
TRUST, AUTHORITY, AND INFORMATION FLOW IN

SECURE DISTRIBUTED SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy

by

Michael David George

December 2020

c© 2020 Michael David George

ALL RIGHTS RESERVED

TRUST, AUTHORITY, AND INFORMATION FLOW IN SECURE

DISTRIBUTED SYSTEMS

Michael David George, Ph.D.

Cornell University 2020

Computing systems that make use of other people's data are an important and

pervasive aspect of modern life. However, users have little ability to specify how their

information should be used, and system providers have insu�cient tools to provide

assurance that they correctly handle that information.

Decentralized information �ow control (DIFC) provides a framework for speci-

fying policies on the use of information and ensuring that systems abide by those

policies. However, existing DIFC systems do not address the complexity of the mod-

ern software ecosystem, where multiple entities interact to provide the software, data

storage, and computational resources for a given application.

This dissertation aims to bridge the divide between the strong security guarantees

provided by DIFC systems and the complex requirements of today's distributed

applications.

We present Fabric, a platform for secure distributed storage and computation.

Fabric provides a high-level programming model that enables heterogeneously trusted

parties to share code, information, and computational resources while enforcing

strong information �ow constraints. We have evaluated Fabric by building appli-

cations that model the data storage, communication, and software evolution pat-

terns present in existing applications, while adding appropriate information �ow

constraints. Results from these applications suggest that Fabric has a clean, concise

programming model, o�ers good performance, and enforces strong security policies.

In a decentralized setting like Fabric, it should be the case that a principal's

security policy can only be violated if someone they trust misbehaves. Formalizing

these notions in a decentralized system is challenging because statements of trust

and de�nitions of policies are also decentralized.

To address this challenge, we show how to identify the data that in�uences infor-

mation �ows in a broad class of DIFC systems. We use in�uenced �ows to formalize

the notion that you can only be harmed by those you trust, and show that de�ni-

tions of harm based on in�uenced �ows generalize existing semantic de�nitions of

information �ow security.

Since trust statements in federated systems are distributed, determining whether

a computation is safe may require a separate distributed computation, which may

in turn introduce potentially unsafe information �ows. We present a programming

language for distributed authorization queries that tracks information �ow. We show

that programs in our language do not leak information, and that the language is

su�ciently expressive to model nontrivial authorization queries.

BIOGRAPHICAL SKETCH

Michael completed his Bachelor of Arts degree with Honors in Mathematics and his

Bachelor of Science in Computer Science at the University of Rochester in 2003. He

then completed his Master of Arts degree in Mathematics in 2004 before heading to

Cornell to work on his Doctorate.

He has always been excited about teaching; as a youth he loved the opportunity

to teach scoutcraft to the younger scouts even though he complained that �they won't

sit still and they won't shut up!� Since then he has had the opportunity to work

with more mature students as a lecturer in Cornell's computer science department.

He has taught a variety of courses including discrete mathematics, object-oriented

programming, functional programming, operating systems, and algorithms.

Michael's other interests include playing the piano and �ddle, making ceramics,

and contra dancing. He was married to Laura George in 2019, and has been serving

as a deacon in the Presbyterian Church since early 2020.

iii

This dissertation is dedicated

to those who hold a part of me,

and those of whom I hold a part.

iv

ACKNOWLEDGEMENTS

This work would not have been possible without the constant support of my

wife, Laura George, my parents Natalie and Donald George, nor my sister Valerie

Garrison. They have and will remain the most important part of who I am.

I also owe a great debt of gratitude to my advisor, Andrew Myers, for his patient

guidance as I learned how to do research as well as his many technical contributions

to the work presented herein. I would also like to thank the members of my special

committee: Fred Schneider, Hakim Weatherspoon and Lawrence Gibbons, for their

helpful guidance and feedback.

My research is inextricably linked to the projects that I have worked on with

the Applied Programming Languages group at Cornell. I would especially like to

thank Jed Liu, K. Vikram, Owen Arden, Aslan Askarov, and Lucas Waye for their

expertise and friendship, both of which have had a big impact on this work.

v

TABLE OF CONTENTS

1 Introduction 1

1.1 The State of the Art . 2
1.2 Contributions . 6

1.2.1 The Fabric System . 6
1.2.2 Decentralized Information Flow Analysis 9
1.2.3 Flows Through Dynamic Authorization 13

2 The Fabric System 16

2.1 A Running Example . 16
2.1.1 Security Considerations . 18
2.1.2 Software Construction and Evolution 19

2.2 Fabric Programming Model . 20
2.2.1 Data in Fabric . 21
2.2.2 Computation in Fabric . 22
2.2.3 Evolving Secure Software . 24
2.2.4 Principals . 28
2.2.5 Labels . 31
2.2.6 The Decentralized Label Model 34
2.2.7 Information Flow . 37
2.2.8 Novel Information Flow Constraints 39
2.2.9 Transactions . 43
2.2.10 Exceptions and Rollback . 45
2.2.11 Interacting With the Outside World 47
2.2.12 Summary of the Fabric Programming Model 48

2.3 The Fabric System . 48
2.3.1 Communications Layer . 50
2.3.2 Distributed Objects . 52
2.3.3 Dynamic Fetch Authorization 54
2.3.4 Dynamic Type Checking . 56
2.3.5 Concurrency . 57
2.3.6 Distributed Transaction Management 58
2.3.7 Nested Transactions . 59
2.3.8 Hierarchical Commits . 61

2.4 Evaluation . 63
2.4.1 System Implementation . 64
2.4.2 FriendMap Application . 65

vi

2.4.3 Course Management System 68
2.4.4 OO7 Benchmark . 71
2.4.5 Other Applications . 72

2.5 Related Work . 74
2.6 Summary . 80

3 The Decentralized Security Principle 82

3.1 System Model . 84
3.1.1 System Model Requirements 85
3.1.2 Information Flow . 85
3.1.3 Transmission and Relabeling Flows 89
3.1.4 In�uenced Flows . 90
3.1.5 In�uenced Flows Generalize Flows 92

3.2 The Decentralized Security Principle, Formalized 92
3.2.1 Label Model Axioms . 93
3.2.2 DSP with Strict Harm . 97
3.2.3 Strict Harm and Noninterference 100
3.2.4 DSP with Downgrading . 101
3.2.5 In�uenced Flows and Nonmalleability 105

3.3 The Extended Decentralized Label Model 106
3.3.1 Constructing a DTH . 109

3.4 Application to Fabric . 111
3.5 Related Work . 114

4 Information Leaks via Authorization Requests 116

4.1 System Overview . 120
4.2 Language and System Model . 124

4.2.1 Standard Features . 124
4.2.2 Principals and Delegation . 124
4.2.3 Distributed State . 128
4.2.4 Dependent Types and Proofs 130
4.2.5 Labeled Values and Relabeling 134

4.3 Security Condition . 136
4.3.1 De�nitions . 137
4.3.2 Proof of Security . 140

4.4 Actsfor Revisited . 143
4.5 Lessons for Fabric . 145
4.6 Revocation . 148

vii

4.7 Related Work . 152

5 Conclusions 154

5.1 Contributions to Distributed Software Platforms 154
5.2 Contributions to Information Flow Analysis 155
5.3 Contributions to Dynamic Distributed Authorization 156
5.4 Future work . 157
5.5 Summary . 160

Bibliography 161

viii

LIST OF FIGURES

2.1 Overview of the FriendMap social mashup example. 17
2.2 The stores and objects in the FriendMap example application. 23
2.3 Evolution in the FriendMap example. 27
2.4 Principal hierarchy from the FriendMap example. 29
2.5 Syntax of labels in the Decentralized Label Model. 35
2.6 Implicit �ow example . 38
2.7 Overview of the components of Fabric workers and stores. 49
2.8 Cache hierarchy for Fabric objects. 52
2.9 Logs of nested distributed transactions 60
2.10 A portion of the FriendMap application implementation. 67

3.1 The syntax of EDLM labels . 107
3.2 The EDLM �ows-to relation . 108
3.3 Construction of a DTH [[S]] from a set S of trust assertions. 110

4.1 Example of read channels in dynamic authorization. 118
4.2 Actsfor implementation. 122
4.3 An example Fabric program that uses dynamic acts-for checking . . . 123
4.4 Syntax and semantics for standard language features. 125
4.5 Syntax and semantics for language features for principals and delegation126
4.6 Relation de�ning ` 4 `′. 127
4.7 Syntax and semantics for language features for distributed state . . . 129
4.8 Language features for proofs and dependent types 131
4.9 The static implication relation . 133
4.10 Language features for information �ow 135
4.11 Dynamic label and principal tests in Fabric. 145
4.12 Broker example using class where constraints. 147

ix

Chapter 1

Introduction

We have entered an era saturated with digital data about people's personal lives. A

large and growing portion of the population uses some form of social media to share

details of their day-to-day activities. Businesses rely on digital systems to track

the behavior of customers and employees alike, and this tracking is becoming easier

as more of our transactions are taking place online. Health care and government

institutions maintain records about the populace as well.

Digital data has great potential to improve our lives�limited only by our ability

to come up with new and interesting ways to combine it. To address the demand

for new ways to integrate and share data, a diverse ecosystem of software developers

has sprung up, including large institutional players like Facebook and Google, and a

multitude of smaller websites and application developers.

The key ingredient for this kind of ecosystem to thrive is the ability to seamlessly

combine software and data from an open-ended set of sources. However, that ability

comes with some risk: users consider the data that describes their lives to be private,

and they require assurance that such data remains con�dential. Moreover, because

they rely on these systems more and more, the integrity and availability of data is also

crucial. Allowing arbitrary combinations of software to operate on and share sensitive

data can clearly violate these con�dentiality, integrity, and availability requirements.

In an open software ecosystem, there are many parties that have security con-

cerns. Each user cares about the con�dentiality and integrity of their own informa-

tion. Service providers also have security concerns: they may wish to protect the

1

con�dentiality of their intellectual property or the integrity of the information that

they give to users, for example. In fact, many service providers o�er detailed privacy

policies that legally require them to enforce per-user privacy settings.

The ability to combine data owned by di�erent parties means that everyone's

security concerns must be considered in tandem. If con�dential data owned by

multiple users is combined into a web page, for example, then each of the users must

be satis�ed that the web page is only viewed by principals who are allowed to learn

that con�dential information.

1.1 The State of the Art

Today's computing platforms typically address these security requirements by iso-

lating applications from one another. For web applications, this approach is typi�ed

by the same-origin policy [Zal09], which prevents a web site from interacting with

browser state that is associated with a di�erent site. This rule was adopted to prevent

cross-site scripting attacks, in which an untrusted web page examines the content of

a trusted web application and then communicates that information back to a third

party.

Unfortunately the same-origin policy is both too strong and too weak. It is

too strong because service providers want to integrate third-party software (and

advertisements) with our data. To achieve this functionality, service providers host

content on behalf of advertisers and third party developers to make it appear as if

the content all came from a single origin.

2

The same-origin policy is also too weak. Once a trusted party is willing to host

content for an untrusted party (such as an advertiser), the same-origin policy can no

longer protect sensitive information. Since the untrusted portion of the application

comes from the same origin as the trusted application, it can observe the con�dential

information, and then smuggle that information to a third party in the form of a

request, by loading an image for example.

Another example of the isolation approach to security can be found in the �app

stores� that have become popular for mobile devices. When a user �nds an applica-

tion that they wish to install, the system provides them with a set of �permissions�,

such as access to the camera, storage device, the internet, or their contact database.

Typically the user performs a mental calculation�they make a guess about what

the application will do with the permissions that are granted to it, and then decide

what the implications of those actions might be on the security of their information.

Once installed, the system will prevent the application from performing any sen-

sitive operations for which it was not granted permission, but there is no way to

provide assurance that the application acts as the user suspected. For example, an

email application would naturally expect permission to access a user's contact list

and also the internet. The user probably doesn't expect the program to periodically

send an email to the author of the program containing all of the user's contacts, but

nothing in the system prevents the program from doing so. Similarly, mobile games

typically request permission to access the state of the telephone functionality, pre-

sumably so that they can pause themselves if a call comes in. But again, this is only

an informal expectation�nothing prevents the game from posting your information

3

publicly, or even subversively encoding it into the high scores that it posts on the

high-scores list.

The problem is that users must specify access control policies as a stand-in for

the end-to-end information �ow policies that they expect to be enforced. What the

user cares about in these examples is who is allowed to learn about or a�ect speci�c

pieces of data�regardless of whether the information is directly communicated to

those parties or communicated through a third-party service, regardless of whether

the channel goes through a single application or through multiple applications, and

regardless of whether the information is communicated via disk storage, interprocess

communication, networking, or some other mechanism.

As applications incorporate more and more functionality, they require more and

more permissions. Isolation approaches typically lead to user fatigue, where users

are unable or unwilling to reason about what an application might be doing, and

just develop the habit of clicking �accept�.

These problems stem from the fact that isolation-based security approaches are

noncompositional: even if two components of a system are independently secure, the

interactions between them may not be. When advertising and content interact in

nontrivial ways in web applications, or when a mobile application combines looking

up addresses and sending email, or when managing phone calls and posting scores are

combined in a game, one has to look at the details of the combination to determine

whether it is safe.

Information �ow control [DD77, Mye99a, Sim03, ZBWM08, KYB+07] is an ap-

pealing approach to security which addresses these di�culties. Information �ow

4

control systems track the �ow of information through computations, ensuring that

con�dential data cannot a�ect less con�dential output in any way. Information �ow

control enables developers and users to reason about the end-to-end impact of their

policies without understanding the details of the systems that handle their data.

The theory of information �ow control in individual programs running on trusted

platforms is fairly well understood. However, applying information �ow control to

the modern distributed software ecosystem presents new challenges. Applications

do not run on a single device, or even on devices that are administered by a single

entity. Modern applications typically perform some parts of their computations on

a client (typically administered by a user) and some parts on servers administered

by cloud providers such as Google or Amazon. They also commonly access servers

operated by the application providers and third parties, and may even span systems

operated by multiple end users.

For these applications, there is no single entity that everyone trusts to enforce

their security policies. Instead, each principal trusts some subset of the compo-

nents of the system. This situation invalidates a key assumption underlying existing

information �ow control techniques: that there is a trustworthy entity that can stat-

ically check or dynamically monitor the running program to ensure it complies with

information �ow policies.

5

1.2 Contributions

Our goal is to adapt the techniques of information �ow control to the modern land-

scape of distributed applications running on a partially trusted platform. This land-

scape of heterogeneous trust presents conceptual and practical challenges for the

design and implementation of secure software. This dissertation addresses some of

these challenges.

1.2.1 The Fabric System

Our �rst contribution to this e�ort, described in Chapter 2, is Fabric, a program-

ming language and distributed system that serves as a platform for building secure

federated systems. Fabric makes information �ow analysis more tractable by inte-

grating all components of a distributed application into a coherent program written

in a single language using shared high-level abstractions.

This approach contrasts with the architecture of today's global computing in-

frastructure. Modern applications rely on a hodgepodge of interacting technologies,

including browsers using JavaScript to operate over HTML and XML, native applica-

tions for mobile devices and desktop computers written Java, Objective C, and many

other languages, web services written in a variety of static and dynamic languages,

data storage ranging from �at �les to structured relational databases to global cloud

storage services.

Fabric raises the level of abstraction by integrating the tools needed to build

distributed applications into the language and programming model. Higher level

6

primitives make it easier to reason about the behavior of the system as a whole, which

is necessary for giving programmers and users strong end-to-end security assurance.

Providing a uni�ed language makes both programming and program analysis

more tractable, but we must also ensure that the language is expressive enough

to model applications with the features that users have come to expect. The key

features of today's software ecosystem that Fabric models include the following:

• An open system Fabric is an open platform like the web, rather than a

collection of closed services like today's clouds. Anyone can bring code, data,

or computational resources to the table, and those resources are all treated

uniformly by the platform.

• Distributed computing Fabric supports computations that span multiple

locations and trust domains. For example, parts of a typical web application

might run on the user's browser, on the provider's web server, on a back-end

database server, and on a third party's web service. Fabric supports this kind

of design through function shipping and data shipping.

• Persistent storage Support for distributed persistent storage is tightly inte-

grated into Fabric's computational model. All Fabric data is stored using the

same interface, allowing us to reason about information �ows through storage.

• Mobile code Fabric allows any developer to add new code to the system and

allows code to be dynamically shipped to di�erent hosts for execution. This

mechanism is analogous to shipping of JavaScript code to browsers, shipping

of SQL queries to databases, and even the distribution of application code

through app stores.

7

Fabric extends these capabilities by supporting end-to-end information �ow se-

curity, thereby enabling users to run modern integrated applications with assurance

that their security policies will be respected.

To achieve these ends, trustworthy Fabric nodes perform information �ow analysis

on application code prior to execution. This analysis is aware of the principals

that are responsible for operating di�erent components of the system and the trust

relationships between them, and does not make any assumptions about the behavior

of untrusted components.

The analysis is also aware of the information �ow policies associated with the

data that the applications manipulate. It is therefore able to determine whether

the applications abide by those policies, even if untrusted principals are acting ma-

liciously. A key contribution of Fabric is the adaptation of prior information �ow

control analyses to function in the presence of partially trusted code on a partially

trusted platform.

Integrating features for distributed computation and persistent storage into Fab-

ric presents new challenges because previous systems that provide these features have

not been concerned about potential information �ows. To address these challenges,

we have developed novel implementation techniques that avoid information leaks

present in previous systems. These techniques are another major contribution of the

Fabric system.

Fabric's computational model provides enough �exibility to faithfully model mod-

ern applications. We validate this claim by presenting a variety of example applica-

tions that we have implemented in Fabric. Most notably, we have built a model of a

8

social network that allows untrusted applications to manipulate users' private data

while preserving the security requirements of the users. We show that Fabric's infor-

mation �ow control mechanisms ensure that the security requirements of each user

are preserved by this application. Although existing social networking service allow

third parties to develop applications today, we believe this is the �rst example of a

service that integrates third-party applications while providing strong information

�ow guarantees.

Although Fabric's primary purpose is to provide a platform for investigating the

security of integrated software platforms, it is important to show that the techniques

we have developed can be made to perform e�ciently. Chapter 2 contains a perfor-

mance evaluation of a number of applications that we have implemented in Fabric;

it shows that we need not sacri�ce performance to achieve strong security.

1.2.2 Decentralized Information Flow Analysis

The second major contribution of this dissertation, described in Chapter 3, is a

mathematical framework for evaluating partially trusted information �ow control

systems.

The gold standard for information �ow control systems is a property called non-

interference [SM03]. A system satis�es noninterference if an observer that sees only

public output from the system can infer nothing about the secret input, and an at-

tacker that can only in�uence low-integrity input cannot a�ect high-integrity output

in any way.

9

In practice, noninterference is too restrictive to describe many systems that are

considered secure. In practice, information �ow control systems provide a weakened

form of noninterference that allows private information to be declassi�ed, or low

integrity information to be endorsed. There are a variety of security properties that

describe the safety of information �ow in the presence of downgrading [SS05].

Proving that a system satis�es any of these information �ow properties requires

assumptions about the implementation of the system. For example, an enforcement

mechanism that uses static program analysis assumes that the program that is being

analyzed is the same as the program that is being executed, and that the hardware

that executes the program does not allow private information to be read directly by

attackers. These assumptions make sense when the system is running on a trusted,

centralized platform, because users can rely on physical security and secure hardware

to ensure the integrity of the platform.

In an open software ecosystem like Fabric, these assumptions are far too strong.

Indeed, the de�nition of an open system is that any party can provide computational

infrastructure. There is no reason to assume (and no way to verify) that an arbitrary

participant correctly implements any security mechanisms.

Cryptographic techniques such as secure multi-party computation [CLOS02] and

encrypted query processing [PRZB11] provide strong guarantees of security proper-

ties even for programs executing on untrustworthy platforms. However, these tech-

niques tend to be specialized and expensive; they are not yet practical for application

to general software [NLV11].

10

Instead, we rely on the insight that while no single component of the global

computational infrastructure is trusted by everybody, each participant does trust

some portion of the infrastructure. By making use of users' stated trust assumptions,

we can state security properties that are relativized to each user's trusted computing

base.

We refer to this idea as the Decentralized Security Principle (or DSP). Informally,

the DSP states that a user can only be harmed if someone they trust is untrustworthy,

and that the harm is limited to the extent of the trust that is granted. Making this

property precise and proving that a system satis�es it requires clear de�nitions of

�harm�, �trust�, and �trustworthiness�.

In Chapter 3, we use the DSP to give a relativized de�nition of noninterference.

We formalize the idea that a user is harmed if their con�dential information a�ects

data in the system in a manner that con�icts with their policies, or if their high-

integrity data is modi�ed in a way that is not speci�ed by their policies. This

formalization is consistent with noninterference-based de�nitions: we show that the

total absence of harm is equivalent to noninterference.

We also give a relativized de�nition of a weakened form of noninterference called

nonmalleable information �ow [CMA17]. Here, the de�nition of harm is more subtle:

information �ows are allowed, but only if they are mediated by data with appropriate

con�dentiality and integrity constraints. We give a formal de�nition of an �in�uenced

�ow� and use it to de�ne a security condition that is very similar to nonmalleable

information �ow.

11

In our model, a statement of trust has a well-de�ned and universal meaning.

Roughly speaking, a user should express trust in another party (the trustee) if they

believe that the trustee faithfully abides by the required system's semantics. If the

trustee actually does correctly follow the system's semantics, we say that they are

trustworthy. Our formal de�nition of trustworthiness for the information �ow setting

is given in Chapter 3.

Trustworthiness is universal in the sense that the formal de�nition is not application-

speci�c; a user's statement of trust does not assert that the trustee can make correct

decisions about the appropriate use of data, only that they correctly secure their

systems.

Trustworthiness is local in the sense that the trustworthiness of a principal de-

pends only on the actions that the principal takes. This means that an individual can

use physical security, process management, and secure hardware [CD16, NMB+16]

to ensure that their systems are trustworthy, even though they cannot ensure that

other actors in the system are trustworthy. Because trustworthiness is local, service

providers can reasonably claim to be trustworthy, although it is up to users to decide

whether to accept those claims or not.

Trust should not be an all-or-nothing proposition, especially in an open software

ecosystem designed to allow integration of di�erent kinds of data. Each user trusts

di�erent principals to di�erent extents. To capture these di�erent levels of trust,

each statement of trust in our model is quali�ed by the set of policies that may be

violated if the trustee is not trustworthy.

12

1.2.3 Flows Through Dynamic Authorization

Trustworthy applications that handle sensitive data or perform sensitive operations

must be able to determine the relevant security policies so that they can ensure that

they are respecting them. In a distributed system, these policies may come from mul-

tiple sources and cannot be �xed at the time the software is written. For example,

an application that integrates data from multiple social networks will draw the poli-

cies on some users' data from one social network while reading the policies on other

users' data from another. In many authorization schemes (e.g., PeerAccess [WZB05],

Cassandra [BS04]), even the authorization of a single action may require integration

of data from multiple sources.

Implementing authorization in distributed systems is hard for many of the same

reasons that implementing any secure distributed application is hard: Authoriza-

tion decisions typically depend on the state of the system, but this state may be

distributed across many locations and trust domains. The system must be able

to answer authorization queries consistently, e�ciently, with integrity, and without

leaking con�dential information to untrusted parties.

As a simple example, consider an authentication-as-a-service system such as

OAuth [HL11]. The goal of these systems is to allow users to reuse existing accounts

(such as Facebook or Google accounts) to identify themselves to third parties. This

approach saves application providers from handling the tricky details of implement-

ing authentication properly, while also reducing the proliferation of accounts that

each user must manage.

13

Many users are justi�ably reluctant to make use of these services, because they

worry about the privacy implications [MH03a]. Some users do not want to allow

the authentication providers to learn what websites they are logging into, when they

log into them, or how often they do. Others are willing to allow these providers to

learn that information, but are worried about that information leaking through the

providers to their friends or the public at large.

These are fundamentally concerns about information �ow. Fabric provides high-

level abstractions that address these concerns, and it makes sense to apply these

general tools to the reason about the speci�c problem of information �ow through

authorization. However, this presents a challenge, because the existing work on infor-

mation �ow assumes that there is a �xed, pre-existing set of authorized �ows [SM03].

This assumption is inconsistent with our desire to analyze realistic authorization pro-

tocols.

Chapter 4 examines the issue of information �ows through dynamic authorization

requests in detail. We apply the formal concept of �ow developed in Chapter 3 to a

model programming language that contains a simpli�ed version of Fabric's security

and communication mechanisms. We present an information �ow type system and

formally prove that any well-typed program exhibits no harmful �ows. We then

implement a model of the authorization primitives that are built into Fabric as a well-

typed program in this language, thus showing that Fabric's dynamic authorizations

can be implemented securely.

Our analysis goes beyond previous work because we explicitly model the distribu-

tion of the authorization state throughout the system, and we ensure that no accesses

14

to the distributed state can leak information inappropriately. Our language model

also avoids the assumption the authorization state is �xed, which makes the analysis

more suitable for a long-running open system.

The language we have developed in Chapter 4 is interesting in its own right. We

make use of a restricted form of dependent types to allow programmers to dynami-

cally construct security proofs in their programs. We discuss how the same technique

could be applied to the Fabric language to simplify and clarify common design pat-

terns. This approach was inspired by research that uses dynamically constructed

proofs to improve the scalability of distributed systems [LMA+14].

In summary, this dissertation presents three primary contributions: the design

and implementation of the Fabric system, the formal de�nition and application of

the decentralized security principle, and the introduction and analysis of the problem

of information leaks through dynamic authorization requests. These contributions

are concrete steps towards the vision of a modern integrated software ecosystem that

preserves the security of all participants, but many challenges remain. Chapter 5

concludes with a discussion of some potential next steps.

15

Chapter 2

The Fabric System

This chapter presents the design and implementation of the Fabric system.

We demonstrate Fabric's features using an example application called FriendMap.

FriendMap consists of untrusted code that integrates information from a social net-

work with data from a partially trusted mapping service. Section 2.1 describes the

FriendMap application in detail.

Section 2.2 describes the details of the Fabric programming model and explains

how we use Fabric's abstractions to construct the FriendMap example. Section 2.3

describes the architecture of the Fabric system and the design of the mechanisms

required to securely realize that architecture.

To evaluate the design of Fabric, we have built several example applications,

including the FriendMap example. Section 2.4 describes our experience with imple-

menting these applications, and presents performance results. These results suggest

that Fabric's abstractions can be implemented e�ciently. We conclude in Section 2.6

by discussing related work and future directions.

2.1 A Running Example

To illustrate the security challenges faced by applications running on a partially

trusted platform, we present a running example application that we call �FriendMap�.

This application allows a user of a social network to create a map displaying the

locations of their friends. Let us call the user �Alice� and one of her friends �Bob.�

16

1. fetch app.

2. fetch friends.

3. compute boundary.

4. build map.

5. annotate map.

6. post map.

alice

snappapp code

friendmap

mapserv

Figure 2.1: Overview of the FriendMap social mashup example.

Figure 2.1 shows the interactions Alice's client makes while executing FriendMap.

First, Alice's client downloads the application code (1) to execute locally. The

FriendMap application then fetches the locations of Alice's friends (2) from the so-

cial network (�Snapp�). Based on those locations, it determines what geographical

area it will need to display (3). It then submits this bounding box to a third party

map service (�MapServ�), which constructs a map of the area (4). The blank map is

returned to Alice's client, where the friends' locations are added (5). Alice can then

choose to post the map to the social network to share with her friends (6).

17

2.1.1 Security Considerations

Even this simple example has complex security requirements because the principals

trust each other to di�ering degrees. For example, Alice trusts MapServ to learn

some information about her friends, but Bob may not trust MapServ at all. In that

case, FriendMap must avoid using his location to compute the map request.

Similarly, although Bob trusts Alice to see his location, he may not trust Alice's

friends with the same information. If so, FriendMap must either avoid posting the

resulting map where Alice's friends can see it or omit Bob's location from the map.

Further, none of the involved principals trust the provider of the FriendMap code.

Therefore some mechanism is needed to ensure that the code enforces their policies;

any principal who controls this mechanism or the node on which it operates must

be trusted to enforce these policies. In this example, Bob trusts Alice to enforce

the con�dentiality of his location, so Alice's node is responsible for enforcing this

con�dentiality policy.

In real applications, policies are more nuanced than lists of entities allowed to

learn information. In the FriendMap example, Bob may consider his exact location

con�dential, but be willing to release some information about where he is, such as

the city he is in. Alternatively, he may not mind letting the public know where he

was yesterday, but may wish to keep his current location secret.

These more complex policies can be thought of as a form of controlled declassi�-

cation: Bob is willing to �declassify� secret information if it is processed in a certain

way or if it is embargoed for a certain period of time. Although the platform must

support declassi�cation, it is critical that any downgrading is authorized. In this

18

example, the platform must ensure that the code performing the declassi�cation is

either provided by or endorsed by Bob.

2.1.2 Software Construction and Evolution

Enforcing the integrity of application code and the input to those programs is mean-

ingless if the developers of the applications are unable to reason about the correctness

of those programs. This task is challenging in the modern software ecosystem be-

cause applications are composed of many components that are developed by di�erent

organizations and are upgraded on di�erent schedules. In an environment like Fab-

ric, where di�erent principals trust di�erent software developers and providers, the

challenges are even greater. Every user must have con�dence that the integrity of

the data they care about is maintained, even if the software that manipulates that

data is provided by a partially trusted source.

In the FriendMap example, the FriendMap application is built on top of APIs

provided by both Snapp and MapServ. As part of the development process, the

FriendMap developers will make assumptions about the speci�cations of these APIs.

These speci�cations are typically stated informally in documentation, if they are

explicitly stated at all; but even with unstated assumptions, the developers expect

software dependencies to operate consistently over time.

These requirements stand in con�ict with the ability for applications to be up-

graded over time. It is important for Snapp to be able to update their service to

add new features, deprecate old features, and �x bugs without coordinating with

the open-ended set of app developers that integrate with their platform. Similarly,

19

FriendMap should be able to upgrade their software to make use of new features as

they become available without having to coordinate their upgrades with all of the

APIs that they rely on.

To meet these goals, the components that make up today's software are typically

gathered together at least twice: once by the developer for compilation and test-

ing, and once on behalf of the end user for execution. Programs in more dynamic

systems�like JavaScript libraries on the web�may be refetched and reassembled

every time a page is displayed. In fact, the situation is even more complex for

JavaScript, because code may be cached: One cannot even be sure that all of the

components of the application were fetched at the same time.

Such dynamic relinking allows for software to be upgraded piecemeal over time,

but it can also lead to violations of the assumptions that developers make about

the software that they depend on. These violations can lead to corruption of high

integrity data.

Fabric provides support for software interoperability and evolution while ensuring

that parties that any user does not trust cannot violate the correctness or secrecy of

their data. It does this by tracking the provenance of code in the system and using

program analysis to maintain the integrity of important data.

2.2 Fabric Programming Model

Before describing how the Fabric system meets the goals described above, we present

the Fabric programming model. This discussion introduces the key abstractions of

20

Fabric and sets the stage for our presentation of the Fabric system implementation

in Section 2.3.

Application developers interface with the Fabric system using the Fabric pro-

gramming language. The Fabric language is an extension of Jif [MZZ+06], which in

turn extends Java [AGH05]. Fabric extends the object-oriented paradigm of these

languages by providing support for secure distributed computation over persistent

objects.

We assume that the reader is familiar with object-oriented programming and with

the Java programming language. We do not assume the reader is familiar with Jif;

relevant concepts will be introduced as they are needed.

2.2.1 Data in Fabric

As in Java, all data in Fabric are represented as objects. Objects have an identity

that other objects can refer to, and they maintain state in the form of �elds.

Unlike Java objects, Fabric objects are persistent and distributed. Each object is

stored on a named host, the store of the object. Object references are composed of

the name of the store that holds the object and a 64-bit object identi�er (OID) that

is unique within the store. Because Fabric references are global and persistent, it

makes sense to serialize them into a form suitable for export from Fabric. We often

encode Fabric references in URLs of the form �fab://[store]/[oid];� we refer to

these as Fabric URLs.

Because Fabric objects are distributed and persistent, they can be used to model

database rows, entries in persistent key-value stores, �les, and other mechanisms for

21

persistent storage. Similarly, Fabric references can be used to model foreign keys in

a database, directory entries, or URLs on the web.

Figure 2.2 depicts some of the important objects in the FriendMap example.

There are three stores, operated by Snapp, FriendMap, and MapServ respectively.

Objects representing the users Alice and Bob are stored by Snapp, while FriendMap

stores an object containing the code for the FriendMap application. MapServ stores

objects containing the data used to construct their maps.

2.2.2 Computation in Fabric

As in Java, all Fabric computation takes place by executing methods on objects.

Unlike Java, Fabric executes computations on a speci�ed host, the worker of the

computation. Fabric programs can explicitly transfer execution to a di�erent worker

by making a remote call. The syntax o.f@w(...) indicates that the method f of

object o should be invoked on the worker w. We refer to the ability to transfer control

to remote workers as function shipping.

Fabric has no requirement relating the worker where a computation is executing

to the stores of the objects that the computation accesses. Whenever a computation

accesses an object, a copy of the object is sent to the worker, and any updates to

the object are sent back to the store that holds the object1. We refer to the process

of moving data from stores to workers and back as data shipping.

Together, function and data shipping can model a large number of interaction

patterns used in distributed software. Data shipping models situations like http GET

1This is a conceptual description of what happens. In reality Fabric has sophisticated caching
and transactional mechanisms that are explained in Section 2.3.

22

FriendMap store

Snapp store

FriendMap code

1import MapService;

2import User;

4class FriendMapApp {

5 MapService mapServ;

7 Box createBB(User u, label reqLbl) {

8 Box result = new Box();

9 for (User f : u. friends)

10 if (f .locLbl v reqLbl)

11 result .expand(f.loc);

12 return result;

13 }

15 Map createMap(User u, label annLbl) {

16 Box req = createBB(u, {>→mapServ});

17 Map resp = getMap@mapServ(request);

18 Map annotatedMap = response.copy(local);

19 for (User f : u. friends)

20 if (f .locLbl v annLbl)

21 addPin(annotatedMap, f.loc);

22 return annotatedMap;

23 }

25 Map viewMap(User u) {

26 return createMap(u, u.privateLbl);

27 }

29 Map postMap(User u) {

30 return createMap(u, u.wallLbl);

31 }

32}

FriendMap app object

User code

public class User

implements Principal

{

List friends ;

String name;

int age;

}

Alice

name: "Alice"

age: 25

friends :

class:

Bob

. . .

A.friends

· · ·

users

· · ·

MapServ store

MapServ object

MapService code mapsmapsmapsmaps

Figure 2.2: The stores and objects in the FriendMap example application. Notice
that objects can refer to objects on other stores. For example the FriendMap ap-
plication object points to the MapServ object. Note also that like all other data in
Fabric, code is stored in Fabric objects: See Section 2.2.3 for more details.

requests and features for remote connectivity, where data moves to the host running a

computation; Function shipping models situations like SQL queries, remote methods,

and web APIs, where the computation moves to the data.

The FriendMap example uses data shipping to move objects from FriendMap

and Snapp to Alice's worker. It also uses function shipping to construct the map on

MapServ's worker to improve performance.

2.2.3 Evolving Secure Software

In Fabric, as in Java, every object has a reference to its class (or class object), which

is a separate object containing code de�ning the object's dynamic behavior. When

methods are invoked on an object, the object's class object is fetched and the code

is run.

In contrast with systems like Java that allow the libraries that programs link

against to be resolved di�erently at run time and at compile time, Fabric binds

names in code to speci�c immutable versions of the libraries that the code links to.

Similarly, once an object is created, the class of that object is �xed to a speci�c

immutable class object. This design means that the code de�ning the methods of an

object will not change over time.

This design choice may seem to hinder software evolution, because software is

typically upgraded today by simply replacing the old versions of libraries with the

new versions. However, we believe that simply relinking software leads to software

instability, because application programmers do not have a chance to evaluate the

compatibility of new and old libraries, and the library vendors have only informal

24

mechanisms for specifying which portions of upgrades are backward compatible. This

situation ultimately results in the costly and error prone manual quality assurance

processes that accompany software deployment today [BFI14].

Instead of using dynamic linking to evolve software, Fabric leverages the object-

oriented techniques of inheritance and subtyping. In Fabric, new versions of classes

are stored in separate class objects, so that they can co-exist and interact in the

same system. If the new versions of classes are backward-compatible, then they

should be subtypes of the old versions; this allows existing software that links against

the old version to interact with objects using the new version. If the new version

is incompatible with the old version, then it should not be a subtype: this forces

software that relies on the old functionality to be updated as well. In short, there

are no di�erent versions of �the same� class: if two versions of a class are di�erent,

then as far as the Fabric system is concerned, they are di�erent classes.

In Java (and many other languages), the name of a type is synonymous with

the identity of the type. This leads to two problems in the context of Fabric. The

�rst is that while di�erent versions of classes are technically di�erent in terms of the

way the system works, programmers �nd it convenient to talk about a class without

referring to a speci�c vendor and version of that class. Second, a global system like

Fabric would require a process for allocation of class names, and this would represent

a central service that would need to be trusted.

Instead, we build on abstractions that we've already discussed: code is data in

the system, and are therefore stored as objects. The identity of a class is simply

the reference to the object containing its code. Section 2.2.8 shows that reusing the

25

object abstraction for classes also clari�es the novel information �ow mechanisms we

have designed.

Rather than require programmers to insert Fabric URLs into their source code,

we allow them to use the familiar Java naming scheme. However, programmers are

also required to provide a codebase: a mapping from fully quali�ed Java names to

Fabric URLs. A codebase is similar to a Java classpath, except that it contains global

persistent references and is stored along with the published class. Codebases ensure

that names mentioned in the code are always resolved to the same class objects.

To make the process of software evolution clearer, let us look at the upgrade path

in the FriendMap example, as illustrated in Figure 2.3. Suppose that Snapp decides

to extend their service by adding a mood �eld to the com.snapp.User class. They

would do so by creating a new class, also called com.snapp.User2. The new class

would explicitly extend the old class, which means that the existing FriendMap code

(which the Snapp developers have no control over) can continue to work, even with

objects of the new User type.

At a later time, the developers of FriendMap may wish to release a new version

that uses the mood of the user's friends to color the annotations that are placed on the

map. FriendMap cannot assume that all users have the new User type (and thus the

mood �eld). For example, the existing users Alice and Bob would not be upgraded

to the new versions. Therefore, FriendMap must decide how it should handle old

users.

2The Fabric language has a mechanism that allows programmers to use a di�erent name, such
as oldVersion.com.snapp.User, allowing them to distinguish between di�erent classes with the
same name.

26

27

User version 1

1 public class User {
2 String name;
3 int age;
4 Location loc;

5
...

6 }

User version 2

7 codebase v1;
8 public class User
9 extends v1.User

10 {
11 MoodInfo mood;

12
...

13 }

Friendmap version 1

14 public class FriendMap {
15 Map addToMap (User user) {
16 addPin(user.loc);
17 }

18
...

19 }

Friendmap version 2a

20 codebase v1; codebase v2;
21 public class FriendMap
22 extends v1.FriendMap
23 {
24 Map addToMap(v1.User u) {
25 if (u instanceof v2.User) {
26 User u2 = (v2.User) u;
27 addMoodPin (u2.loc, u2.mood);
28 }
29 else addPin(u.loc);
30 }
31 }

Friendmap version 2b

32 public class FriendMap
33 extends v1.FriendMap
34 {
35 Map addToMap(v2.User u) {
36 addMoodPin (u.loc, u.mood);
37 }
38 }

Figure 2.3: Software evolution in the FriendMap example. In the beginning, Snapp
publishes the User API, version 1. Next, FriendMap decides to use this API to
provide version 1 of its service. Later, Snapp upgrades the User API by adding a
mood �eld; to remain backward compatible they make the new User class extend the
old (line 9). FriendMap can later choose to upgrade their service to make use of
the new mood �eld, in a way that is either backward compatible (version 2a) or not
(version 2b).

One possibility would be to change the FriendMap interface so that it only accepts

objects of the new User type. This choice would prevent the new FriendMap from

being a subtype of the old FriendMap. Alternatively, the new FriendMap application

could use dynamic downcasting to detect and use the new mood �eld, and therefore

remain backward compatible.

The key point is that the FriendMap developers are forced to consider the ram-

i�cations of updating their application, and have the ability to document whether

new versions are backward compatible by inheriting from the old versions or not.

2.2.4 Principals

The key feature of Fabric is its use of information �ow control to protect the con�-

dentiality and integrity of information �owing through it. Fabric uses the concepts of

labels and principals to describe the security requirements on data within the system

and to reason about whether programs are safe.

Every entity in Fabric that can trust or be trusted is represented by a principal.

In the FriendMap example, Alice, Bob, Snapp, FriendMap, and MapServ are all

principals.

We use the notation p 4 q to indicate that p trusts q completely. We also say

that p delegates to q or that q acts for p. Complete trust entails the ability to extend

further trust, so if p 4 q and q 4 r then q 4 r; this coupled with the fact that

principals trust themselves make the set of principals under the 4 relation into a

preorder, which we refer to as the principal hierarchy.

28

Alice.locGroup

Alice.friends Alice

Bob.locGroup

Bob.friends Bob

MapServ Snapp

FriendMap

increasing trust (4)

Figure 2.4: Principal hierarchy from the FriendMap example. Note that the appli-
cation provider FriendMap neither trusts nor is trusted by any other principal. Also
note that Bob has indicated that he trusts his friends to handle his location infor-
mation appropriately because Bob.locGroup 4 Bob.friends, but Alice does not,
because Alice.locGrp 64 Alice.friends.

Complete trust is a very strong notion, but because anyone can create new prin-

cipals, it can be used to encode partial delegation.3

In the FriendMap example, each user principal also has a friends principal that

can also be used in the speci�cation of policies. As is shown in Figure 2.4, the

principal representing Alice's group of friends delegates to both Alice and to each

of her friends, but Alice does not delegate to her group of friends; this allows her

to retain privileges that she does not extend to them. In addition, the users have

locGrp principals that delegate to the set of principals that are trusted to enforce

the policies on their locations. For example, Alice doesn't trust her friends not to

reveal her location, so Alice.locGrp 64 Alice.friends.

3 The Delimited Trust Hierarchy structure described in Chapter 3 encodes partial trust directly,
and therefore needs fewer auxiliary principals.

29

Principals have both an identity and state (their delegation information), and are

therefore represented as objects in Fabric. A Principal object's class must implement

the fabric.lang.Principal interface, which contains the method

1 boolean delegatesTo(Principal other);

This method de�nes the Fabric principal hierarchy, which in turn gives meaning to

the information �ow labels described below.

Using an arbitrary method to de�ne the principal hierarchy gives programmers a

natural and �exible way to specify delegation. Principals can access objects from dif-

ferent stores and even make remote calls while deciding whether they should delegate

to each other.

The integrity of the delegation relation is critical for ensuring security: untrusted

parties should not be able to a�ect decisions about whether they are trusted. Princi-

pals also have di�erent kinds of con�dentiality concerns: communication performed

while executing delegatesTo should not leak information. Moreover, delegation

relationships often depend on con�dential data whose secrecy must be protected.

Fabric's general-purpose information �ow control analysis provides assurance that

the implementation of the delegatesTo method satis�es these con�dentiality and

integrity requirements. However, there is an interesting circularity here, because the

static and dynamic checks performed by the Fabric system depend in turn on the

principal hierarchy.

We investigate this interplay in Chapters 3 and 4. Chapter 3 presents a framework

for reasoning about what state can a�ect delegation and relabeling decisions. Chap-

ter 4 analyzes the communication that occurs while performing delegation queries.

30

2.2.5 Labels

Every object o in Fabric has a label that identi�es the expected policy for the use of

that data. The expression o.label refers to an object encapsulating the label of o.

Labels specify both con�dentiality and integrity policies. When thinking about

information �ow it can be useful to separately consider the constraints imposed

by con�dentiality concerns and those imposed by integrity concerns. We use the

notation C(`) to refer to the �con�dentiality part� of `, and we use I(`) to refer to

the �integrity part� of `.

Con�dentiality. The con�dentiality portion of a label describes how �public� a

piece of information is. Secret information should not a�ect changes to public infor-

mation, but public information can safely in�uence private information. Therefore,

we say that information with a public label C(`1) can �ow to a variable with a secret

label C(`2), which is written C(`1) v C(`2).

For example, MapServ wants to disseminate its maps to the public, so the label

on those maps (the �maps� boxes in Figure 2.2) should be public. On the other hand,

the annotated map with Alice's friends' locations (�annotatedMap�) contains con�-

dential information about her friends' locations. Therefore, it would be acceptable

to copy information from map to annotatedMap, but not the other direction. These

constraints are re�ected by the following relationships:

C(map.label) v C(annotatedMap.label), but

C(annotatedMap.label) 6v C(map.label)

31

Integrity. The integrity portion of a label describes how trusted a piece of infor-

mation has. Low integrity information should not a�ect changes to high integrity

information, but �ows in the other direction are permissible. Therefore, we say that

information with a high integrity label I(`1) can �ow to a variable with a low integrity

label I(`2), which is written I(`1) v I(`2).

In the FriendMap example, the FriendMap application code (�FriendMap.class�)

is considered to be low integrity, so it should only be allowed to a�ect low-integrity in-

formation such as annotatedMap. It would be unsound for the untrusted application

to a�ect Alice's list of friends (�Alice.friends�). These constraints are re�ected by

the following relationships:

I(FriendMap.class.label) v I(annotatedMap.label), and

I(FriendMap.class.label) 6v I(Alice.friends.label)

Enforcement. The �ows-to relation v describes the expected �ows of information

if the entire system behaves properly. The second important question one can ask

about a label ` is whether the policy indicated by a label can be violated if a given

principal p behaves improperly. This concept is encapsulated by the �is trusted to

enforce� relation p < `. We have overridden the symbol < because if p < q and

q < `, then p < `4.

In the FriendMap example, if Snapp were untrustworthy, it could release the

locations of the users to third parties. This is a risk that the users are willing to

4Note that as de�ned the �is-trusted-to-enforce� relation (<) is not a partial order�it is not
even a binary relation over a single set, since it relates the set of principals to the set of labels. In
Chapter 3 we extend it to a preorder on the union of labels and principals by suitably de�ning the
relation `1 < `2 (de�nition 3.13).

32

take, and they designate this by stating that Snapp < user.location.label. On

the other hand, the users are not willing to believe that the FriendMap application

provider is trustworthy; thus, for example, FriendMap 6< Alice.location.label.

Downgrading. The third important question one can ask about a label is whether

the policy associated with the label can change, and under what conditions. Policies

can be relaxed for many reasons: for example, they can change in response to a user

action, a change in the state of a computation, or even just the passage of time.

Fabric provides a very �exible mechanism for specifying policy relaxation: the

rules for when and how a policy may be relaxed are speci�ed using a Fabric program

that explicitly downgrades a policy (by declassifying con�dential data or endorsing

untrusted data). Of course, the ability to write such a program (or to a�ect the data

it uses to make decisions) must be restricted [CMA17, ZM01].

Authority. These restrictions are naturally expressed by requiring the code and

data that a�ect downgrading to have su�ciently high integrity. If downgrading data

from label ` to label m could harm principal p, then the code and data used to

authorize the downgrading should have an integrity label indicating that it has not

been in�uenced by anyone p doesn't trust.

A downgrade from ` to m may harm p if ` contains p's con�dentiality restriction

and m does not, or if m contains p's integrity restrictions and ` does not. Therefore,

the integrity required to downgrade from ` to m depends on the con�dentiality and

integrity requirements of both ` and m, as well as the set of principals who may be

harmed if those requirements are dropped.

33

We summarize the required integrity using a function called authority ; informa-

tion labeled k may in�uence the downgrading of data from ` tom if k v authority(`,m).

The label authority(`,m) has high enough integrity to ensure it is controlled by the

principals who may be harmed by the downgrading5.

In the FriendMap example, Bob may trust Alice to learn his exact location, but

may only trust her friends to learn what city he is in. To enable this kind of policy,

he could provide a class CityFinder that uses his location to determine what city

he is in. In order to declassify Bob's location and place it on the map, CityFinder's

label must satisfy the following:

CityFinder.label v authority(Bob.locationLabel, mapLabel)

This requirement prevents a class like CityFinder from being provided by a principal

that Bob doesn't trust.

2.2.6 The Decentralized Label Model

Fabric labels are drawn from the Decentralized Label Model (DLM) [Mye99b, ML00].

In the DLM, the only primitive relation is the acts-for relation; labels are composed of

principals, and the �ows-to, is-trusted-to-enforce, and authority relations are derived

from acts-for.

5Cecchetti et al. [CMA17] have shown that the con�dentiality component of authority(`,m) is
also important. If the con�dentiality of the authority label is too high, the downgrading may be
susceptible to poaching attacks or confused deputy attacks. Fabric does not currently implement
con�dentiality requirements on authority, but Chapter 3 discusses the con�dentiality and integrity
requirements for the authority function in more detail.

34

o, r, w ∈ Prin
` ::= {C; I}
C ::= o→ r | C1 t C2 | C1 u C2

I ::= o← w | I1 t I2 | I1 u I2

Figure 2.5: Syntax of labels in the Decentralized Label Model.

The syntax of DLM labels is shown in Figure 2.5. A DLM label is composed of a

con�dentiality component and an integrity component. Components are constructed

by taking formal conjunctions (t) and disjunctions (u) of con�dentiality or integrity

policies.

Con�dentiality policies consist of two principals: an owner and a reader, and are

written using the syntax o→ r (where o is the owner and r is the reader). Similarly,

integrity policies are denoted o→ w where o is the owner and w is the writer.

In the FriendMap example, Bob's location may have the con�dentiality policy

{Bob → Bob.locGrp}, indicating that Bob controls the policy on the data, but he

allows the data to �ow to the locGrp principal (and implicitly to himself). Similarly,

Alice's wall may have the integrity policy {Alice ← Alice.friends}, indicating

that she owns her wall, but allows her friends to post as well.

As mentioned above, the principal hierarchy H in Fabric is generated by the

delegatesTo method of the Principal class. The �ows-to, is-trusted-to-enforce,

and authority relations are de�ned in terms of H.

The v relation is derived from the interpretation of a con�dentiality label as an

owned set of readers or writers: information may �ow from `1 to `2 if according to

every owner, `1 has more writers and fewer readers than `2.

35

When interpreting DLM labels in the context of Fabric, we had two reasonable

choices for de�ning the is-trusted-to-enforce relation. The �rst possibility would be

to assume that a principal p is trusted to enforce a policy ` if and only if p acts for all

owners of `; the second choice is that p < ` if and only if every owner of ` considers

p to be both a reader and a writer of `.

To see the di�erence between the possible de�nitions, consider a principal hierar-

chy in which r 6< o. Should r < {o → r}? On one hand, r is speci�ed as a �reader�

of the data, so it would make sense to assume that if r is untrustworthy, the data

may be leaked. On the other hand, de�ning < such that r < {o → r} gives r the

ability to violate o's policy, even though o has not expressed any trust in r.

The interpretation of the DLM that is currently implemented in Fabric de�nes

the relation < so that r < {o → r}, but this discrepancy reveals an interesting

interplay between trust and policy in the decentralized setting. We investigate this

interplay in more detail in Chapter 3.

The authority function for DLM labels is inspired by the requirements for en-

forcing robust declassi�cation [ZM01]. We require that the data and code used to

in�uence the declassi�cation of data labeled {o → r} must be writable only by o;

this is captured by the requirement that if {o → r} v ` and {o → r} 6v m then

{> ← o} v authority(`,m).

Similarly, the data and code used to in�uence the endorsement of data to the

label {o ← w} requires o's authority. Thus we require that if ` 6v {o ← w} and

m v {o← w} then {> ← o} v authority(`,m).

36

2.2.7 Information Flow

The key to Fabric's security is that all application code executed by trustworthy

workers is �rst statically analyzed, and programs that might exhibit unsafe infor-

mation �ows are rejected. Fabric uses an information �ow type system based on

the Jif language [MZZ+06] to perform this analysis. This section explains standard

information �ow concepts that are present in Jif; the next section (Section 2.2.8)

describes our novel extensions to handle the new features that Fabric provides.

In the Fabric language each variable x has a static type τ that includes a label

L(τ) bounding the information that has a�ected that data. We also refer to this

label as L(x).

Note that if x has a reference type, then L(x) describes the information contained

in the reference, not the information contained in the object itself. The data of an

object is contained in its �elds, so the information content of the object itself is

bounded by the labels of its �elds. Since objects are the unit of communication in

Fabric, we require that all of the �elds of an object must have the same label;6 this

label can be accessed using the special �eld x.label.

When type checking a statement, the type system ensures that any information

�ows caused by a statement are safe according to the v relation. For example, when

checking the statement �x = y;�, the initial value of y in�uences the �nal value of

x. Therefore the type checker must ensure that L(y) v L(x).

6 We believe that a fairly straightforward transformation can automatically convert an object
with heterogeneous �elds to a collection of objects with homogeneous �elds, but we have not
implemented this transformation.

37

1 if (y == true)

2 x = true;

3 else

4 x = false;

Figure 2.6: Implicit �ow example. This program is equivalent to the program
�x = y;�, so it should only be accepted if L(y) v L(x).

Executing a statement causes information to �ow from the inputs of the statement

to its outputs, but the outputs may also be a�ected by the context in which the

statement is executed. For example, in the statement shown in Figure 2.6, the

resulting value of x re�ects the value of y even though the statements x = true and

x = false do not mention y directly. This situation is referred to as an implicit �ow ;

explicit �ows are �ows that are clear without considering the context.

Information �ow type systems reason about implicit �ow by noting that all e�ects

of a statement are all in�uenced by the fact that the statement is executing. The

type system keeps track of a bound on all information that has a�ected the fact that

the statement is executing; this is referred to as the program counter label or pc. In

the example in Figure 2.6, the branch on line 1 in�uences the pc on lines 2 and 4.

These in turn in�uence the assignments to x. Therefore, there must exist some label

pc such that L(y) v pc and pc v L(x). Since v is a partial order, this is true if and

only if L(y) v L(x). This condition is exactly the same as would be required for the

equivalent statement �x = y;�.

In general, the �ows-to relationv only approximates the true information security

requirements of an application; sometimes it prevents �ows that applications need.

Like other systems with information �ow control, Fabric allows these �ows using

38

downgrading operations. Declassi�cation is a downgrading operation that reduces

con�dentiality; endorsement is one that boosts integrity.

Downgrading can be dangerous to security, so the syntax of Fabric makes all de-

classi�cation and endorsement explicit. Further, downgrading may only happen in

contexts that are una�ected by low-integrity information. Speci�cally, to downgrade

from label ` to label m, we require pc v authority(`,m). This restriction enforces

robust downgrading [AM11], which prevents the adversary from causing these oper-

ations to be misused.

2.2.8 Novel Information Flow Constraints

Fabric expands on standard information �ow constraints by adding novel constraints.

These constraints ensure that the features it provides for distributed computation

are used safely.

Function shipping. The expression o.f@w(...) causes control to be transferred

to the worker w. Once control is transferred, w will be responsible for ensuring that

f is executed faithfully, and that f respects all information �ow policies. Worker w

must be trusted to enforce the con�dentiality of the arguments that are sent to it,

the con�dentiality of the pc, and the integrity of the return value.

The receiver of a remote call must also ensure that the sender is trusted to enforce

the integrity of the pc and the arguments, and is trusted to enforce the con�dentiality

policy on the return values. These checks cannot be performed statically, since a

remote call may come from any worker at any time. Instead, the compiler generates

39

dynamic checks that are performed by the receiving worker before the remote call is

executed.

Data shipping. When a Fabric reference is dereferenced, the object it refers to

may need to be shipped from the store on which it resides. This means that the

store may learn that the reference is being dereferenced, which re�ects the pc at the

point of dereference. We refer to this kind of covert channel as a read channel.

To ensure that any read channels are safe according to the v relation, every

dereference is statically checked to ensure that the store holding the object is trusted

to enforce the con�dentiality of the pc. We extend reference types to include an

access label A(τ) which restricts the stores that may hold objects of type τ . An

object of type τ can only be stored on a store s if s < A(τ), while a reference to an

object of type τ can only be dereferenced in a context where pc v A(τ). Together,

these constraints ensure that s can only observe a fetch when s < C(pc).

Mobile code. The ability to seamlessly integrate untrusted code with secure data

is critical to constructing a secure software ecosystem. The key insight behind our

approach is that code is data, and that we can reuse the same mechanisms used

to control information �ow in programs to restrict unsafe information �ow from

programs to the data that they manipulate.

To see how this works, let us consider the FriendMap application. To execute

the application, Alice must invoke a method on an object fm. This object may come

from FriendMap, Snapp, or anyone else, but the code for the application resides in a

separate object, fm.class, and has its own label. The label on a class object is also

40

called the provider label of the class; the Fabric language introduces the keyword

provider as shorthand for class.label.

The same rules that prevent an untrusted principal from modifying sensitive

data are used to ensure the provenance of code: in this case a worker would not fetch

fm.class from store s unless s is trusted to enforce I(fm.class.label). Moreover,

if s is trustworthy, they would prevent any untrusted principal from in�uencing the

class.

Provider-bounded label checking. When type checking code, the compiler uses

the provider label to ensure that untrusted code does not a�ect any trusted data.

Our insight is that we can think of code as data that only a�ects the decision to

execute the statements within it. From this perspective, it is clear that requiring

provider v pc exactly captures the right constraints for checking mobile code.

This constraint prevents friendmap from providing code that violates policies

that friendmap is not trusted to enforce. The code in fm.class cannot modify high

integrity information because an updating an object labeled ` requires pc v `. Since

provider v pc, we see that provider v `, and therefore if p < I(provider), we

must have p < I(`).

Con�dential code. Using the provider label to bound the pc provides another

feature for no extra e�ort: con�dential code. Businesses may wish to provide pro-

grams that contain trade secrets. By publishing such code with a high-con�dentiality

label, a business can prevent competitors from extracting secrets from the code.

41

Using information �ow control to protect the con�dentiality of code is very re-

strictive. In particular, since the code will a�ect any outputs it produces, it forces

the outputs to be con�dential. If the tax preparer wants to send this con�dential

data back to its users (or to the IRS), the would have to explicitly declassify the

output. We believe this is a good thing: it forces the authors to consider the rami-

�cations of releasing that information on the con�dentiality of the code, and makes

their assumptions explicit.

Provider labels and downgrading. Thinking of the code as data that a�ects the

pc also sheds light on the type-checking rules for downgrading. In order to allow a

downgrading statement (endorse or declassify), previous information �ow control

systems have required code containing downgrading statements to be granted author-

ity by the principal whose policy is being relaxed. The assumption in these systems

is that authorized code is manually inspected by the principal whose authority is

claimed.

We can think of an authority declaration as an assertion of a fact about the

class object: namely that it only downgrades data in compliance with (unstated)

policies. Because the policies are unstated, they cannot be independently veri�ed by

the worker. Instead, the worker relies on the integrity of the object to ensure that it

has the expected property.

The integrity constraint that the worker must verify is exactly the same as

the additional robustness constraints imposed by provider-bounded label checking.

That is, to downgrade data from label ` to label m, robustness requires that pc v

authority(`,m). If the downgrading statement appears in the code of a class C,

42

then provider-bounded label checking adds the constraint C.provider v pc. To-

gether, these requirements imply that C.provider v authority(`,m), which allows

the worker to conclude that the code has only been provided by a party that is

trusted to enforce authority(`,m).

In this way, we can view authority checking as a special case of robust downgrad-

ing. In fact, we could remove Jif-style authority declarations entirely and simply rely

on provider-bounded label checking and robustness to ensure that code is su�ciently

authorized. However, we have decided to retain authority clauses because we feel

that they also serve a documentation purpose: they give programmers a reminder

that calling a method may cause information to be downgraded.

2.2.9 Transactions

Fabric is designed to model the interaction between software and data storage; this

means that presenting a clear consistency model is important. Although much of

the modern web uses weak consistency models, we believe that strong consistency is

important for constructing correct software that operates over high-integrity data,

and for clearly stating the security properties of the system.

Therefore Fabric provides a strong consistency model. Blocks of code can be

marked atomic, and Fabric will execute those blocks within a transaction. Fabric

transactions satisfy the ACID properties [HR83] with a few caveats:

• Atomicity: either all of the side e�ects of a transaction are performed, or

none of them are.

43

• Consistency: if the state of the system satis�es the preconditions of the code

within an atomic block, then the postconditions of that code will be satis�ed.

Fabric adds the caveat that only postconditions that relate objects read or

written by the transaction are maintained.

• Isolation: until a transaction completes successfully, none of the side e�ects

of that transaction are visible to code outside of that transaction.

• Durability: once control proceeds to the statement after an atomic block, the

e�ects of the transaction will remain present.

These properties allow programmers to operate under the illusion that their program

is the only thing in the world that is executing; this illusion makes it easier for them

to reason about the correctness of their programs. It also makes static information

�ow checking tractable: our analysis relies on the fact that when a program performs

a dynamic label comparison, the results of that comparison remain meaningful for

the duration of the transaction.

Of course this abstraction is just an illusion, so we must ensure that our im-

plementation provides the same security guarantees that the high-level abstraction

promises. These issues are discussed in Section 2.3 and Chapter 4 (particularly

Section 4.5).

Because Fabric's correctness is predicated on the Decentralized Security Princi-

ple, the ACID properties can only be assumed to hold for high-integrity data. By

misbehaving, a principal can violate the ACID properties for some objects, but only

if the principal is trusted to enforce the integrity of those objects. For example, a

misbehaving principal could violate the durability of the transaction by executing

44

the transaction protocol and then �forgetting� that an object was committed. Never-

theless, this misbehavior should not violate the ACID properties of any objects that

the principal is not trusted to handle.

The abstraction boundary between this high-level view of transactions and the

low-level implementation is currently violated in one user-visible way. Fabric makes

use of optimistic concurrency control, which means that transactions may be rolled

back and replayed. However, it is impossible to rollback people, so output that is

user visible may be repeated, or input re-requested. This is a well-known problem

with optimistic concurrency control [RG05, HMPJH05]; addressing it is left to future

work.

2.2.10 Exceptions and Rollback

Because the Fabric implementation has support for rolling back transactions to han-

dle concurrency failures, we have explored exposing this capability to programmers

for handling other kinds of errors.

Fabric inherits exceptions from Java, which are a mechanism for handling unex-

pected circumstances that arise during program execution. In Java, programmers

are expected to provide some form of exception safety : some guarantee about the

state of the program when an exception is thrown. While providing strong excep-

tion safety guarantees helps callers of methods to reason about the correctness of

their code, implementing strong exception safety is di�cult and error-prone. More-

over, because exceptions are usually only used to handle exceptional circumstances,

exception correctness is often neglected by programmers and overlooked by testing.

45

Fabric provides a simple mechanism for implementing strong exception safety. If

an unexpected exception is thrown across the boundary of a transaction, then the

exception causes the transaction to be rolled back. This means that the o�ending

code caused no side e�ects on the persistent state. Rollback makes it signi�cantly

easier to reason about the correctness of the code that handles the exception.

In Java, exceptions are objects, and this is true in Fabric as well. Exception

objects can contain helpful diagnostic information, such as a string describing the

exceptional situation. Rolling back the entire state that was modi�ed by a failed

transaction would limit the usefulness of exception objects: since the diagnostic

information is created as part of the transaction, it would be obliterated as part of

the rollback.

Instead, only objects that existed at the start of the transaction are rolled back.

Diagnostic information about the failure can be �smuggled� out of the transaction

by including it in a newly created exception object. Newly created objects are only

observable through the caught exception object, since all other observable references

existed before the atomic section and are thus rolled back.

This design still allows exceptions to �change� as they cross the boundary of an

atomic section, as illustrated in this example:

1 Exception exc = new Exception("message before transaction");

2 atomic {

3 exc.setMessage("inside the transaction");

4 throw exc;

5 } catch (Exception e) {

6 // e.getMessage will return "message before transaction".

7 }

46

Although this result could cause confusion, we think this situation is unlikely to

arise in practice, and we �nd this to be the most logically consistent way to integrate

exceptions and transactions.

2.2.11 Interacting With the Outside World

Fabric applications can be written using a mixture of Java, Fabric, and FabIL (the

Fabric intermediate language). FabIL is an extension to Java that supports transac-

tions, remote calls, and access control. A key di�erence between Fabric and FabIL

is that FabIL does not enforce information �ow security.

More concretely, FabIL supports the following subset of Fabric's features: it

provides atomic blocks, supports the syntax new C@s(...) for constructing persis-

tent objects on stores, and gives the ability to make remote calls with the syntax

o.m@w(...). Transaction management is performed on Fabric and FabIL objects

but not on Java objects, so the e�ects of failed transactions on Java objects are not

rolled back. Additionally, objects created in FabIL are equipped with a programmer-

speci�ed access control policy for protecting the object at run time.

FabIL and Java code is considered trusted, and workers only execute trusted

code that is stored on their local �le system. This design is compatible with the

decentralized security principle because the e�ects of trusted FabIL and Java code

are con�ned to principals that already trust the nodes running the code.

FabIL can be convenient for code whose security properties are not accurately

captured by static information-�ow analysis, making the labels of the full Fabric

language inconvenient. One example is code implementing cryptography, where the

47

annotation burden of labels is not worth the cost; a second example is the code

implementing internals of Fabric, such as its built-in class objects.

2.2.12 Summary of the Fabric Programming Model

The goal of the Fabric programming model is to provide an abstraction that can

model most of today's global software ecosystem while providing strong security

guarantees. To the extent possible we have applied existing object-oriented soft-

ware design techniques inherited from Java and existing information �ow control

techniques inherited from Jif.

The novel features of the Fabric language are required to apply these techniques

to a globally distributed system. Mobile code, function and data shipping, and

transactions are required to manage the location of data and computation. The is-

trusted-to-enforce relation, provider bounded label checking, access label checking,

and the information �ow constraints imposed on remote calls are necessary techniques

to apply existing information �ow control techniques to these distributed features.

2.3 The Fabric System

In this section we turn to the design of the Fabric system. The Fabric system is

comprised of multiple nodes, each operated by a principal. There is no Fabric

�instance'', just as there is no �instance'' of the web�anyone can participate in the

Fabric by starting a new node.

48

49

worker

store
Compiler Runtime

Compiled Fabric code
(Java bytecode)

Fabric objects
(Java objects)

Java VM

remote calls
transactions

manage

access
load class

class objects

Compiler Runtime

Store's
worker

Persistent
data (bdb)

Store runtime

Java VM

load
store

actsfor

remote worker

Runtime

remote calls
transactions

fetch
commit

Figure 2.7: Overview of the components of Fabric workers and stores.

Each node acts in one or more roles: it can act as a store, a worker, or a dis-

semination node. The components of stores and workers are shown in Figure 2.7.

Stores are responsible for holding the de�nitive versions of objects and for performing

access control and concurrency control on those objects; Workers are responsible for

executing Fabric programs.

Dissemination nodes are untrusted nodes that act as a shared cache for distribut-

ing signed and encrypted representations of popular Fabric objects. They model

content distribution networks in the internet. They are not central to the design of

Fabric�Fabric can be used without any dissemination nodes (in fact, many of our

experiments in Section 2.4 are run without the dissemination layer).

2.3.1 Communications Layer

Every Fabric node has a distinguished host name, just as internet hosts have DNS

names. The Fabric architecture assumes that given a host name, any Fabric worker

can establish an authenticated secure channel to the corresponding Fabric node. In

our implementation, this assumption is realized using DNS for name resolution and

SSL for communication. The allocation of host names and the distribution and

maintenance of the public-key infrastructure are the only centralized roots of trust

that Fabric relies on.

Adapting SSL to the communication patterns between Fabric nodes is a software

design challenge. SSL provides a simple interface: a connection to a remote host is

represented as a socket, and programmers can write and read data from the socket.

The SSL abstraction ensures that the data that is written on one host is reliably

50

presented to the remote host in the same order as it was written. The SSL abstraction

also uses a combination of public-key and shared-key cryptography to ensure that

the data stream cannot be read or modi�ed by third parties while in transit.

At �rst glance, the socket abstraction seems like a good primitive for realizing

the Fabric architecture. For example, communication between hosts on the web is

built entirely on top of the socket interface; and much of the Fabric architecture is

based on the design of the web.

The most natural way to use the socket abstraction to implement Fabric is to

open a socket for each message, send the message, receive the response, and then

close the connection. Unfortunately, SSL sockets are quite expensive to establish,

and Fabric nodes typically exchange a large number of messages with the same peers.

To amortize the cost of establishing secure connections, we built a general purpose

communication library that provides connection pooling for SSL connections. The

library is similar to structured streams [For07]. It provides a socket-like interface;

clients of the library can create socket objects (called �subsockets� to distinguish

them from SSL sockets) and use them to send and receive data. However, multiple

subsockets connected to the same endpoint multiplex a single underlying SSL socket.

The Fabric communication layer (FCL) is designed as a stand-alone library that is

not dependent on the rest of Fabric. It provides support for di�erent name resolution

protocols as well as di�erent protocols for negotiating secure connections. In addition

to allowing the FCL to be a generally useful library, this support has enabled us to

experiment with Fabric more easily, and will allow us to easily transition to di�erent

name services and authentication mechanisms.

51

worker dissemination store

Java representations

proxy objects

fab://store/5

fab://store/3

prefetched objects

fab://store/4

serialized

object data

fab://store/5

serialized

object data

fab://store/17

serialized

object data

object groups

fab://store/4,5,17

encrypted

object group

fab://store/3

encrypted

object group

backing store

object 1

object 2

read read

reply reply

subscribe subscribe

invalidate invalidate

update

Figure 2.8: Cache hierarchy for Fabric objects.

On top of the communication layer we have built an RPC-style messaging layer

for Fabric messages and responses. Workers and stores provide simple remote APIs

for transaction management, cryptographic key distribution, and control transfer.

These APIs are described in the remainder of this section.

2.3.2 Distributed Objects

The Fabric programming model provides seamless access to persistent, distributed

objects. At run time, Fabric workers and stores collaborate to allow programs to

read and write objects as they execute.

52

Whenever a Fabric program dereferences a reference, the worker ensures that

there is an in-memory copy of the object for the program to use. It does this through

a hierarchy of caches, as shown in Figure 2.8.

Workers represent Fabric objects as Java objects in their local address spaces. A

reference to a Fabric object that has not been locally instantiated is represented by

a proxy object containing the Fabric object's OID. After the Fabric object is locally

instantiated, references to the proxy object are replaced with direct references to the

object's Java representation (a process known as swizzling [Wil91]).

Workers instantiate Java representations of Fabric objects by deserializing en-

coded representations of those objects. These serialized representations are stored in

a local cache in the worker.

A worker's local cache is populated by requesting objects from the dissemination

layer. The dissemination layer is a collection of untrusted nodes that distribute

encrypted and signed copies of objects. The purpose of the dissemination layer is

to reduce the load on stores that hold popular objects. Our dissemination layer

implementation is built using the FreePastry distributed hash table [RD01b].

Fabric objects are typically much smaller than network messages. To amortize

communication overhead, Fabric nodes send groups of objects instead of individual

objects.

Object groups on the dissemination layer are encrypted using a shared key cor-

responding to the label of the objects in the group (the objects in the group share a

label). Workers fetch these shared keys directly from the stores, but the overhead of

fetching them is amortized because many object groups share the same key.

53

Object groups are constructed dynamically by stores. Stores group objects based

on the object graph and observed access patterns in an e�ort to improve locality.

If a read request for an object misses in the dissemination layer, then either the

dissemination layer or the worker will request the object directly from the store. If the

worker contacts the store directly, then the communication layer already encrypts

the communication channel, so the objects do not need to be re-encrypted before

being sent.

Behind all these layers of caches lies the store, which holds the de�nitive per-

sistent state of the objects. Fabric does not require any particular implementa-

tion of the backing store, but our store implementation uses the Berkeley Database

(BDB) [OBS99] as a backing store, and maintains in-memory caches of both unen-

crypted and encrypted object groups.

The objects in these caches become stale when an object is updated. The dissem-

ination layer can subscribe to the store to be noti�ed when an object group becomes

stale; similarly, workers can subscribe to the dissemination layer. Subscriptions are

only a best-e�ort mechanism to improve performance; consistency is maintained by

the transactional mechanisms described in Section 2.2.9.

2.3.3 Dynamic Fetch Authorization

If the request for an object o gets from a worker w all the way to the store, the store

is responsible for ensuring that it is safe to respond to the request. The store must

ensure that w < C(o.label).

54

In the Fabric label model, this check requires testing whether some of the prin-

cipals mentioned on o.label delegate to w. As described in Section 2.2.4, Fabric's

principals are very �exible: they can execute Fabric computations to decide whether

they delegate to other principals. For this purpose, each store has a co-located worker

that it can use to run the delegatesTo method.

There are no special constraints on what the delegatesTo method can do: it

is general-purpose Fabric code just like any other. This means that while deciding

whether to grant a read request, the store may end up recursively making fetch

requests to other stores, or performing remote calls and distributed transactions.

While this may seem like unnecessary complexity, structuring Fabric authoriza-

tion in this way provides a number of bene�ts. The �rst is that the information

�ow and transactional abstractions that Fabric provides give us assurance that we

are implementing the tricky details of authorization correctly: even with a simpler

authorization mechanism we would still have to ensure that we are making consistent

authorization decisions and that we are doing so in a manner that does not create

unsafe information �ows.

The other main bene�t is that implementing sophisticated authorization has given

us insight into real security challenges that existing authorization and authentication

systems exhibit. In particular, trying to type-check our delegatesTo implementa-

tions brought the read channels inherent in distributed authorization to our attention;

this motivated the work presented in Chapter 4.

55

2.3.4 Dynamic Type Checking

Let us return now to the process that takes place when a program running on a worker

performs a dereference. We have seen that the worker consults a variety of caches,

the store performs access control checks, and eventually a serialized representation

of the object makes its way back to the worker. At this point the worker is not quite

ready to return the object to the computation that needs it.

Fabric's security relies on the fact that all programs executed by trustworthy

workers are well-typed. Type checking relies on an assumption that the objects

fetched from other nodes agrees with their static types. Therefore each object fetched

must be checked to make sure that it conforms to the expected type.

The most important requirement is that the object's class is well-typed and de-

�nes a subtype of the type of the reference. To ensure this property, the worker

fetches and compiles the object's class before deserializing the object. The compila-

tion step is when all of the static information �ow constraints described in Section 2.2

are checked.

Once the worker type checks the object's class, it can then use the type in-

formation from the object's class to deserialize the object's �elds. Two additional

constraints must be checked:

• Each object has a label object that is used for dynamic information �ow check-

ing. Likewise, each class has a label that is used for static information �ow

control. The object is valid only if these two labels are the same.

• The stores of any references in the object must be trusted to enforce the con-

�dentiality of the access labels on the types of the references.

56

2.3.5 Concurrency

Objects in Fabric are mutable, so the Fabric system needs some form of concurrency

control for programs that access the same objects. As described in Section 2.2.9,

Fabric provides a transactional abstraction to programmers. Fabric's runtime design

uses a combination of optimistic and pessimistic concurrency control to implement

that abstraction.

Fabric uses optimistic concurrency control to coordinate access to objects from

di�erent workers. Whenever an object is updated, the store generates a new version

number for that object. When objects are shipped between nodes, they are tagged

with a version number.

Workers log reads and writes to objects during computation. The �rst write to

an object during a transaction also logs the prior state of the object so that it can

be restored in case the transaction aborts.

To reduce logging overhead, the copy of each object at a worker is stamped with

a reference to the last transaction that accessed the object. No logging needs to be

done for an access if the current transaction matches the stamp.

At the end of the transaction, the workers use a two-phase commit protocol [ML85].

During the prepare phase, each worker contacts the stores of the objects that have

been read or written. If any of these objects have been concurrently modi�ed by a

di�erent transaction, the pending transaction's e�ects are rolled back and the trans-

action is reexecuted with up-to-date objects. Otherwise, the changes are committed

to the stores.

57

Within a single worker, multiple threads may be executing concurrently. Pes-

simistic concurrency control (locking) prevents these threads from interfering with

each other. When a thread reads or writes an object, the runtime system acquires a

(local) read or write lock for the object. The thread blocks if the lock would con�ict

with another lock held by a di�erent thread.

2.3.6 Distributed Transaction Management

Remote calls can take place within Fabric transactions, causing transactions to be

distributed across multiple workers. The semantics of distributed transactions should

be the same as those of local computations: the whole transaction should be isolated

from other Fabric transactions, and its side e�ects should be committed atomically.

Since Fabric objects are global, a single object may be used by multiple workers in

the same transaction. If an object is written within a transaction and subsequently

read within the same transaction, the updated value should be observed. Therefore,

updates must be propogated as control is transferred within a transaction from one

worker to another.

Supporting distributed transactions is challenging: For consistency, workers need

to compute on the latest versions of shared objects as they are updated; For per-

formance, workers should be able to locally cache objects that are shared but not

updated; For security, updates need to be propogated without leaking con�dential

information to untrusted workers.

To address these challenges, each Fabric transaction maintains an append-only

writer map indicating the worker that modi�ed each object most recently. If an

58

object is updated during a distributed transaction, the node performing the update

becomes the object's writer and stores the de�nitive copy of the object for the trans-

action.

If an updated object already has a writer, the previous writer is noti�ed and

relinquishes the role. This noti�cation is not an unsafe covert channel because the

pc at the write must be lower than the object's label, which the current writer is

already trusted to read. The change of object writer is also recorded in the writer

map, which is passed through the distributed computation along with control �ow.

An update to object o at worker w adds a writer mapping with key hash(oid, tid, key)

and value {w}key, where oid is the OID of object o, tid is the transaction identi�er,

and key is the object's label's shared encryption key. This mapping permits a worker

that has the right to read or write o, and therefore has the encryption key for o, to

learn whether there is a corresponding entry in the writer map, and to determine

which node is currently the object's writer. Nodes lacking the key cannot exploit the

writer mapping because without the key, they cannot compute the hash. Because

the transaction id is included in the hash, they also cannot watch for the appearance

of the same writer mapping across multiple transactions.

The size of the writer map is a covert channel. To reduce the capacity of this

channel, it is padded with dummy entries to make its size a power of 2.

2.3.7 Nested Transactions

Because transactions can be nested, transaction logs are hierarchical. When a local

subtransaction commits, its log is merged with the parent transaction log.

59

worker 1 worker 2

Tx A

read o1

read o2

update o7

update o3

read o5

...

Subtx B

update o2

read o7

Subtx D

update o4

read o1

Subtx C

update o4

read o3

Tx A

read o1

...

Subtx B

update o2

read o7

Subtx C

update o4

read o3

Subtx D

update o4

read o1

global view

Figure 2.9: Logs of nested distributed transactions

To maintain consistency, transaction management must span multiple workers in

the general case. Each worker maintains transaction logs for each top-level transac-

tion it is involved in. These transaction logs must be stored on the workers where

the logged actions occurred, because the logs may contain con�dential information

that other workers may not see.

Figure 2.9 illustrates the log structures that could result in a distributed transac-

tion involving two workers. In the �gure, a transaction (A) starts on worker 1, then

starts a nested subtransaction (B), then calls code on worker 2, which starts another

subtransaction (C) there. That code then calls back to worker 1, starting a third

subtransaction (D). Conceptually, all the transaction logs together form a single log

that is distributed among the participating workers, as shown on the right-hand side.

60

When D commits, its log is conceptually merged with the log of C, though no data

is actually sent. When C commits, its log, including the log of D, is conceptually

merged with that of B. In actuality, this causes the log of D to be merged with that

of B, but the log for C remains on worker 2. When the top-level transaction commits,

workers 1 and 2 communicate with the stores that they have interacted with, using

their respective parts of the logs.

2.3.8 Hierarchical Commits

A transaction may span worker nodes that do not trust each other, creating both

integrity and con�dentiality concerns. An untrusted node cannot be relied to com-

mit its part of a transaction correctly. More subtly, an insecure commit protocol

might cause an untrusted node to learn information it should not. For instance,

simply learning the identities of other nodes that participated in a transaction may

reveal sensitive information. Fabric's hierarchical two-phase commit protocol ad-

dresses these problems.

The commit protocol is a hierarchical version of the usual two-phase commit pro-

tocol. The �rst phase begins with the worker that started the top-level transaction.

It initiates the commit by contacting all the stores for whose objects it is the current

writer in the writer map, and all the other workers to which it has issued remote

calls. These other workers then recursively do the same, so the �rst phase of the

protocol constructs a commit tree, a spanning tree of the transaction's remote-call

graph. This process allows all the stores involved in a transaction to be informed

61

about the transaction commit, without relying on untrusted workers to choose which

nodes to contact and without revealing to workers which other nodes are involved in

the transaction lower down in the commit tree.

The two-phase commit protocol then proceeds as usual, except that messages are

passed up and down the commit tree rather than directly between a single coordinator

and the stores. The �rst phase of the protocol not only constructs the commit

tree but also causes each participating store to validate the transaction by checking

permissions and comparing version numbers. Each store that successfully validates

the transaction prepares to commit it. The second phase of the protocol informs all

participants whether the prepared transaction should be committed or aborted.

Of course, a worker in this tree could be compromised and fail to correctly carry

out the protocol, causing some stores to be updated in a way that is inconsistent with

other stores. However, this worker could already have introduced this inconsistency

by simply failing to update some objects or by failing to issue some remote method

calls. The untrusted worker's power over the transaction is merely to prevent it from

happening at all, which is not a security violation.

Once a transaction is prepared in the �rst phase of the two-phase commit, it is

important for the availability of the objects involved that the transaction is commit-

ted quickly. The transaction coordinator should remain available, and if it fails after

the �rst phase of the transaction, it must recover rapidly. An unavailable transaction

coordinator could become an availability problem for Fabric, and the availability of

the coordinator is therefore a trust assumption. To prevent denial-of-service attacks,

prepared transactions are timed out and aborted if the coordinator is unresponsive.

62

This failure is considered a violation of trust, but in keeping with the security

principles of Fabric, the failing coordinator can only a�ect the consistency of objects

whose integrity it is trusted to enforce. This design weakens Fabric's consistency

guarantees in a circumscribed way, in exchange for stronger availability guarantees.

2.4 Evaluation

Our goal in designing Fabric was to provide a programming model that is expressive

enough to model today's complex software ecosystem, while providing security guar-

antees in a principled way. To evaluate Fabric, we have built an implementation of

the Fabric system as well as a number of example applications. We have also ported

several existing applications to the Fabric language.

We use these applications to evaluate Fabric along several dimensions:

• We evaluate the expressiveness of Fabric's programming model by modeling

systems with complex trust relationships and communication patterns. We

�nd that the programming model is expressive.

• We evaluate the e�ort required to build Fabric programs by comparing Fabric

and non-Fabric versions of the same programs. We �nd that Fabric's built-in

support for data and function shipping simpli�es many applications, but that

the annotation burden for information �ow labels is high. Part of this burden

is due to the complexity of the information �ow policies themselves, but we

also discuss approaches for reducing some of the redundancy required by our

current type system.

63

• We show that our Fabric system implementation is e�cient by measuring the

performance of Fabric implementations of industry-standard benchmarks. We

show that Fabric performs comparably to other distributed systems.

2.4.1 System Implementation

The Fabric compiler is implemented as a source-to-source translation from the Fab-

ric language to Java. We �rst translate to an intermediate language FabIL, which

contains support for handling distributed Fabric objects and transactions but does

not perform information �ow analysis.

The Fabric and FabIL compilers are implemented using the Polyglot extensible

compiler framework [NCM03]. The FabIL compiler extends the Polyglot Java-to-

Java compiler (J1), while the Fabric compiler extends the Jif compiler. The Fabric

compiler contains 14k lines of Java code; the FabIL compiler contains 11k lines of

Java code, and there are an additional 3.5k lines of code that are shared between the

two.

The Fabric runtime system is divided into the store, worker, and dissemination

node implementations. The store comprises 3.5k lines of Java code; the worker con-

tains 6k lines of Java code; and the dissemination layer comprises 2.2k lines of code.

There are also 13k lines of shared code between them, such as the communications

layer and common utilities.

We have ported a number of useful libraries to FabIL and Fabric. We have

partially ported the GNU Classpath implementation of the java.util package [Fou],

this comprises almost 10k lines of FabIL code.

64

We have also ported the Servlets with Information Flow (SIF) library [CVM07]

from Jif to Fabric. This library provides an API for building web applications in

Jif; We make use of this library to provide a front-end to some of our example

applications. The ported SIF library contains 6.5k lines of Java, FabIL and Fabric

code.

Altogether, the Fabric compiler, runtime system, and libraries contain nearly

100k lines of code.

2.4.2 FriendMap Application

We have implemented the FriendMap application that we've used as a running ex-

ample in this chapter. Our implementation faithfully models the separate roles of

the users Alice and Bob, the Snapp service, the MapServ service, and the FriendMap

application.

Our implementation of the FriendMap application includes most of the appli-

cation features we have discussed in this chapter. There are separate codebases

provided by Snapp (250 LOC), MapServ (630 LOC), and FriendMap (770 LOC). In

addition, we have created a �version 2� of the Snapp User class that includes user

moods, and subsequently extended the FriendMap code to make use of the extended

users. The Snapp extension required an additional 70 lines of Fabric code, while the

extended FriendMap application required 80 lines of code. The entire application

was developed by 2 developers over a period of 2 months.

As part of the implementation, we had to develop 500 lines of general-purpose

utility classes that needed to be trusted by everybody. These include basic classes

65

such as a Principal that delegates to a set of other principals and a principal that

delegates to a single unique principal. These could be folded back into the Fabric

standard library.

Although we were able to replicate many facets of today's software ecosystem in

the FriendMap application, we found the type annotations required for information

�ow analysis to be rather burdensome. Access label checking and provider label

checking increase the number of constraints that must be satis�ed by the program

at nearly every program point; this requires annotations on every method to declare

that the program must satisfy those constraints in order to call these methods.

Figure 2.10 shows a particularly complex example. The safety of the createMap

requires a complicated set of relationships between labels and principals, and in order

to statically check the method, these requirements must be documented in the type.

While implementing the FriendMap application, we realized that many of these

annotations are duplicated. The FriendMap application requires several relationships

between the di�erent principals and labels that it uses. Fabric's type system requires

every method to explicitly declare pre- and post-conditions. Since many of these

invariants are required for several methods, there is a great deal of duplication.

In the 770 lines of code of the FriendMap codebase, roughly 320 of them are type

annotations (or documentation of the type annotations). By removing duplication,

we could reduce this to roughly 80 lines of annotation (thus reducing the codebase

to about 530 LOC).

This observation has inspired the design of �rst-class proof objects, which are

explored further in Chapter 4. A constraint class would bundle together the static

66

671 public

2 MapImage[l,{*→s}] {*l}

3 createMap

4 (

5 �nal label l, �nal Store s,

6

7 �nal User[owner,network] user,

8 �nal principal owner, �nal principal network,

9

10 �nal label friend_access_bound

11)

12 throws (NullPointerException{*provider; user})

13 where

14 // user fetch depends on:

15 {caller_pc; *provider; *MapServer.provider} <= {*→network}, // code and caller pc

16 {user} <= {*→network}, // user reference

17 {friend_access_bound; network; l} <= {*→network}, // policies

18

19 // second fetch dependent on copied map, which depends on

20 {s} <= {*→network}, // the map service

21 {*←service} <= {*→network}, // the store at which the result is created

22 {*l} <= {*→network}, // the intermediate state of the map

23

24 // information that flows to the map service:

25 {caller_pc; *provider; *MapServer.provider} <= {*→service.store$}, // code and caller pc

26 {user; {_→; *←network,owner}} <= {*→service.store$}, // user and user's contents

27 {friend_access_bound; network; l} <= {*→service.store$}, // fetch policy

28

29 // information that flows to the resulting map:

30 {caller_pc; *provider; *MapServer.provider} <= {*l}, // code and caller pc

31 {user; {_→; *←network,owner}} <= {*l}, // user and user's contents

32 {s; l} <= {*l}, // store and label of result

33 {friend_access_bound; network; l} <= {*l}, // friends policies

34 {*←service} <= {*l}, // fetched map

35

36 // fetch of user's friends:

37 {caller_pc; *provider; *MapServer.provider} <= {*friend_access_bound}, // code and caller pc

38 {user; {_→; *←network,owner}} <= {*friend_access_bound}, // user and user's contents

39 {friend_access_bound; network; l} <= {*friend_access_bound}, // policies

40 {s} <= {*friend_access_bound}, // the store at which the result is created

41 {*l} <= {*friend_access_bound}, // the intermediate state of the map

42

43 // intermediate objects created at local store

44 l <= {*→worker$}, {*←worker$} <= l, // worker < l

45

46 // l objects created at s

47 {*←s} <= l, l <= {*→s}, {*→s} <= {*→s}, // result created at s

48

49 // invariants

50 user.p equiv (network,owner)

51 {

52 · · ·
53 }

Figure 2.10: A portion of the FriendMap application implementation. These an-
notations re�ect the real �ow of information through the createMap method. They
re�ect the complexity of the necessary trust relationship: the method is only safe if
these constraints hold.

requirements shared by many methods; non-null objects of this class would serve as

proofs of these constraints. Implementation of �rst-class proofs in Fabric is left for

future work.

2.4.3 Course Management System

To evaluate the performance impacts of the Fabric system model on a more complete

example, we ported a portion of Cornell's Course Management System (CMS) to

FabIL. CMS is a 54k line J2EE web application written using EJB 2.0 [BMH06],

backed by an Oracle database. It has been used for course management at Cornell

University since 2005; at present, it is used by more than 40 courses and more than

2000 students.

Our experience showed that Fabric's high-level primitives for security, transac-

tions, persistent storage, and mobile code yielded a simpler and faster implementa-

tion.

Implementation. The production version of CMS uses the model/view/controller

design pattern; the model is implemented with Enterprise JavaBeans using Bean-

Managed Persistence. For performance, hand-written SQL queries are used to im-

plement lookup and update methods, while generated code manages object caches

and database connections. The model contains 35 Bean classes encapsulating stu-

dents, assignments, courses, and other abstractions. The view is implemented using

Java Server Pages, and the controller is implemented as a Java Servlet object.

68

We ported CMS to FabIL in two phases. First, we replaced the Enterprise Java-

Bean infrastructure with a simple, non-persistent Java implementation based on the

Collections API. We ported the entire data schema and partially implemented the

query functionality of the model, focusing on the key application features. Of the

35 Bean classes, 5 have been fully ported. Replacing complex queries with object-

oriented code signi�cantly simpli�ed the model: the �ve fully ported classes were

reduced from 3100 lines of code to 740 lines, while keeping the view and controller

mostly unchanged. This intermediate version, which we refer to as the Java imple-

mentation, took one developer a month to complete and contains 23k lines of code.

Although signi�cantly simpler, the Java implementation does not have support

for concurrency control, distributed operation, or persistence. It serves as a baseline

for evaluating the performance and complexity of the FabIL implementation.

Porting the Java implementation to FabIL required only super�cial changes, such

as replacing references to the Java Collections Framework with references to the

corresponding Fabric classes, and adding label and store annotations. The FabIL

version adds fewer than 50 lines of code to the Java implementation, and di�ers in

fewer than 400 lines. The port was done in less than two weeks by an undergraduate

initially unfamiliar with Fabric. These results suggest that porting web applications

to Fabric is not di�cult and results in shorter, simpler code.

A complete port of CMS to Fabric with �ne-grained labels would have the bene�t

of federated, secure sharing of CMS data across di�erent administrative domains,

such as di�erent universities. It would also permit secure access to CMS data from

other applications. We leave this to future work.

69

Page Latency (ms)

Implementation Course Students Update

EJB 305 485 473
Hilda 432 309 431
FabIL 35 91 191

FabIL/memory 35 57 87
Java 19 21 21

Table 2.1: CMS page load times (ms) under continuous load.

Performance. The performance of Fabric was evaluated by comparing �ve di�er-

ent implementations of CMS: the production CMS system based on EJB 2.0, the

in-memory Java implementation (a best case), the FabIL implementation, the Fa-

bIL implementation running with an in-memory store (FabIL/memory), and a �fth

implementation developed earlier using the Hilda language [YSRG06]. Comparing

against the Hilda implementation is useful because it is the best-performing prior

version of CMS. The performance of each of these systems was measured on some

representative user actions on a course containing 55 students: viewing the course

overview page, viewing information about all students enrolled in the course, and

updating the �nal grades for all students in the course. All three of these actions are

both compute- and data-intensive.

All Fabric and Java results were acquired with the app server on a 2.6GHz single-

core Intel Pentium 4 machine with 2GB RAM. The Hilda and EJB results were

acquired on slightly better hardware: the Hilda machine had the same CPU and

4GB of memory; EJB results were acquired on the production con�guration, a 3GHz

dual-core Intel Xeon with 8GB RAM.

70

Table 2.1 shows the median time to perform three user actions under continuous

load, for each of the measured systems. The �rst three measurements in Table 2.1

show that the Fabric implementation of CMS runs faster than the previous im-

plementations of CMS. The comparison between the Java and nonpersistent FabIL

implementations illustrates that much of the run-time overhead of Fabric comes from

transaction management and from communication with the remote store.

2.4.4 OO7 Benchmark

To evaluate the overhead of Fabric computation at the worker when compared to

ordinary computation on nonpersistent objects, and to understand the e�ectiveness

of object caching at both the store and the worker, we used the OO7 object-oriented

database benchmark [CDN93]. We measured the performance of a read-only (T1)

traversal on an OO7 small database, which contains 153k objects totaling 24Mb.

The results of these measurements are summarized in Table 2.2. Performance

was measured in three con�gurations: (1) cold, (2) warm, with stores caching object

groups, and (3) hot, with both the store and worker caches prepopulated.

The results show that caching is e�ective at both the worker and the store.

However the plain in-memory Java implementation of OO7 runs in 66ms, which is

about 10 times faster than the worker-side part of the hot traversal. Because Fabric

is designed for computing on persistent data, this is an acceptable overhead for

many, though not all, applications. For computations that require lower overhead,

Fabric applications can always incorporate ordinary Java code, though that code

must implement its own failure recovery.

71

Traversal time

Cache state Total (ms) App Tx Log Fetch Store

Cold 9153 10% 2% 12% 74% 2%
Warm 6043 27% 3% 6% 61% 3%
Hot 840 46% 14% 24% 0% 17%

Table 2.2: Breakdown of the running time for the T1 traversal on a small OO7
database. �App� gives the time spent executing application code; �Tx� gives the
time spent on local transaction management. The �Log� column gives the pro�ling
overhead. �Fetch� is time spent communicating with the store, and �Store� is time
spent by the store to respond to those requests.

2.4.5 Other Applications

We have also built other applications to evaluate the performance and �exibility of

the Fabric programming model. Although less complex than the FriendMap example

presented above, they show that Fabric can be used for a variety of applications with

complex information �ow constraints.

Multiuser Calendar

We ported the multiuser calendar application originally written for SIF [CVM07]

to Fabric. This application allows users to create shared events and to control the

visibility of their events using information �ow policies.

The application is structured as a standard web application server running on a

Fabric worker node. Persistent data is kept on one or more storage nodes, but the

worker and the stores do not necessarily trust each other. The design allows users

to maintain their calendar events on a store they trust, and application servers can

72

run on any worker the user trusts. This design is in contrast to current distributed

calendars where all events are maintained on a single globally trusted domain.

The SIF Framework is written in Jif, so the existing code was already annotated

with information �ow labels. Porting SIF and the Calendar application to Fab-

ric required replacing transaction and persistence mechanisms with Fabric's built-in

primitives. Static checks performed by the Fabric compiler force the insertion of ad-

ditional dynamic label and principal tests, to ensure that persistent object creation

and remote calls are secure.

As with our FabIL port of CMS, by replacing special-purpose code for converting

Java objects to a persistent SQL-backed representation, we were able to simplify the

code. The SIF implementation of the Calendar application comprised roughly 1800

lines of code; the Fabric implementation removed roughly 400 of these. The Fabric

port of the 4k line SIF library itself also had about 4k lines of code.

Bidding Agent

In this example application, a user supplies an agent to choose between two ticket

o�ers made by di�erent airlines. The choice may depend on factors con�dential to

the user, such as preferred price or expected service level. Airlines, in turn, supply

agents that compete for the best o�er to provide to the user, while maximizing pro�t.

This example is about 570 lines of code.

Four parties participate: a trusted broker, two airlines, and the user. They are

represented by Fabric principals Broker, AirlineA, AirlineB, and User. Principal

Broker is trusted by all of the others: Broker<AirlineA, Broker<AirlineB, and

73

Broker<User; no other trust relationships are assumed. Every principal is associated

with a Fabric store.

This example shows that the users and airlines are both able to provide untrusted

code to the trusted broker. The guarantees provided by Fabric's type checking allow

the broker to execute this code while respecting the information �ow policies speci�ed

by all parties.

2.5 Related Work

Fabric provides a higher-level abstraction for programming distributed systems. Be-

cause it aims to help with many di�erent issues, including persistence, consistency,

security, and distributed computation, it overlaps with many systems that address a

subset of these issues. However, none of these prior systems addresses all the issues

tackled by Fabric.

Fabric �ts into a substantial history of e�orts to integrate information �ow

control into practical language-level programming abstractions; prior systems in-

clude SPARK/Ada [Bar03], Jif and Jif/split [MZZ+06, ZZNM02, ZCMZ03], Flow-

Caml [Sim03], Aura [JVM+08], Swift [CLM+07], LIO [SRMM11], Jeeves [YYSL12],

Paragon [BvDS13], and IFC [EJM+14]. These previous systems are either not dis-

tributed, or provide only limited control over distributed computation. Many of the

contributions of Fabric arise from fully extending information �ow methods into the

realm of distributed computation over persistent data, where we have encountered

new side channels and uncovered new connections between integrity and authority.

74

Jif/split [ZZNM02], SIF [CVM07], and Swift [CLM+07] are prior distributed sys-

tems with mutually distrusting nodes, but with more limited goals than Fabric.

While these prior systems use language-based security to enforce strong con�dential-

ity and integrity, they do not allow new nodes to join the system, and they do not

support consistent, distributed computations over shared persistent data.

In contrast to language-level information �ow tracking, systems such as As-

bestos [EKV+05], HiStar [ZBWKM06], Flume [KYB+07], Laminar [RPB+09], and

TaintDroid [EGC+10] track information �ow dynamically at the operating system or

virtual machine level. These systems do not require programming language support,

but are only able to track information �ows at a coarse granularity.

DStar [ZBWM08] applies OS-based DIFC in a distributed setting. Like Fabric,

DStar is a decentralized system that allows new nodes to join, but unlike Fabric,

it does not require certi�cate authorities. As with other OS-based DIFC systems,

DStar does not require language support, but controls information �ow more coarsely.

DStar does not support consistent distributed computations, data shipping, or mobile

code. It also has no notion of code integrity or secrecy.

Like Fabric, Aeolus [CPS+12] is a platform for building distributed applications

that support information �ow control. Aeolus's information �ow tracking is similar

to that provided by OS-based DIFC systems, but Aeolus also provides high-level

programming language abstractions that give programmers �ne-grained information

�ow control. Unlike Fabric, Aeolus is a closed system with a centralized authorization

service and without support for mobile code.

75

OceanStore [REG+03] shares the goal with Fabric of a federated, distributed

object store, but focuses more on storage than on computation. It provides consis-

tency only at the granularity of single objects, and does not help with consistent

distributed computation. OceanStore focuses on achieving durability via replication.

Fabric stores could be replicated but currently are not. Unlike OceanStore, Fabric

provides a principled model for declaring and enforcing strong security properties in

the presence of distrusted workers and stores.

Some previous distributed storage systems have used transactions to implement

strong consistency guarantees, including Mneme [Mos90], Thor [LAC+96] and Sin-

fonia [AMS+07]. Cache management in Fabric is inspired by that in Thor [CAL97].

Fabric is also related to other systems that provide transparent access to persistent

objects, such as ObjectStore [LLOW91] and GemStone [BOS91]. These prior sys-

tems do not focus on security enforcement in the presence of distrusted nodes, and

do not support consistent computations spanning multiple compute nodes.

Distributed systems with support for consistency, such as Argus [Lis85] and

Avalon [HW87], usually have not o�ered single-system view of persistent data, and

none enforce information security. Emerald [BHJL86] gives a single-system view of

a universe of objects while exposing location and mobility, but does not support

transactions, data shipping or secure federation. InterWeave [CDP+00] is a persis-

tent distributed shared memory system that synthesizes data- and function-shipping

similarly to Fabric, and allows multiple remote calls to be bound within a transaction

while remaining atomic and isolated with respect to other transactions. However, it

does not appear to be feasible to build a system like Fabric on top of InterWeave,

76

because InterWeave has no support for information security and its mechanisms for

persistence and concurrency control operate at the granularity of pages. The work

of Shrira et al. [STT08] on exo-leases supports nested optimistic transactions in a

client�server system with disconnected, multi-client transactions, but does not con-

sider information security. MapJAX [MCCL07] provides an abstraction for sharing

data structures between the client and server in web applications, but does not

consider security. J-Orchestra [TS09] creates distributed Java programs by parti-

tioning programs among assigned network locations. Standard Java synchronization

operations are emulated across multiple hosts, but neither security nor persistence

is considered. Other recent language-based abstractions for distributed computing

such as X10 [CDE+07] and Live Objects [OBDA08] also raise the abstraction level of

distributed computing but do not support persistence or information-�ow security.

Several distributed storage systems including PAST [RD01a], Shark [AFM05],

CFS [DKK+01], and Boxwood [MMN+04] use distributed data structures to pro-

vide scalable �le systems, but o�er weak consistency and security guarantees for

distributed computation.

IFDB [SL13] provides a SQL-based interface to a single persistent database while

tracking information �ow fully dynamically. It is not a federated system like Fabric,

nor does it provide type-level integration in the language.

Many previous languages [JL78, MWC10, Mil06, MSL+08] have explored integrat-

ing abstractions for authorization and access control into the programming model.

However, these languages do not integrate reasoning about information �ow and rely

on the programmer to use these abstractions appropriately to enforce security.

77

UrFlow [Chl10] enforces information �ow control in web applications with policies

expressed by SQL queries. UrFlow prevents implicit �ows in application code, but

not those introduced by the queries themselves.

Hails [GLS+12] dynamically enforces information �ow control for Haskell web

applications. Like Fabric applications, Hails web apps compose mutually untrust-

worthy components that may access persistent data. However, Hails components

implement a model�view�controller design pattern and may not invoke each other

directly, though multiple view�controllers may share the same model. Hails does not

prevent read channels, but does prevent termination and timing channels [SRB+12].

Cross-origin resource sharing (CORS) [CJD+18] extends the same-origin policy

to allow web sites to specify domains that may load resources from other origins.

A browser implementing the CORS API performs a �pre�ight request� to determine

what restrictions apply to a resource before fetching the resource. The CORS API

does not protect against read channels: pre�ight requests may leak information from

the requesting page.

Fabric's support for secure mobile code can be compared to proof-carrying code

(PCC) [Nec97], a general mechanism for transmitting proofs about code to code

consumers. Fabric does not contain a general proof checker; clients check code they

receive using the Fabric type system. The Fabric approach is analogous to the

bytecode veri�er used by Java [LY99], which similarly type-checks JVM bytecode.

Various attempts have been made to strengthen isolation guarantees for JavaScript.

Chugh et al. [CMJL09] dynamically check loaded code against statically identi-

�ed residual information-�ow requirements. Conscript [ML10] applies aspects to

78

JavaScript primitives, isolating loaded scripts in useful ways. Caja [MSL+08] pro-

vides isolation in web mashups by using capabilities to protect access to resources at

a �ne granularity. Secure information �ow can be enforced by checking capabilities

at statically predetermined locations [BS11], assuming a static analysis of informa-

tion �ow. Hedin and Sabelfeld [HBBS14] dynamically enforce secure information �ow

within a JavaScript DOM tree. Securing mobile code in Fabric has similar challenges

to securing JavaScript, but Fabric's mobile code may express more general computa-

tions, including creating and accessing persistent data, and may communicate with

arbitrary nodes.

System extensibility and evolution has been explored in many contexts. To our

knowledge, Fabric's mobile code support is the �rst to address the information secu-

rity of the assembly and evolution of components in a general distributed setting.

SPIN [GB01] is an extensible operating system that allows core kernel function-

ality to be dynamically specialized by modules written in Modula-3. Like Fabric,

SPIN leverages language-level features�such as interfaces and type safety�to pro-

vide isolation for untrusted system modules. Unlike Fabric, SPIN uses namespace

isolation to control access to system resources: capabilities are implemented as refer-

ences to system resources, with a type capturing access privileges. In contrast, name

resolution in Fabric is orthogonal to security, and the security implications of linking

with low integrity code are captured by the type system.

Prior work on expressive module systems explored several approaches to com-

ponent reuse and evolution. Unit [FF98] and Knit [RFS+00] are component def-

inition and linking languages that enable programmatic assembly of components.

79

Composite units are assembled out of smaller ones, and some architectural prop-

erties are checked, such as type consistency (in [FF98]) or user-de�ned constraints

(in [RFS+00]). These systems provide more �exible control of namespaces, but they

do not address the security of the produced code.

Codebases have similarities to the classpath entries in JAR �les [Ora99]. These

references are neither versioned nor immutable, so the meaning of Java classes can

change over time. JAR �les allow packages to be sealed, to control who can insert

classes into them. Sealing is orthogonal to our consistency requirements: it does not

ensure that classes are named consistently nor that the meaning of code is �xed.

2.6 Summary

We have explored the design and implementation of Fabric, a new, general platform

for secure sharing of information and computation resources. Fabric provides a high-

level abstraction for secure, consistent, distributed general-purpose computations on

persistent, distributed information. Persistent information is conveniently presented

as language-level objects connected by pointers. Mobile code can be dynamically

downloaded and used securely by applications, subject to policies for con�dentiality

and integrity. Fabric exposes security assumptions and policies explicitly and declar-

atively. It �exibly supports a range of computation styles moving code to data or

data to code. Results from implementing complex, realistic systems in Fabric, such

as FriendMap, CMS, and SIF, suggest it has the expressive power and performance

to be useful in practice.

80

Fabric's security model is based on information �ow control, which makes it

inherently compositional, even in a decentralized system. Fabric's provider-bounded

label checking preserves this compositional security assurance even in the presence

of mobile code. As a result, code and data from di�erent, partially trusted sources

can be combined while providing relatively strong security assurance.

Fabric embodies several important technical contributions. Fabric extends the Jif

programming language with new features for distributed programming, while show-

ing how to integrate those features with secure information �ow. This integration

requires new implementation mechanisms such as writer maps, distributed transac-

tion logging, and hierarchical two-phase commit. The mobile-code architecture is

an interesting and useful component in its own right; provider-bounded veri�cation

should be a useful technique for securing other mobile-code systems.

Fabric succeeds in o�ering both a simple, general abstraction for building secure

systems and an implementation that can be used to build real applications with

stronger security assurance than in any previous platform for distributed computing.

81

Chapter 3

The Decentralized Security Principle

In the last chapter we gave an informal description of what security means to Fabric

users: the policies they express on their data can only be violated if principals that

they explicitly trust to enforce those policies are untrustworthy. In order to use this

metric to evaluate a system, we must �rst make the notions of harm and trust more

concrete.

To see why this is important, let us consider the informal semantics that we

proposed for the DLM labels in Chapter 2. Recall that a DLM con�dentiality policy

takes the form {o→ r}, where o and r are principals. The intended meaning of this

policy is that o is the �owner'' of the data, while r is a �reader'' of the data.

The principal o might expect that she has control over the policy of the data,

since she is designated as the owner. This expectation is reinforced by the fact that

any code that downgrades the policy must have an explicit authority clause naming

o. Only o can provide code marked with o's authority; such code must have provider

label {o← o}.

Based on these expectations and the informal statement of the DSP, o would be

justi�ed in concluding that data annotated with the policy {o → r} can only be

downgraded by herself or someone she trusts. And yet, the semantics we gave to

DLM labels speci�es that r < {o → r}, so that even if r 6< o, r can misbehave and

cause the policy to be downgraded.

This example shows that the de�nitions for the <, v, and authority relations

that we gave in Chapter 2 do not make it possible for the system to satisfy the DSP,

82

at least in this informal sense. This informal argument suggests that for the system

to satisfy the DSP, the label model should have the following property:

Property 1. If r < C(`) and ` 6v `′ then r < I(authority(`, `′)).

In this chapter, we construct a mathematical framework for reasoning about trust

and authority in systems running on partially trusted platforms. We de�ne a general

notion of information �ow and in�uenced information �ow in a distributed system.

We use these constructions to de�ne harm in a way that describes the intended

behavior of DIFC systems.

We give two di�erent sets of de�nitions; the �rst describe a system that satis�es

noninterference, while the second takes downgrading into account. We state and

prove a form of the decentralized security principle for each set of de�nitions.

Our framework puts few requirements on the system model, and is therefore

applicable to a broad range of settings. Flows and in�uenced �ows are de�ned for an

arbitrary transition relation on states; the only unusual requirement is that states

can be partitioned into labeled components.

The label model is also treated abstractly in our framework. We only assume

that a label model de�nes sets of principals, labels, along with is-trusted-to-enforce,

�ows-to, and authority relations that satisfy a few simple axioms.

We instantiate the label model with an extended version of the DLM (called

EDLM) that is designed with the DSP in mind. The EDLM re�nes the DLM's trust

hierarchy by allowing principals to express delimited trust in one another. Delimited

trust allows principals to qualify the amount of trust they place in other principals,

and consequently bound the amount of harm that other principals can cause.

83

In a distributed system like Fabric, no single node has a complete view of the

state of the system. It should be the case that nodes can make conservative decisions

about the safety of information �ows even without a complete view of the state of

the system.

We show that the ELDM has this property by giving a decision procedure for

the safe relabeling relation that ensures that �ows that are deemed safe in the pres-

ence of partial information remain safe if further information is taken into account.

Furthermore, we show that if any �ow is deemed unsafe that it is possible that the

�ow is actually unsafe. In this sense, our decision procedure is the best possible

conservative approximation of the true relabeling relation.

3.1 System Model

The intended meaning of a label is usually described informally in terms of informa-

tion �ows and the information that in�uences those �ows. This section presents a

very general system model and de�nes information �ows and in�uenced information

�ows. We also state and prove some basic properties of these relations.

The de�nitions in this section do not depend on a particular label model; all that

is required is a set Prin of principals and a set Lbl of labels. Section 3.2 introduces

additional requirements on a label model and uses them to state and prove the

decentralized security principle.

84

3.1.1 System Model Requirements

The decentralized security principal is intended to apply to a broad class of systems.

Here we describe the requirements and assumptions we make about these systems.

We consider systems with intended semantics given by a transition relation (→)

between states. For simplicity, we assume that the transition relation is total: for

every state s there is at least one state s′ with s→ s′.

Principals are responsible for enforcing security. Speci�cally, we assume that

each component in the system is operated by a principal. For simplicity, we treat

all components owned by a principal as a single component, and assume that each

principal operates a component. We assume that the system state is partitioned into

data held by each principal.

Since the systems of interest are those that protect information �ow security, we

assume that all data has an (explicit or implicit) label. The entire state of the system

can therefore be encoded as a function s : Prin × Lbl → Σ for an uninterpreted set

Σ; the value s(p, `) gives the portion of the local state of node p that is labeled `.

Because the state is indexed by principal�label pairs, these pairs are called loca-

tions ; the set of all locations is called Loc := Prin × Lbl . By convention, λ, µ, and

ν refer to locations.

3.1.2 Information Flow

Given a transition relation →, it is useful to describe whether it causes information

to �ow from one location to another, and also what information in�uences those

85

�ows. This section formalizes the de�nition of �ow; Section 3.1.4 gives the de�nition

of an in�uenced �ow.

The de�nitions given in this section are inspired by de�nitions of noninterference

based on weak bisimulation. The di�er because they are not predicated on an in-

formation �ow ordering on labels. Instead, they simply indicate what �ows occur;

we can then ask whether these �ows are safe according to the semantics of the label

model.

De�nition 3.1 (State equivalence). If Λ ⊆ Loc is a set of locations, s1 and s2 are

equivalent at Λ (written s1 ≈Λ s2) if for all λ ∈ Λ, s1(λ) = s2(λ). If s1 6≈ Λs2 we say

s1 and s2 di�er at Λ.

Λ is de�ned as Loc \ Λ, so s1 ≈Λ s2 means s1 and s2 di�er only at Λ (if at all).

Although these de�nitions and those given below are parameterized on a set of

locations, we will primarily focus our attention on a single location at a time. By

abuse of notation, λ is used to indicate {λ}, so that s1 ≈λ s2 and s1 ≈λ s2 are

de�ned.

Intuitively, information �ows from λ to µ if altering the data at λ and then

allowing the system to make some progress a�ects the data at µ. While it may be

tempting to de�ne progress as a single transition step, doing so treats transition steps

as observable events, rather than artifacts of modeling decisions. Such a de�nition

would lead to semantic conditions that are not stable under re�nement.

Instead, we de�ne �ow in terms of an observable transition relation (
Λ
�). Intu-

itively, a Λ-observer notices a transition if the state labeled Λ changes. This intuition

suggests the following tentative de�nition:

86

De�nition 3.2 (Tentative Λ-observable transition relation). If Λ is a set of locations,

we write s
Λ
�0 s

′ if

s→ s1 → s2 → · · · → sn → s′ and s ≈Λ s1 ≈Λ s2 ≈Λ · · · ≈Λ sn 6≈Λ s
′

The (
Λ
�0) relation may not be total because there may be some states from

which the Λ state never changes, a situation that looks like nontermination to a

Λ observer. Our actual de�nition of the observable transition relation makes this

situation observable1 by adding a transition from s to itself in this case:

De�nition 3.3 (Λ-observable transition relation). If Λ is a set of locations, a state

s Λ-observably transitions to s′ (written s
Λ
� s′) if either

1. s→ s1 → s2 → · · · → sn → s′ and s ≈Λ s1 ≈Λ s2 ≈Λ · · · ≈Λ sn 6≈Λ s
′, or

2. s = s′ and there is no s′′ 6≈Λ s with s→∗ s′′.

Lemma 3.4 (The (
Λ
�) relation is total). For all Λ and s, there exists an s′ with

s
Λ
� s′.

Proof. Follows from the de�nition and the fact that → is total.

As above, if λ is a single location, we will use λ to denote {λ}, so that (
λ
�) is

de�ned. Now we can de�ne the �ow relation:

De�nition 3.5 (Flow). Information �ows from λ to µ (written λ µ) if there

exists observable transitions s1

µ
� s′1 and s2

µ
� s′2 such that s1 ≈λ s2 and s′1 6≈µ s′2.

1This is a deliberate simpli�cation. In reality, nontermination is not an observable event. This
assumption could probably be removed by giving more complex de�nitions of �ows and in�uenced
�ows that explicitly account for nontermination; we leave a more detailed investigation of nonter-
mination to future work.

87

We refer to (s1, s2) as a witness of the �ow λ µ. This situation is depicted in the

following diagram:

s1 s′1

s2 s′2

µ

≈λ 6≈µ
µ

The→ relation describes the intended semantics of the system, but the de�nition

of �ow considers misbehavior. An attacker with the ability to alter data at location

λ can take the system state from s1 to s2; the presence of the �ow indicates that this

in�uence will be observable in location µ. Dually, an attacker able to observe data

at µ can make inferences about whether the original state was s1 or s2, even if s′1

and s′2 are supposed to subsequently transition to the same state.

The de�nition of �ow is quite simple; witnesses can only di�er in a single location.

However, the �ow relation still captures the behavior of attacks that a�ect multiple

locations:

Lemma 3.6 (Flow from states di�ering in multiple locations). Let Λ be a �nite set

of locations. Given transitions s1

Λ
� s′1 and s2

Λ
� s′2 with s1 ≈Λ s2 and s′1 6≈µ s′2,

there exists some λ ∈ Λ with λ µ.

Proof. By induction on the size of Λ: form a chain of intermediate states, each

di�ering from the next in a single element of Λ. Since
µ
� is total (Lemma 3.4), at

least one pair of adjacent states will form a witness of a �ow to µ.

88

The �ow relation is de�ned in terms of single observable steps of the transition

relation →. However, it also describes the many-step behavior of the system:

Lemma 3.7 (Big-step �ow). Suppose s1

µ
�
∗
s′1 and s2

µ
�
∗
s′2, with s1 ≈λ s2 and

s′1 6≈µ s′2. Then λ ∗ µ.

Proof. Induction on the lengths of s1

µ
�
∗
s′1 and s2

µ
�
∗
s′2.

3.1.3 Transmission and Relabeling Flows

Flows can be characterized by the way they move information. Recall that a location

consists of a principal that represents a node, as well as a label. Therefore a �ow

(p, `) (q,m) represents both communication (between p and q) and relabeling

(from ` to m).

It can be helpful to focus on �ows that either communicate data with a �xed

label, or only relabel locally:

De�nition 3.8 (Transmission �ow, relabeling �ow). A transmission �ow from p to

q with label ` is a �ow of the form (p, `) (q, `), while a relabeling �ow from ` to

m at p is a �ow of the form (p, `) (p,m).

Operating system and programming language based information �ow control sys-

tems are intended to prevent unsafe relabeling �ows. Cryptographic techniques can

be used to avoid transmission �ows.

It should be possible to re�ne a system's transition relation to add relabeling �ows

either before or after transmission, so that all �ows become either transmission �ows

89

or relabeling �ows. However, we leave proving this result for a general transition

relation to future work.

3.1.4 In�uenced Flows

The de�nition of �ow captures the kind of information �ows ruled out by noninter-

ference. However, it is well known [SS05] that noninterference is too restrictive to

describe many systems that are nevertheless considered secure.

There are many proposals for specifying the circumstances under which policies

can be downgraded. Some (e.g., [Mye99a, PC00]) allow policies to be downgraded by

any code that possesses su�cient authority. Others (e.g., [LZ05, KAMS19]) encode

constraints on downgrading in the policies themselves, and only allow downgrading

that is consistent with those policies. A third approach is to interpret policies in the

context of a principal hierarchy or other authorization state (e.g., [ML00, BS06]).

Many systems, including Fabric, use a combination of these approaches.

Reasoning about the safety of downgrading operations requires thinking about

the integrity of the parts of the state that can in�uence relabeling decisions.

For example, if downgrading operations are only allowed in code that has been

authorized by Alice, it had better be the case that principals Alice doesn't trust can't

change the value of that code. Similarly, if a label model says that an information

�ow is safe as long as Bob trusts Chuck, the state used to determine whether Bob

trusts Chuck must have high integrity.

These and similar restrictions are discussed in more detail in Section 3.2. Here

we present a more nuanced relation that identi�es the state that in�uences a �ow.

90

Intuitively, data at ν in�uences a �ow from λ to µ if changing the state at ν

changes whether information �ows or not. This intuition leads to the following

de�nition, which is inspired by the de�nition of nonmalleable information �ow:

De�nition 3.9 (In�uenced �ow). Information labeled ν in�uences a �ow from µ to

ν (written λ
ν
 µ) if there exists four states s1, s2, t1, and t2 such that s1 ≈ν t1 and

s2 ≈ν t2, and such that (s1, s2) is a witness to a �ow from λ to µ but (t1, t2) is not.

This situation is depicted in the following diagram:

t′1 t1 s1 s′1

t′2 t2 s2 s′2

≈µ

µ

≈λ

≈ν µ

≈λ 6≈µ
µ ≈ν µ

In the example of restricting downgrading to authorized code, the code would

have label ν, while the data to be downgraded would have its label changed from λ

to µ. Modifying the code that performs the downgrading (or the data it examines to

decide whether to downgrade) without changing the rest of the system state would

change the state from t1 to s1, or from t2 to s2. Without adding the downgrade,

there was no �ow (t′1 ≈µ t′2), while after the change there is a �ow (since s′1 6≈µ s′2).

In this way, modifying the code labeled ν in�uences the �ow from λ to µ.

Similarly, in�uenced �ow describes a system with a stateful �ows-to relation. A

label model may allow a �ow from λ to µ if Bob trusts Chuck, but that determination

may require examination of the system state. If the portion of the state that is

examined is labeled ν, then there would be an in�uenced �ow λ
ν
 µ. Changing the

state at ν would cause the system to allow or disallow the �ow from λ to µ.

91

3.1.5 In�uenced Flows Generalize Flows

The in�uenced �ow relation gives strictly more information about the system than

the �ow relation. Here are some basic properties showing the relationships between

the two relations:

Lemma 3.10 (In�uenced �ows imply �ows). If λ
ν
 µ then λ µ and ν µ.

Proof. Follows immediately from the de�nition.

Lemma 3.11 (Flows imply in�uenced �ows). If λ µ then λ
λ
 µ.

Proof. Choose t1 = t2 = s1 in the de�nition of in�uenced �ow.

Lemma 3.12 (Asymmetry). It is not necessarily the case that λ
ν
 µ implies ν

λ
 µ.

Proof. Using the notation in De�nition 3.9, we can construct a transition system

where t′1, s
′
1, and s

′
2 all di�er from each other on µ, while t′1 ≈µ t′2. In this case both

(s1, t1) and (s2, t2) are witnesses of �ows from ν to µ, so these four states are not

a witness to a λ-in�uenced �ow. By choosing a su�ciently simple state space, we

can ensure that these are the only witnesses of �ows from ν to µ, thus ensuring that

ν 6 λ µ.

3.2 The Decentralized Security Principle, Formalized

The decentralized security principle states that one's security should be immune to

the actions of principals that one does not trust. Stated another way, if your security

is harmed, it must be the result of an action by a principal you trust.

92

With de�nitions of �ows and in�uenced �ows in hand, we can describe the set of

�ows that a system exhibits. The question of whether these �ows are harmful, and

whether principals are trusted, depends on the semantic meaning of the labels.

There are many label models that describe the set of allowed �ows and the con-

ditions under which they are safe [MPP13]. This section treats the label model as an

abstraction that provides a handful of relations between principals and labels that

satisfy certain properties. Section 3.3 instantiates this abstraction with a label model

designed with the DSP in mind.

Using these assumptions, we give two de�nitions of harm that are appropriate for

reasoning about information �ow. The �rst de�nition is based on the �ow relation

and is more restrictive than the second; we show that lack of harm using this de�ni-

tion is equivalent to noninterference. The second de�nition of harm is based on the

in�uenced �ow relation; lack of harm using this de�nition is similar to nonmalleable

information �ow.

A de�nition of harm describes the guarantees that a principal can expect if their

trustees are trustworthy. It should also describe the actions that trustworthy prin-

ciples should avoid. In this sense, the DSP is a kind of compositionality result:

composing components operated by trustworthy principals should produce a trust-

worthy system. We show this property for each of the two de�nitions of harm.

3.2.1 Label Model Axioms

Section 3.1 only assumed that there is a set of labels and a set of principals. In order

to identify which �ows are harmful, we need additional structure relating principals

93

to labels and labels to each other. This additional structure is speci�ed by giving a

label model.

We are interested in con�dentiality and integrity. Our �rst assumption is that

each label has a con�dentiality and an integrity component. Formally, we require

that there is a set CLbl of con�dentiality labels and a set ILbl of integrity labels such

that Lbl = CLbl × ILbl . We refer to the projections as C and I.

Flows-to relation. Some labels are more restrictive than others by de�nition. Our

second assumption is that the label model provides relations vC and vI on CLbl

and ILbl indicating when one label is more restrictive than another. ` vC m and

` vI m both mean that information labeled ` can safely a�ect data labeled m. We

de�ne (v) on labels as the product of vC and vI , and we omit the subscripts when

they are clear from context.

Unlike previous information �ow analyses, we do not assume that the set of labels

forms a lattice under v. We do require that vC and vI are preorders (re�exive and

transitive).2

Trusted-to-enforce relation. The label model must also provide a set Prin of

principals. We do not assume any structure on the set of principals by themselves,

but we do assume that each principal is only trusted to enforce a subset of the labels.

The statement p < ` should be read �p is trusted to enforce `�. We assume the label

model de�nes the (<C) relation between principals and con�dentiality labels, and

2One can always formally turn a preorder into a lattice by taking equivalence classes and com-
pleting under t and u. However, it may not be obvious how to de�ne the < and authority relations
on the resulting equivalence classes. Eschewing the lattice requirement removes this complexity.

94

the (<I) relation between principals and integrity labels. We de�ne < on labels as

the product of these two relations.

For the interpretation of C as con�dentiality and I as integrity to make sense,

we require certain relationships between < and v:

1. If ` vI m, then ` has higher integrity than m. There should therefore be fewer

principals trusted to enforce `. In this case, we require that if p < ` then

p < m.

2. If ` vC m then m is more secret than `. There should therefore be fewer

principals trusted to enforce m. In this case, we require that if p < m then

p < `.

We can simplify these axioms by introducing a trust ordering on labels:

De�nition 3.13 (Trust ordering). We say ` is harder to enforce than m (written

` < m) if for all p < `, we have p < m. If ` < m and m < ` we write ` ' m.

This notation makes it easy to remember the relationship between p < ` and

` < m: these two facts together imply that p < m.

Using this notation, the above requirements become (1) If C(`) v C(m) then

C(`) 4 C(m), and (2) If I(`) v I(m) then I(`) < I(m). Stated another way, v and

4 are the same on con�dentiality labels, and are opposite on integrity labels.

Authority function. In the presence of downgrading, the v relation does not

de�ne the entirety of the allowable information �ows. Instead, the allowable �ows

are dictated by the code that is authorized to declassify.

95

When a principal adds a label to data, they have some intended allowable use for

that data. Compliance with that intent can be thought of as an unstated invariant

of the code and data that in�uence either the decision to downgrade the data or the

choice of data to be downgraded.

The ability to maintain invariants is synonymous with high integrity. Therefore it

makes sense to use an integrity label to categorize the information that may in�uence

the decision to downgrade a label `.

The con�dentiality of the code and data used to authorize downgrades is also

important. Cecchetti et al. have shown that allowing secret data to in�uence down-

grading decisions can cause confused deputy vulnerabilities [CMA17].

We assume that the label model de�nes a function authority : Lbl × Lbl → Lbl .

Given labels ` and m, the label authority(`,m) identi�es the state that is allowed

to in�uence a relabeling from ` to m. The integrity component of the authority

indicates how trusted the code or data must be, while the con�dentiality component

indicates how transparent the decision to downgrade must be.

The requirements on authority(`,m) depend on whether a �ow ` m would be a

downgrade. If C(`) v C(m) then a �ow ` m does not declassify ` data, so it does

not require a relationship between ` and authority(`,m). Likewise, if I(`) v I(m)

then we don't require a relationship between authority(`,m) and m.

If C(`) 6v C(m), then authority(`,m) and C(`) are closely related: The statement

p < C(`) means that if p is untrustworthy, ` can be inappropriately leaked. Certainly,

if p < authority(`,m), then p could misbehave by introducing code that declassi�es `

data inappropriately. Therefore, if p < authority(`,m) then we should have p < C(`).

96

On the other hand, p < C(`) means that p can view data labeled `. That means

that by misbehaving, p has the ability to change who can view data labeled `. Thus

p has the de-facto ability to change the meaning of C(`). Therefore, if p < C(`) then

we require p < authority(`,m).

These requirements can be summarized by saying that if C(`) 6v C(m) then

C(`) ' authority(`,m). A similar argument justi�es the requirement that if I(`) 6v

I(m) then I(m) ' authority(`,m).

Label model de�nition. The above requirements are summarized in the following

de�nition:

De�nition 3.14 (Label model). A label modelM consists of a set Prin, preorders

(CLbl ,vC) and (ILbl ,vI), relations (<C) ⊆ Prin × CLbl and (<I) ⊆ Prin × ILbl ,

and a function authority : Lbl × Lbl → Lbl satisfying the following axioms:

1. If C(`) v C(m) then C(`) 4 C(m),

2. If I(`) v I(m) then I(`) < I(m),

3. If C(`) v C(m) then C(`) 4 C(m); otherwise authority(`,m)) ' C(`)

4. If I(`) v I(m) then I(`) < I(m); otherwise authority(`,m)) ' I(m)

3.2.2 DSP with Strict Harm

We are now ready to de�ne strict noninterference-based harm and prove the Decen-

tralized Security Principle for this de�nition.

97

When considering strict noninterference-based information �ow policies, there

are two ways that a �ow (p, `) ∗ (q,m) can harm the con�dentiality of `: either

q 6< C(`) (in which case con�dential data is placed on a component that is not

trusted to hold it) or C(`) 6v C(m) (in which case the restrictions on the use of data

are relaxed).

To capture this intuition, we extend the de�nition of (vC) from labels to locations

as follows:

De�nition 3.15 (Con�dentiality can-�ow for locations (λ vC µ)). We say (p, `) vC

(q,m) if C(`) vC C(m) and q < C(`).

De�nition 3.16 (Con�dentiality harm). We say (p, `) ∗ (q,m) harms C(`) if

p < C(`), and (p, `) 6v C(q,m).

The requirement that p < C(`) prevents an untrusted party from manufacturing

fake harm by inventing data, claiming it has label `, and then leaking it. Following

Zagieboylo et al. [ZSM19], we refer to such locations as C-compromised:

De�nition 3.17. If p 6< C(`) then the location (p, `) is C-compromised. Similarly,

Similarly, if p 6< I(`) then (p, `) is I-compromised, and if p 6< ` then (p, `) is

compromised.

Dually, the �ow harms q's integrity if either p is insu�ciently trusted or ` is

insu�ciently restrictive:

De�nition 3.18 (Integrity can-�ow for locations (λ vI µ)). We say (p, `) vI (q,m)

if I(`) v I(m) and p < I(m).

98

De�nition 3.19 (Integrity harm). We say (p, `) ∗ (q,m) harms I(m) if q < I(m),

and (p, `) 6v I(q,m).

The various can-�ow orderings on locations are almost preorders:

Lemma 3.20 (Can-�ow is transitive and mostly re�exive). The relations vC, vI

and v on locations are all transitive. They are re�exive (and thus preorders) when

restricted to uncompromised labels.

Proof. Follows immediately from the label model axioms.

In fact, the can-�ow orderings cannot possibly be re�exive because of the following

interesting fact:

Lemma 3.21 (Information can only �ow to/from uncompromised labels). If λ vC µ

then µ is not C-compromised. If λ vI µ then λ is not I-compromised.

Proof. Follows immediately from the label model axioms.

With a de�nition of harm, we can formalize the notion that a principal can only

be harmed by someone they trust:

Theorem 3.22 (DSP with strict noninterference-based harm). If (p, `) ∗ (q,m)

harms C(`), then there is a harmful single-step �ow (p′, `′) (q′,m′) with p′ < C(`).

Dually, if the �ow harms I(m) then there is a harmful �ow (p′, `′) (q′,m′) with

q′ < I(m).

Proof. If (p, `) = (p0, `0) (p1, `1) · · · (q,m), we can �nd the �rst i with

(pi, `i) 6v C(pi+1, `i+1) (such an i must exists since (p, `) 6v C(q,m)). Since vC is

transitive, we have (p, `) vC (pi, `i). Therefore pi < C(`).

99

The proof for integrity �ows is the same, except that we �nd the last i with

(pi, `i) 6v I(pi+1, `i+1), instead of the �rst such i.

3.2.3 Strict Harm and Noninterference

In this section we give a typical de�nition of noninterference adapted to our dis-

tributed setting, and show that noninterference and lack of strict harm are equiva-

lent. This result shows that our de�nitions of �ow and strict harm correctly describe

information �ow.

The literature contains a large variety of de�nitions of noninterference. Ours is

based on observational determinism [ZM03].

Noninterference is usually de�ned in terms of a low-equivalence relation requiring

states to be equal at all labels below ` in the information �ow ordering. The following

de�nition of the low closure of a location simpli�es the de�nitions of low equivalence

and noninterference:

De�nition 3.23 (Low-closure). If λ ∈ Loc, we de�ne the low-closure of λ (written

↓ λ) to be the set of locations that may not �ow to λ. Formally, ↓ λ := {µ | λ 6v µ}.3

We can now de�ne low equivalence and noninterference:

De�nition 3.24 (Low-equivalence). Two states s1 and s2 are low-equivalent with

respect to location λ if s1 ≈↓λ s2.

3Technically, this should be called the complement of the high-closure of {λ} and written ↑ λ,
but we adopt the notation given here for simplicity. Our de�nition of ↓ λ is downward closed, but
does not contain λ.

100

De�nition 3.25 (Noninterference). A system given by transition relation → is non-

interfering with respect to location λ if for all s1 ≈↓λ s2, if s1

↓λ
� s′1 and s2

↓λ
� s′2 then

s′1 ≈↓λ s2. The relation is noninterfering if it is noninterfering with respect to all

locations.

We are now ready to show that our notion of harm captures noninterference:

Theorem 3.26 (Noninterference is no-harm). For a given label `, (→) is noninter-

fering if and only if it exhibits no harm.

Proof. The �if� direction follows from Lemma 3.6, while the �only if� follows directly

from the de�nitions.

3.2.4 DSP with Downgrading

Stating the DSP is more di�cult in the presence of downgrading. Downgrading

makes it possible for labeled ` to safely a�ect data labeled m even if ` 6v m. The

conditions under which such a �ow is safe application dependent, may di�er for every

label, and may change over time.

We assume that the intended policy for relabeling data from label ` to label m is

stored with label authority(`,m). This means there are several ways to cause harm:

De�nition 3.27 (Con�dentiality harm). An in�uenced �ow (p, `)
(r,n)
 (q,m) is con-

sidered harmful to C(`) if any of the following conditions apply:

1. If q 6< C(`) then p has harmed C(`) by leaking data.

101

2. If C(`) 6v C(m) and I(n) 6v I(authority(`,m)) or (r, n) is I-compromised, then

p has harmed C(`) by inappropriately declassifying data.

3. If C(`) 6v C(m) and C(authority(`,m)) 6v C(n) then p has harmed C(`) by

opaquely declassifying data.

4. If C(`) 6v C(m) and I(n) is harmed, then C(`) is harmed (not necessarily by

p), because the meaning of C(`) has been changed inappropriately.

5. If C(`) v C(m) and C(m) is harmed then C(`) has also been harmed (not

necessarily by p).

A few notes about this de�nition are in order:

• Condition 1 says that any �ow from ` to an untrusted component q is harmful,

regardless of the in�uence. One might object that the policy associated with

` might say that ` can be stored on q even though q is not trusted to enforce

C(`). However, such a policy would violate the DSP, because q could then leak

data labeled ` despite not being trusted to enforce C(`). Instead, the policy

should state that data labeled ` can be declassi�ed to a label that q is trusted

to enforce; then p could remain trustworthy by �rst relabeling the data.

• Conditions 2 and 3 are important for ensuring robust declassi�cation and trans-

parent endorsement. Nonmalleable information �ow is de�ned as the intersec-

tion of robustness and transparency [CMA17].

It is tempting to combine these conditions into one by using the trust ordering

on labels: Under mild additional assumptions, the condition

I(n) 6v I(authority(`,m)) or C(authority(`,m)) 6v C(n)

102

is equivalent to the condition n 6< authority(`,m).

We have avoided this uni�cation because it obscures the meaning of condition 3.

The real requirement for transparency is that the in�uence is su�ciently pub-

lic, not that the label on the in�uence is harder to enforce. Transparency is

fundamentally a statement about information �ow, rather than trust or en-

forcement.

• Condition 5 does not consider a downgrading from ` to a less restrictive labelm

followed by m-harm to be harmful to label `. Declassifying data is an explicit

statement that leaking that data is less harmful.

The conditions for integrity harm are mostly dual to those for con�dentiality

harm:

De�nition 3.28 (Integrity harm). An in�uenced �ow (p, `)
(r,n)
 (q,m) is considered

harmful to I(m) if any of the following conditions apply:

1. If p 6< I(m) then q has harmed I(m)

2. If I(`) 6v I(m) and I(n) 6v I(authority(`,m)) or (r, n) is I-compromised, then

q has harmed I(m) by inappropriately endorsing data.

3. If I(`) 6v I(m) and C(authority(`,m)) 6v C(n) then q has harmed I(m) by

opaquely endorsing data.

4. If I(`) 6v I(m) and I(n) is harmed, then I(m) is harmed (not necessarily by

q), because the meaning of I(m) has been changed inappropriately.

5. If I(`) v I(m) and I(`) is harmed then I(m) has also been harmed (not neces-

sarily by q).

103

We are now ready to state and prove the DSP with in�uenced-�ow based de�ni-

tions of harm.

Theorem 3.29 (DSP with downgrading). If a �ow originating from a C-uncompromised

location (p, `) harms `, then there is a principal p′ such that p′ causes harm and p′ < `.

Dually, if a �ow ends in an I-uncompromised location (q,m) harms m, then there is

a principal q′ such that q′ causes harm and q′ < `.

Proof. We present the proof for con�dentiality harm; the proof for integrity harm is

completely dual. We consider the di�erent forms of con�dentiality harm enumerated

in De�nition 3.27 in turn. For the �rst three forms of con�dentiality harm p is

causing the harm, so we can choose p′ := p. Since (p, `) is uncompromised, we know

p < ` as required.

For the fourth form of con�dentiality harm, we know that (r, n) is I-uncompromised

(otherwise condition 2 would be violated). We can therefore inductively �nd some

r′ that causes harm, with r′ < I(n). We have I(n) < I(authority(`,m)) (otherwise

condition 2 or 3 would be violated). By the label model axioms, since C(`) 6v C(m),

we have I(authority(`,m)) < C(`), so r′ < C(`).

For the �fth form of con�dentiality harm, we know that C(`) v C(m), so C(`) 4

C(m). We also knowm < C(m) (otherwise p is directly causing harm, so we would be

done). Therefore (q,m) is C-uncompromised. We can inductively conclude that there

is some q′ < C(m) that harms C(m). Since C(`) 4 C(m) we have q′ 4 C(`).

104

3.2.5 In�uenced Flows and Nonmalleability

Although the de�nition of in�uenced �ow is inspired by the de�nition of nonmalleable

information �ow, there are subtle di�erences between our de�nitions and those given

in [CMA17].

The formal de�nition of nonmalleability begins by using a set A of attackers to

divide the space of labels into four quadrants; each label is classi�ed as public or

secret, and as trusted or untrusted. It then requires an untrusted attacker cannot

change whether there is a �ow from public to secret, and that secret data cannot

change whether there is a �ow from trusted to untrusted.

In�uenced �ows have �ner resolution, because they detect �ows between any two

labels, even if those labels are both public or if they are both trusted with respect

to a given attacker. We view these �ows as important to the security of the system,

because whether an attacker is trusted to enforce a given label may change over time.

Another distinction between the in�uenced-�ow based de�nition of harm and

nonmalleability is that our de�nition of harm places a restriction on the integrity

of the data that in�uences endorsement and on the con�dentiality of the data that

in�uences declassi�cation.

Although robust endorsement has been considered in the literature [AM10], the

dual notion of transparent declassi�cation has not been previously studied. We leave

a detailed exploration of the rami�cations of these di�erences to future work.

105

3.3 The Extended Decentralized Label Model

Section 3.2 de�ned a label model as as a collection of principals and labels satisfying

certain properties. In this section we instantiate this de�nition with a language of

information �ow labels and relationships between them. This language both re�nes

and extends the decentralized label model by allowing the speci�cation of �ne-grained

trust relationships.

Principals and trust. The EDLM is parameterized on the set Prin of principals.

Unlike many label models, EDLM does not assume a single trust ordering on prin-

cipals. Instead, statements of trust are delimited: a principal expressing trust must

also specify the extent of that trust. The extent of trust is speci�ed by giving a

category (usually denoted by c, d, e ∈ C).

The trust speci�cation is described by a delimited trust hierarchy (DTH). A de-

limited trust hierarchy H is a C-indexed collection of preorders 4Hc on Prin. The

notation p 4Hc q should be read �p trusts q to protect c in H�. We omit H when it

is clear from the context.

Labels. Figure 3.1 gives the syntax of EDLM labels. The labels are syntactically

similar to those in the DLM, but policies are stated in terms of categories as well as

principals, and the label semantics take the delimited trust hierarchy into account.

The simplest con�dentiality label is a con�dentiality policy {p→ c}. Informally,

if data has the label {p→ c}, it means that principal p is concerned with the secrecy

of the data, and if the secrecy of the data is compromised, p is harmed at level c.

106

p, q, r ∈ Prin

c, d, e ∈ C
Pol ::= {p← c} | {p→ c}

`c,mc ∈ CLbl ::= {p→ c} | `c tmc | `c umc | {}
`i,mi ∈ ILbl ::= {p← c} | `i tmi | `i umi | {}

Figure 3.1: The syntax of EDLM labels

Dually, one can write an integrity policy {p ← c}, which means that principal

p is concerned with the integrity of the data, and if the integrity of the data is

compromised, p is harmed at level c.

As in the DLM, we form more complicated con�dentiality or integrity labels by

taking formal joins and meets of policies. Informally, data labeled with the join of `

andm (denoted `tm) should be treated at least as restrictively as both ` andm, while

the meet (denoted ` um) means data should be no handled more restrictively than

either.4 Finally, we allow empty con�dentiality policies, which describe completely

public data, and empty integrity policies, which describe completely untrusted data.

The �ows-to and is-trusted-to-enforce relations. The �ows-to relation for

EDLM labels is given in Figure 3.2. Data labeled with a con�dentiality policy owned

by p is allowed to �ow to a label owned by p′ if and only if p trusts p′ to protect the

data. Dually, data labeled with an integrity policy owned by p is only allowed to

�ow from a label owned by p′ if p trusts p′ to have protected the data.

4The original DLM [ML97] did not permit label meets, but a semantics for them is given
in [CM06], and they are implemented as part of the Jif language [MZZ+06].

107

p 4c p′

{p→ c} vC {p′ → c′} (conf. policy)
p <c p′

{p← c} vI {p′ ← c′} (int. policy)

{} vC ` ` vI {}

`1 v m `2 v m
`1 t `2 v m

` v m1

` v m1 tm2

` v m2

` v m1 tm2

`1 v m
`1 u `2 v m

`2 v m
`1 u `2 v m

` v m1 ` v m2

` v m1 um2

Figure 3.2: The EDLM �ows-to relation. The �rst line shows the relation between
policies; the second line describes joins, and the third describes meets.

The remainder of the rules codify the idea that {} places no restrictions on

con�dentiality or integrity, that ` t m is more restrictive than both ` and m, and

that ` um is less restrictive than either of them.

The is-trusted-to-enforce relation comes directly from the DTH: q < {p→ c} and

q < {p← c} if and only if p 4c q.

The authority function. We de�ne the authority function for EDLM in terms of

a simpler function defn : Pol → Lbl that gives the de�ning label of a given policy.

The EDLM gives a simple de�nition of defn : Pol → Lbl :

defn({p→ c}) := {p← c} and defn({p← c}) := {p→ c}

This de�nition extends the readers-to-writers function of [ZM01] to support trans-

parent endorsement. It is similar to the hourglass operator that Zagieboylo et al. use

to enforce nonmalleable information �ow [ZSM19].

108

We believe that this is not the only reasonable de�nition of defn. A more restric-

tive choice of the integrity of defn(p) would allow a principal to delegate the ability

to handle data without delegating the ability to make decisions about the policy on

the data. A more public choice of the con�dentiality of defn(p) might be a way of

requiring auditable endorsement. In the limit, if defn(p) describes data that nobody

is trusted to provide, it should become impossible to downgrade p, so our security

de�nitions become equivalent to noninterference. We leave the exploration of this

design parameter to future work.

The authority function is de�ned by extending the defn function to operate on

joins and meets of labels.

Label model axioms. The operations de�ned in this section have been designed

to satisfy the label model axioms of Section 3.2.1 in mind:

Lemma 3.30 (EDLM is a label model). The relations on EDLM labels de�ned above

satisfy the label model axioms.

Proof. By inspection.

3.3.1 Constructing a DTH

In order to implement our model in a large distributed system, we need a way for

principals to learn about the trust hierarchy. In a large distributed system, it is

di�cult to maintain globally consistent information. In particular, each principal

may have only a partial view of the trust hierarchy. Thus the construction of the

hierarchy should be robust with respect to partial information.

109

S, p says q <c r ` p says q <c r (given)

S ` p says q <c p S ` q says r <c s
S ` p says r <c s (trust)

S ` p says q <c r S ` p says r <c s
S ` p says q <c s (transitivity)

S ` p says q <c q (re�exivity)

S ` p says q <c p
p 4[[S]]

c q

Figure 3.3: Construction of a DTH [[S]] from a set S of trust assertions.

A second important property is the ability for principals to express trust rela-

tionships for other principals. For example, p's decision to extend trust to q may

be dependent on an expensive computation, or p may be temporarily unavailable.

In this case, a node that p trusts should be able to speak for p. Of course a prin-

cipal should not be able to a�ect the security of another principal by issuing such

statements.

To achieve these goals, we will now give a construction that takes as input a set

S of statements of the form �p says q <c r,� and outputs a valid DTH [[S]]. The

construction is given in Figure 3.3, and proceeds in two steps. First, we close the set

of statements by allowing trusted parties to make new statements about trust (the

trust rule). In addition, the set is closed under the DTH axioms. In the second step,

we take only statements that a principal makes about itself as the resulting DTH.

This requirement prevents statements from untrusted entities to a�ect the security

of a principal.

110

It is straightforward to check that this construction satis�es the desired proper-

ties: the hard work has been done in de�ning the DTH axioms and analyzing the

properties there. We need to check two things:

Lemma 3.31 (Construction yields a DTH). The relation 4[[S]] satis�es the DTH

axioms.

Lemma 3.32 (Construction is stable under partial information). If S ′ ⊇ S and

p 4[[S]]
c q then p 4[[S′]]

c q.

Proofs. Trivial.

3.4 Application to Fabric

Principals are themselves rei�ed as objects in Fabric. Each principal object speci�es

the set of principals that it trusts. As in the DLM, trust is complete�a principal

either trusts another or it does not. The principal hierarchy is constructed from

these speci�cations, allowing the system to make judgments based on the DLM.

As in our model, Fabric proposes an �is trusted to enforce� relation (4) between

principals and labels, and uses this relation to decide whether to an object to or

receive an object from another node. However, the Fabric policy {o→ r} treats r as

a reader, and Fabric allows an object with that policy to be sent to a node operated

by r (as an owner, o is also able to read an object labeled {o→ r}.

111

This di�erence exposes a shortcoming in the Fabric security model. Consider the

following �ow, where Alice (a), Bob (b), and Chuck (c) are principals with no trust

relationship:

(a, {a→ b}) (b, {a→ b}) (c, {a→ b})

This trace is clearly harmful to Alice: her policy states that only Bob may read the

data, and yet the data ends up on Chuck's node. However, no principal that Alice

trusts performs a harmful step. According to the Fabric trusted-to-enforce relation,

the �rst step is not harmful. The second step is harmful, but Bob is not trusted by

Alice. Thus the Fabric system does not satisfy the decentralized security principle.

Now one might argue that in fact, Bob should implicitly be trusted to enforce

policies that say he may read the data, and thus the second step in this �ow is in fact

a trusted harm step. In other words, the relation p 4q q should be implicit. There

are three problems with this argument.

First, this assumption is inconsistent with the checks performed by the Fabric

language. The Fabric language includes mechanisms for weakening information �ow

constraints through declassi�cation and endorsement. If code is marked as having

the authority of Alice, it is able to remove the label {a→ b}. The intent is that such

code constitutes part of Alice's statement of policy (in addition to the labels on her

data and the statements of trust made by her principal object), and as such should

be checked by Alice herself. Code with the authority of Bob is unable to remove the

policy {a→ b}. Based on these restrictions, a Fabric programmer could reasonably

assume that b 6< b a.

112

Second, the implicit assumption that b <b a prevents the system from enforc-

ing useful real-world security policies. For example, certain psychological records

are allowed to be seen by patients, but only as speci�ed by the doctor. It would

be reasonable to model these restrictions as the policy {doctor → patient}, with

the doctor's conditions for release speci�ed as code blessed with the authority of

the doctor. However, if patient <patient doctor, then the doctor's consent becomes

unnecessary, violating the spirit of the policy.

Third, under the implicit rule that b <b a, the labels {a → b} and {b → a} are

treated identically5. This means that the complicated syntax for specifying policies

is an unnecessary complexity.

One possible �x is to simply change the < relation for Fabric to match the one

presented here, without adding delimited trust statements. However, this would

lead to an overly restrictive system: data owned by Alice would be stuck on nodes

controlled by Alice (or those who act for her). If Alice actually does trust Bob to

handle data that he is able to read, she would have to construct a new principal p

that trusts both she and Bob, and relabel her data from {a→ b} to {p→ p}.

This argument demonstrates that the delimited trust statements that we are

proposing provide a useful middle ground. We leave implementation on delimited

trust in Fabric to future work.

5In fact, both {a → b} and {b → a} are both equivalent to {> → a ∧ b}, where > is the top
principal in the trust ordering, and a ∧ b is the meet of a and b

113

3.5 Related Work

Our notion of in�uenced �ows is motivated by robust declassi�cation, originally pro-

posed by Zdancewic and Myers [ZM01]. Robustness is intended to rule out laun-

dering attacks, where an active adversary is able to abuse allowed declassi�cation

statements in unexpected ways, thereby violating the intended information security

policy. This restriction is formally captured by requiring that the set of information

that a system releases is independent of the information that an attacker controls.

Several re�nements of robust declassi�cation have been de�ned. Chong and My-

ers [CM06] interpret robustness in the context of the DLM and de�ne robustness

with respect to all attackers. Askarov and Myers [AM10] use attacker in�uence and

knowledge to give a semantic characterization of robustness. Myers et al. [MSZ06]

show that robust declassi�cation can be enforced in a language-based setting by

restricting the information that can a�ect the context of a declassi�cation.

Nonmalleability [CMA17] places additional information-�ow restrictions on the

context. Our authority labels generalize this restriction further by allowing a label

model to specify an arbitrary information �ow label.

Clarkson and Schneider [CS08] de�ne a safety hyperproperty as a set of sets of

traces in which �something bad doesn't happen,� and show that various de�nitions

of noninterference are safety hyperproperties. Cecchetti et al. [CMA17] extend this

by showing that robust declassi�cation, transparent endorsement, and nonmalleable

information �ow are all safety hyperproperties. Our de�nitions of �ow and in�uenced

�ow focus on the �potentially bad things� that might happen and enable reasoning

about the conditions under which they occur.

114

EDLM is based on the decentralized label model [ML00], and the design of the

delimited trust hierarchy was partially inspired by Jif's dynamic principals [TZ07].

Other information �ow label models also use trust as the basis for de�ning informa-

tion �ow labels. FLAM labels [ALM15] unify principals and labels. Rx [SHTZ06]

has a more re�ned label model based on role-based access control.

Montagu et al. [MPP13] de�ne a general label algebra structure and use it to

compare several label models. Although label algebras include a notion of authority

and downgrading, they cannot be used to de�ne properties like robust declassi�cation

or nonmalleability because there is no information �ow label associated with a given

authority level.

Our authority label gives a coarse-grained restriction on downgrading, under the

assumption that programs that are given that authority label correctly implement

downgrading policies. Several richer languages for specifying downgrading policies

exist. Chong and Myers [CM04] de�ne eventual downgrading policies that specify

the conditions under which data can be declassi�ed and the policies that control

them after they are downgraded. Reactive information �ow labels [KS20, KAMS19]

specify downgrading policies using �nite automata. Paralocks [BS06] use logical

formulas over a set of mutable lock variables to determine whether a relabeling is

allowed.

115

Chapter 4

Information Leaks via Authorization

Requests

The previous chapter presented a mathematical framework for reasoning about in-

formation �ow control ina partially trusted system. In this chapter we narrow our

focus and consider the impact that partial trust has on dynamic authorization. Dy-

namic authorization refers to any operation that a program or system performs at

run time to determine whether to perform an action. In this chapter we focus on a

speci�c authorization problem: The actions to be authorized are information �ows;

these actions should be permitted if the �ows are compatible with the v relation.

Dynamic authorization is an important feature for building realistic software,

because trust relationships and data policies are often unknown when programs are

written. Dynamic authorization also increases the expressiveness of security-typed

languages. For example, Jif programs often use dynamic authorization primitives to

implement traversals over collections of heterogeneously labeled data.

Language features for dynamic authorization in information �ow type systems

have been studied in the literature [ZM07, TZ07, SHTZ06] and implemented in Jif.

These analyses cannot be readily adapted to a partially trusted platform because

they rely on assumptions that untrustworthy principals can violate.

In particular, most prior work has assumed that dynamic authorization queries

have no visible side e�ects, and therefore have no impact on con�dentiality.1 This

1The only exception we are aware of is the FLAM authorization logic [ALM15]. FLAM's �ow-
limited judgments include an information-�ow label constraining the set of facts needed to produce
a derivation. FLAM assumes that the proof search process only leaks information to the hosts

116

assumption is reasonable in a centralized system: the users can specify their policies

in advance, and the platform can simply read these speci�cations as needed. In a

decentralized setting, however, the state that must be consulted may be distributed

across di�erent nodes, and is likely to span trust domains. As discussed in Sec-

tion 2.2.8, queries to distributed state create read channels; Any security analysis

that ignores these side channels will be unsound.

Accounting for the information �owing through dynamic authorization requests

is important for the Fabric system implementation as well as for the language design,

because the Fabric system itself performs dynamic authorization checks as part of its

normal functioning. For example, when objects are requested from stores, the stores

perform dynamic authorization checks to determine whether it is safe to return the

object to the requesting worker.

Figure 4.1 depicts a situation where authorization requests can cause unsafe �ows.

Dynamically, w sends an authenticated message to store So requesting o. So must

determine whether w is trusted to enforce the con�dentiality of o. If the label on o

is {p →}, then w < L(o) exactly if w < p. To determine whether this is true, So

must read the object representing p, which may be stored on a di�erent store, say

Sp. Furthermore, p may indirectly delegate to w, through principals r or q; in this

case Sr and Sq must be contacted as well. In order for the read to be considered

safe, all of these stores must be trusted to learn about secret.

These concerns are not simply artifacts of the Fabric programming model or

system design; these concerns arise in any context involving authorization queries

holding those facts, but does not model distributed proof construction.

117

So

Sp

Sq Sr

o : {p→}

p

q r

1 if (secret)

2 read o;

w

read o

does w < p?

Figure 4.1: Example of read channels in dynamic authorization. To satisfy the
request from w, store So must determine whether w < L(o) = {p →}, which may
require it to fetch p and even p's delegates q and r.

between partially trusting entities. As a simple example, consider an authentication-

as-a-service system such as OAuth [HL11]. The goal of these systems is to allow

users to reuse existing accounts (such as Facebook or Google accounts) to identify

themselves to third parties. This approach saves application providers from handling

the tricky details of implementing authentication properly, while also reducing the

proliferation of accounts that each user must manage.

Many users are justi�ably reluctant to make use of these services, because they

worry about the privacy implications [MH03b]. Some users do not want to allow

the authentication providers to learn what websites they are logging into, when they

log into them, or how often they do. Others are willing to allow these providers to

learn that information, but are worried about that information leaking through the

providers to their friends or the public at large.

118

In a setting like Fabric, where computations involve more complicated commu-

nication patterns and a �ner-grained notion of trust and authority, side channels

caused by authorization queries pose a greater risk. Untrusted parties can create

programs that exploit the authorization side channel to leak arbitrary information.

In this chapter we build a formal model of a system and programming language

that explicitly account for authorization query side channels. High-level authoriza-

tion queries are not built into the language model; instead, we provide low-level

primitives with types that explicitly account for these side channels. We then show

that higher-level authorization queries can be implemented in this low-level language.

The soundness of the type system then shows that the higher-level operations are

safe.

Existing information �ow analyses assume that the set of labels forms a lat-

tice [MPP13]. In particular, given two labels `1 and `2, one can join them to form

a third label `1 t `2 that is more restrictive than each of them. In a decentralized

setting there may be no principal trusted to enforce the policy represented by `1t `2.

Data with such a label could be stored using replication [ZCMZ03], but we take a

simpler approach: Our analysis does not assume that labels form a lattice; it merely

assumes they form a preorder.

Revocation is an important consideration when considering distributed authoriza-

tion queries [ALM15]. Our formal analysis follows previous information �ow type

systems by assuming that the principal hierarchy does not change during the execu-

tion of a program [HTHZ05, TZ07]. This assumption is a reasonable approximation

of Fabric's transaction mechanism, which limits the side e�ects of a computation that

119

depends on revoked authority [SHTZ06]. We discuss the limits of this approxima-

tion and suggest a possible method for extending our analysis to handle revocation

in Section 4.6.

4.1 System Overview

Our goal is to reason about the interplay between authorization and information

�ow. Any operation that causes information to �ow from label ` to label m should

only be executed if authorized by the owners of ` and m. Our calculus allows us to

write programs that check whether these �ows have been authorized while ensuring

that the authorization query itself only causes authorized �ows.

Before diving into the formal presentation of our language, we give an overview

of its key design decisions.

Ensuring the integrity of the authorization state is crucially important, but is

orthogonal to the problem of covert channels arising through authorization. There-

fore, in this chapter we ignore integrity. Ignoring integrity permits a very simple

label model: labels are just principals, and information can �ow from the label cor-

responding to principal p to label represented by q whenever p delegates to q.

As in Fabric, principals are �rst-class objects: they have an identity encoded

as a reference, and state de�ning the set of principals that they directly delegate

to. The delegation relation is de�ned as the re�exive transitive closure of the direct

delegation relation.

120

For simplicity, a principal can only directly delegate to either no principals, to

all principals, or to exactly two principals. This is not a signi�cant restriction: a

principal can delegate to any �nite set of trusted principals by creating a chain

of intermediate principals, each delegating to one of the trusted principals and to

another intermediate principal. Since delegation is transitive, directly delegating to

the �rst intermediate principal causes indirect delegation to all of the other principals.

We are interested in capturing the information �ows caused by dereferencing

global references; we therefore explicitly model the distributed state of the system.

Objects are stored by principals; we assume the principals that store an object are

able to observe accesses to that object. For simplicity, we make no distinction be-

tween stores and principals.

The types of references include an access label that constrains the store holding

the referenced objects. In addition, delegation sets require an access label that

constrains the set of stores that may be contacted while determining the complete

delegation set of that principal. This set includes the store holding the principal, as

well as the stores of the principal's direct and transitive delegatees.

There is no primitive for querying the acts-for relation, since our goal is to show

that such queries are well typed and therefore exhibit no unsafe �ows. Instead, the

program must compute the acts-for relation by directly traversing the principal data

structures. This operation is most naturally expressed as a recursive function in a

functional style, so we have chosen to model a functional language based on lambda

calculus extended with references. Figure 4.2 shows the implementation of acts-for

121

1 actsfor :=
2 λaq.λpr.λqr.case pr = qr of

3 | some feq → some (use feq in [pr < qr])

4 | none → let fqr : q = * qr with [aq 4 aq] in

5 case fq : q of

6 | P → some (use fqr, fq in [pr < qr])

7 | ∅ → none

8 | {ar,br} → case (((actsfor

9 aq with [aq 4 >])

10 pr with [aq 4 >])

11 ar with [aq 4 aq]) of

12 | some fpa → some (use fqr, fq, fpa in [pr < qr])

13 | none → case (((actsfor

14 aq with [aq 4 >])

15 pr with [aq 4 >])

16 br with [aq 4 aq]) of

17 | some fpb → some (use fqr, fq, fpb in [pr < qr])

18 | none → none

Figure 4.2: Actsfor implementation. We have appended �r� to the names of refer-
ences: pr, qr, ar and br. The function is parameterized by aq, the access label of the
delegatee. The function returns some if pr acts for qr, and none otherwise. It begins
by checking whether the two references are equal (line 2), returning true if they are.
If not, it fetches q (line 4) and discriminates on the delegation set. In the case that
q delegates to two principals (ar and qr), the function recursively compares pr to
the two delegatees (lines 8 and 13).

in our calculus. Section 4.4 shows that the function is well typed, and therefore does

not leak information.

The key to typing the encoding of acts-for in our model is that the type of the

function requires a high pc. This requirement re�ects the fact that programs cannot

query the trust hierarchy willy-nilly, but must be careful to do so only in contexts

that do not reveal secret information.

122

1 int {p→p} x; int {q→q} y;

2 if (actsfor(p, q))

3 x = y;

Figure 4.3: An example Fabric program that uses dynamic acts-for checking

To show that programs in our language comport with policies, our static analysis

must be able to connect the dynamic information that the acts-for function learns

by traversing the data principal structures to the static information �ow checks. For

example, the Fabric program in Figure 4.3 is safe because the �ow on line 3 only

occurs if acts-for function returned true. The Fabric type system is able to do this

kind of reasoning because the acts-for operation is built in, but our calculus needs a

more general mechanism.

We accomplish this by allowing programs in our calculus to manipulate security

proofs as �rst-class objects. Thus the acts-for function can return not only a boolean

indicating whether one principal acts for another, but also a proof that it does; the

type system can then reason that since the program was able to construct a proof

that a �ow is safe that the �ow must actually be safe.

Although we avoid revocation for simplicity, we have made a number of design

decisions that will make our language suitable for the integration of revocation. We

avoid implicit coercion of values with less restrictive labels to values with more re-

strictive labels, because in the presence of revocation, labels that are more restrictive

at one time may be less restrictive in the future. Instead, we require explicit coer-

cion, thereby providing a concrete program point at which information �ows between

labels.

123

4.2 Language and System Model

We now turn to the formal model of our language and system. Our language has

a number of moving parts, so for clarity we will introduce the syntax, operational

semantics and typing feature by feature.

4.2.1 Standard Features

Figure 4.4 shows the standard features of our language. We start with a simply

typed lambda calculus. We do not have booleans, opting instead for maybe types.

Everything shown in Figure 4.4 is completely standard, except that we carry some

extra context for the features discussed below. Our language has references (discussed

in �4.2.3 below), so our typing relation requires a heap context H to track the types of

references and our reduction relation requires a representation s of the global state.

Our language also keeps track of the side-e�ects of reads (�4.2.3), which requires

a pc parameter to the typing judgment and a log of events ~a in the operational

semantics. Finally, our language has a form of dependent types for reasoning about

information �ow (�4.2.4), for which we require additional annotations on function

types and function applications; these annotations are explained in Section 4.2.4.

4.2.2 Principals and Delegation

Principals in our language are represented by references ` drawn from a set LocVar

of global locations. This choice is consistent with Fabric, which also represents

principals as references to objects of class Principal.

124

125

x ∈ TermVar

e, f ∈ Expr ::= x | () | let x = e in e ′ | λx .e | e v with f

| some e | none | case e of • some x → e ′ • none → e ′′

v, pc ∈ V alue ::= x | () | λx .e
τ ∈ IFType ::= Unit |Maybe τ | (x :τ)

pc−→ τ ′

E ∈ EvalContext ::= let x = [◦] in e ′ | some [◦] | [◦]v with f | v v ′with [◦]
Γ ∈ TypeContext ::= ◦ | Γ[x 7→ τ]

Type system: H ; Γ; pc ` e : τ

Γ(x) = τ
H ; Γ; pc ` x : τ

tsId H ; Γ; pc ` () : Unit
tsUnit

H ; Γ[x 7→ τ]; pc ` e : τ H ; Γ[x 7→ τ]; pc ` e ′ : τ ′

H ; Γ; pc ` let x = e in e ′ : τ ′
tsLet

H ; Γ; pc ` e : τ
H ; Γ; pc ` some e : Maybe τ

tsSome
H ; Γ; pc ` none : Maybe τ

tsNone

H ; Γ; pc ` e : Maybe τ H ; Γ[x 7→ τ]; pc ` e1 : τ ′ H ; Γ; pc ` e2 : τ ′

H ; Γ; pc ` case e of • some x → e1 • none → e2 : τ ′
tsMaybeCase

Small-step operational semantics: 〈~a, e, s〉 → 〈~a′, e ′, s ′〉

〈~a, e, s〉 → 〈~a′, e ′, s ′〉
〈~a,E [e], s〉 → 〈~a′,E [e ′], s ′〉

sosCtx 〈~a, let x = v in e ′, s〉 → 〈~a, e ′[x 7→ v], s〉
sosLet

〈~a, case some v of • some x → e1 • none → e2, s〉 → 〈~a, e1[x 7→ v], s〉
sosCaseSome

〈~a, casenoneof • some x → e1 • none → e2, s〉 → 〈~a, e2, s〉
sosCaseNone

Figure 4.4: Syntax and semantics for standard language features.

126

` ∈ LocVar

v ∈ V alue ::= . . . | ` | P | ∅ | {v1, v2} | > | ⊥
e ∈ Expr ::= . . . | ` | P | ∅ | {e1, e2} | > | ⊥

| case f : v of • P → e1 • ∅ → e2 • {x1, x2} → e3

τ ∈ IFType ::= . . . | DelA | Prin

Type system: H ; Γ; pc ` e : τ

H ; Γ; pc ` P : DelA
tsAllPrin

H ; Γ; pc ` ∅ : DelA
tsNoPrin

H ; Γ; pc ` e : DelARef @A H ; Γ; pc ` e ′ : DelARef @A
H ; Γ; pc ` {e, e ′} : DelA

tsMeet

H ; Γ; pc ` v : DelA H ; Γ[f 7→ Proof v = P]; pc ` e1 : τ ′

H ; Γ[f 7→ Proof v = ∅]; pc ` e2 : τ ′

H ; Γ[f 7→ Proof v = {x1, x2}][x1 7→ DelARef @A][x2 7→ DelARef @A]; pc ` e3 : τ ′

H ; Γ; pc ` case f : v of • P → e1 • ∅ → e2 • {x1, x2} → e3 : τ ′
tsDelCase

H ; Γ; pc ` > : Prin
tsTop

H ; Γ; pc ` ⊥ : Prin
tsBot

H ; Γ; pc ` e : DelARef @A
H ; Γ; pc ` e : Prin

tsPrin

Small-step operational semantics: 〈~a, e, s〉 → 〈~a′, e ′, s ′〉

〈~a, case f : ∅of • P → e1 • ∅ → e2 • {x1, x2} → e3, s〉 → 〈~a, e2[f 7→ stmt [∅ = ∅]], s〉
sosCaseTop

〈~a, case f : Pof • P → e1 • ∅ → e2 • {x1, x2} → e3, s〉 → 〈~a, e1[f 7→ stmt [P = P]], s〉
sosCaseBot

〈~a, case f : {`1, `2}of • P → e1 • ∅ → e2 • {x1, x2} → e3, s〉
→ 〈~a, e3[f 7→ stmt [{`1, `2} = {`1, `2}]][x1 7→ `1][x2 7→ `2], s〉

sosCaseMeet

Figure 4.5: Syntax and semantics for language features for principals and delegation

s ` ` < `
dynAfRefl s ` ` < `′ s ` `′ < `′′

s ` ` < `′′
dynAfTrans

s(`) = {`1, `2}
s ` `′ < `1

s ` `′ < `
dynMeetLeft

s(`) = {`1, `2}
s ` `′ < `2

s ` `′ < `
dynMeetRight

s ` `′ < ⊥
dynBot s(`′) = P

s ` ` < `′
dynAll

Figure 4.6: Relation de�ning ` 4 `′.

Since principals are references, they must be explicitly dereferenced in order to

determine delegation relationships. The typing constraints for references described

in Section 4.2.3 prevent read channels for dereferencing in general. Therefore, the

type system also rules out read channels caused by authorization queries.

Dereferencing a principal yields a delegation set, which is a value of type DelA.

As discussed in Section 4.1, a delegation set may be either the set of all principals P,

the set containing no principals ∅, or a set containing exactly two principals {`1, `2}.

The A in DelA is an access label and will be discussed further in Section 4.2.3.

The case statement allows discrimination on delegation sets. Like function ap-

plication, case statements must manipulate �rst-class proofs; we therefore defer dis-

cussion of the typing and semantics rules to Section 4.2.4.

Principals have type Prin. In addition to references to delegation sets, there are

two special principals > and ⊥. > and ⊥, which are useful for specifying access

labels. > and ⊥ are not references; they contain no delegation state. By de�nition,

> delegates to no principals (besides itself) while ⊥ delegates to all principals.

127

Figure 4.6 contains the formal de�nition of the acts-for relation. The de�nition

is parameterized on the state; the judgment has the form s ` `1 < `2 where `1

and `2 are Prins; it is simply a formalization of the re�exive transitive closure of

the direct delegation relation, where a principal having the delegation set {`1, `2}

directly delegates to both `1 and `2.

4.2.3 Distributed State

Figure 4.7 shows the syntax and semantics for handling distributed state in our

language. Global references ` are drawn from a set of location variables LocVar ;

these are intended to model Fabric OIDs.

Like Fabric OIDs, each reference is located on a store, and we assume that each

store is operated by a principal. The function storeof maps locations to the princi-

pals holding those locations. For example, if LocVar is the set of Fabric OIDs, then

storeof(fab://store/onum) would give fab://store/0 since the principal repre-

senting the store is stored at onum 0 by convention.

The new expression is used to allocate new references; the store on which to create

the object is explicitly speci�ed. We assume that there is a deterministic allocation

function alloc that gives a new reference on a store; we assume that the returned

reference depends only on the portion of the state labeled `. This requirement is

why we use a cryptographically strong pseudorandom number generator for OID

allocation in Fabric.

References are read using the let f : x = ∗v withF in e syntax, which binds

x to the value referenced by v and then evaluates the expression e. We use this

128

129

` ∈ LocVar

e ∈ Expr ::= . . . | ` | wrap ewithF

| new e@v withF | let f : x = ∗v withF in e

τ ∈ IFType ::= . . . | τ Ref @A

H ∈ HeapContext ::= ◦ | H [` 7→ τ@A]

s ∈ State ::= ◦ | s [` 7→ v]

a ∈ Event ::= read ` | write ` v

Type system: H ; Γ; pc ` e : τ

H (`) = τ@A
H ; Γ; pc ` ` : τ Ref @A

tsLoc

H ; Γ; pc ` e : 〈τ〉`
H ; Γ; pc ` A : Prin
H ; Γ; pc ` F : Proof pc 4 A

H ; Γ; pc ` new e@AwithF : 〈τ〉`Ref @A
tsNew

H ; Γ; pc ` v : τ Ref @A
H ; Γ; pc ` F : Proof pc 4 A
H ; Γ[f 7→ Proof x = ∗v][x 7→ τ]; pc ` e : τ ′

H ; Γ; pc ` let f : x = ∗v withF in e : τ ′
tsRead

H ; Γ; pc ` e : τ Ref @A′ H ; Γ; pc ` F : Proof A 4 A′

H ; Γ; pc ` wrap ewithF : τ Ref @A
tsWrap

Small-step operational semantics: 〈~a, e, s〉 → 〈~a′, e ′, s ′〉

`′ = alloc (s , `,A)
〈~a,new 〈v〉`@AwithF , s〉 → 〈~a ·write `′ 〈v〉`, `′, s [`′ 7→ 〈v〉`]〉

sosNew

s(`) = v
〈~a, let f : x = ∗`withF in e, s〉 → 〈~a · read `, e[f 7→ stmt [v = ∗`]][x 7→ v], s〉

sosRead

〈~a, let f : x = ∗(wrap `′withF ′)withF in e, s〉
→ 〈~a · read `′, e[f 7→ stmt [v = ∗`′]][x 7→ v], s〉

sosReadWrap

Figure 4.7: Syntax and semantics for language features for distributed state

extended syntax because we bind a proof f along with the value x that is returned.

We defer the explanation of this proof term as well as the various with clauses until

Section 4.2.4.

Our language does not allow the existing state to be mutated. Our analysis could

be extended to reason about mutable state, but this would require keeping track of

potential changes to the delegation state as the program executes. This analysis

could be handled using a type-and-e�ect system or by modeling transactions in the

operational semantics [SHTZ06], but we felt that this additional language complexity

would obscure our handling of read channels and dynamic authorization.

The types of references include an access label A which speci�es a bound on

the store on which the referenced object resides. Our language avoids subtyping,

so references to objects on stores must be explicitly wrapped to be typed with a

di�erent access label. The tsLoc rule enforces this constraint, while the sosWrap

shows that wrapped references are treated the same way as unwrapped references.

Our goal with this language is to track the information that stores can learn

by observing reads and writes to the references they store. To make this analysis

easier, we record read and write events in a log ~a that is carried with the state of the

system. The sosRead and sosNew rules update the log to record reads and writes

respectively.

4.2.4 Dependent Types and Proofs

Figure 4.8 contains the syntax and semantics for the features used to manipulate

�rst-class proofs. The types of proof objects describe the constraints that the proofs

130

131

e ∈ Expr ::= . . . | use e1, .. , eN in [c] | stmt [c] | v = v ′

τ ∈ IFType ::= . . . | (x :τ)
pc−→ τ ′ | Proof c

E ∈ EvalContext ::= . . . | e v with [◦] | [◦]v with f | use v1, .. , vi , [◦], e1, .. , ej in [c]

c ∈ Constraint ::= . . . | v = v ′ | v = ∗v ′ | v1; ... ; vN 4 v ′1; ... ; v ′M

Type system: H ; Γ; pc ` e : τ

H ; Γ[x 7→ τ]; pc ′ ` e : τ ′

H ; Γ; pc ` λx .e : ((x :τ)
pc′−→ τ ′)

tsLambda

H ; Γ; pc ` e : ((x :τ)
pc′−→ τ ′) H ; Γ; pc ` v : τ [x 7→ v]

H ; Γ; pc ` F : Proof pc 4 (pc ′[x 7→ v])

H ; Γ; pc ` e v withF : τ ′
tsApply

H ; Γ; pc ` e1 : Proof c1 .. H ; Γ; pc ` eN : Proof cN
c1, .. , cN ` c

H ; Γ; pc ` use e1, .. , eN in [c] : Proof c
tsProof

H ; Γ; pc ` stmt [c] : Proof c
tsStmt

H ; Γ; pc ` v1 : τ H ; Γ; pc ` v2 : τ
H ; Γ; pc ` v1 = v2 : MaybeProof v = v ′

tsEq

Small-step operational semantics: 〈~a, e, s〉 → 〈~a′, e ′, s ′〉

〈~a, (λx .e) v withF , s〉 → 〈~a, e[x 7→ v], s〉
sosApp

〈~a, v = v , s〉 → 〈~a, some stmt [v = v], s〉
sosEqTrue

v ! = v ′

〈~a, v = v ′, s〉 → 〈~a′,none, s ′〉
sosEqFalse

Figure 4.8: Language features for proofs and dependent types

witness; constraints c express the equality of two values (v = v′), the state of the

global store (v = ∗v ′), or a delegation relationship (v < v ′).

There are two types of proof values. Base proofs of the form stmt [c] are in-

tended to model self-validating statements about the state of the system. State-

ments of equality are easy to validate; statements of the form stmt [v = ∗`] represent

signed statements from the authoritative store of `. Composite proofs have the form

use v1, .. , vN in [c]. These proofs are valid if the statements proved by the vi imply

c.

A key aspect of a well-formed con�guration is that all of the assertions (base

proofs) contained in it are valid. For this reason we disallow base proofs in the

surface syntax; they are only introduced during the execution of the program. The

proof of type preservation shows that this property continues to hold throughout

execution.

Proofs are introduced by the dynamic tests of the claims that they witness. State-

ments of equality are introduced by the equality test in the sosEqTrue rule. This

shows why we have chosen maybe types instead of booleans: equality tests return

proofs in the positive case.

Similarly, statements about dereferenced locations are bound by the sosRead

rule shown previously (Figure 4.7). These are intended to represent the signed pack-

ets that are returned from stores when objects are requested.

Statements about the state of the acts-for hierarchy are obtained by traversing

delegation sets: the statement case f : v of • P → e1 • ∅ → e2 • {x1, x2} → e3 binds

f to a proof that the delegation set v has the appropriate value.

132

c1, .. , cN ` cj
statId c1, .. , cN ` x ′ = ∗x c1, .. , cN ` x ′ = P

c1, .. , cN ` y < x
statAllPrincipals

c1, .. , cN ` v = v ′

c1, .. , cN ` v < v ′
statAfRefl

c1, .. , cN ` v < v ′ c1, .. , cN ` v ′ < v ′′

c1, .. , cN ` v < v ′′
statAfTrans

c1, .. , cN ` x ′ = ∗x
c1, .. , cN ` x ′ = {x1, x2}
c1, .. , cN ` y < x1

c1, .. , cN ` y < x
statMeetLeft

c1, .. , cN ` x ′ = ∗x
c1, .. , cN ` x ′ = {x1, x2}
c1, .. , cN ` y < x2

c1, .. , cN ` y < x
statMeetRight

Figure 4.9: The static implication relation c1, .. , cN ` c. The compound constraint
v1; ... ; vN 4 v ′1; ... ; v ′M is equivalent to the N · M constraints vi 4 v ′j . Rules for
symmetry, transitivity and re�exivity of = as well as for deconstructing compound
acts-for constraints are elided.

Proofs can be combined using the use construct, which creates a proof of a

derived constraint by combining proofs of the premises. For example, a program can

combine proofs that d = ∗q and d = P to conclude that q 4 p for any p, since q's

delegation set says it delegates to all principals. The rules for combining constraints

are given in Figure 4.9.

Proofs terms must be provided by the programmer whenever the safety of a

statement relies on a delegation relationship. This is the purpose of the with clauses

on function application (which may raise the pc), allocation and dereferencing (which

may leak the pc to the store holding the object being fetched), and wrapped pointers

(which must prove that the actual store receiving the information is trusted to enforce

the access label).

133

4.2.5 Labeled Values and Relabeling

The types we have seen so far do not describe con�dential values�indeed none of the

types described so far have information �ow labels. We have been able to encapsulate

the features for information �ow tracking in one place by adapting the security monad

design from the Dependency Core Calculus [ABHR99] to our setting. Figure 4.10

shows the relevant parts of the syntax and semantics.

Bracketed values 〈v〉` represent labeled information; they have types that are also

bracketed. In order to associate a single label to each part of the state, we prevent

nested brackets. To achieve this goal, we do not allow users to insert brackets into

their programs directly; instead they must use the return construct2.

The bindL′ x = e with F in e ′ syntax is used to extract values out of brackets.

In this expression, e has a bracketed type, so dynamically it will produce a bracketed

value. Within e ′, the variable x will be bound to the (unbracketed) value produced

by e. It can therefore use this value in case statements, function calls, or any of the

other expressions that operate over unbracketed values. The catch is that the pc is

raised to L′ when type checking e ′, so all of the side-e�ects of operations that make

use of x must be above level L′. Similarly, the result of evaluating e ′ must also be

labeled L′. To ensure that these �ows are safe, the programmer must supply a proof

F that both the pc and L can �ow to L′.

The premise of the sosBind rule deserves mention. Instead of simply performing

a substitution of x in e ′, the bind statement executes e ′ completely in a single step.

2The choice of the keywords bind and return re�ect the fact that these operations almost form
a monad, a standard design pattern used in functional programming. We say almost because the
double-bracketing restriction prevents the monadic functor from being a total function.

134

135

e ∈ Expr ::= . . . | bind` x = e with F in e ′ | return` e | 〈v〉`
τ ∈ IFType ::= . . . | 〈τ〉`

Type system: H ; Γ; pc ` e : τ

H ; Γ; pc ` e : 〈τ〉L
H ; Γ; pc ` L′ : Prin
H ; Γ; pc ` F : Proof pc;L 4 L′

H ; Γ[x 7→ τ];L′ ` e ′ : 〈τ ′〉L′

H ; Γ; pc ` bindL′ x = e with F in e ′ : 〈τ ′〉L′
tsBind

H ; Γ; pc ` e : τ
H ; Γ; pc ` returnL e : 〈τ〉L

tsReturn

H ; Γ; pc ` v : τ H ; Γ; pc ` ` : Prin
H ; Γ; pc ` 〈v〉` : 〈τ〉`

tsProtect

Small-step operational semantics: 〈~a, e, s〉 → 〈~a′, e ′, s ′〉

〈~a, e ′[x 7→ v], s〉 →∗ 〈~a′, v ′, s ′〉
〈~a,bind`′ x = 〈v〉` with F in e ′, s〉 → 〈~a′, v ′, s ′〉

sosBind

〈~a, return` v , s〉 → 〈~a, 〈v〉`, s〉
sosReturn

Figure 4.10: Language features for information �ow

This choice enables us to state our de�nition of �ow in terms of single steps in

the operational semantics. In a sense, this encodes our decision to ignore timing

channels�the number of steps can be thought of as a crude measure of execution

time; by making all computations that can observe labeled values execute in a single

step, we clobber this timing information. This is the same approach taken in the

de�nition of (
Λ
�) in Chapter 3.

4.3 Security Condition

With our language fully de�ned, we now turn to the security properties provided by

the type system. Typically, information �ow security is measured by some form of

noninterference, which informally says that if an attacker is not allowed to distinguish

between two inputs to a program, then they should not be able to distinguish the

between the outputs of the program. This perspective divides the state of the system

into things that the attacker is allowed to learn (the public state) and things the

attacker is not allowed to learn (the private state).

This perspective assumes that we can ignore �ows that are compatible with the

�ows-to relation, and then proves that there are no (non-ignored) �ows. In our

setting, the question of whether a principal is allowed to learn something depends

on the state of the program. Fortunately, the �ow model de�ned in Chapter 3

is well suited to our task, because it makes all �ows explicit, and then allows us to

characterize whether �ows are safe or unsafe in the environment in which they occur.

136

In this section we apply the abstract de�nitions from Chapter 3 to our language

model, and prove that there are no unsafe �ows. Our language does not include

primitives for downgrading, so we do not consider in�uenced �ows.

4.3.1 De�nitions

Recall the de�nition of �ow from Chapter 3: we say that information �ows from h to

k if we can start with a con�guration C1 which steps to C ′1, alter only the �h part� of

C1 to form C2, and step to a new con�guration C ′2 which di�ers in the �k part�. We

refer to the 4 con�guration C
(′)
i = (C1, C

′
1, C2, C

′
2) as the witness to the �ow. This is

summarized in the formal de�nition:

De�nition 4.1 (Flow). h �ows to k with witness C
(′)
i (written h C1

C2

C′
1

C′
2
k) if

• Ci → C ′i ,

• C1 and C2 di�er only at h, and

• C ′1 and C ′2 di�er at k.

This de�nition requires us to de�ne what it means for two con�gurations to agree

(or di�er) at a given label.

De�nition 4.2. (con�guration agreement at `). We say that two con�gurations

C1 = 〈~a1, e1, s1〉 and C2 = 〈~a2, e2, s2〉 agree at ` (written C1 =` C2), if ~a1 and ~a2

agree at `, s1 and s2 agree at `, and e1 and e2 agree at `.

For memories this is easy to de�ne, because each location ` has an associated

label:

137

De�nition 4.2′. (memory agreement at `). We say that states s1 and s2 agree at `

(written s1 =` s2) if for all locations `
′ such that ` = labelof(`′), s1(`′) = s2(`′).

Similarly, each `′ has an associated store that is able to see reads to `′, so we can

de�ne equality of event streams:

De�nition 4.2′′. (event sequence agreement at `). Two sequences of events α∗1 and

α∗2 agree at ` (written α∗1 =` α
∗
2) if restricting the α∗i to reads of locations `′ with

store− of `′ = ` yields the same sequences.

The di�cult part of the de�nition is the agreement of two programs at label `.

To allow us to reason about programs that are indistinguishable at a given level, we

introduce bracketed values 〈v〉`. Bracketed values are considered equal to all labels

other than `:

De�nition 4.2′′′. (expression agreement at `). Two bracketed values 〈v1〉`′ and 〈v2〉`′

are equal at level ` if `′ 6= ` or if v1 =` v2. Other expressions are equal at level ` if

they are structurally similar and their corresponding subexpressions are equal at level

`.

This notion of agreement at ` is di�erent from the usual notion of low-equivalence

commonly used to de�ne noninterference. Low-equivalence requires agreement at all

labels lower than `, whereas our de�nition requires agreement only at ` itself. The

reason for this choice is that we consider the label order to be ephemeral, and consider

both safe and unsafe �ows to be important.
Our de�nition of �ow is stated in terms of single steps in the operational seman-

tics, whereas typical de�nitions of noninterference allow one of the two con�gurations
to take an arbitrary number of steps to �catch up� to the other. Consider the follow-
ing program for example:

138

1 P := if secret

2 then let x = () in ()

3 else ()

Regardless of the value of secret, this program evaluates to (), but it may take

di�erent numbers of steps to do so. We are deliberately ignoring timing channels, so

we want these two evaluations to look equivalent.

Our approach is to set up the semantics so that computations that branch on high

data always appear to complete in a single step. This approach is encoded in the

sosBind rule: a con�guration that binds a value completes the entire high context

in a single step.

With the de�nition of a �ow in hand, we can now describe when �ows are safe:

De�nition 4.3. (safe �ows). We say a �ow h C1
C2

C′
1

C′
2
k is safe if C

(′)
i ` h 4 k′.

Note that there are four possible con�gurations in which to evaluate ` 4 `′ (C1,

C2, C
′
1 and C

′
2), and we require the delegation relationship to hold in all four of them.

Our security theorem will say that well-formed con�gurations do not exhibit

unsafe �ows. This requires a de�nition of well-formedness. Naturally, well-formed

programs must be well typed. In addition, we require that all of the assertions

claimed by the program must be true, and that there are no double-bracketed values.

These requirements are summarized in the following de�nition:

De�nition 4.4. (well-formed con�guration). We say that a con�guration C =

〈~a, e, s〉 is well-formed, written pc ` C : τ if there exists some heap context H

such that

• H ; ◦; pc ` e : τ

139

• H ` s, and

• all of the statements in both e and s are satis�ed by s.

These extra assumptions are trivially satis�ed by programs that a user writes,

as we disallow both base statements and bracketed terms. However, we need these

conditions to reason about partially evaluated programs.

4.3.2 Proof of Security

We now present a sketch of the proof that our type system enforces security as de�ned

above.

Theorem 4.5. (Small-step security) Suppose that we have a �ow h C1
C2

C′
1

C′
2
k, and

that for some pc, pc ` Ci : τ . Then C
(′)
i ` h 4 k.

Proof. It su�ces to show that C1 ` h 4 k . C2 ` h 4 k follows by symmetry, while

C ′i ` h 4 k follows from the following lemma:

Lemma 4.6. (Acts-for is preserved) If C → C ′ then C ` h 4 k implies C ′ ` h 4 k .

Further, if h and k are bound in the state of C , then the converse also holds.

Proof. This lemma is where we exploit the lack of mutation, as discussed in Sec-

tion 4.2.3. It follows trivially by induction on the derivation of C → C ′.

By the de�nition of �ow, we know that C1 → C ′1; We proceed by induction on

this derivation. We will generalize our inductive hypothesis somewhat: instead of

assuming that C1 and C2 di�er only on a single label h, we allow them to di�er on a

140

set of labels H. We show that there is at least one label h ∈ H for which C1 ` h 4 k .

The claimed theorem then follows from the case where H = {h}.

Let h be an arbitrary label not in H (the theorem is trivial if no such h exists);

by the de�nition of �ow, we know that C1 =h C2, and by inspection we can conclude

that the derivation C2 → C ′2 uses the same rule as the derivation C1 → C ′1.

We now consider the reduction rules in turn:

Context rule We have the following situation:

(Ĉ1 :=) 〈~a1, ê1, s1〉 → 〈~a′1, ê′1, s ′1〉 (:= Ĉ ′1)
(C1 :=) 〈~a1,E1[ê1], s1〉 → 〈~a′1,E1[ê′1], s ′1〉 (:= C ′1)

sosContext

(Ĉ2 :=) 〈~a2, ê2, s2〉 → 〈~a′2, ê′2, s ′2〉 (:= Ĉ ′2)
(C2 :=) 〈~a2,E2[ê2], s2〉 → 〈~a′2,E2[ê′2], s ′2〉 (:= C ′2)

sosContext

We must check the following fact about evaluation contexts:

Lemma 4.7. (`-equal evaluation contexts) If E1[e1] =` E2[e2] then e1 =` e2

and for all e ′1 =` e
′
2, we have E1[e ′1] =` E2[e ′2].

Proof. Straightforward by induction on the structure of E .

This lemma tells us that for all h /∈ H, Ĉ1 =h Ĉ2. Moreover, Ĉ1 6=k Ĉ2. We can

therefore apply the inductive hypothesis to conclude that Ĉ1 ` h 4 k for some

h ∈ H. Since C1 and Ĉ1 have the same state, we can conclude that C1 ` h 4 k

as required.

Straightforward cases The proof for the non-inductive rules (App, Let, New,

Read, EqTrue, EqFalse, and the Case rules) all follow immediately. As an

141

example, we give the details for the Let rule. We have the following situation:

(C1 :=) 〈~a1, let x = v1 in e ′1, s1〉 → 〈~a1, e
′
1[x 7→ v1], s1〉 (:= C ′1)

sosLet

(C2 :=) 〈~a2, let x = v2 in e ′2, s2〉 → 〈~a2, e
′
2[x 7→ v2], s2〉 (:= C ′2)

sosLet

Since C1 =h C2, we know that ~a1 =h ~a2, v1 =h v2, e
′
1 =h e

′
2 and s1 =h s2. From

this we conclude that e ′1[x 7→ v1] =h e ′2[x 7→ v2], and thus C ′1 =h C ′2 for all

h /∈ H. Since C ′1 6=k C ′2, it must be the case that k ∈ H. By re�exivity of

acts-for, C1 ` k 4 k so choosing h := k completes this case.

The other straightforward cases have the same structure: show that C ′1 =h C
′
2

and then choose h := k using re�exivity.

Bind This is the interesting case. We have

(Ĉ1 :=) 〈~a1, ê1[x 7→ v1], s1〉 →∗ 〈~a′1, v ′1, s ′1〉 (:= Ĉ ′1)
(C1 :=) 〈~a1,bind`′ x = 〈v1〉` with f in ê1, s1〉 → 〈~a′1, v ′1, s ′1〉 (:= C ′1)

sosBind

(Ĉ2 :=) 〈~a2, ê2[x 7→ v2], s2〉 →∗ 〈~a′2, v ′2, s ′2〉 (:= Ĉ ′2)
(C2 :=) 〈~a2,bind`′ x = 〈v2〉` with f in ê2, s2〉 → 〈~a′2, v ′2, s ′2〉 (:= C ′2)

sosBind

Now, there are two possibilities: either ` ∈ H or ` /∈ H. If ` /∈ H then we

know 〈v1〉` =` 〈v2〉` so v1 =` v2. Therefore ê1[x 7→ v1] =` ê2[x 7→ v2], and thus

Ĉ1 =` Ĉ2. This implies that Ĉ ′1 =` Ĉ
′
2, so that C ′1 =` C

′
2. As in the sosLet

case above, we see that k ∈ H and C1 ` k 4 k , as required.

The other possibility is that ` ∈ H. In that case, v1 and v2 may be completely

unrelated. However, we will now show that the fact that these di�erences

in�uence the output at level k implies that C1 ` ` 4 k , so that we can choose

h := `.

142

Since C ′1 6=k C ′2, we know that either (1) v ′1 6=k v ′2, (2) ~a
′
1 6=k ~a

′
2, or (3) s

′
1 6=k s ′2.

In all three cases, we will use the facts that C1 ` pc 4 `′ and C1 ` ` 4 `′, which

come from the existence of the proof object f : Proof pc; ` 4 `′.

In case (1), note that values v′1 and v
′
2 both have type 〈τ〉`′ , and thus have the

forms 〈v̂′1〉`′ and 〈v̂′2〉`′ . This means that v′1 = 〈v̂′1〉`′ 6=k 〈v̂′2〉`′ = v′2, which is

only possible if k = `′. Since C1 ` ` 4 `′, we have C1 ` ` 4 k as required.

In cases (2) and (3), the evaluation of one of ê1 or ê2 must have caused side

e�ects at k. However, we know that ê1 and ê2 are both well-typed with pc

`′, which intuitively means that evaluating them should only have side e�ects

at labels above `′. Thus, the side e�ects at k should mean that C1 ` `′ 4 k .

Combining this with the fact that C1 ` ` 4 `′ gives C1 ` ` 4 k as required.

The intuition in the preceding paragraph is justi�ed by the following lemma:

Lemma 4.8. (No low side-e�ects) Suppose that pc ` C and that C →∗ C ′.

Then if the store of C ′ di�ers from the store of C at label k then C ` pc 4 k .

Similarly, if the trace of C ′ di�ers from the trace of C ′ on k then C ` pc 4 k .

Proof. Induction on the length of C →∗ C ′ and the derivation of C → C ′.

This concludes the proof of Theorem 4.5.

4.4 Actsfor Revisited

The implementation of acts-for in �gure 4.2 has the type

(aq :Prin)
>−→ (pr :Prin)

>−→ (qr :Del aqRef @aq)
aq−→MaybeProof pr < qr

143

According to theorem 4.5, this means that if executed, the function produces no side

e�ects below aq. However, it does require that the caller provide a proof that the

caller's pc may �ow to aq.

This implementation of acts-for has a few shortcomings. In particular, while our

de�nitions allow circular delegation relations, the function shown will loop in�nitely

if executed on a principal with a cyclic delegation structure. Because acts-for is not

primitive, implementing a search procedure that keeps track of visited principals is

a simple matter of programming; the correctness of the implementation follows from

the typing. Fabric's implementation of acts-for is even more complicated, because

it performs caching of intermediate results and reuses facts it has already derived.

Although we have not done this exercise, our calculus should be su�ciently expressive

to encode such a function.

Another possible extension would be to allow dynamic exploration of the acts-

for hierarchy. In our current formulation, the access label on principal objects is

statically determined, and principals are not able to delegate to principals on more

public stores. An alternative approach would be to supply the program counter label

to the acts-for implementation, and allow it to dynamically explore as much of the

hierarchy as it can while avoiding unsafe read channels. This would require extending

our calculus to provide a way to dynamically determine the store of a reference, but

this should not present any fundamental di�culty. The advantage to this approach

is that acts-for could be queried in more circumstances, but the result it returns

would only be a conservative approximation of the true acts-for relation. Exploring

the limitations of these contrasting approaches is planned for future work.

144

1 �nal Label l1, l2;

2 if (l1 v l2) { /* l1 v l2 is assumed here */ }

3

4 �nal Principal p1, p2;

5 if (p1 4 p2) { /* p1 4 p2 is assumed here */ }

Figure 4.11: Dynamic label and principal tests in Fabric.

4.5 Lessons for Fabric

In this section we discuss the rami�cations of this Chapter's formal development on

the Fabric system. The most direct impact will be on the typing of the dynamic

label and principal comparison operations. Fabric contains primitive syntax for dy-

namically comparing labels and principals, shown in Figure 4.11.

These constructs are translated to Java by generating calls to the LabelUtil.flowsTo

and PrincipalUtil.delegatesTo methods respectively. These methods, which are

implemented in Java, are responsible for traversing the hierarchy de�ned by the

Principal.delegatesTo methods.

In order to properly account for read channels through delegation, we must im-

pose additional constraints on the use of these constructs. In our formal model, we

parameterized the Del type with an access label A; in Fabric we should parameterize

the Principal and Label classes with an access label. This can be handled using

Fabric's existing support for parameterized classes. In our formal model, the type

for actsfor required the caller's pc to �ow to the access label of the delegator; the

corresponding requirement in Fabric will be to require the pc at a dynamic check to

�ow to the access label of the delegator.

145

In fact we could go a step further by porting the Fabric implementation of

the PrincipalUtil.delegatesTo and LabelUtil.flowsTo functions into the Fab-

ric language, and type checking the dynamic delegation primitives as if they were

method invocations. This approach would ensure that we do not make security-

critical mistakes while implementing them.

More generally, we believe the approach used in this formal development can

be applied more broadly to the analysis of the Fabric system. In particular, by

implementing high-level Fabric primitives in lower-level calculi with information �ow

tracking, we can e�ectively reason about the information �ow behavior of our system

implementation. In the limit, we could implement the Fabric runtime system in a

language like Jif, which would be an interesting research project in its own right.

First-class proofs are not necessary to �x the dynamic authorization side channel

in Fabric, but they would be useful to add for a number of other reasons. The

most natural way to integrate them into the Fabric programming model would be as

representation invariants on Fabric classes. Instances of these classes could then be

used to tie together a collection of principals and other objects and act as a witness

that the expected relationships between those principals hold.

To see the bene�ts of this feature, consider the airline example from Chapter 2. In

that example, there were principals representing an airline, a Broker, and a customer,

and we assumed that the airline and customer both delegated to the Broker. In

the implementation, each of the methods that made use of these assumptions had

to use where clauses indicating the assumptions, and these where clauses had to

be threaded through all of the implementation methods. Similarly, the FriendMap

146

1 class ProblemInstance where airline 4 broker, customer 4 broker {

2 public �nal Airline airline;

3 public �nal Broker broker;

4 public �nal Customer customer;

5

6 public ProblemInstance(Airline a, Broker b, Customer c)

7 throws AssertionFailedException

8 {

9 assert (a 4 b); assert (c 4 b);

10 }

11 }

12

13 void runAuction(nonnull ProblemInstance pi) {

14 /* this code can assume that pi.airline 4 pi.broker */

15 }

Figure 4.12: Broker example using class where constraints.

application discussed in Chapter 2 was factored into a number of methods for adding

a pin to a map, for creating a public map with a given set of users, for creating a

private map, and so on. Each of these methods required explicit declarations of the

expected relationships, leading to verbose and redundant annotations.

With representation invariants, we could encode these expectations into a class

which checks the invariants in the constructor. The methods that rely on the relation-

ships can then replace the list of where constraints with a single argument represent-

ing the problem instance. In the airline example, we would create a ExampleInstance

class as shown in Figure 4.12. The compiler ensures that the assertions in the where

clauses hold at the end of the constructor invocation, allowing the runAuction

method to assume them.

147

These features should be easy to implement by building on features already

present in Jif and Fabric. In particular, the Jif compiler already performs static

analysis to determine whether references may be null, and they already perform

static information �ow analysis relative to an environment of known label and prin-

cipal relationships. Adding class invariants should be a matter of extending the

environment used for label checking with facts taken from the classes of in-scope

non-null references. However, implementation and evaluation of these designs is left

for future work.

First class proof terms can also inform the runtime implementation of systems

like Fabric. Fabric stores already distribute signed object groups to workers and the

dissemination layer. These are very similar to the stmt [v = ∗v ′] objects that are

produced by reads in our calculus. Thinking of these as �rst-class proof objects can

simplify the way we reason about them. This idea is closely related to current work

on warranties [LMA+14]; we expect that the implementation of �rst-class proofs in

Fabric will mesh elegantly with ongoing e�orts to implement warranties in Fabric.

4.6 Revocation

Our soundness result depends on the assumption that when the program reads a

reference, the value that is read does not subsequently change. Some kind of con-

sistency constraint is necessary to rule out an execution in which a delegation set is

read by a worker w, then is changed, and then w performs an action based on the

stale delegation set. This would result in an impermissible �ow, and is an example

of a �time-of-check/time-of-use� (TOCTOU) vulnerability.

148

The consistency constraint we have used in our model is extremely strong�that

once something is read it never changes. This choice is inspired by the transaction

abstraction, in which programs may operate under the illusion that they are com-

pletely isolated from all concurrent mutations, and the runtime system is responsible

for resolving con�icts between transactions. This approach is somewhat justi�ed by

the results in [SHTZ06], which proves a noninterference result in a language with

mutable delegation using an explicit transaction system.

However, just as the metatheory in prior work has hidden the information �ows

required to implement dynamic delegation checks, we have masked the information

�ows required to implement transactions by making this strong transactional as-

sumption. Although we leave formalization of information �ow through transaction

implementations to future work, in this section we will pull back the curtain some-

what and examine some of the issues at a high level.

Consider an optimistic transaction implementation such as Fabric's (see Chap-

ter 2). Optimistic concurrency control isolates transactions by speculatively execut-

ing them and rolling them back if they cause con�icts. Although this scheme keeps

the persistent data consistent, it does not prevent information leaks caused by in-

consistent trust con�guration: the transaction will only be rolled back when it tries

to commit, but it may communicate sensitive information before that. Put another

way, communication with untrusted nodes is an external action that cannot be rolled

back, and such actions are incompatible with optimistic concurrency control.

Since the problem with the optimistic approach is that we may perform external

actions before checking consistency, we may consider performing a consistency check

149

before each externally visible action. This approach fails for two reasons. The �rst

is that performing these checks may introduce new read channels: the fact that the

consistency check is being made indicates that an externally visible action is about

to happen.

The second problem with performing extra consistency checks prior to perform-

ing externally visible actions is that they do not solve the TOCTOU vulnerability.

Although it would require delegation immediately before an information �ow, it does

not require delegation while the action is being performed. While this may be �good

enough� for many applications, it is hard to characterize exactly what security prop-

erty is o�ered. The root of the problem is that reading a delegation object gives a

snapshot at a zero-dimensional point in time while performing actions that may leak

information takes a one-dimensional range of time.

An alternative approach to consistency control is to use pessimistic concurrency

control, or locking. Under this approach, objects are locked whenever they are read,

and the stores reject any con�icting updates until the lock is released. Similarly, if one

is willing to assume that nodes have access to synchronized or loosely synchronized

clocks, then it is possible to issue warranties [LMA+14] that guarantee that the

value of an object will not change for a certain time period after it is read. Either of

these approaches give a worker certainty about the delegation state if it has read a

delegation set su�ciently recently.

The problem with locks, leases, and warranties in our setting is that they intro-

duce additional covert channels. A worker should be able to fetch an object from a

highly trusted store in a high context, even if the object itself is public. However, if

150

reading the object causes it to be locked or to have a promise generated for it, then

untrusted workers can learn that the object is being accessed by observing whether

updates to that object are accepted.

One way to prevent these channels from leaking information is to make their

e�ects depend only on public information. For example, instead of generating leases

on an as-needed basis, a store could adopt a public and �xed schedule of when

updates are allowed to occur. As long as a worker is executing within one of the

epochs in which delegation information will not change, it can safely assume that

the values it has read are consistent, but untrusted hosts can not learn anything

more than the public schedule. This is a simpli�ed example of the technique used

by Askarov et al. [AZM10] to prevent timing channels.

One further twist to consider is that in our model, proof terms can be persisted

on stores. Therefore we must have some mechanism to ensure that when a proof

term is dereferenced that the fact that it proves is still valid. One way to ensure this

to simply check whether the facts within the proof are still valid, but this means that

proof terms are not very durable. An alternative approach is to have stores that hold

proof terms �subscribe� to the facts referenced by those proof terms, and rebuild the

proofs whenever the epochs for those references ends.

We think that this scheme�epoch based concurrency control with subscriptions

for proof terms�can be implemented soundly. However, as this section shows there

are many subtleties involved, and signi�cant future research must be done to for-

malize this approach and to validate its practical feasibility. Just as we analyzed

acts-for tests by encoding them in a more primitive language, encoding transaction

151

management in a simple language containing basic message passing primitives is a

potential technique for analyzing these concurrency control schemes.

4.7 Related Work

The problem of con�dentiality leaks through policy changes has been widely studied.

Becker [Bec12] examines information �ow in declarative policy languages. In the

context of language-based information �ow analysis, Rx [SHTZ06] uses metapolicies

that bound the information that can be learned by querying label relationships.

Zheng et al. [ZM07] allow labels to be represented dynamically by objects that have

their own information �ow labels. Kozyri et al. [KSB+19] present a general framework

for reasoning about chains of metapolicies, each describing the next.

The concern addressed in this chapter is lower-level. Instead of bounding the

information learned by observing the policy, we are focused on the covert channels

caused by observing requests about the policy. These information �ows are examples

of read channels. Our use of access labels to control read channels is based on K.

Vikram's approach [Vik15].

Automated trust negotiation (ATN) protocols [WSJ00] use access control policies

to prevent information leakage through credential requests. In the ATN setting,

parties iteratively exchange credentials in an attempt to demonstrate that they are

authorized to view the credentials presented in the next round.

The �ow-limited authorization model (FLAM) [ALM15] also considers informa-

tion �ow through dynamic authorization queries in the context of an authorization

152

logic. Judgments in FLAM are predicated on an information �ow label bounding

the principals holding the information used in the derivation. The authors present

a proof search algorithm that is similar to our implementation of actsfor, but they

do not study the information �ow properties of their algorithm.

Our language can be thought of as a domain speci�c language for tracking

information �ow in a reference monitor. The �ow-limited authorization calculus

(FLAC) [AM16] takes a very similar approach. FLAC has a �delegation value� type

that serves the same purpose as our proof objects. Like our calculus, FLAC uses the

DCC monad to track information �ow. FLAC does not track read channels.

153

Chapter 5

Conclusions

Our goal in this dissertation was to bridge the divide between the strong security

assurance provided by decentralized information �ow control and the software engi-

neering features required by modern distributed applications. This agenda has raised

interesting problems on both ends of the divide, and we have presented contributions

to both areas.

5.1 Contributions to Distributed Software Platforms

On the software-engineering side, Fabric demonstrates that language-based informa-

tion �ow control is a compelling approach to building secure distributed applications

that operate in a federated environment. Fabric succeeds in o�ering both a simple,

general abstraction for building secure systems and an implementation that can be

used to build real applications with stronger security assurance than any previous

platform for distributed computing.

The Fabric language supports the construction of secure distributed applications

by integrating support for information �ow control, object shipping, function ship-

ping, mobile code, and transaction-based concurrency control. Fabric provides these

features in the context of a fully featured object-oriented language, allowing devel-

opers to build software using familiar design patterns and idioms.

Implementing the Fabric language and system securely and e�ciently required

several technical innovations. The Fabric system includes novel static and dynamic

154

type-checking constraints to support data shipping, function shipping, and mobile

code while respecting con�dentiality and integrity requirements. Novel implemen-

tation techniques, including writer maps, distributed transaction logging, and our

hierarchical two-phase commit protocol enable a strong transactional consistency

model in the presence of mutual distrust.

The example applications we have implemented show that Fabric is an expressive

language for building complex distributed applications, and that the Fabric system

provides good performance. The FriendMap, multiuser calendar, and bidding agent

examples model complex interactions between mutually distrusting entities, while

the OO7 and CMS examples show that our implementation provides acceptable

performance.

5.2 Contributions to Information Flow Analysis

Reasoning about Fabric's information �ow properties has raised several interesting

challenges for the formal analysis of decentralized information �ow control systems,

and we have presented important contributions in this area as well.

We have articulated a decentralized security principle that is suitable for evalu-

ating a federated system like Fabric: a principal should only be harmed by someone

that they trust. The de�nitions of �ow and in�uenced �ow given in Chapter 3 provide

a useful language for rigorously de�ning the DSP.

Our de�nitions make minimal assumptions about the label model and the sys-

tem model, and are therefore broadly applicable. They generalize existing semantic

155

security conditions, while accounting for the potential untrustworthiness of parts of

the computational infrastructure.

Using these de�nitions, we were able to formally state and prove two forms of the

decentralized security principle: a strong form that describes systems that aim to

enforce noninterference, and a weak form that describes systems with downgrading.

Trust, authority, and integrity are closely linked, and the label model abstraction

presented in Chapter 3 goes beyond previous frameworks by making these relation-

ships explicit. The formal statement and proof of the DSP require an �is-trusted-

to-enforce� relation and an �authority� function describing the intended semantics of

labels. The extended decentralized label model instantiates the label model axioms

and demonstrates the utility of these relations.

These contributions are a solid foundation for the mathematical modeling of

distributed information �ow control systems.

5.3 Contributions to Dynamic Distributed Authorization

Federated systems require a decentralized mechanism for authorization; systems that

provide strong security guarantees must implement those authorization mechanisms

without violating information �ow restrictions. Since trust statements in federated

systems are distributed, determining whether a computation is safe may require a

separate distributed computation, which may in turn introduce potentially unsafe

information �ows.

156

We addressed this problem in Chapter 4 by constructing a calculus for distributed

authorization queries that tracks information �ow. We showed that programs in our

language do not leak information, and that the language is su�ciently expressive to

model nontrivial authorization queries.

Types in our calculus include information �ow labels, and therefore type checking

requires resolving authorization queries. Authorization queries are implemented as

programs in the calculus, which must themselves be well-typed. Our authorization

calculus resolves this apparent circularity using a novel dependent type system based

on �rst-class proof objects: in order to evaluate authorization queries, programs must

�rst construct proofs that the evaluation will not inappropriately leak information.

5.4 Future work

Fabric provides fertile ground for research into the interactions between information

�ow control and distributed systems, and there are several natural directions to

extend the work presented in this dissertation.

One avenue for further exploration would be to integrate the theoretical frame-

works presented in Chapters 3 and 4 into the Fabric implementation. The label

model requirements given in Chapter 3 can be naturally encoded as a collection of

Fabric interfaces; particular label models such as the DLM and the EDLM would be

implemented by Fabric code that instantiates those interfaces.

This transformation would have several bene�ts. Implementing the principal and

label infrastructure in Fabric provides assurance that those implementations do not

157

harm the con�dentiality or integrity of the system. In particular, the authorization

leaks discussed in Chapter 4 would be ruled out by Fabric's access label checking.

This assurance would come at the cost of a more sophisticated type system: depen-

dent types similar to those used in Chapter 4 would likely be necessary to typecheck

label model implementations.

Another advantage of abstracting away the label model would be the potential

to integrate Fabric applications with applications written for other DIFC platforms

that use di�erent label models (such as DStar or Aeolus). The ability to integrate

software built using di�erent technologies is another important feature of the modern

software ecosystem that we have not addressed; a label model abstraction would be

an important component in a principled analysis of integrated DIFC systems.

A related avenue for further research would be to investigate the theoretical re-

lationships between di�erent label models using the abstract label model framework

given in Chapter 3. Montagu et al. [MPP13] have de�ned morphisms between label

algebras, allowing them to formally characterize the fundamental di�erences be-

tween di�erent label models. Their de�nition of a label model does not consider

the is-trusted-to-enforce relation or the relationship between integrity and author-

ity; extending their de�nitions in light of the DSP would shed further light on the

relationships between di�erent label models.

The authority function introduced in Chapter 3 provides an interesting parameter

for exploring security conditions that are more restrictive than nonmalleability but

less restrictive than noninterference. An authority function requiring high integrity

for downgrading would allow a principal to delegate the ability to handle data without

158

delegating the ability to make decisions about the policy on the data. A more public

authority function would encode a requirement that downgrading decisions must be

observable, a kind of auditability requirement.

The calculus presented in Chapter 4 contains the low-level features necessary to

implement the high-level authorization primitives that are implemented as trusted

code in Fabric. A similar approach could be used to analyze the information-�ow

properties of other components of the Fabric implementation.

For example, although we have taken care to implement the distributed transac-

tion management subsystem in a way that respects the information �ow policies on

data, the implementation is complex. An implementation in a calculus with infor-

mation �ow types and low-level communication primitives would increase the level of

assurance that the Fabric system is secure. The formal properties of such a calculus

may also shed further light on the interactions between transactions and revocation,

as discussed in Section 4.6.

In the limit, a complete implementation of the Fabric system in either the Fabric

language or a suitable lower-level language would be an interesting project. Such an

implementation would allow the formal properties of the implementation language to

be used to reason about the security and correctness of the system implementation.

This would reduce the trusted computing base of Fabric programs and increase as-

surance that Fabric enforces applications' con�dentiality and integrity requirements.

Chapter 4 analyzes the information �ows in a fairly simple authorization scheme.

Expanding the calculus to a more fully-featured language would enable implementa-

tion of more complex automated trust negotiation schemes. Using a domain-speci�c

159

language for implementing distributed reference monitors with information �ow con-

trol would increase assurance in the trustworthy implementation of these security-

critical components.

Experience writing complex applications in Fabric has inspired the design of new

programming language mechanisms. For example, the design of �rst-order proof

objects sketched in Section 4.5 was driven by a desire to encapsulate the security re-

quirements of the FriendMap application and thereby reduce the annotation burden.

Implementing �rst-order proof objects and investigating their formal properties is

a promising avenue for future work. Moreover, this experience suggests that imple-

menting more applications in Fabric could inspire other useful programming language

features for secure distributed computation.

5.5 Summary

Information security is a critical challenge for the modern applications. We have

shown that language-based information �ow control can be extended to address the

complex requirements of today's software ecosystem. My hope is that these contri-

butions help move us towards a world where users can expect their data to be used

appropriately, and where software providers have the tools to meet those expecta-

tions.

160

BIBLIOGRAPHY

[ABHR99] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke.
A core calculus of dependency. In Proceedings of the 26th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), pages 147�160, January 1999.

[AFM05] Siddhartha Annapureddy, Michael J. Freedman, and David Mazières.
Shark: Scaling �le servers via cooperative caching. In Proceedings
of the 2nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI), May 2005.

[AGH05] Ken Arnold, James Gosling, and David Holmes. The Java programming
language. Addison Wesley Publishing Company, 2005.

[ALM15] Owen Arden, Jed Liu, and Andrew C. Myers. Flow-limited authoriza-
tion. In Proceedings of the 28th IEEE Computer Security Foundations
Symposium (CSF), pages 569�583, July 2015.

[AM10] Aslan Askarov and Andrew C. Myers. A semantic framework for de-
classi�cation and endorsement. In Proceedings of the 19th European
Symposium on Programming (ESOP), March 2010.

[AM11] Aslan Askarov and Andrew C. Myers. Attacker control and impact for
con�dentiality and integrity. Logical Methods in Computer Science,
7(3), September 2011.

[AM16] Owen Arden and Andrew C. Myers. A calculus for �ow-limited autho-
rization. In Proceedings of the 29th IEEE Computer Security Founda-
tions Symposium (CSF), pages 135�147, June 2016.

[AMS+07] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and
Christos Karamanolis. Sinfonia: A new paradigm for building scalable
distributed systems. In Proceedings of the 21st ACM Symposium on
Operating System Principles (SOSP), pages 159�174, October 2007.

[AZM10] Aslan Askarov, Danfeng Zhang, and Andrew C Myers. Predictive
black-box mitigation of timing channels. In Proceedings of the 17th

161

http://dl.acm.org/citation.cfm?id=292555
http://dl.acm.org/citation.cfm?id=292555
http://dl.acm.org/citation.cfm?id=292555
http://dl.acm.org/citation.cfm?id=292555
https://www.usenix.org/legacy/publications/library/proceedings/nsdi05/tech/full_papers/annapureddy/annapureddy.pdf
https://www.usenix.org/legacy/publications/library/proceedings/nsdi05/tech/full_papers/annapureddy/annapureddy.pdf
https://www.usenix.org/legacy/publications/library/proceedings/nsdi05/tech/full_papers/annapureddy/annapureddy.pdf
https://www.usenix.org/legacy/publications/library/proceedings/nsdi05/tech/full_papers/annapureddy/annapureddy.pdf
https://www.oreilly.com/library/view/the-javatm-programming/0321349806/
https://www.oreilly.com/library/view/the-javatm-programming/0321349806/
http://www.cs.cornell.edu/andru/papers/flam
http://www.cs.cornell.edu/andru/papers/flam
http://www.cs.cornell.edu/andru/papers/flam
http://www.cs.cornell.edu/andru/papers/robknowledge.pdf
http://www.cs.cornell.edu/andru/papers/robknowledge.pdf
http://www.cs.cornell.edu/andru/papers/robknowledge.pdf
http://www.cs.cornell.edu/andru/papers/robknowledge-lmcs.pdf
http://www.cs.cornell.edu/andru/papers/robknowledge-lmcs.pdf
http://www.cs.cornell.edu/andru/papers/robknowledge-lmcs.pdf
http://www.cs.cornell.edu/andru/papers/flac
http://www.cs.cornell.edu/andru/papers/flac
http://www.cs.cornell.edu/andru/papers/flac
http://web.stanford.edu/class/cs340v/papers/sinfonia.pdf
http://web.stanford.edu/class/cs340v/papers/sinfonia.pdf
http://web.stanford.edu/class/cs340v/papers/sinfonia.pdf
http://web.stanford.edu/class/cs340v/papers/sinfonia.pdf

ACM conference on Computer and communications security, pages
297�307, 2010.

[Bar03] John Barnes. High Integrity Software: The SPARK Approach to Safety
and Security. Addison Wesley Publishing Company, April 2003.

[Bec12] Moritz Y Becker. Information �ow in trust management systems. Jour-
nal of Computer Security, 20(6):677�708, 2012.

[BFI14] Pierre Bourque, Richard E. Fairley, and IEEE Computer Society.
Guide to the Software Engineering Body of Knowledge (SWEBOK R©):
Version 3.0. IEEE Computer Society Press, 3rd edition, 2014.

[BHJL86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object
structure in the Emerald system. In Proceedings of the 1st ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 78�86, November 1986.

[BMH06] Bill Burke and Richard Monson-Haefel. Enterprise JavaBeans 3.0.
O'Reilly Media, Inc., 5 edition, 2006.

[BOS91] Paul Butterworth, Allen Otis, and Jacob Stein. The GemStone ob-
ject database management system. Communications of the ACM,
34(10):64�77, October 1991.

[BS04] Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust man-
agement, applied to electronic health records. In Proceedings of the
17th IEEE Computer Security Foundations Workshop (CSFW), pages
139�154, 2004.

[BS06] Niklas Broberg and David Sands. Flow locks � towards a core cal-
culus for dynamic �ow policies. In Proceedings of the 15th European
Symposium on Programming (ESOP), pages 180�196, 2006.

[BS11] A. Birgisson and A. Sabelfeld. Capabilities for information �ow. In
Proceedings of the 6th ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS), June 2011.

162

https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf
https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf
https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf
https://core.ac.uk/download/pdf/193406649.pdf
https://core.ac.uk/download/pdf/193406649.pdf
https://core.ac.uk/download/pdf/193406649.pdf
https://core.ac.uk/download/pdf/193406649.pdf
http://index-of.es/Java/OReilly.Enterprise.JavaBeans.3.0.5th.Edition.May.2006%20%5BEJB%203.0%5D.pdf
http://index-of.es/Java/OReilly.Enterprise.JavaBeans.3.0.5th.Edition.May.2006%20%5BEJB%203.0%5D.pdf
https://dl.acm.org/doi/abs/10.1145/125223.125254?download=true
https://dl.acm.org/doi/abs/10.1145/125223.125254?download=true
https://dl.acm.org/doi/abs/10.1145/125223.125254?download=true
http://www.cs.jhu.edu/~sdoshi/jhuisi650/discussion/cassandra_health.pdf
http://www.cs.jhu.edu/~sdoshi/jhuisi650/discussion/cassandra_health.pdf
http://www.cs.jhu.edu/~sdoshi/jhuisi650/discussion/cassandra_health.pdf
http://www.cs.jhu.edu/~sdoshi/jhuisi650/discussion/cassandra_health.pdf
http://www.cse.chalmers.se/~dave/papers/Broberg-Sands-flowlocks-full.pdf
http://www.cse.chalmers.se/~dave/papers/Broberg-Sands-flowlocks-full.pdf
http://www.cse.chalmers.se/~dave/papers/Broberg-Sands-flowlocks-full.pdf
http://www.cse.chalmers.se/~andrei/flowcaps.pdf
http://www.cse.chalmers.se/~andrei/flowcaps.pdf
http://www.cse.chalmers.se/~andrei/flowcaps.pdf

[BvDS13] Niklas Broberg, Bart van Delft, and David Sands. Paragon for practical
programming with information-�ow control. In Proceedings of the 11th
Asian Symposium on Programming Languages and Systems (APLAS),
pages 217�232, 2013.

[CAL97] M. Castro, A. Adya, and B. Liskov. Lazy reference counting for trans-
actional storage systems. Technical Memo MIT/LCS/TM=567, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 1997.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR
Cryptololgy ePrint ArchiveReport 2016/086, 2016.

[CDE+07] Philip Charles, Christopher Donawa, Kemal Ebcioglu, Christian
Grotho�, Allan Kielstra, Christoph von Praun, Vijay Saraswat, and
Vivek Sarkar. X10: An object-oriented approach to non-uniform clus-
tered computing. In Proceedings of the 20th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), 2007.

[CDN93] Michael J. Carey, David J. DeWitt, and Je�rey F. Naughton. The OO7
benchmark. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pages 12�21, May 1993.

[CDP+00] DeQing Chen, Sandhya Dwarkadas, Srinivasan Parthasarathy, Ed-
uardo Pinheiro, and Michael L. Scott. InterWeave: A middleware
system for distributed shared state. In Proceedings of the 5th Work-
shop on Languages, Compilers, and Run-Time Systems for Scalable
Computers, May 2000.

[Chl10] Adam Chlipala. Static checking of dynamically-varying security poli-
cies in database-backed applications. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
October 2010.

[CJD+18] Jianjun Chen, Jian Jiang, Haixin Duan, Tao Wan, Shuo Chen, Vern
Paxson, and Min Yang. We still don't have secure cross-domain re-

163

http://www.cse.chalmers.se/research/group/paragon/publications/BDS13.pdf
http://www.cse.chalmers.se/research/group/paragon/publications/BDS13.pdf
http://www.cse.chalmers.se/research/group/paragon/publications/BDS13.pdf
http://www.cse.chalmers.se/research/group/paragon/publications/BDS13.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-567.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-567.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-567.pdf
http://css.csail.mit.edu/6.858/2020/readings/costan-sgx.pdf
http://css.csail.mit.edu/6.858/2020/readings/costan-sgx.pdf
http://x10.sourceforge.net/documentation/papers/oopsla05-final.pdf
http://x10.sourceforge.net/documentation/papers/oopsla05-final.pdf
http://x10.sourceforge.net/documentation/papers/oopsla05-final.pdf
http://x10.sourceforge.net/documentation/papers/oopsla05-final.pdf
http://x10.sourceforge.net/documentation/papers/oopsla05-final.pdf
http://x10.sourceforge.net/documentation/papers/oopsla05-final.pdf
http://dl.acm.org/citation.cfm?id=170036.170041
http://dl.acm.org/citation.cfm?id=170036.170041
http://dl.acm.org/citation.cfm?id=170036.170041
https://www.cs.rochester.edu/u/sandhya/papers/interweave.pdf
https://www.cs.rochester.edu/u/sandhya/papers/interweave.pdf
https://www.cs.rochester.edu/u/sandhya/papers/interweave.pdf
https://www.cs.rochester.edu/u/sandhya/papers/interweave.pdf
https://www.cs.rochester.edu/u/sandhya/papers/interweave.pdf
http://adam.chlipala.net/papers/UrFlowOSDI10/UrFlowOSDI10.pdf
http://adam.chlipala.net/papers/UrFlowOSDI10/UrFlowOSDI10.pdf
http://adam.chlipala.net/papers/UrFlowOSDI10/UrFlowOSDI10.pdf
http://adam.chlipala.net/papers/UrFlowOSDI10/UrFlowOSDI10.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-chen.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-chen.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-chen.pdf

quests: an empirical study of CORS. In Proceedings of the 27th
USENIX Security Symposium, pages 1079�1093, 2018.

[CLM+07] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lan-
tian Zheng, and Xin Zheng. Secure web applications via automatic
partitioning. In Proceedings of the 21st ACM Symposium on Operat-
ing System Principles (SOSP), pages 31�44, October 2007.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
Proceedings of the 34th ACM SIGACT Symposium on Theory of Com-
puting (STOC), pages 494�503, 2002.

[CM04] Stephen Chong and Andrew C. Myers. Security policies for downgrad-
ing. In Proceedings of the 11th ACM Conference on Computer and
Communications Security (CCS), pages 198�209, October 2004.

[CM06] Stephen Chong and Andrew C. Myers. Decentralized robustness. In
Proceedings of the 19th IEEE Computer Security Foundations Work-
shop (CSFW), pages 242�253, July 2006.

[CMA17] Ethan Cecchetti, Andrew C. Myers, and Owen Arden. Nonmalleable
information �ow control. In Proceedings of the 24th ACM Conference
on Computer and Communications Security (CCS), pages 1875�1891,
October 2017.

[CMJL09] Ravi Chugh, Je�rey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged
information �ow for JavaScript. In Proceedings of the 30th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI), June 2009.

[CPS+12] Winnie Cheng, Dan R. K. Ports, David Schultz, Victoria Popic, Aaron
Blankstein, James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara
Liskov. Abstractions for usable information �ow control in Aeolus. In
Proceedings of the 2012 USENIX Annual Technical Conference, June
2012.

164

https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-chen.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-chen.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-chen.pdf
http://www.cs.cornell.edu/andru/papers/swift-sosp07.pdf
http://www.cs.cornell.edu/andru/papers/swift-sosp07.pdf
http://www.cs.cornell.edu/andru/papers/swift-sosp07.pdf
http://www.cs.cornell.edu/andru/papers/swift-sosp07.pdf
https://eprint.iacr.org/2002/140.pdf
https://eprint.iacr.org/2002/140.pdf
https://eprint.iacr.org/2002/140.pdf
https://eprint.iacr.org/2002/140.pdf
http://www.cs.cornell.edu/andru/papers/decl-policy.pdf
http://www.cs.cornell.edu/andru/papers/decl-policy.pdf
http://www.cs.cornell.edu/andru/papers/decl-policy.pdf
http://www.cs.cornell.edu/andru/papers/robdlm.pdf
http://www.cs.cornell.edu/andru/papers/robdlm.pdf
http://www.cs.cornell.edu/andru/papers/robdlm.pdf
http://www.cs.cornell.edu/andru/papers/nmifc/nmifc.pdf
http://www.cs.cornell.edu/andru/papers/nmifc/nmifc.pdf
http://www.cs.cornell.edu/andru/papers/nmifc/nmifc.pdf
http://www.cs.cornell.edu/andru/papers/nmifc/nmifc.pdf
http://dl.acm.org/citation.cfm?id=1542476.1542483
http://dl.acm.org/citation.cfm?id=1542476.1542483
http://dl.acm.org/citation.cfm?id=1542476.1542483
http://dl.acm.org/citation.cfm?id=1542476.1542483
https://www.usenix.org/system/files/conference/atc12/atc12-final117.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final117.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final117.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final117.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final117.pdf

[CS08] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In Pro-
ceedings of the 21st IEEE Computer Security Foundations Symposium
(CSF), pages 51�65, June 2008.

[CVM07] Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: Enforcing
con�dentiality and integrity in web applications. In Proceedings of the
16th USENIX Security Symposium, August 2007.

[DD77] Dorothy E. Denning and Peter J. Denning. Certi�cation of programs
for secure information �ow. Communications of the ACM, 20(7):504�
513, July 1977.

[DKK+01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Wide-area cooperative storage with CFS. In Proceedings
of the 18th ACM Symposium on Operating System Principles (SOSP),
pages 202�215, 2001.

[EGC+10] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. TaintDroid:
An information-�ow tracking system for realtime privacy monitoring
on smartphones. In Proceedings of the 9th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI), pages 393�407,
2010.

[EJM+14] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stu-
art Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros, Ravi
Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu. Collab-
orative veri�cation of information �ow for a high-assurance app store.
In Proceedings of the 21st ACM Conference on Computer and Com-
munications Security (CCS), pages 1092�1104, November 2014.

[EKV+05] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cli� Frey,
David Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and
Robert Morris. Labels and event processes in the Asbestos operating
system. In Proceedings of the 20th ACM Symposium on Operating
System Principles (SOSP), October 2005.

165

http://www.cs.cornell.edu/andru/papers/sif.pdf
http://www.cs.cornell.edu/andru/papers/sif.pdf
http://www.cs.cornell.edu/andru/papers/sif.pdf
http://dl.acm.org/citation.cfm?id=359712
http://dl.acm.org/citation.cfm?id=359712
http://dl.acm.org/citation.cfm?id=359712
https://pdos.csail.mit.edu/papers/cfs:sosp01/cfs_sosp.pdf
https://pdos.csail.mit.edu/papers/cfs:sosp01/cfs_sosp.pdf
https://pdos.csail.mit.edu/papers/cfs:sosp01/cfs_sosp.pdf
https://pdos.csail.mit.edu/papers/cfs:sosp01/cfs_sosp.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf
https://pdos.csail.mit.edu/papers/asbestos-sosp05.pdf
https://pdos.csail.mit.edu/papers/asbestos-sosp05.pdf
https://pdos.csail.mit.edu/papers/asbestos-sosp05.pdf
https://pdos.csail.mit.edu/papers/asbestos-sosp05.pdf
https://pdos.csail.mit.edu/papers/asbestos-sosp05.pdf

[FF98] Matthew Flatt and Matthias Felleisen. Units: cool modules for
HOT languages. In Proceedings of the `98ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI),
May 1998.

[For07] Bryan Ford. Structured streams: a new transport abstraction. In
Proceedings of the ACM SIGCOMM2007Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions, pages 361�372, August 2007.

[Fou] Free Software Foundation. GNU Classpath.

[GB01] Robert Grimm and Brian N. Bershad. Separating access control policy,
enforcement, and functionality in extensible systems. ACM Transac-
tions on Computer Systems, 19(1):36�70, February 2001.

[GLS+12] Daniel B. Gi�n, Amit Levy, Deian Stefan, David Terei, David Maz-
ières, John C. Mitchell, and Alejandro Russo. Hails: Protecting data
privacy in untrusted web applications. In Proceedings of the 10th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 47�60, 2012.

[HBBS14] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld.
JSFlow: Tracking information �ow in JavaScript and its APIs. In Pro-
ceedings of the 29th Annual ACM Symposium on Applied Computing,
SAC '14, page 1663�1671, New York, NY, USA, 2014. Association for
Computing Machinery.

[HL11] E. Hammer-Lahav. The OAuth 2.0 authorization protocol. Network
Working Group Internet-Draft, September 2011.

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Her-
lihy. Composable memory transactions. In Proceedings of the 10th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 48�60, 2005.

166

http://dl.acm.org/citation.cfm?id=277730
http://dl.acm.org/citation.cfm?id=277730
http://dl.acm.org/citation.cfm?id=277730
http://dl.acm.org/citation.cfm?id=277730
https://bford.info/pub/net/sst.pdf
https://bford.info/pub/net/sst.pdf
https://bford.info/pub/net/sst.pdf
https://bford.info/pub/net/sst.pdf
http://www.gnu.org/software/classpath/
http://cs.nyu.edu/rgrimm/papers/tocs01.pdf
http://cs.nyu.edu/rgrimm/papers/tocs01.pdf
http://cs.nyu.edu/rgrimm/papers/tocs01.pdf
http://www.scs.stanford.edu/~dm/home/papers/giffin:hails.pdf
http://www.scs.stanford.edu/~dm/home/papers/giffin:hails.pdf
http://www.scs.stanford.edu/~dm/home/papers/giffin:hails.pdf
http://www.scs.stanford.edu/~dm/home/papers/giffin:hails.pdf
http://www.scs.stanford.edu/~dm/home/papers/giffin:hails.pdf
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/2005-ppopp-composable.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/2005-ppopp-composable.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/2005-ppopp-composable.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/2005-ppopp-composable.pdf

[HR83] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys, 15:287�317, 1983.

[HTHZ05] Michael Hicks, Stephen Tse, Boniface Hicks, and Steve Zdancewic.
Dynamic updating of information-�ow policies. In Proceedings of the
2005 Foundations of Computer Security (FCSW), 2005.

[HW87] M. Herlihy and J. Wing. Avalon: Language support for reliable dis-
tributed systems. In Proceedings of the 17th International Symposium
on Fault-Tolerant Computing (FTCS), pages 90�94, July 1987.

[JL78] Anita K. Jones and Barbara Liskov. A language extension for ex-
pressing constraints on data access. Communications of the ACM,
21(5):358�367, May 1978.

[JVM+08] Limin Jia, Je�rey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke
Zarko, Joseph Schorr, and Steve Zdancewic. Aura: A programming
language for authorization and audit. In Proceedings of the 13th
ACM SIGPLAN International Conference on Functional Programming
(ICFP), September 2008.

[KAMS19] Elisavet Kozyri, Owen Arden, Andrew C. Myers, and Fred B. Schnei-
der. Jrif: Reactive information �ow control for java. In Joshua D.
Guttman, Carl E. Landwehr, José Meseguer, and Dusko Pavlovic, ed-
itors, Foundations of Security, Protocols, and Equational Reasoning:
Essays Dedicated to Catherine A. Meadows, pages 70�88. Springer In-
ternational Publishing, Cham, 2019.

[KS20] Elisavet Kozyri and Fred B. Schneider. RIF: Reactive information �ow
labels. J. Comput. Secur., 28:191�228, 2020.

[KSB+19] E. Kozyri, F. B. Schneider, A. Bedford, J. Desharnais, and N. Tawbi.
Beyond labels: Permissiveness for dynamic information �ow enforce-
ment. In 2019 IEEE 32nd Computer Security Foundations Symposium
(CSF), pages 351�35115, 2019.

[KYB+07] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cli�er,

167

https://sites.fas.harvard.edu/~cs265/papers/haerder-1983.pdf
https://sites.fas.harvard.edu/~cs265/papers/haerder-1983.pdf
http://www.cs.umd.edu/~mwh/papers/secupdate.pdf
http://www.cs.umd.edu/~mwh/papers/secupdate.pdf
http://www.cs.umd.edu/~mwh/papers/secupdate.pdf
https://kilthub.cmu.edu/ndownloader/files/12094196
https://kilthub.cmu.edu/ndownloader/files/12094196
https://kilthub.cmu.edu/ndownloader/files/12094196
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.7976&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.7976&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.7976&rep=rep1&type=pdf
http://www.jeffvaughan.net/docs/aura-icfp08.pdf
http://www.jeffvaughan.net/docs/aura-icfp08.pdf
http://www.jeffvaughan.net/docs/aura-icfp08.pdf
http://www.jeffvaughan.net/docs/aura-icfp08.pdf
http://www.jeffvaughan.net/docs/aura-icfp08.pdf
https://doi.org/10.1007/978-3-030-19052-1_7
https://doi.org/10.1007/978-3-030-19052-1_7
https://doi.org/10.1007/978-3-030-19052-1_7
https://doi.org/10.1007/978-3-030-19052-1_7
https://doi.org/10.1007/978-3-030-19052-1_7
https://doi.org/10.1007/978-3-030-19052-1_7
https://pdos.csail.mit.edu/papers/flume-sosp07.pdf
https://pdos.csail.mit.edu/papers/flume-sosp07.pdf

M. Frans Kaashoek, Eddie Kohler, and Robert Morris. Information
�ow control for standard OS abstractions. In Proceedings of the 21st
ACM Symposium on Operating System Principles (SOSP), 2007.

[LAC+96] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber,
U. Maheshwari, A. C. Myers, and L. Shrira. Safe and e�cient sharing
of persistent objects in Thor. In Proceedings of the 1996 ACM SIG-
MOD International Conference on Management of Data, pages 318�
329, June 1996.

[Lis85] B. Liskov. The Argus language and system. In Goos and Hartmanis,
editors, Distributed Systems: Methods and Tools for Speci�cation; An
Advanced Course, pages 343�430. Springer-Verlag, 1985.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore
database system. Communications of the ACM, 34(10):50�63, October
1991.

[LMA+14] Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and An-
drew C. Myers. Warranties for faster strong consistency. In Proceed-
ings of the 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 513�517, April 2014.

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Speci�cation.
Addison Wesley Publishing Company, 1999.

[LZ05] Peng Li and Steve Zdancewic. Downgrading Policies and Relaxed Non-
interference. In Symposium on Principles of Programming Languages
(POPL), 2005.

[MCCL07] Daniel Myers, Jennifer Carlisle, James Cowling, and Barbara Liskov.
MapJAX: Data structure abstractions for asynchronous web applica-
tions. In Proceedings of the 2007USENIX Annual Technical Confer-
ence, June 2007.

[MH03a] Lynette Millett and Stephen Holden. Authentication and its privacy
e�ects. IEEE Internet Computing, 7:54�58, November 2003.

168

https://pdos.csail.mit.edu/papers/flume-sosp07.pdf
https://pdos.csail.mit.edu/papers/flume-sosp07.pdf
https://pdos.csail.mit.edu/papers/flume-sosp07.pdf
https://pdos.csail.mit.edu/papers/flume-sosp07.pdf
http://www.cs.cornell.edu/andru/papers/safe-sharing.pdf
http://www.cs.cornell.edu/andru/papers/safe-sharing.pdf
http://www.cs.cornell.edu/andru/papers/safe-sharing.pdf
http://www.cs.cornell.edu/andru/papers/safe-sharing.pdf
http://www.cs.cornell.edu/andru/papers/safe-sharing.pdf
http://web.mit.edu/6.033/2012/wwwdocs/papers/objectstore.pdf
http://web.mit.edu/6.033/2012/wwwdocs/papers/objectstore.pdf
http://web.mit.edu/6.033/2012/wwwdocs/papers/objectstore.pdf
http://www.cs.cornell.edu/andru/papers/warranties
http://www.cs.cornell.edu/andru/papers/warranties
http://www.cs.cornell.edu/andru/papers/warranties
http://www.cs.cornell.edu/andru/papers/warranties
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://www.usenix.org/legacy/event/usenix07/tech/full_papers/myers/myers.pdf
https://www.usenix.org/legacy/event/usenix07/tech/full_papers/myers/myers.pdf
https://www.usenix.org/legacy/event/usenix07/tech/full_papers/myers/myers.pdf
https://www.usenix.org/legacy/event/usenix07/tech/full_papers/myers/myers.pdf
https://ieeexplore.ieee.org/document/1250584
https://ieeexplore.ieee.org/document/1250584

[MH03b] Lynette Millett and Stephen Holden. Authentication and its privacy
e�ects. IEEE Internet Computing, 7:54�58, 11 2003.

[Mil06] Mark Samuel Miller. Robust Composition: Towards a Uni�ed Ap-
proach to Access Control and Concurrency Control. PhD thesis, Johns
Hopkins University, Baltimore, Maryland, USA, May 2006.

[ML85] C. Mohan and B. Lindsay. E�cient commit protocols for the tree of
processes model of distributed transactions. ACM SIGOPS Operating
Systems Review, 19(2):40�52, April 1985.

[ML97] Andrew C. Myers and Barbara Liskov. A decentralized model for
information �ow control. In Proceedings of the 16th ACM Symposium
on Operating System Principles (SOSP), pages 129�142, 1997.

[ML00] Andrew C. Myers and Barbara Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software Engineering
and Methodology, 9(4):410�442, October 2000.

[ML10] Leo A. Meyerovich and Benjamin Livshits. ConScript: Specifying and
enforcing �ne-grained security policies for JavaScript in the browser.
In Proceedings of the 2010 IEEE Symposium on Security and Privacy
(Oakland), May 2010.

[MMN+04] John MacCormick, Nick Murph, Marc Najor, Chandramohan A.
Thekkat, and Lidong Zhou. Boxwood: Abstractions as the foundation
for storage infrastructure. In Proceedings of the 6th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), De-
cember 2004.

[Mos90] J. E. B. Moss. Design of the Mneme persistent object store. ACM
Transactions on Information Systems, 8(2):103�139, March 1990.

[MPP13] Beno� Montagu, Benjamin C. Pierce, and Randy Pollack. A theory
of information-�ow labels. In Proceedings of the 26th IEEE Computer
Security Foundations Symposium (CSF), pages 3�17, June 2013.

169

http://www.erights.org/talks/thesis/markm-thesis.pdf
http://www.erights.org/talks/thesis/markm-thesis.pdf
http://www.erights.org/talks/thesis/markm-thesis.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.7048&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.7048&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.7048&rep=rep1&type=pdf
http://www.pmg.lcs.mit.edu/papers/iflow-sosp97.pdf
http://www.pmg.lcs.mit.edu/papers/iflow-sosp97.pdf
http://www.pmg.lcs.mit.edu/papers/iflow-sosp97.pdf
http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf
http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf
http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf
http://www.eecs.berkeley.edu/~lmeyerov/projects/conscript/conscript.pdf
http://www.eecs.berkeley.edu/~lmeyerov/projects/conscript/conscript.pdf
http://www.eecs.berkeley.edu/~lmeyerov/projects/conscript/conscript.pdf
http://www.eecs.berkeley.edu/~lmeyerov/projects/conscript/conscript.pdf
https://www.usenix.org/legacy/events/osdi04/tech/full_papers/maccormick/maccormick.pdf
https://www.usenix.org/legacy/events/osdi04/tech/full_papers/maccormick/maccormick.pdf
https://www.usenix.org/legacy/events/osdi04/tech/full_papers/maccormick/maccormick.pdf
https://www.usenix.org/legacy/events/osdi04/tech/full_papers/maccormick/maccormick.pdf
https://www.usenix.org/legacy/events/osdi04/tech/full_papers/maccormick/maccormick.pdf
https://www.researchgate.net/profile/Eliot_Moss/publication/2266019_Design_of_the_Mneme_Persistent_Object_Store/links/53ee21130cf26b9b7dc64ad3/Design-of-the-Mneme-Persistent-Object-Store.pdf
https://www.researchgate.net/profile/Eliot_Moss/publication/2266019_Design_of_the_Mneme_Persistent_Object_Store/links/53ee21130cf26b9b7dc64ad3/Design-of-the-Mneme-Persistent-Object-Store.pdf
https://homepages.inf.ed.ac.uk/rpollack/export/MontaguPiercePollack_CSF13.pdf
https://homepages.inf.ed.ac.uk/rpollack/export/MontaguPiercePollack_CSF13.pdf
https://homepages.inf.ed.ac.uk/rpollack/export/MontaguPiercePollack_CSF13.pdf

[MSL+08] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe
active content in sanitized JavaScript, 2008.

[MSZ06] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing
robust declassi�cation and quali�ed robustness. Journal of Computer
Security (JCS), 14(2):157�196, 2006.

[MWC10] Adrian Mettler, David Wagner, and Tyler Close. Joe-E: A security-
oriented subset of Java. In Proceedings of the 2010 Network and Dis-
tributed System Security Symposium (NDSS), 2010.

[Mye99a] Andrew C. Myers. JFlow: Practical mostly-static information �ow
control. In Proceedings of the 26th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL), pages 228�
241, January 1999.

[Mye99b] Andrew C. Myers. Mostly-static decentralized information �ow con-
trol. Ph.D. thesis Report MIT/LCS/TR-783, Massachusetts Institute
of Technology, Cambridge, MA, January 1999.

[MZZ+06] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,
and Nathaniel Nystrom. Jif 3.0: Java information �ow. Software
release, , July 2006.

[NCM03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for Java. In Proceedings of
the 12th International Conference on Compiler Construction (ICCC),
pages 138�152, April 2003.

[Nec97] George C. Necula. Proof-carrying code. In Proceedings of the 24th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 106�119, January 1997.

[NLV11] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can
homomorphic encryption be practical? In Proceedings of the 3rd ACM
Cloud Computing Security Workshop (CCSW), pages 113�124, 2011.

170

https://developers.google.com/caja
https://developers.google.com/caja
http://www.cs.cornell.edu/andru/papers/robdecl-jcs/robdecl-jcs.pdf
http://www.cs.cornell.edu/andru/papers/robdecl-jcs/robdecl-jcs.pdf
http://www.cs.cornell.edu/andru/papers/robdecl-jcs/robdecl-jcs.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/met.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/met.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/met.pdf
http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
http://www.cs.cornell.edu/andru/release/tr783.pdf
http://www.cs.cornell.edu/andru/release/tr783.pdf
http://www.cs.cornell.edu/andru/release/tr783.pdf
http://www.cs.cornell.edu/jif/index.html
http://www.cs.cornell.edu/jif/index.html
http://www.cs.cornell.edu/jif/index.html
http://www.cs.cornell.edu/jif
http://dx.doi.org/10.1007/3-540-36579-6_11
http://dx.doi.org/10.1007/3-540-36579-6_11
http://dx.doi.org/10.1007/3-540-36579-6_11
http://dx.doi.org/10.1007/3-540-36579-6_11
http://www.cs.jhu.edu/~fabian/courses/CS600.624/proof-carrying-code.pdf
http://www.cs.jhu.edu/~fabian/courses/CS600.624/proof-carrying-code.pdf
http://www.cs.jhu.edu/~fabian/courses/CS600.624/proof-carrying-code.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/05/ccs2011_submission_412.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/05/ccs2011_submission_412.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/05/ccs2011_submission_412.pdf

[NMB+16] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and
Sarah Martin. TrustZone explained: Architectural features and use
cases. In Proceedings of the 2nd IEEE International Conference on
Collaboration and Internet Computing (CIC), pages 445�451, 2016.

[OBDA08] Krzysztof Ostrowski, Ken Birman, Danny Dolev, and Jong Hoon
Ahnn. Programming with live distributed objects. In Proceedings
of the 22nd European Conference on Object-Oriented Programming
(ECOOP), volume 5142, pages 463�489, July 2008.

[OBS99] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley DB. In
Proceedings of the 1999 USENIX Annual Technical Conference, 1999.

[Ora99] Oracle Corp. JAR �le speci�cation, 1999.
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html.

[PC00] François Pottier and Sylvain Conchon. Information �ow inference for
free. In Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, ICFP '00, page 46�57, New York,
NY, USA, 2000. Association for Computing Machinery.

[PRZB11] Raluca Ada Popa, Catherine M. S. Red�eld, Nickolai Zeldovich, and
Hari Balakrishnan. CryptDB: Protecting con�dentiality with en-
crypted query processing. In Proceedings of the 23rd ACM Symposium
on Operating System Principles (SOSP), pages 85�100, 2011.

[RD01a] A. Rowstron and P. Druschel. Storage management and caching in
PAST a large-scale, persistent peer-to-peer storage utility. In Pro-
ceedings of the 18th ACM Symposium on Operating System Principles
(SOSP), October 2001.

[RD01b] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329�350, November 2001.

[REG+03] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben

171

https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
http://www.cs.cornell.edu/~krzys/krzys_ecoop2008.pdf
http://www.cs.cornell.edu/~krzys/krzys_ecoop2008.pdf
http://www.cs.cornell.edu/~krzys/krzys_ecoop2008.pdf
http://www.cs.cornell.edu/~krzys/krzys_ecoop2008.pdf
https://www.usenix.org/legacy/events/usenix99/full_papers/olson/olson.pdf
https://www.usenix.org/legacy/events/usenix99/full_papers/olson/olson.pdf
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html
https://doi.org/10.1145/351240.351245
https://doi.org/10.1145/351240.351245
https://doi.org/10.1145/351240.351245
https://doi.org/10.1145/351240.351245
http://people.csail.mit.edu/nickolai/papers/raluca-cryptdb.pdf
http://people.csail.mit.edu/nickolai/papers/raluca-cryptdb.pdf
http://people.csail.mit.edu/nickolai/papers/raluca-cryptdb.pdf
http://people.csail.mit.edu/nickolai/papers/raluca-cryptdb.pdf
http://www.cs.cornell.edu/people/egs/615/past.pdf
http://www.cs.cornell.edu/people/egs/615/past.pdf
http://www.cs.cornell.edu/people/egs/615/past.pdf
http://www.cs.cornell.edu/people/egs/615/past.pdf
https://www.freepastry.org/PAST/pastry.pdf
https://www.freepastry.org/PAST/pastry.pdf
https://www.freepastry.org/PAST/pastry.pdf
https://www.freepastry.org/PAST/pastry.pdf
https://www.usenix.org/legacy/events/fast03/tech/rhea/rhea.pdf
https://www.usenix.org/legacy/events/fast03/tech/rhea/rhea.pdf

Zhao, and John Kubiatowicz. Pond: the OceanStore prototype. In
Proceedings of the 2nd IFIP TC1 WG1.7 Workshop on Formal Aspects
in Security and Trust (FAST), pages 1�14, 2003.

[RFS+00] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric
Eide. Knit: Component composition for systems software. In Proceed-
ings of the 4th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 347�360, October 2000.

[RG05] Michael F. Ringenburg and Dan Grossman. AtomCaml: First-class
atomicity via rollback. In Proceedings of the 10th ACM SIGPLAN
International Conference on Functional Programming (ICFP), page
92�104, 2005.

[RPB+09] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKin-
ley, and Emmett Witchel. Laminar: Practical �ne-grained decentral-
ized information �ow control. In Proceedings of the 30th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI), 2009.

[SHTZ06] Nikhil Swamy, Michael Hicks, Stephen Tse, and Steve Zdancewic. Man-
aging policy updates in security-typed languages. In Proceedings of the
19th IEEE Computer Security Foundations Workshop (CSFW), pages
202�216, July 2006.

[Sim03] Vincent Simonet. The Flow Caml System: documentation and user's
manual. Technical Report 0282, Institut National de Recherche en
Informatique et en Automatique (INRIA), July 2003.

[SL13] David A. Schultz and Barbara Liskov. IFDB: Decentralized informa-
tion �ow control for databases. In Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems (EUROSYS), 2013.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
�ow security. IEEE Journal on Selected Areas in Communications,
21(1):5�19, January 2003.

172

https://www.usenix.org/legacy/events/fast03/tech/rhea/rhea.pdf
https://www.usenix.org/legacy/events/fast03/tech/rhea/rhea.pdf
https://www.usenix.org/legacy/events/fast03/tech/rhea/rhea.pdf
https://www.usenix.org/legacy/events/fast03/tech/rhea/rhea.pdf
http://dl.acm.org/citation.cfm?id=1251253
http://dl.acm.org/citation.cfm?id=1251253
http://dl.acm.org/citation.cfm?id=1251253
http://dl.acm.org/citation.cfm?id=1251253
https://homes.cs.washington.edu/~djg/papers/atomcaml_icfp.pdf
https://homes.cs.washington.edu/~djg/papers/atomcaml_icfp.pdf
https://homes.cs.washington.edu/~djg/papers/atomcaml_icfp.pdf
https://homes.cs.washington.edu/~djg/papers/atomcaml_icfp.pdf
http://www.cs.utexas.edu/users/mckinley/papers/laminar-pldi-2009.pdf
http://www.cs.utexas.edu/users/mckinley/papers/laminar-pldi-2009.pdf
http://www.cs.utexas.edu/users/mckinley/papers/laminar-pldi-2009.pdf
http://www.cs.utexas.edu/users/mckinley/papers/laminar-pldi-2009.pdf
http://www.cs.utexas.edu/users/mckinley/papers/laminar-pldi-2009.pdf
http://research.microsoft.com/~nswamy/papers/rx.pdf
http://research.microsoft.com/~nswamy/papers/rx.pdf
http://research.microsoft.com/~nswamy/papers/rx.pdf
http://research.microsoft.com/~nswamy/papers/rx.pdf
http://www.normalesup.org/~simonet/soft/flowcaml/flowcaml-manual.pdf
http://www.normalesup.org/~simonet/soft/flowcaml/flowcaml-manual.pdf
http://www.normalesup.org/~simonet/soft/flowcaml/flowcaml-manual.pdf
http://pmg.csail.mit.edu/papers/ifdb.pdf
http://pmg.csail.mit.edu/papers/ifdb.pdf
http://pmg.csail.mit.edu/papers/ifdb.pdf
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf

[SRB+12] Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C.
Mitchell, and David Maziéres. Addressing covert termination and tim-
ing channels in concurrent information �ow systems. In Proceedings
of the 17th ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 201�214, 2012.

[SRMM11] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières.
Flexible dynamic information �ow control in Haskell. In Proceedings
of the 4th ACM Symposium on Haskell (HASKELL), September 2011.

[SS05] Andrei Sabelfeld and David Sands. Dimensions and principles of de-
classi�cation. In Proceedings of the 18th IEEE Computer Security
Foundations Workshop (CSFW), pages 255�269, June 2005.

[STT08] Liuba Shrira, Hong Tian, and Doug Terry. Exo-leasing: Escrow syn-
chronization for mobile clients of commodity storage servers. In Pro-
ceedings of the 9th ACM/USENIX/IFIP International Conference on
Distributed Systems Platforms (Middleware), December 2008.

[TS09] Eli Tilevich and Yannis Smaragdakis. J-Orchestra: Enhancing Java
programs with distribution capabilities. ACM Transactions on Soft-
ware Engineering and Methodology, 19(1):1:1�1:40, August 2009.

[TZ07] Stephen Tse and Steve Zdancewic. Run-time principals in information-
�ow type systems. ACM Transactions on Programming Languages and
Systems, 30(1), 2007.

[Vik15] K. Vikram. Building distributed systems with information �ow con-
trol. PhD thesis, Cornell University Department of Computer Science,
August 2015.

[Wil91] Paul R. Wilson. Pointer swizzling at page fault time: E�ciently sup-
porting huge address spaces on standard hardware. ACM SIGARCH
Computer Architecture News, 19(4):6�13, July 1991.

[WSJ00] William H Winsborough, Kent E Seamons, and Vicki E Jones. Auto-
mated trust negotiation. In DARPA Information Survivability Confer-

173

https://cseweb.ucsd.edu/~dstefan/pubs/stefan:2012:addressing.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/stefan:2012:addressing.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/stefan:2012:addressing.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/stefan:2012:addressing.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/stefan:2012:addressing.pdf
http://www.cse.chalmers.se/~russo/publications_files/haskell11.pdf
http://www.cse.chalmers.se/~russo/publications_files/haskell11.pdf
http://www.cse.chalmers.se/~russo/publications_files/haskell11.pdf
http://www.cse.chalmers.se/~dave/papers/sabelfeld-sands-CSFW05.pdf
http://www.cse.chalmers.se/~dave/papers/sabelfeld-sands-CSFW05.pdf
http://www.cse.chalmers.se/~dave/papers/sabelfeld-sands-CSFW05.pdf
https://www.cs.brandeis.edu/~liuba/pubs/exoleasing-middleware08.pdf
https://www.cs.brandeis.edu/~liuba/pubs/exoleasing-middleware08.pdf
https://www.cs.brandeis.edu/~liuba/pubs/exoleasing-middleware08.pdf
https://www.cs.brandeis.edu/~liuba/pubs/exoleasing-middleware08.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.4166&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.4166&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.4166&rep=rep1&type=pdf
https://www.cis.upenn.edu/~stevez/papers/TZ08.pdf
https://www.cis.upenn.edu/~stevez/papers/TZ08.pdf
https://www.cis.upenn.edu/~stevez/papers/TZ08.pdf
http://www.cs.cornell.edu/andru/papers/kv-thesis.pdf
http://www.cs.cornell.edu/andru/papers/kv-thesis.pdf
http://www.cs.cornell.edu/andru/papers/kv-thesis.pdf
http://caxapa.ru/thumbs/455965/Pointer_Swizzling_at_Page_Fault_Time_-_E.pdf
http://caxapa.ru/thumbs/455965/Pointer_Swizzling_at_Page_Fault_Time_-_E.pdf
http://caxapa.ru/thumbs/455965/Pointer_Swizzling_at_Page_Fault_Time_-_E.pdf
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/799/TR-2000-05.pdf?sequence=1
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/799/TR-2000-05.pdf?sequence=1
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/799/TR-2000-05.pdf?sequence=1

ence and Exposition, 2000. DISCEX'00. Proceedings, volume 1, pages
88�102, January 2000.

[WZB05] Marianne Winslett, Charles C Zhang, and Piero A Bonatti. PeerAc-
cess: A logic for distributed authorization. In Proceedings of the 19th
ACM Conference on Computer and Communications Security (CCS),
pages 168�179, 2005.

[YSRG06] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald, and Jo-
hannes Gehrke. Hilda: A high-level language for data-driven web
applications. In Proceedings of the 22nd International Conference on
Data Engineering (ICDE), pages 32�43, April 2006.

[YYSL12] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language
for automatically enforcing privacy policies. In Proceedings of the 39th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 85�96, 2012.

[Zal09] Michal Zalewski. Browser security handbook, part 2, 2009.

[ZBWKM06] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David
Mazières. Making information �ow explicit in HiStar. In Proceed-
ings of the 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 263�278, 2006.

[ZBWM08] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing
distributed systems with information �ow control. In Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 293�308, 2008.

[ZCMZ03] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve
Zdancewic. Using replication and partitioning to build secure dis-
tributed systems. In Proceedings of the 2003 IEEE Symposium on
Security and Privacy (Oakland), pages 236�250, May 2003.

[ZM01] Steve Zdancewic and Andrew C. Myers. Robust declassi�cation. In

174

https://repository.lib.ncsu.edu/bitstream/handle/1840.4/799/TR-2000-05.pdf?sequence=1
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/799/TR-2000-05.pdf?sequence=1
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/799/TR-2000-05.pdf?sequence=1
http://rewerse.net/I2/pubs/ccs05.pdf
http://rewerse.net/I2/pubs/ccs05.pdf
http://rewerse.net/I2/pubs/ccs05.pdf
http://rewerse.net/I2/pubs/ccs05.pdf
http://dx.doi.org/10.1109/ICDE.2006.75
http://dx.doi.org/10.1109/ICDE.2006.75
http://dx.doi.org/10.1109/ICDE.2006.75
http://dx.doi.org/10.1109/ICDE.2006.75
https://projects.csail.mit.edu/jeeves/papers/popl088-yang.pdf
https://projects.csail.mit.edu/jeeves/papers/popl088-yang.pdf
https://projects.csail.mit.edu/jeeves/papers/popl088-yang.pdf
https://projects.csail.mit.edu/jeeves/papers/popl088-yang.pdf
http://code.google.com/p/browsersec/wiki/Part2
http://www.scs.stanford.edu/~nickolai/papers/zeldovich-histar.pdf
http://www.scs.stanford.edu/~nickolai/papers/zeldovich-histar.pdf
http://www.scs.stanford.edu/~nickolai/papers/zeldovich-histar.pdf
http://www.scs.stanford.edu/~nickolai/papers/zeldovich-histar.pdf
http://www.scs.stanford.edu/~nickolai/papers/zeldovich-dstar.pdf
http://www.scs.stanford.edu/~nickolai/papers/zeldovich-dstar.pdf
http://www.scs.stanford.edu/~nickolai/papers/zeldovich-dstar.pdf
http://www.scs.stanford.edu/~nickolai/papers/zeldovich-dstar.pdf
http://www.cs.cornell.edu/andru/papers/sp03.pdf
http://www.cs.cornell.edu/andru/papers/sp03.pdf
http://www.cs.cornell.edu/andru/papers/sp03.pdf
http://www.cs.cornell.edu/andru/papers/sp03.pdf
http://www.cs.cornell.edu/andru/papers/csfw01.pdf
http://www.cs.cornell.edu/andru/papers/csfw01.pdf

Proceedings of the 14th IEEE Computer Security Foundations Work-
shop (CSFW), pages 15�23, June 2001.

[ZM03] Steve Zdancewic and Andrew C. Myers. Observational determinism
for concurrent program security. In Proceedings of the 16th IEEE
Computer Security Foundations Workshop (CSFW), pages 29�43, June
2003.

[ZM07] Lantian Zheng and Andrew C. Myers. Dynamic security labels and
static information �ow control. International Journal of Information
Security, 2007.

[ZSM19] Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. Using in-
formation �ow to design an ISA that controls timing channels. In
Proceedings of the 32nd IEEE Computer Security Foundations Sympo-
sium (CSF), June 2019.

[ZZNM02] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers. Secure program partitioning. ACM Transactions on Computer
Systems, 20(3):283�328, August 2002.

175

http://www.cs.cornell.edu/andru/papers/csfw01.pdf
http://www.cs.cornell.edu/andru/papers/csfw01.pdf
http://www.cs.cornell.edu/andru/papers/csfw01.pdf
http://www.cs.cornell.edu/andru/papers/csfw03.pdf
http://www.cs.cornell.edu/andru/papers/csfw03.pdf
http://www.cs.cornell.edu/andru/papers/csfw03.pdf
http://www.cs.cornell.edu/andru/papers/csfw03.pdf
http://www.cs.cornell.edu/andru/papers/dynlabel-ijis.pdf
http://www.cs.cornell.edu/andru/papers/dynlabel-ijis.pdf
http://www.cs.cornell.edu/andru/papers/dynlabel-ijis.pdf
https://www.cs.cornell.edu/andru/papers/hyperisa
https://www.cs.cornell.edu/andru/papers/hyperisa
https://www.cs.cornell.edu/andru/papers/hyperisa
https://www.cs.cornell.edu/andru/papers/hyperisa
http://www.cs.cornell.edu/andru/papers/sosp01/spp-tr.pdf
http://www.cs.cornell.edu/andru/papers/sosp01/spp-tr.pdf
http://www.cs.cornell.edu/andru/papers/sosp01/spp-tr.pdf

	Front Matter
	Title
	Copyright
	Abstract
	Biographical sketch
	Dedication
	Acknowledgements
	Table of contents
	List of figures

	Introduction
	The State of the Art
	Contributions
	The Fabric System
	Decentralized Information Flow Analysis
	Flows Through Dynamic Authorization

	The Fabric System
	A Running Example
	Security Considerations
	Software Construction and Evolution

	Fabric Programming Model
	Data in Fabric
	Computation in Fabric
	Evolving Secure Software
	Principals
	Labels
	The Decentralized Label Model
	Information Flow
	Novel Information Flow Constraints
	Transactions
	Exceptions and Rollback
	Interacting With the Outside World
	Summary of the Fabric Programming Model

	The Fabric System
	Communications Layer
	Distributed Objects
	Dynamic Fetch Authorization
	Dynamic Type Checking
	Concurrency
	Distributed Transaction Management
	Nested Transactions
	Hierarchical Commits

	Evaluation
	System Implementation
	FriendMap Application
	Course Management System
	OO7 Benchmark
	Other Applications

	Related Work
	Summary

	The Decentralized Security Principle
	System Model
	System Model Requirements
	Information Flow
	Transmission and Relabeling Flows
	Influenced Flows
	Influenced Flows Generalize Flows

	The Decentralized Security Principle, Formalized
	Label Model Axioms
	DSP with Strict Harm
	Strict Harm and Noninterference
	DSP with Downgrading
	Influenced Flows and Nonmalleability

	The Extended Decentralized Label Model
	Constructing a DTH

	Application to Fabric
	Related Work

	Information Leaks via Authorization Requests
	System Overview
	Language and System Model
	Standard Features
	Principals and Delegation
	Distributed State
	Dependent Types and Proofs
	Labeled Values and Relabeling

	Security Condition
	Definitions
	Proof of Security

	Actsfor Revisited
	Lessons for Fabric
	Revocation
	Related Work

	Conclusions
	Contributions to Distributed Software Platforms
	Contributions to Information Flow Analysis
	Contributions to Dynamic Distributed Authorization
	Future work
	Summary

	Bibliography

