of generality, suppo$&”’ |, = £} and|E’|, < Eb.
Then there exists a configuratide;, M., Q4 ¢7) such that M'], = M} and
Y], = QF and|¢'|, = t;. By Theorem 5.4.1, Mand(Y' are well-typed. There-
fore,I' = M| ~. My, andQ)} ~. €2;. Moreover, the rest of’, modifies the con-

figuration at timestamps greater thanThus,[' = M| ~, M, andl’ F ) ~. €,
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which means that the local statesfgfandf, are still consistent after this execu-

tion step.

Case (M1). In this case, it is obvious that- (M, 7)) ~, (M}, 7)) and
P (&,T]) = (&5, 7;) by induction. Thus, the goal is to prove- O} ~. 65,
wheret is min(max(7/, (), max(7Z,,()). Suppose the newly created thread is
(s, h,t1,c[v],n), and the program counter label®f] is pc, andt; = max(7/", ().
If =¢(pc, h), thenD' - (O], M}, &) =~ (05, M), &) holds immediately by

induction. So we focus on the case whéfpc, 1) holds.

If t; < inc(t}, pc), then we need to prove thétis not the only thread at time
t;. Suppose otherwise. By < inc(t], pc), 6 is not invoked by the threads at
t). Letn be the number of-threads with timestamps having different global
parts in®Y. Thenn — 1 different(-threads need to invoke different(-threads.
Therefore, threads at some timeneed to invoke two threads with different time-
stamps, which means that different invocation messages satisfyiggtmaition
are sent by the thread replicastat That contradictd™; P - (07, MY, &) ~,
(07, M7, &). Thereforef is not the only thread at, andt - ©] ~. ©/, follows

t = O] =, ©5. In addition,f is (-consistent with other threads at timebecause

I':PF(©f, M, &)~ (0], M}, &) holds by induction.

If t; = inc(t), pc), by rule (M1), at least one quorum finishes executing the thread
att. Suppos€©;, M3, &) — (O, M, E). Lett, = timestamp(©}, EY)
andt, = timestamp(©), £}). If to < ¢}, then we have - ©] ~; ©, byt I-

O] ~; ©,. Similarly, if t; < t,, we havet - ©) ~; ©, byt I ©] ~, ©5. Now
consider the case thét < ¢, andt| < t,. We can prove that, = t,, andt; = t,.
Suppose;, < t}. By t] - ©f =, ©),, we have that any invariant thread @f

has its counterpart i®/ and has a timestamp less thgn But that contradicts

t, < to. By the same argument, we can rule out the casg§ ef ¢,. Therefore,
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th = t5, which impliest; = t,, and it is clear that, - ©] ~; ©5.
Case (M2). By the same argument as case (M1).

Case (M3). In this case, some variable in a closure is initialized. So our goal is to
prove that the closure is still equivalent to its counterpart8idn Supposef; =
E'[closure(hy, c[v],n) — (c[v],n,{, Aj[z — v],t’,on)]. Then we need to show
that for any host, in loc(c[v]) such that (c[t], hs), P = &;.closure(hq, c[v], ) ~¢

&l .closure(hs, c[v],n). Let A; and. A, be the argument maps in the two clo-
sures. Since&; and&) are equivalent, we only need to prove tjat) implies

Ai(2) = Ay(z), wherer is the type of:.

First, we prove that thé-messages used to initializehave the same timestamp.
SinceP satisfies (RV1) and (RV2), the threads that first operate:pm, n).z cor-
respond to eithe(c’, n’), or (ci[v1], m) with (c[v], nid).z appearing in its code.

In both cases, the timestamps of those threads are equal béeguset], &) ~

(65, M}, &), and the program counter labels of those threadg-dabels. Sup-

pose twosetvar messages for have different timestamps. Then it must be the
case that in the two runs, two reactor instances with the same timestamp send dif-
ferent messages containingv|, n).z. By £ ~. &}, at least one of the reactor
instances sends two different messages containing the remote variable. This con-
tradicts with the fact thaP satisfies (RV1). Therefore, thetvar messages for

z have the same timestamp.

If {((x)isC(z) <y, then all thesetvar message satisfy tigecondition, and they
are equivalent by’ - (07, M7, &) =~ (©,, M}, &). Thus, the initial values
of (c[v], n).z are equal in both runs.

Suppos€ (z) is I(z) £ I,. Consider the message synthesizdor z. There are

two cases:
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— w IS LT[I(¢)]. The setvar messages have the forlgetvar (c[v], n).z :
v,t], andz has typeint,. Sincel'  (O7, MY, &) ~¢ (©), M}, &),
those high-integrity messages are equivalent. Therefore, the values resulted
from synthesizing theetvar messages are the same in both runs. Thus,
Ai(2) = As(2).

— wisQR[Q, I]. Suppose the set of high-integrity senders/are. ., h, in E;
andni,..., hj in E,, and the local memory snapshots for these hosts when
executing the thread atreM,, ..., M, andMj, ..., M,;, respectively. Let
M incorporate those local memories. By rule (TPE), we can show that M is

well-typed with respect to the following constraint:

Vi.v; = v V v; = none Elvj@tj. Uj@tj =vQt Vi. t; <t
(v1y.. o) dv (11Qtq,...,v,Qt,) § v

(v1,... o) dv (Vh,...,05) b o
K(vi,...,0,0],...,0})

In addition, we can construct a DSR* statemensuch that|s|; = s;
wherel < i < n + k. Then we have a well-typed DSR* configura-
tion (s, M, 0, t). By Lemma 5.4.5(s, M, 0, t) —* (s', M, ', ¢') and
[t'); < t; and for somej, |¢']; = ;. By Theorem 5.4.1( is well-
typed, and the messa@eetvar (c[t], ).z :: v,t] in ' is also well-typed,
which means that = (vq,...,v,, 0, ..., v;) is well-typed. Furthermore,
K(vi,...,0n,01,...,v;) implies that thesetvar messages produced by

QR[Q, I] contain the same initial value Therefore,A;(z) = Ay(2).

e Case (Al). For integrity;(m, h) does not hold. Thereforé, - (M, 7)) ~
(M}, 7)) immediately followsl" - (MY, 7)") ~, (M}, 7,). For confidentiality,
we assume attackers would refrain from changing low-confidentiality data in this

case.

e Case (A2). By the same argument as case (Al).
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e Case (A3). In this case, some thread aborts. However, the timestamp of the thread

remains unchanged, and tfx€onsistency between program states is not affected.

]

Theorem 5.4.2 (Integrity Noninterference). Supposéd’ I P, and(©y, M;, &) —*
<@;, M;, gz/> for: ¢ {1,2} If F,P F <@0, Ml, 80> NI, <@0, MQ, go), thenF;P [
(O], MY, &) =1, (05, Mj, &).

Proof. Let((¢) be(¢) £ L and apply Lemma 5.4.7. O

Theorem 5.4.3 (Confidentiality Noninterference).Supposé’ |- P, and fori € {1, 2},
(G0, M, &) " (O], M;, &), andl'; P = (O, My, &) ~c<i, (O, M2, &).
ThenF,P - <®Ilv /17 g{) o<y <@/27 /27 gé>

Proof. Let((¢) beC(¢) < L and apply Lemma 5.4.7. O

5.5 Related work

The related work on the language features of DSR is covered in Section 4.8, and the
related work on proving a security type system enforces noninterference is covered in
Section 3.6.

Following the approach of thepss: [106], the DSR type system uses dependent
types to model dynamic labels. Other work [97, 96] has used dependent type systems
to specify complex program invariants and to statically catch program errors considered

run-time errors by traditional type systems.
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Chapter 6
Security by construction

This chapter presents a program transformation that translates an Aimp program into a
DSR program to be executed in a distributed system with untrusted hosts.

As shown in the following figure, the transformation generates a DSR program
from a typing assignmerit, a trust configuratiort{ that maps hosts to their labels, and

an Aimp progran®t.

/E/. A/D Translator |+ » p

The transformation is a two-step process. FirstH and.S are fed to thesplitter,
which generates distribution schemé and alabel assignmenf\. The distribution
scheme specifies where the target code of source statements is replicated, and where
memory references are replicated. The label assignment associates labels with source
statements. The label of a statement specifies the security requirements for executing
the statement and may be used to generate dynamic labels in the target program.
Second, the Aimp/DSR translator takes in the outpit&(idA) of the splitter and

the source prograrfi, and generates the target DSR progri@dm

6.1 Splitter

Given S, I' andH, the splitter partitionss' into small program segments and determines
where the target code of each program segment is replicated. Intuitively, it is easier to
find a set of hosts that are trusted to run a small program segment than it is to find a set

that can run the whole program. Based on this idea, the least restrictive way to partition
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S is to treat everynon-sequence substateméstibstatement that is not a sequential
composition) ofS as a segment. For simplicity, the Aimp/DSR translation uses this
partitioning approach. We assume that each non-sequence statgnmetite source
program is instrumented with a unique nass® that the corresponding segment can be
easily identified. The instrumented statement is writtef@sS. The instrumentation
does not affect the semantics of the source program.

A distribution scheme is formalized as a map from statement names to host sets and
from memory references to quorum systems. Given a distribution schemgm) =
Q requires thatn is replicated orQ; D(c¢) = H requires that the target code of} S
is replicated on sell of hosts.

In general, a distribution schenie needs to satisfy certain security constraints. For
example, suppos®(m) = Q, andm has typeint, ref. Then every hosh in Q
must satisfyC'(¢) < C(h) in order to protect the confidentiality of. Given a source
programs, there may exist many valid distribution schemes that satisfy those security
constraints. And it is up to the splitter to select one that helps generate efficient target
code. Because the main concern of this work is security rather than performance, we
do not consider the problem of selecting a scheme to increase performance. Instead,
we focus on identifying security constraints sufficient to ensure that a given distribution

scheme is able to enforce the security policies of the source.

6.1.1 Statement labels

How to replicate a statement depends on the label of the statement, which is derived
from the program counter label and the labels of data processé&d biie labell of a

statement' has five components:

e (: an upper bound to the confidentiality label of any data usefl,by

e [: an upper bound to the integrity label of any effect caused by
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I';REe:inty I';sREm: inty ref
I'R;R spekmi=e: {C=C{), I =1(), A= A(R’), Cpoc = C(pc), Cena = C(pc)}

(L1)

(L2) T;R;R ;peckskip: {C=1,I=1, A= A(R’), Cpc = C(pc), Cena = C(pc)}

I';REe:inty T;RyR ;pellS; 4, 1€ {1,2}
= {C = C(Z)v I= ](31) u I(ZQ)a A= A(R/)7 Cpc = C(PC)7 Cend = Cpc(gl) [ CpC(EQ)}

L3
3) T';R;R ;pck if e then Sy else S : ¢/

T;R;R ;pckS1:41 T;R;R ;pck So:ls

) TR pet 81382 1 {C = C(61) U C(6a), T = 1(61) U I(£2), A= A(R'), Cpe = C(p0), Coma = Cre(£2)}

T;R;R ;pck e:inty I;R;R peUl- St
I'yR;R ;pckwhileedo S: {C =C(£), I =I{')UA(R'), A= A(R’), Cpc = C(pc), Cena = C(pc)}

(L5)

I';R;R ;pe-S:e £</t

(L6) I';R;R ;pe-S: 8

Figure 6.1: Rules for inferring statement labels
e A: an upper bound to the availability label of any output reference that may still
be unassigned after terminates,

e (.4, the confidentiality label of the information that can be inferred by knowing

the termination point of, and

e C,., the confidentiality component of the program counter labe.of

The rules for inferring the label of a statement are shown in Figure 6.1. The judgment

I''R;R ;pc = S : £ means thatS has a label while I"; R ;pc - S : stmtgr/. In
general, with respect tB, R, R’ andpc, the confidentiality label of a stateme$iis the
join of the labels of data used lfy; the integrity label ofS is the join of the labels of
effects caused by; the availability label ofS is Ar(R’), simply written asA(R’); the
Cyc label of S is C(pc); the Cepnq label is the join of the confidentiality components of
the program counter labels at the program points wheray terminate.

In rule (L5), because the termination of Wiei 1e statement depends on the integrity

of e, the integrity label ofS'is I(¢") LI A(R).
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Rule (L6) means that it is secure to assign a stronger than necessary security label
to a statement. In practice, assigning a stronger integrity label to a statement helps
generate more efficient control transfer code for that statement because of the extra
integrity allows the hosts to perform more freely. A valid label assignmeratisfies
['yR.E S ¢ and? < A(c). for any statemenfic} S” appearing in the source program
S.

We impose an additional constraint dnto help generate control transfer code.
Suppose{c, } S; and{c,} S, are two statements in the source progrémand.sS; is a
post-dominator ob; in the control flow graph of, which means that every control path
starting fromsS; leads taS,. Letl; = I(A(cy)) andly = I(A(es)). In addition, suppose
for any post-dominatofc'} S” of Sy, if S’ dominatesS,, thenl; £ I(A(c)). Then
Iy < lyorly, < Iyisrequiredto hold. Otherwise, itis difficult to construct the protocol for
transferring control fronb; to S,. Supposé; £ [, andl, £ ;. Intuitively, by l; £ I,
the target code of; needs to run ahmod statement to notify some following reactor at
integrity levell, to expect invocation requests of integrity level I,. However, after
running thechmod statement, the integrity level of control flow is lowered/ta 5,

which makes it difficult to invoke the target code.®f becausé, £ [, M.

6.1.2 Secure distribution schemes

Let Q F int, ref denote that it is secure to store memory references withityperef
onQ,andD ;A ;S E {c} S’ denote that it is safe to replicate the target codg-$fS’ on
the host seD(c) with respect to the distribution schenig the whole source program

S, and the label assignment The following rules can be used to infer these two kinds
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of judgments:

Cl)<Cn(Q)  A(f) < Auwrite(Q) MA(|Q,QR[Q, I(4)])
QFE inty ref

(DM)

A(c)=¢ D(c)=H C)<Cnr(H)
{Cl} Sl; {C} S esS= Cend(A(Cl)) < Cﬂ(H)
A(l) < A(H,LT[{]) Vm e UM(S’). Cpe(f) < Cr(D(m))
Vm € UM(S’). D(m) = h = D(c) = {h}
D;A;SE{c}S

(BS)

In rule (DM), the first premise&’(¢) < Cr(Q) guarantees that every host {his
allowed to read the value of. The second premise ensures that the availability of both
the read and write operations @his as high asi(¢), while enforcing the integrity label
I(0).

In rule (DS), the premis€'(¢) < Cr(H) says thatH is allowed to see the data
needed for executing’. The second premise ensures tHat allowed to learn about the
termination point of its predecessff, } S, since hosts irff can infer the information
from the invocation requests for In particular, ifS’ follows a conditional statement{
is allowed to learn which branch is taken. The premi$é) < A(H,LT[¢]) ensures that
H can produce the outputs 6f with sufficient integrity and availability. In addition,
a distribution scheme also needs to prevent illegal implicit flows arising from memory
accesses, including memory reads. U (S’) be the set of references accessedby
Then for anym in UM (S’), on receiving an access request fioy hosts inD(m) may
be able to infer that control reaches that program poirt¢fS’. Thus, the constraint
Cpe(0) < Cr(D(m)) is imposed. The last premise says thatibippears irb, andm is
not replicated, ther assignsn and.S to the same host so that the target code 6f
can simply access: in the local memory.

A distribution schemé is secure, if for anyn in dom(T"), D(m) E int, ref, and

forany{c}S"inS,D;A;SE {c}S".
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6.2 Aimp/DSR translator

The Aimp/DSR translator is formalized as a set of translation rules, which rely on a

generic way of accessing remote replicated memory.

6.2.1 Remote memory accesses

If a memory referencen is replicated on multiple hosts, rule (DS) does not require a
statementS that accesses: to be assigned to the hosts whetds replicated. Conse-
guently, the target code ¢f may need to access memory references on remote hosts.

To support remote memory access, hosts storing a memory reference need to provide
reactors to handle memory access requests. Using DSR, we can implementgeseric

andwrite reactors to handle remote memory reads and writes:

read[lb:labeljp, 1m:labeljy, m:(int,@&m ref);y,
ret:reactor{lb}ip, rid:intyp, rv:(intiy 1p@&m var)iy)
{1b, #m, \. setvar(rv, Im); exec(ret, rid, 1b, #m, €) }

write[lb:labeljy, m:(int1,@&m ref)p, ret:reactor{lb}iy, rid:inty)
{1b, &m, Aval:intjp. m:= val; exec(ret, rid, 1b, &m, €) }

To achieve genericity, bothead andwrite reactors carry several reactor parame-

ters. Theread reactor has six parameters:

e 1b, the program counter label of this reactor,

e 1m, the label of the memory reference to be read,

e m, the memory reference to be read,

e ret andrid, specifying the closuréret, rid) for returning control to, and

e rv, the remote variable to receive the valuenof

Theread reactor should be invoked on the hosts holding replicas of refereraced the
reactor does not update any reference. The code afdfgreactor first sets the remote

variablerv with the value of, and then invokegret, rid).
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Thewrite reactor has four parameteiss, the program counter label of this reactor,
m, the reference to write taet andrid, specifying the return closurget, rid). This
reactor has one argumeil, which is the value to be assignedrto The code of the
reactor is self-explanatory. Since theite reactor updates, the exec statement to
invoke (ret, rid) contains the ternim, indicating that some reference on the quorum

system&m is updated, and the update may still be unstable.

6.2.2 Translation rules

The syntax-directed translation rules are shown in Figure 6.2. Rules (TE1)—(TE5) are
used to translate expressions; rules (TS1)—(TS6) are used to translate statements; rules
(TC1) and (TC2) are used to generate control transfer code. All these translation rules
use a translation environmefib, A, I'") composed of a distribution schenig a label
assignment), and a typing assignmemt, which is derived fromD and the typing
assignment® of the source: for anyn in dom(T"), if D(m) = h, thenl’(m) = T'(m),
otherwiseG’(m) = I''(m)QD(m).

The translation judgment for statements has the ¥’ = (P, ¥'), meaning that
an Aimp statemen$ is translated into a DSR programin the translation contexy’,
which is a list ofprogram entrie®f the target code of the rest part of the source program

that follows.sS.

Program entries

In general, the target code of an Aimp statemen$ needs to perform the computation
of S and invoke the target cod# of the statement following. On the surface, invoking
P’ means invoking the starting reactdrof P’. However,¢’ may not have sufficient
integrity to trigger all the computation @¥'. Thus,P may be responsible for notifying

(usingchmod messages) thentry reactorsof P’ at different security levels.
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I(m)=o

H:'m] <C1 C/, Cu, Z7 Q) :'m

(TEY)  [nl(e, ¢/ cus,Q) =m  (TE2) [m](c,¢,cu, b, Q) =m  (TE3)

IV(m) = inty, @Qy,  r = c{l, Q, A.exec(read[(,l1,m,,cid, (cy, cid).z], nid, £, Q, €)}
['ml{e, ¢, cu, £, Q) = ({r}, A(QR[Qum, I(£1)] > 2:inty, ). 2)

(TE4)

lei]{c, c1,cu, £, Q) = (P, AT b 2z1:71. €])  [e2]{c1, s cu, b, Q) = (P2, A2 b 22:72. €h)
c1 = (if Py # O then new-reactor(P1, c) else )

(TES5)

[er + e2]{c, ¢/, cu, £,Q) = (PLU P2, AT1 D 21:71, T2 b 22:72. €] + €5)

V= {¢Y1,...,¢¥n} £ =label(c;) i€ {l,...n} Lo=T Lni1 =1L £j41 C label(c) C¢;
witr =w  [(e,wit1)] (%, Yigx1) = (si,ws) 1 €{0,...,5}
[(c,w)]¥ = (s5;...;50, {(c,w), ¥jq1,...,¥n})

(TC1)

s = (ifw’ = " .z then setvar((c”

, nid).z, w) else skip)
w'” = (ifw' = ¢ .z then w else nid)
¢ = label(c) U label(c') s’ = (if€ = T then exec(c’, w”, ¢/, Q, €) else chmod(c’, w", ¢, Q, £))

(Te2) e )] (e (& w)) = (s, w)

A;DFEc:(0,Q) TV(m)=0QQy,, [e]{c,ci,l, Q) = (P, \m>z:7.') c¢1 = new-reactor(Pe, c)
ri =ci{f, Q, T>z:7, \.exec(write[l,m,c2,cid], nid, ¢, Q, ')} [c]V¥ = (s, V') ro =c2{¢, Q, \.s'}
[{c} m = e]¥ = (P. U{ri,r2}, ')

(TS1)

A;Dbc:(0,Q) IV(m)=0c [e]{c,c1,4,Q) =(Pe,\T>z:7T.€")
c1 = new-reactor(Pe, ¢) [c]¥ = (s, V") ri =c1{l, O, Tb2z:7, A.m:=¢';s'}

[{c}m :=e]¥ = (PeU{ri}, ¥)

(TS2)

AsDFei(6,Q) [V = (s,0") [Sa]W = (P, Us)
r=c{l, Q, \.s} [S1]P2 = (P1, ¥1)
[{c} skip] ¥ = ({r}, V") (TS4) 151, 55]% = (P, U P, 01)

(TS3)

A;DFc:(¢,Q) c1 = new-reactor(Pe, c) [S;]V = (P, V;) [c]¥; = (s, V') i€ {1,2}
lel{c,c1,€,Q) = (Pe, AT ziT.€') 11 =c1{f, Q, T>2z:7, A. if ¢’ then s| else s)}

[{c}if e then Sy else So]¥ = (P. U P, UPy U {r1},¥’)

(TS5)

A;DFc:(6,9) [e]{c,c1,£,Q) =(Pe,\t>z:7.€') [S]c= (P, ¥y)
c1 = new-reactor(Pe, ¢) [{c1, nid)]¥1 = (s1, (c1,nid)) [{c, c1.2")]¥ = (s2,¥’)
ri =ci{f, Q, 7> z:7, LT[{] > 2’ :inty, A. if €’ then setvar({c1, nid).z’, 2’); s1 else s2}

[{c} whileedo S]¥ = (P, UP U {r1},¥')

(TS6)

Figure 6.2: Aimp/DSR Translation rules

An entry reactorc at security level is the reactor whose program counter label
is ¢ and there is no other reactor i precedinge with a program counter labgic
satisfyingpc C ¢. Formally, a program entry has the form(c, w), wherec is the

reactor name of the entry, andis a variable whose value is the context identifier used
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by ¢ to invoke its next reactor. In most cases, is cid, and thusc; is used as an
abbreviation for(c;, cid). Let& P’ represent the list of entries &f, which has the form
U = 1)y,..., 1, such thatlabel(v; 1) C label(v;) holds for anyi € {1,...,n}, where
label((c,w)) = label(c). Intuitively, ¢, throughu,, are to be invoked in order, and for
any reactor’” to be invoked between, and, ., the constraintabel(y;) C label(c”")

is satisfied so that; has sufficient integrity to handle the invocationdfon its own.
The translation o5 depends or’, and thus is denoted )y|V" = (P, ¥), where¥

should be the entries ¢t U P'.

Translating expressions

The translation of a source expressiaogenerates a DSR expressidithat results in the
same value asdoes in the source program. In addition, the memory accessesight
require invokingread reactors on remote hosts. Therefore, the translation resalisof
composed of two partsP, a distributed program that fetches the values of replicated
memory references, andr > z:7.¢/, wheree’ computes the final value ef andz are
free variables of/, initialized by messages going through The translation context

of e is a five-element tupléc, ¢, ¢, ¢, Q), wherec is the starting reactor aP, ¢’ is the
continuation reactor oP, ¢, is the reactor that compute§ ¢ is the program counter
label of reactor, andQ is the quorum system whereis replicated.

Rules (TE1)—(TE3) translate constants and dereferences of non-replicated refer-
ences, which remain the same after translation. In rules (TE1)—(TE3), there is no need
to access remote references, and the translation result is just an expression. Rule (TE4)
is used to translaten whenm is replicated on multiple hosts. The target code invokes
read[l, (1, m,c, cid, (c,, cid).z], which initializes(c,, cid).z with the value ofn and
invokes(c’, cid). Note that theread reactor is invoked withid so thatread requests

issued by different reactors are distinguishable.
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Rule (TE5) translates the addition expression e,. It combines the translations of

e; andey in a natural way. Supposeis translated int@P;, \w; > z;: 7;.¢;) fori € {1, 2}.

Thene; + e, is translated intq Py U Py, ATy b 21 :71, T2 > 29:72. €] + €5). The tricky
part is to figure out the translation contextspfinde,. Expressiore, is computed first,
so P, is executed beforé,. Thereforec is the entry ofPy, ¢ is the successor a,,

and both the entry oP, and the successor ¢} are some reactat,. In generalg; is a
fresh reactor name. However, there are two exceptions. Frss, empty. Second?,

is not empty, butP; is empty. In the first exception; is the successor a?;, and thus
¢ = . In the second exception|s the entry ofP,, andc; = ¢. Putting it all together,

¢1 is computed by the formul@f P, # () then new-reactor( Py, c) else ).

Translating entries

Rules (TC1) and (TC2) generate the codedtw invoke W with the context identifietw.

It can be viewed as translatirig, w) in the contextV. The translation result is a tuple
(s, ¥') wheres is the control transfer code, andl is the entries of the computation
starting withe. In practice¢ can also invoke a reactotthat has the same security level
asc, and letc’ run s to invoke .

Supposel = iy, ...,1,, and{; = label(y;) fori € {1,...,n}, {, = T, and
lp1 = L. If £;4, T label(c) T /;, thenc is able to invokeyy, ..., v;, andU' is
{(c,w),¥j41,...,¢,}. Now the only remaining task is to generate the code for invoking
Yj, ...,y Inorder.

Let [(c, wi1)]{li, ¥ir1) = (s;,w;) denote thas; is the code to invoke);,; with
context identifierw; .1 and program counter labé), andw; is the context identifier to
be used after executing. Thens;;...; sq is the code to invok&'.

Rule (TC2) is used to compute, w)]{¢, (¢,w')). The translation depends on

whetherw’ is some remote variable'.z and whether¥ is T. If w = ¢".z, then the
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translation includes aetvar statement to initializé¢”, nid).z with w so that¢” can
invoke the following computation with the context identifier Moreover, after execut-
ing thesetvar statementg needs to invoke or notify other entries withd, and thus
w” is set tonid. If £is T, it means thatc, w') is to be invoked directly, and thus the
translation includes aexec statement to invoke'. Otherwise, the target code includes

achmod statement, which changes the access control label.of”) to /.

Translating statements

Rules (TS1)—(TS6) are used to translate statements. Notatidn - ¢: (¢, Q) means
that ¢/ and Q are the program counter label and the location of reactoFormally,
D(c) = Q,andl = {C= Cy(V'), I=1(l'), A= A(l')}, where!" = A(c). The rules
use a functiomew-reactor(P, c¢), which is a fresh reactor name unleBds empty, in
which case it is:.

Rule (TS1) is used to translafe} m := e whenT'(m) = 0@QQ,,. Sincem is repli-
cated on@, the assignment is done by invoking tieite reactors or@. The reactor
writell, m, co, cid] updatesn and then invokes$c,, cid). The reactor, contains the
code to invokel with cid. The value ok is computed byP. and\7 > z:7.¢’. Reactor

c is the entry ofP.. Reactorc; computese’ and issues therite requests. Thus;

containst > z: 7 as its variables. Therefore, the translation contextisf(c, ¢, ¢, H),
which is an abbreviation fofe, ¢1, ¢1, ¢, H). Note that if P, is empty, then; is the entry
of the translation, and, = c.

Rule (TS2) translate&c} m := e whenI'(m) = 0. Expressiore is translated in the
same way as in rule (TS1). Sineeis not replicatedyn := e is simply translated into
m := ¢, followed by the code for invoking'.

Rule (TS3) translates the skip statement. Sigicep does nothing, the translation

only needs to generate code to invoke
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Rule (TS4) translates the sequential statentgnt,. First, .S, is translated into
(P, W) with respect tol. Then,S; is translated in the context,. The target code of
S1; S, is the union of the target code 6f andSs.

Rule (TS5) is used to translate conditional statements. Expressmiranslated
in the same way as in rule (TS1). Reactpicomputes’ and executes the conditional
statement to determine which branch to take and invoke the target code of that branch.
The two branches$; and S, have the same continuation. Therefofg,and S, are
translated in the same contekt and the translation results af®,, ;) and (P», U,).
Then reactore; needs to invokel, if ¢’ is evaluated to a positive value, adg if
otherwise. The control transfer code is generateftby,. Note thatlabel(c) is a lower
bound to the security label of any reactorffnand P, because it affects whether these
reactors are invoked. As a resyit]; and[c| ¥, generate the same initial entri&s

Rule (TS6) translateghile statements. Expressieris translated in the same way
as in rule (TS1). Implementing a loop, the target code ehale statement may be
invoked multiple times, and each invocation needs to have a different context identifier
so that it would not be confused with other invocations. When the loop terminates,
U needs to be invoked with the same context identifieregardless of the number of
iterations. Thusyw cannot becid ornid, which changes in each iteration. Therefore, the
context identifier used to invoke is the variable:’ of reactorc;, which computeg’ and
determines whether to enter the loop body or to invékeith z’. The code for entering
the loop body starts withetvar(({c;, nid).z’, z’) so thatz’ is initialized with the same
value in every iteration. The loop bodyis translated with respect tg because control
is returned ta- after the loop body terminates. The prem[$gc = (P, ¥;) says that
the entries of the target code 6fis ¥,. Thereforec; needs to invokel; with nid if

the value of’ is positive. And the control transfer code is generatedi(by, nid)] ;.
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6.3 Example

Consider the Aimp program in Figure 3.3 with the following typing assignment as dis-
cussed in Section 2.4:

bid,offer,t,a,result : inty, acct : inty,

where

lo={C= AAB:AVB, = AAB:(AAB)V(BAT)V(AAT), A=1}

0, ={C =A:A, [ =A:AV(BAT), A=1}

[ = AAB:(AAB)V(BAT)V(AAT)V(CLAC2)V(CLAC3)V (C2AC3)

Suppose the bidding application is to be executed in a distributed system composed

of a hosthp and three clusters of hosts1, €2 andC3. For alli € {1, 2,3}, cluster
Ci contains host#; 4, h;p and h;7 with integrity labelsAAB: A, AAB:B andAAB: T,
respectively. Hosts in cluste€; has an availability labed AB : Ci. All the hosts in the
three clusters have a confidentiality labeB: AVB. The label ofip is /;. Based on this
trust configurationacct can be located ohp, andbid, offer, t, a andresult can be

replicated on the following quorum system
Q = <{h1A7 hlB7 h1T7 h2A> h’237 h2T> h’3A7 h3B7 h3T}7 W127 Wl3a W23>

whereW,; = {hia, hip, hir, h;a, hjg, hyr}. Itis easy to verify tha F int,, ref. The
non-sequence statements of the bidding program has an integrity/lghgl except
for acct :=lacct+!bid whose integrity label i (¢;). As a result, the target code of
acct :=lacct+!bid can be distributed tb », while the target code of other statements
can be replicated on the host €t = {hja, hip, hir, hoa, hap, hor}, Which satisfies
A(ly) < A(H,LT[{]).

With the distribution scheme just described, the source program in Figure 3.3 can
be translated into a DSR program shown in Figure 6.3. For convenience, the reactor
names are based on the line numbers of the corresponding source statements. For ex-

ample, thewhile statement in line 2 of the source program is translated into reactors
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linel{ly, H, M.exec(write[ly,t,linela, cid], nid, ¢y, H, 0)}
linela{{y, H, A.exec(write[ly, a,linelb, cid|, nid, {o, H, —1)}
linelb{{y, H, A\.setvar((line2a, nid).z’, cid); exec(line2, nid, ¢y, H, €) }
line2{ly, H, \.exec(read[ly, o, t,line2a, cid, (line2a, cid).z], nid, ¢y, H, €)}
line2a{{y, H, QR[Q, I({)] > z : inty,, LT[¢] > 2’ : inty,,

A.if 2z < 3 then setvar((line2a, nid).z’, 2’); exec(line3, nid, ¢y, H, €)

else exec(line7, 2/, 4y, H, €) }

line3{¢y, H, \.exec(read[ly, {y,bid, line3a, cid, (1ine3b, cid).z1], nid, &y, H, €)}
line3a{ly, H, A.exec(read[ly, {y, offer,,linedb, cid, (1inedb, cid).zs], nid, {y, H, €)}
line3b{{y, H, QR[Q, I(£)] > 21 : inty,, QR[Q, [(£)] > 25 : inty,,

A.if 21 > 29 then chmod(linedb, cid, 4y, H, {1); exec(line4, cid, {1, H, ¢)

else exec(line6, cid, ¢, H, €)}

line4{l;, hp, A.exec(read[l1,{y,bid, lineda, cid, (line4db, cid).z|, nid, {1, H, €)}
lineda{ly, hp, QR[Q, I({)] > z : inty,, A.acct :=lacct + z; exec(linedb, cid, {1, hp, €) }
linedb{{y, H, \.exec(read[ly, {o,t,linedc,cid, (line4c, cid).z], nid, ¢y, H, €)}
linedc{{y, H, QR[Q, I({)] > z : inty,, A\.exec(write[ly, a,1ine5, cid], nid, ¢y, H, 2)}
line5{¢y, H, \.exec(write[ly,t,1line3, cid], nid, ¢y, H, 5)}
line6{¢y, H, \.exec(read[ly, lo,t,lineba,cid, (lineba, cid).z], nid, £y, H, €)}
line6a{ly, H, QR[Q, I({)] > z : inty,, A.exec(write[ly, a,line2, cid], nid, ¢y, H, z + 1)}
line7{ly, H, A.exec(read[ly, (o, a, line7a, cid, (lineba, cid).z], nid, 4y, H, €)}
line7a{ly, H, QR[Q, I({)] >z : inty,, A.exec(write[ly, result, exit, cid], nid, ¢y, H, 2)}

exit{ly, H, \.skip}

Figure 6.3: The target DSR code of the bidding example

line2 andline2a using rule (TS6) of Figure 6.2. Reactbfne2 invokes aread re-

actor onQ, which initializes(1ine2a, cid).z with the value oft and invokesl ine2a.

Once invoked, reactdrine2a executes a conditional statement with the guard expres-

sionz < 3, wherez has the value of. If 2z is not less thar3, then reactoline2a

143



invokes(1ine7, z), wherez’ is the context identifier of reactarine1b, which invokes
(line2, nid) after initializing (1ine2a, nid).z" with cid. If z is less thars, then re-
actorline2a invokes(line3, nid) after recursively initializing1ine2a, nid).z’ with

Z'. The target code is not very efficient, and there is much potential for optimization,

which is left for future work.

6.4 Typing preservation

The DSR language relies on static typing to enforce security. Therefore, the Aimp/DSR
translation needs to produce well-typed target programs. This is guaranteed by the typ-
ing preservation theorem (Theorem 6.4.1), which roughly says that the target code of a

well-typed source program is a well-typed program in DSR.

Definition 6.4.1 (Well-formed entry list). An entry list ¥ is well-formed with respect
to P, written P E U, if the following two conditions hold. First, for any entfy, w)
in ¥, P(c) = c[zzo){pc, Q, 7> z:7, \.s}, and ifw = .z, thenP + (¢, cid).z :
(inty var)y. Second, il = (¢q,wy), ..., (ca, wy), thenlabel(v; 1) C label(v;) holds

foranyi € {1,...,n}, wherelabel((c;, w;)) = label(c;).

Lemma 6.4.1 (Control transfer typing soundness).SupposeP is the target code of
an Aimp program under the translation environm@nhtA, D), andA; D I ¢ : (pc, Q),
andP = ¥, and[(c, w)]V = (s., ¥'). Thenl',w:intp, nid:inty.; P; Q;pck s. : 7,
andP E V',

Proof. LetI” = I',w : int,., nid : int,. Supposel = 1)y,...,1,. By (TC1), s. is
Siy- .- 50, Where[(c, wit1)][(li, Yiz1) = (si,wi). By (TC2),s; = s;s'. Statemens is
setvar((c’, nid).z, w;;1) or skip. In either casel”; P;Q;pc - s : stmt,. State-

ments’ is exec(cy, w”, ', Q, €) if i = 0. Otherwises’ is chmod(c;;1, w”, V', Q, ¢;),
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wherel!’ = label(c) U label(c;11). Inthe firstcasel”; P; Q; ¢+ s’ : stmt, . In the sec-
ond casel”; P;Q;¢' - s : stmty,. Therefore, we havé’; P; Q ;¢ F s;5' : stmty,,
and/ is (; if 0 < i < 5 —1,and? is pc if i = j. By the typing rule (SEQ),
I';P;Q;pct sj;...,50:T. o

Lemma 6.4.2 (Typing preservation).SupposdI'|D = I, and P’ is the target code
of an Aimp programs’. If e is an expression ib’, andI";R;pc - e : 7, and
le]{c,d,cu, t, Q) = (P, AT >z 7.¢/),andP’ E ¢, , thenl”; P+ Pandl”,z=7;Q I
e : 1. If Sis astatementi’, andl’; R ;pct S : 7, and[S]V = (P, V') and P’ = ¥/,
thenl; P' - P.

Proof. By induction on the derivationdf; R ;pctFe:7orl';R;pck s : 7.

e Cases (INT) and (REF) Obvious.

e Case (DEREF) If T'(m) = o, thene' is !m, and P is () by rule (TE3). We
havel”; Q F!m : 7, sincer = o, andQ contains only one host. If'(m) =

int,, @Q,,, by rule (TE4),P = {r} where
r=c{l, Q, \exec(read[l,l1,m, cid, (c,, cid).z], nid, ¢, Q, €)}.

By rules (EXEC) and (RD), we have:

IV b read[l, ¢1,m,c, cid, (¢cy, cid).z] : reactor{l, Q,,} (LC/¢

I, P';Q;LF exec(read[l, l1,m,, cid, (¢, cid).z], nid, ¢, Q, €) : stmty
TP Fr

wherel” = 1", cid:int,,nid:int,.

e Case (ADD) By induction,I'”; P'+ Py andl”; P’ = P,. Thus,I”; P’ + P, U P,.
By induction, I, Z;77;; Q - e} : 7 fori € {1,2}. Thus,I”,z177,22:72; Q F

el +eh:T.
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e Case (SKIP) By (TS3),P = {r} andr = ¢{/, Q, \.s}, wheres is obtained from
[c]¥ = (s,¥"). By Lemma 6.4.1]" cid : int,,nid : int,; P'; Q¢ F s : 7.
Thereforel”; P’ P.

e Case (SEQ) S is S1;5;, and we havé™; R ;pc - Sy : stmtg, andl'; R ; pc -
Sy : 7. By rule (TS4),[S2]¥ = (P, ¥y) and[S;]V, = (P, V). By induction,
I:P'+ Pyandl”; P’ + P,. Thereforel”; P' - P, U P,.

e Case (ASSIGN) Sism :=e¢,andl'; R e : inty. By rules (TS1) and (TS2),
le]{c,c1,¢, Q) = (P.,\m>z:7.¢/). By induction,I”; P + P, andI”,z=7; Q I
¢ :inty. If T'(m) = 0@Q,,, then (TS1) is used. By Lemma 6.41Y,; P’ |- rs.
LetI' =I",z77, cid:int,, nid: int,. Then the following derivation shows that
r1 is also well-typed:

I'; P' - write[l,m, ¢y, cid] : reactor{l, Q,,, int,}
I'"Fnid:inty I+ /{:label;, (C/{¢ T,z:7;QF € :inty
;P Q;lF exec(write[l,m, co, cid], nid, ¢, Q,,, €') : stmty

T Pk 1

If T'(m) = o, then (TS2) is used. By Lemma 6.417; P ;Q;¢ F s : T.
Therefore, we have the following derivation:

I"+m: (intyref), I',z:7F¢€ :inty (C inty
I'zi7; P';Q; Fm:=¢ :stmt | I";P;Q;0ks:7
I':P'+r

e Case (IF) Sisif ethen S; else.S,. By induction,P,, P, and P, are well-typed,

ande’ is well-typed with respect t&’, -7 and Q. By Lemma 6.4.1y] ands), are
well-typed. Therefore, the statemeirtt ¢’ then s else s, is well-typed, and so

is 1.

e Case (WHILE). S iswhile e do S’. By induction,P, and P are well-typed. The
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following derivation shows that,; is well-typed:

I, z:7, 2 :inty b 2’ : inty, b {c1, nid).z’ : (int, var),

IV, z77, 2 :inty; Q; L F setvar({cy, nid).2, ') : stmt, TV, Z77,2":int,; Q4 s) : 7

IV, z77, 2 :inty ; P'; Q£ F setvar({cy, nid).2’, 2/);s) : 7

IV, z77, 2 :inty; Q F €' : inty
IV,z77, 2 :inty; P'; Q0 + setvar({cy, nid).2’, 2’);8] : 7
IV, z:7, 2 :inty; P/ Q0 F sh o T
IV, z77,2 :inty; P'; Q ;0 F if €’ then setvar((c;, nid).z’, 2’); s} else sh: 7
FI;P/l—’f‘l

e Case (SUB)BYy induction.
O

Theorem 6.4.1 (Typing preservation).Supposd™; R ; pc - S : 7, and[S]0 = (P, ¢)
with respect to a distribution schenie, andS = {c} S;; S,. ThenI” I P, where
I = [I]D.

Proof. By Lemma 6.4.2]" - P. By examining the translation ruleB,satisfies (RV1)—
(RV3). O

6.5 Semantics preservation

In general, an adequate translation needs to preserve semantics of the source program.
In a distributed setting, attackers may launch active attacks from bad hosts, making the
low-integrity part of the target execution deviate from the source execution. However,
the trustworthiness of the target code does not depend on the low-integrity program state.
Therefore, we consider a translation adequate if it preserves high-integrity semantics.
This notion of semantics preservation is formalized as two theorems. First, the trans-
lation soundness theorem says that there exists a benchmark execution of the target
program generating the same outputs as the source program execution. Based on Theo-

rem 5.4.2, any execution of the target program would result in equivalent high-integrity
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outputs as the benchmark execution and the source program. Therefore, we only need
another theorem stating that any target execution achieves the same availability as the
source.

To prove the translation soundness theorem, we construct an equivalence relation
between an Aimp configuration and a DSR configuration, and show that there exists a
DSR evaluation to preserve the equivalence relation. Informally, a target configuration
(0, M, &) and a source configuratigiy, M) are equivalent, ifM and M are equiv-
alent, and® and ¢ indicate that the code to be executed (8, M, &) is exactly the
target code ofS. SupposeD is the distribution scheme used in the translation. The

equivalence betweel andM is defined as follows:

Definition 6.5.1 "; D - M ~ M). For anym in dom(T"), then M (h, m) = M (m) for
anyh € D(m).

The configuration®, M, £) must be able to execute the target codeSofAs a
result, the entries of the target codeMmust beactivatedin (0, M, &) with respect

to the current context identifier, as defined below:

Definition 6.5.2 € ; n F V). ThatV is activated with context identifierin the environ-
ment&, written& ; n E U, if it can be inferred using the following rules, where auxiliary
function& (w, n) returnsy if w is cid, and the value ofc, 7).z in £ if wisc.z.

EinkE (c,w) &£;E(w,n);label(c) F ¥ EinilE (c,w) E;E(w,n);label(c) E U
gk (c,w), ¥ Ein;lE (c,w), ¥

Vh € hosts(c). (¢,n, ¢, A, t,off) € E(h) Vh € hosts(c). (¢,n, V', A, t,x) € E(h) LTV
E;nE (¢, w) E;n;LE (¢, w)

To track the activated entries during program execution, we introduce the notation
P;v + S : ¥, which intuitively means that executing the target codes ofith the

list of activated entrie® would result in the list of activated entrids. Formally, it is
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defined using the following inference rules:

[S]¥ = (P, W) P'CP

(EL1) P;V+ skip: ¥ (EL2) PULS:. W

P;\I’}—S:\I’/ \111:<C, Cl.Z>,\I/2
P:U, U SV,

P;:U+-S5:¥; P;UES: ¥,

(EL3) P;\Ifl_sl;SQZ\Ifg

(EL4)

The unnamed statemesitip has no effects or target code. Thus, rule (EL1) says that
executing the target code sitip does not activate any new entry. Rule (EL2) is straight-
forward based on the meaning[of] ¥’ = (P’, ¥). Rule (EL3) is applied to the case that
S belongs to the body of @hile statement, and, is the entry list for the computation
following S. Based on the translation rule (TS&; = (¢, ¢1.2), ¥, Where(c, ¢1.2)

is the entry for the next iteration of thénile statement. Suppose; V¥ +~ S : U/, If

U’ = ¢, then afterS terminates, the next iteration of the loop would start, and the acti-
vated entry list would bé¢ 1). Otherwise, the entry list at the point th&terminates is

U’ Wy, Supposel; = (c, ¢1.2), V. Then the notation’ ® ¥, denotesl, if ¥ = ¢,

and V¥’ ¥, if otherwise. Rule (EL4) is standard for composifg V¥ + S, : ¥, and
P;¥, .S, : ¥, as the termination point &, is the starting point ob;.

To construct the benchmark execution, it is convenient to assume that all the reactor
replicas are running synchronously, and to formalize the program point that a target
configuration corresponds to. A program point is representeg:by; IT), wheres is
the code of the current running threadsis the entry list for the progran® following
the current thread, and is a set ocommunication portased byP. A communication
port is either a reactor nameor a remote variable namez. Intuitively, at the program
point represented bis; ¥; IT), the entry listU are activated, and there are no messages

for the communication ports il yet. Formally, we have the following definition:

Definition 6.5.3 ©;&;n E (s; ¥; II)). A configuration(©, M, £) corresponds to
the program points; ¥; II) with respect to the context identifigr written© ;& ;) E

(s; W; II), if the following conditions hold withl = ¢; W’. First, any unfinished thread
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in © has the forms, ¢, h, ¢, ), and the timestamp of any threaddns less than or equal
tot. Secondf ;n E V. Third, for anyr in I, if 7 = ¢ andd’ # ¢, then& contains no
exec messages fofr, n); if 7 = c.z does not appear i, then€ contains nesetvar

messages fofr, n). If sis the code of, then(; IT) is an abbreviation ofs; ¥; II).

Now we define the DSR-Aimp configuration equivalence and prove the translation

soundness theorem after proving two lemmas.

Definition 6.5.4 (D-A configuration equivalence).A DSR configuration©, M, &)
and an Aimp configuratioflS, M) are equivalent with respectig P, n andW’, written
asI'; P;nkE (0, M, &) =~ (S, M, V), if the following conditions hold. FirstP ; ¥ |-

S . Second©;€&;n E (V; Ils), wherellg are the set of communication ports of
the target code of. Third, ' - M ~ M.

Lemma 6.5.1 (Expression translation soundnessBuppose: is an Aimp expression,
and[e](c,d,cy, 0, H) = (P, At 7 2.€), and(e, M) || v, andT" - M ~ M, and
©;E;:m E (¢, V; 1Ip U {d, ¢,.z} UII). Then there exists a ruf®, M, &) —*
(0, M, &) such thato’; £’ ;n E (¢, ¥; II), and (e'[A], M[h,t]) | v, whereA is
the variable record in the closufe,, n) on hosth.

Proof. By induction on the structure of

e cisn. Trivial.
e cis!mandl'(m) = 0. ThenP is empty, and’ is !m. Sincel' F M ~ M, we
have that!m, M(h,t)) | M(m).
e cis!mandl’(m) = int, QQ. By (TE4), P is {r}, and
r=c{l, @, \exec(read[l,l;,m,c, cid,{c,, cid).z], nid, ¢, Q' €).

Then by running theexec statement, we havéd, M, &) —* (0, M, &),

and

O1;& ;0 E (s read[l, l1,m,, cid, (c,, cid).z], V; {c, ¢,.2} UTI),
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wheres’ is setvar({(c,, n).z, Im); exec(c, n, {, @, €). In other words, the ex-
ecution reaches the point that all the replicas of thed reactor are invoked
with the newly-created context identifigt. Further, by executing’ on all the
hosts ofm and processing all the messages sent’byhe execution produces
(O, M, &) —* (0, M, &) such thato’ ;& ;n E (¢; ¥; II). ByI' - M ~
M, the synthesizeQR|Q, I| associated witle,.z receives thesetvar messages
containing the same versioned valuet’ wherev = M (m). Therefore,z is
mapped tov in the closure(c,, n) by the evaluation rule (M3). Thus, we have

(z[A], M(h,t)) | v.

For simplicity, we write such an execution run in the form of the following table,
where each line denotes that the execution produces a system configuration (the
first column), which corresponds to a program point (the second column) and sat-
isfies certain constraints (the third column), based on some reasoning (the fourth
column).

0, M, &)

(01, M, &) (s U5 {¢, ez} UTT)

—* (O, M, &) (d,T; TT) (z[A], M(h,t)) } M(m) ByI'F M~ M
e is e; + ey. By rule (TES), we havde |(c,c1, ¢y, l, Q) = (P, A\ > 11 21. €))
and[es]{c1,, cu, £, Q) = (Py, \To B> T3 23. €5). Then we have the following exe-
cution:

(0, M, &)
—* (01, M, &) (a1, ¥; Up, U{c,c,.Z2} UIL) (e}[A], M(h,t)) }v1 By induction
— (O, M, &) (T T0) (e5[A], M(h,t)) 4 v2 By induction

Therefore,(¢| + e,[A], M(h,t)) | v, wherev = v; + v, and.A is the variable

record of the closuréc,, n) onh.
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Lemma 6.5.2 (Control transfer soundness)Supposg (¢, w)]|¥’ = (s, ¥), and¥ =
(c,w), ¥, and®; & ;n E (s; ¢, ¥”; ). Then(©, M, &) —* (0/, M, &') such that
O & 0 E(V; II), wheren' = E(w, n).

Proof. By (TC1),sis s;;...;50, and¥’ = 9y,... ¢, and¥ = (c,w), i1, ..., ¢Yy.
By (TC2), eachs; activates);, ands, invokesc;. Let (0, M, &) —* (0/, M, &’) be
the run that finishes executingn the quorum system efand processing the messages

sent bys. Then®'; & ;0 E (V' II). O

Theorem 6.5.1 (Translation soundness)Supposd’ ;R ;pc - S : 7, and(S, M) —
(S', My, andT; P;n F (O, M, E) ~ (S, M, ¥'). Then there exists a ruk =
(O, M, &) —* (0, M', &) suchthat; P;n' - (0, M', &) ~ (S, M', ¥'). In

addition, for any messagesent inE, the port ofu is in eitherV or 1.

Proof. By induction on the evaluation step, M) — (S, M’). Becausd'; P;n +
(O, M, &) ~ (S, M, V), we haveP;¥ - S : V', andO;&;n E (V; Ilg), and
M=~ M.

e Case (S1). Inthis cas8,is {c} m := e, andM' = M[m~ v], and(e, M) | v.
Supposel = ¢, ¥;. Then we have

(0, M, &)
—* <@1, ./\/l, €1> <Cl,\1’1; HS — Hp€> <€/[.A}7 M(h,t)) l} v By Lemma 6.5.1

If T'(m) = c@Q, then rule (TS1) is used, and the code-pfs
exec(write[l,m,cy, cid], nid, ¢, @, ¢').

Thus, we have

(01, M, &)

—* (09, M, &) (m:=wv;exec(cq, n, £, &m, €); write[l,m,ca,n], U1; {c2})
=" (O3, M, E3)  (c2, W13 0) M= M[mi o]

—* (Og, M, Ey) (T D) U’ b skip : ¥’ By Lemma 6.5.2
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If ['(m) = o, rule (TS2) is used, and the codemfis m := ¢’; ', wheres’ comes
from [c]V’ = (', ¥). Thus, we have
(01, M, &)
" (02, M, &) (s e, U3 0) M (hym) =
" (O3, M, &) (¥'; D) By Lemma 6.5.2
e Case (S2)SisSi; Sy, andP ;¥ Sy; Sy - W/, which implies thatP ; U = S : W,
andP; VU, F S, : ¥'. By induction, there exists a rua = (0, M, &) —*
(0, M', &) such thatl'; P;n - (0, M', &) =~ (S7, M’, ¥1). Therefore,
©';&";n F (V);1ls), and for anyr that receives a messagen if = ¢ Ilg,,
thenw € W. Thus, we hav®’; &' ;n F (V);I1g.s,). In addition, ¥ 5] : ¥,
holds. SoP;V¥| + Si;Ss : ¥'. Thus, we havd; P;n + (&', M', &) ~
(S1; Sy, M', W),
e Case (S3)Sis{c}skip;S". By ¥ I {c} skip; S’ : ¥/, we haveV + {c} skip :
Ui andV = .S5": ¥'. Then we have
(0, M, &) (c, ¥y; Ig)
—* (0, M, &) (U);Tg) Byrule (TS3) and Lemma 6.5.2
e Case (S4). Since; V¥ I~ S : ¥, we have thafS|V| = (P’, ¥,), and¥ = U, U,
andV’ = ¥ ® U,. By rule (TS5),¥; = ¢, ¥”. Then we have

(0, M, &)

—* (01, M, &) (e, P”; Ig) (€'[Acy y)s M(h,t)) I n BylLemma6.5.1
—* (02, M, &) (s1; ¢1, "5 Tlg,) By (S5)

—* (O3, M, &) (¥Y; Ig,) Ul Sy v By Lemma 6.5.2

Also the above run is limited to the code $fand does not affeck,. Therefore,
O3:&:m E (U W,y IIg), andP;U" ¥, - S : . Thus, (03, M, &) ~
<Slv M7 \Il/1>

e Case (S5). By the same argument as in case (S4).

153



e Case (S6)SiswhileedoSy, andS’is Sy;whileedoSy, and(e, M) || n (n > 0).

Then we have:

(0, M, &)

—* (01, M, &) (e, P Ilg) (€[ Aey ], M) I n By Lemma 6.5.1
% (Og, M, &) (setvar({ci, nid).2’,2’);s1; ¢1, ¥”; 1lg) By (S5)

—* (O3, M, &) (s1; c1; Ug,) &3 Ao, (nid) ;b E (¢, c1.2"), 0"

—* (O, M, E) (U Tg,) Agr(cid) = Ag,(nid) By Lemma 6.5.2

Therefore(©', &) =~ (V4, (¢, c1.2"), V" Ilg,.5). In addition, Uy, (¢, ¢;.2"), ¥
S1;S 1 W', Thus, we havé®’, M, &) ~ (S;;whileedo Sy, M, V).

e Case (S7)Siswhile edo Sy, and(e, M) || n, andn < 0. Then we have:

(0, M, &)

—* (01, M, &) (e, 9" Tlg) ak{E, M)In By Lemma 6.5.1
=" (02, M, &) (s2; c1, ¥ 0)

—* (O3, M, &) (¥; D) Es;nid; L. F (¢, c1,w), ¥"” ByLemma6.5.2

]

Now we show that a target program achieves the same availability as the source
program. First, we formally define the notion that a target menidrhas the same

availability as a source memoyt:

Definition 6.5.5 ' - M ~ 4, M). For anym such thatA(I'(m)) £ Iy, if M(m) #
none, then for anyh in Q,,,, A(h) £ I, impliesM(h, m) # none.

Again, we prove the availability preservation result by induction. First, we prove two
lemmas that are concerned with the availability of expression target code and control
transfer code, respectively. The availability results need to be applicable to all execu-
tions. Accordingly, we say(©, M, &) ~* (©', M’, £') such that a condition holds”
if for any run (0, M, &) —* (01, My, &), there existg®’, M’, £’) satisfying the
condition and(®;, M, &) —* (©', M’, £'). Let€ E (c, n).z denote that variable
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(c, m).z is already initialized in€. More concretely, For any hoét of ¢, the variable
record of the closuréc, ) on hosth maps:z to a value that is natone. In addition,
let £ & (c, n) denote that the closure, 1) has been invoked on all the hostsadf £.

Then the expression availability lemma is formalized as follows:

Lemma 6.5.3 (Expression availability). Supposd™; R ; pc - e : int,, and{e, M) |

n,andA(R) £ I, and[e]{c, c, c,, ¢, Q) = (P., \T> 7 z.€'), and there exist®, M, &)
such that E (c, n), andl' F M ~,4, M. Then(©, M, &) ~* (©', M’, &) such
thate’ & (¢, n) and&' E (c,, n).Z.

Proof. By induction on the structure ef
e cisn,m, or!m with I'(m) = o. In this case[e](c, c, c,, ¢, H) = eandc = ¢.
Thus,& E (¢, n) and&’ E (c,, ).z immediately hold.

e cis!m,with'(m) = c@Q. By rule (TE3),P. = {r} and
r=c{l, Q, \exec(read[l,(;,m,c cid, {c,, cid).z], nid, ¢, @, €)}.

Since€ E (¢, n) holds, we have®, M, &) ~* (01, M, &) such that&; F
(readll, (1, m,c,n,{cu, n).2], n') Wheren’ = E(c.nid,n). By A(R) £ [, and
rule (DM), A(Q) £ l,, which means that at least@®[Q, I(¢)]-qualified set of
hosts inQ are available to finish executing tlkead reactor. Therefore, we have
(01, My, &) ~* (0, M, &) suchthat’ E (¢, n) and&’ E (c,, n).z.

e cise; + ep. By induction,(©, M, &) ~* (01, M, &) such that; F (¢, n)
and&; E {(c,, n).z1. Again, by induction(©, M, &) ~* (6, M', ') such
thats’ & (¢, n) and&’ E (c,, n).Z.

]

Lemma 6.5.4 (Control transfer availability). Supposd(c, w)]V’ = (s, ¥), and there
exists a run(©q, My, &) —* (0, M, &) such thatt ;n E ¥, and€ F (¢, 1), and
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the body ofc; ends withs, andA(c;) £ I,. Then(©, M, &) ~* (6, M'; ') such
thatg’ ;7 £ 0.

Proof. By inspecting rules (TC1) and (TC2). O

Lemma 6.5.5 (Availability preservation 1). Supposel’;R;pc - S : stmtg/, and
I(pc) < lyandA(R) £ I, andP;¥ F S : ¥, and (O, M, &) satisfiest ;n E ¥

andavailable (M, R, [,), which means that for any. in dom(T"), A(I'(m)) £ I, and
m ¢ R imply thatm is available inM. Then(©, M, &) ~* (', M’, £) such that
&' ;n E V', andavailable (M', R/, ).

Proof. By induction on the structure df.

e Sisskip. SinceV’' =V, (0, M, &) already satisfies the conditions.

e Sis{c} skip. The target code of just invokesl’. By Lemma 6.5.4, this lemma

holds.

e Sis{c}m :=e. Then we havdS|¥’' = (P, ¥,), andP, C P. First, suppose
['(m) = 0. By (TS2),[e](c1,c}, ¢, H) = (P, \T> T z.¢/). SInCeA(R) £ Iy,
we have(e, M) || n. By Lemma 6.5.3 and ;n F ¥, we have(O, M, £) ~*
(01, My, &) such that, E (¢], n). Supposé’ is the host where] resides. By
rule (DS),A(m) < A(R). If A(R) £ Iy, thenA(m) £ I, andA(R') £ [, which
means that' is available. Sinc&®’ is R — {m}, we haveR' - M’ ~,4, M'. By
rule (TS2) and Lemma 6.5.40,, M, &) ~* (©', M’, &) such thatt’ ;n E
v,

e Sis Sy;S,. By induction.

o Sis{c}if ethen S else Sy. SinceA(R) £ ly, (e, M) | n. Supposd’; R +
S: /¢, andQ, = (H,0). ThenA(R) < A(H,LT[(]). SinceA(R) £ I, there

exists aLT[/(]-qualified subsefi’ of H such thatA-(H’) £ l,. Therefore, there
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exists a subsetf” of H' such that/ (¢) < I(H") and all the hosts of/” takes the
same branch. Without loss of generality, suppose the first branch is taken. Then
by (TS5) and Lemma 6.5.40, M, &) ~* (0", M"  £") such that” ;n F ¥”
and¥” + S; : ¥, By induction, (", M" ") ~* (0, M', £) such that
EnEV.

e S iswhile e do S’. By the typing rule (WHILE) of Aimp,/(pc) < [, implies

A(R) <. Thus, this case cannot occur.

O

According to the translation soundness theorem, for a run of the source program
(S, M) ——* (S, M'), there is a benchmark run of the target program that behaves
similar to the source run. Therefore, we can associate each evaluation step of the source
program with the context identifier of the corresponding evaluation step in the bench-
mark target execution, and use the notatién A;),, — (S,, M), to denote tha,

andr, are the corresponding context identifier of configuratighs M) and(Sy, M).

Lemma 6.5.6 (Availability preservation IlI). Supposel’;R;pc - S : stmtr, and
I(pc) £ ly and A(R) £ [, and (S, M), — (Si, M)y, andP;¥ + § : I/,
and (0, M, &) satisfies€;n E ¥ andTl' - M =44, M. Then(©, M, £) ~*
(O2, My, &) such thats, ;' E Wy, and ¥y = Sy : U/, andl’ = My =4y, M,
and S; ~ Sz, which means eithef; = S, or fori € {1,2}, S; = S/;S” such that

I';R;pct S} :stmty andI(pc) < L.

Proof. By induction on(S, M) —— (S’, M'). Without loss of generality, suppose
[S]¥" = (P, V). In general [S]¥” = (P, ¥,) and¥ = ¥, U3 and¥’ = ¥ @ V3. If
the theorem holds fo¥; - S : ¥”, then we havel, - S, : U”. ThereforeW,, U5
Sy o U ® U3, that is, U}, - Sy : W',
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e Case (S1)S ism := e, andM; = M[m— v] where(e, M) | v. There are two
cases. Firstl'(m) = o. By (TS2),[e]{(c,c1,¢, H) = (P, \7>T z.€'), and the
first element ofl is c. By Lemma 6.5.3 and ;7 F U, we have(©, M, &) ~*
(01, My, &) such that; ;n E ¢;. By (TS2), the code of; ism := ¢’; s’ where
[e]¥ = (s', ¥’). Supposé, is the host where, resides. By rule (DM)A(m) <
A(hy). SinceA(R) £ I, we haveA(h;) £ l,, which means that, is available
to finish executing the thread of;, 7). Sincem is the only location updated in
this evaluation step, and is also updated during executing the target program,
we havel” - My ~ 44, M;. By rule (TS2),[c]¥' = (', V). By Lemma 6.5.4,
(01, My, &) ~* (0, M, &) in finite steps such tha’ ;»' E ¥’. In addition,

Sy is skip, and¥’ - skip : V.

Second['(m) = ¢@QQ,,. By rule (DS),A(R) < A(H,LT[I(m)]). As aresult, at
least eLT[/(m)]|-qualified subset!’ of H are available to invokerite[(, m, ¢z, 7).
SinceA(¢) £ [, at least a quorum of,, is available. The available quorum is
able to finish executing therite reactor and invoke, on Q. By rule (TS1), the
code ofc, is 5. Due to A(¢) £ [, the available hosts i@ have sufficient in-
tegrity so that the remote requests senthyould be accepted. By Lemma 6.5.4,
(01, My, &) ~* (0, M, &) such that’ ;' = W'

e Case (§2).5 is 51; Sy, and (S, M) —— (SY, M'). By ¥ I S : ¥, we have
U S Uy, and¥y Sy o UL By induction, (©, M, £) ~* (O, My, &)
such that, ;n E Wy, and¥, F S - ¥y andS; ~ 1. ThereforeS; S, ~ S7; Ss,
andW, = 575, : W',

e Case (S3). IFis{c} skip; Ss, the conclusions immediately hold by Lemma 6.5.4.
Otherwise,S is skip;Ss. Thus,S; = S,, andP ;¥ Sy : V' sinceP ;¥ +

skip : .

e Case (S4). S is if e then S else Sy, and (e, M) |} nandn > 0. By
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Lemma 6.5.3,(0, M, &) ~* (01, M, &) such that&; ;n E ¢;. By Theo-
rem 6.5.1, there exists a benchmark execution M, &) —* (02, My, &)
such that(e'[ A, ,], M2) | n. If I(e) £ L, then by Theorem 5.4.2, for any
hin Q.,, (€'[Ae 4], M(h,t)) | n, and the execution takes the brangh By
Lemma6.5.4(0,, M, &) ~* (0, M’, &) suchthat’;n - ¥, where[S; |V’ =
(P, Ws).

If I(e) < L, attackers may be able to compromise the integrity ahd make
the execution to take the second branch. In that case, we(lkgveM, &) ~*
(0, M, &) such thatt’;n E ¥y andP; ¥y F S, : V. FurthermoreS; ~ S,

sincel(e) < L.
Case (S5). By the same argument as case (S4).

Case (S6).S iswhile edo Sy, (e, M) || n,n > 0, andS’ is Sy;while e do S;.
By Lemma 6.5.3(0, M, &) ~* (0, M, ') such that’;n E ¢;. Moreover,
A(R) £ 1, impliesI(e) £ [,. By Theorem 6.5.1, for ang in Q(c;) such that
I(h) £ Iy, (€'[Acy 1], M'(h,t)) I n. Sincen > 0, “setvar((c;, nid).2’, 2’); s;”
is executed on host. By executingsetvar({(c;, nid).z’, z’) and processing
the messages the stateme(@;, M’, &) ~* (©,, My, &) such thatf, ;1 F
U,. By executings; and processing the messages sent|hyO,, M;, &) ~*

(©9, My, &) such that, ;' E V.

Case (S7). S is while e do Sy, (e, M) | n, n < 0, andS’ is skip. By

Lemma 6.5.3(0, M, &) ~* (0,, M, &) such that”;n F ¢,. Sincel(e) £

ly, foranyh in Q. such that/(h) £ Iy, (¢'[Ac, 5], M(h,t)) I n, ands, is exe-
cuted onh. Therefore, by Lemma 6.5.40,, M, &) ~* (©', M, &) such that
gy E V.
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Theorem 6.5.2 (Availability preservation). Supposé’; R ; pc = S : 7,and(S, M) —*
(8", M"), and[S]0 = (P, c), andM ~ M. Then(©y, M, &) ~* (6/, M', ') such
thatI’ - ./\/l/ %Aﬁl,; M’

Proof. By induction on the number of steps of, M) ——* (S, M’), we can prove
a stronger result(S’, M') —* (S”, M") such thatl'; R";pc” = S” : 7 implies
I(pc”) £ 1y, and and©g, M, &) ~* (©', M’, £') such thal’ - M’ ~ 44, M" and
& ;nE VvV whereV’ = &5”,

Suppos€sS, M) —* (Sy, M;) — (s’, M’). By induction, the result stated above
holds for (Sy, M) —* (S}, M{). If S; # S, then the result immediately holds
for (S’, M') ——* (S, M{). Otherwise, we have thdt;R,;pc, F § : 7 implies
I(pc,) £ Iy, and(©g, M, &) ~* (01, My, &) such thatl’ - M; =44, M; and
E1;n E Uy wherel;, = &S;. By Lemma 6.5.6(0,, My, &) —" (O, My, &)
such thatl' F My ~aq, M and&;n, F ¥y whereV, = &S, and S’ = S,.
SupposeS; = S;5” such thatl'; Ry ;pc, F Sy : stmtgr and I(pc,) < [,. By
Lemma 6.5.5({0,, Ms, &) ~* (0, M’, &) such that’ ;' £ V" whereV” = &S”,
andavailable (M', R', l,). Moreover,(Sy, M) —* (S”, M"). Suppose&; = Sj; S”.
By S; =~ 55, the high-availability memory references initialized By are also initial-

ized byS5. Thereforel' - M’ ~ 44, M".

6.6 Related work

The closest work to the Aimp/DSR translation is the Jif/split system [104, 105] that
introduced the secure program partitioning technique and automatic replication of code
and data. However, the Jif/split system cannot provide strong availability assurance, and

it does not have a formal correctness proof yet, due to its complexity.
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Program slicing techniques [93, 85] provide information about the data dependen-
cies in a piece of software. Although the use of backward slices to investigate integrity
and related security properties has been proposed [26, 49], the focus of work on program
slicing has been debugging and understanding existing software.

Using program transformation to enforce security policies is a widely used approach.
The SFI (Software Fault Isolation) technique [89] enforces memory safety by a program
transformation, which insertsheckingor sandboxingcode before every operation of
the original program that may violate memory safety. The sandboxing code inserted be-
fore an operation updates the program state such that the operation would never violate
memory safety and the update is equivalent to a no-op if the operation is safe in the orig-
inal program. The checking code inserted before an operation determines whether the
operation would violate memory safety and aborts execution if it would. The SFI tech-
nique has been applied to enforcing other safety properties [78, 22, 67]. Erlingsson and
Schneider proposed the SASI framework [21] that generalizes SFI to any security policy
that can be specified as a security automaton and enforced by a reference monitor [76].

The general program transformation approach has also been applied to implementing
secure function evaluation and preventing timing channels. Fairplay [50] is a system
implementing generic secure function evaluation. Fairplay uses a compiler to translate
a two-party secure function specified in a high-level procedural language into low-level
Boolean circuits evaluated in a manner suggested by Yao [98].

Agat [3] proposed a padding transformation that eliminates the timing channels in
the source program with respect to a target execution model with observable timing

information.
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Chapter 7
Conclusions

This thesis proposes a unified approach to building distributed programs that enforce
end-to-end confidentiality, integrity and availability policies, within a common frame-
work of program analysis and transformation. The key innovative idea is that end-to-end
availability policies can also be enforced by a form of noninterference and it is thus pos-
sible to apply the techniques for enforcing confidentiality and integrity policies (such as
static information flow control and secure program partitioning) to enforcing end-to-end

availability policies. Based on the idea, this thesis presents

e auniversal decentralized label model for specifying end-to-end security policies,

e asequential language Aimp with a security type system ensuring that a well-typed
program enforces the security policies (including availability policies) specified as

type annotations,

e adistributed language DSR that uses quorum replication and a form of multipart
timestamps to enforce availability policies without sacrificing confidentiality and

integrity, and

e a formal translation from Aimp to DSR, which allows programmers to use Aimp

to develop applications running on distributed systems.

This thesis proves that if a well-typed Aimp progranis translated into a DSR
programP with respect to a trust configuration, then the distributed target progtam
enforces the security policies of the source in the given trust configuration. Therefore,
this constructive approach for building secure distributed programs is correct in theory.
Whether this approach is practical is not addressed in this thesis because both Aimp and
DSR are minimal in terms of language features. Nevertheless, previous work on the

Jif/split system provides some evidence that the constructive approach is practical by
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showing more examples, including various auction applications and an implementation
of the battleship game. To some extent, the theoretical result of this thesis and the ex-
perimental result of the Jif/split system complement each other, as the Jif/split compiler

and the Aimp/DSR translator follow the same principles.
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