Decentralized Robustness

Stephen Chong Andrew C. Myers

Department of Computer Science,
Cornell University
E-mail: {schong,andru}@cs.cornell.edu

Abstract information release is crucial for putting language-based in-
formation security into practice [15, 16].

Robustness links confidentiality and integrity properties One useful security property that has been identified for
of a computing system and has been identified as a usefuthis purpose isobustnesswhich intuitively says that an at-
property for characterizing and enforcing security. Previ- tacker should not be able to affect the security of informa-
ous characterizations of robustness have been with respection flow. Robustness has been applied to the control of
to a single idealized attacker; this paper shows how to de- information release in previous work @abust declassifi-
fine robustness for systems with mutual distrust. Further, cation[19, 18, 12]. Robust declassification ensures that an
we demonstrate that the decentralized label model (DLM) entity who can influence the behavior of a system (for ex-
can be extended to support fine-grained reasoning about ro-ample, by providing or modifying data or code), is unable
bustness in such systems. The DLM is a natural choice forto observe more information than an entity who cannot in-
capturing robustness requirements because decentralizedluence system behavior. Robustness has also been applied
labels are explicitly expressed in terms of principals that to the erasure of information [3].
can be used to characterize the power of attackers across Previous work defines robustness with respect to a sin-
both the confidentiality and integrity axes. New rules are gle attacker, but real computing systems serve the needs of
proposed for statically checking robustness and qualified multiple principals who in general do not trust each other.
robustness using an extended DLM; the resulting type sys-This paper considers the problem of enforcing robustness
tem is shown to soundly enforce robustness. Finally, soundin such decentralized systems, where security assurance re-
approximations are developed for checking programs with quires convincing every principal that information flow is
bounded but unknown label parameters, which is useful for robust. This is challenging because the identity and power
security-typed languages. In sum, the paper shows how topf the attacker depend on whose viewpoint is considered.
use robustness to gain assurance about secure information \jytyally distrusting principals need the tools to express
f!ow and.information release in systems with complex secu-ang enforce information security requirements. The de-
rity requirements. centralized label model (DLM) [11] provides the required

expressive power because it expresses information security

policies in terms of principals, and because individual prin-
1 Introduction cipals can express and retain ownership over information
security policies regarding confidentiality and integrity.

Rules intended for checking robust declassification have
earlier been proposed for a simplified version of the

To describe information security in realistic applications,
it is necessary to go beyond rigid security properties such

as noninterference [7]. Real applications release informa-
.) . [71 _~eal app’ . : DLM [18], but those rules do not enforce robustness as
tion by intention, so validating their security requires some . : X

. . . . defined here. Relative to that work, this paper makes two
assurance that information release is intentional and that - . !
ST important contributions. First, the rules defined here are
its implications are understood by the programmer and the

. i L shown to enforce a semantic security property of robust-

user. The problem of expressing and enforcing policies for X .
ness. Second, this paper extends the DLM with support for

This work was supported by the Department of the Navy, Office of Naval fine-grained integrity policies. The resulting richer policy
Research, under ONR Grant N00014-01-1-0968. This work was also sup-language enables a more precise characterization of trust,
ported by the National Science Foundation under Grant Nos. 0133302 a”dintegrity, and the power of the attacker.
0430161, and by an Alfred P. Sloan Research Fellowship. Any opinions, .
findings, conclusions, or recommendations here are those of the authors 1N€ paper proceeds as follows. Sections 2 and 3 re-
and do not necessarily reflect the views of any funding agencies. view robustness and the decentralized label model, includ-

ing some minor extensions. Section 4 shows that robustnessequent execution of the system. The observational ability
can be naturally expressed in the DLM framework, becauseof the attacker is system-specific, but is characterized by the
attackers can be treated as principals in that framework.security levelR 4. We assume there is a relation over traces
Constraints for checking robustness in that framework arethat indicates when two traces are indistinguishable to an at-
derived. Section 5 shows that these constraints can be addetacker. We lift the indistinguishability relation over traces to
to a security type system for a simple imperative language,two indistinguishability relations over configurationgeak
with the result that any well-typed program enforces robust- indistinguishabilityandstrong indistinguishability

ness against any attacker. In Section 6, qualified robust- Let Tr(s) denote the set of traces that start from the con-
ness [12] is shown to be enforced by constraining the usesfigurations. Two configurations; ands’ are weakly indis-

of endorsement to boost integrity. The described robustnesginguishable, writters ~ 4 s, if for every terminating trace
rules have been implemented in the Jif programming lan-in Tr(s), there is a terminating trace iffir(s’) such that
guage [10, 13]; Section 7 discusses some additional issueshe two traces are indistinguishable to the attacke€on-

that arise there, such as how to correctly handle labels un{igurationss ands’ are strongly indistinguishable, written
known at compile time. Section 8 discusses further relateds =, s/, if s is weakly indistinguishable from’ and all

work, and Section 9 concludes. traces in bothr’r(s) and Tr(s’) are terminating.
Having defined systems, attackers, and attacks, we can
2 Robustness now present the definition of robustness.

We define robustness with respect to an abstract notion ofy«finition 1 (Robustness)A system hasobustnesswith

system; a more concrete instantiation is given in Section 5'respect to attacks by attacket with power (R4, W.) if
A system hagonfigurationsand an execution of a system ¢ o configurationss and s', and all attacks ahd a' by
is a sequence of configurations, callettace A config- attackerA, if s[a] =4 s'[a], thens[a’] ~4 s'[d/].

uration may consist of memory, code, data, or other ele- ’ o ’

ments; the specifics of a configuration are system-specific. ~ Robustness captures the idea that the observations of an
Every element of a configuration is associated with a secu-attacker should be independent of what attacks the attacker
rity level, drawn from a set of security levels For exam- can make. In particular, an attacker should be unable to
ple, the security level associated with a memory location in force the system to declassify information, or to influence

a configuration could represent the security level of infor- \yhat information is declassified by the system. (The latter
mation that is allowed to be stored in that memory location. js known as daundering attack

Each security level < L is a pair of a confidentiality By requiring strong indistinguishability in the premise

policy and an integrity policy; we writ€’(¢) for the confi- of the condition, the robustness condition ignores inept at-
dentiality policy of¢, andI(¢) for the integrity policy. We tacks that cause a system to diverge and thus to present the

assume there is a binary relation: on £ thatindicates the attacker with fewer observations. See [12] for more discus-
relative restrictiveness of security levels: for security levels gjon of this technical issue.

¢and/, if ¢ T, ¢, thent requires confidentiality lower
than (or equal to) that of, and higher (or equal) integrity. .
Th(e de(fqinition)of robustness e?ssurges t?lat t)heregmgn 3 Decentralized label model
tacker, an entity that is able to modify the behavior of the The robustness security condition ensures the inability of
system in limited ways. An attacker is characterized by its a single entity, the attacker, to influence the declassification
power, its ability to modify system behavior. The power of of information. However, in a system containing several
an attackerA is a pair of security levels{R4, W,). Se- mutually distrusting entities, there is no single distinguished
curity level R4 is an upper bound on the security level of attacker. Indeed, from the perspective of any one entity,
elements in a configuration that can read, and?,4 is a every other entity may be a potential attacker.
lower bound on the security level of configuration elements The decentralized label mod¢DLM) [11] provides a
that A can influence. means to consider any entity as a potential attacker. It is a
An attackby attackerA is a modification to some or all framework in which mutually distrusting principals can ex-
elements of a configuration with a security level bounded press information-flow security policies for confidentiality
below byW 4. That is, an attack byl can modify any ele- and integrity. Aprincipal is any entity with security con-
ment in a configuration whose associated security level in-cerns, such as a user, a process, or a user group. A principal
dicates that4 is able to influence it. An attack applied may delegate its authority to other principals: if principal
to a configuratiors is denoteds[a]. The form of attacks is p delegates its authority to principal thengq is said toact
system-specific, but might include modifying the contents for p, writteng > p. Theacts-forrelation is reflexive and
of a memory location, or replacing code in the system. transitive; it is similar to thespeaks-forelation [9], and can
After attacking a system, the attacker observes the sub-be used to encode groups and roles.

Principals express their security concerns Wétbhels A as bothc andd. The operator is disjunction for confiden-
label is a pair of a confidentiality policy and an integrity tiality policies: ¢ M d allows a principal to read information
policy. Labels are associated with information, and a sys- if either ¢ or d allows it. Thus,c M d is no more restrictive

tem that enforces labels ensures that the policies of a labethan either or d.

are enforced on the appropriate information. Confidentiality

policies are formed from conjunctions and disjunctions of
reader policiesand integrity policies are formed from con-
junctions and disjunctions ofrriter policies Each reader
policy and writer policy has an owning principal; a policy
owned by a principap is a statement gp’s beliefs or re-
guirements about the security of information.

3.1 Confidentiality policies

A reader policyallows the owner of the policy to spec-
ify which principals the owner permits to read a given piece
of information. A reader policy is written — ry,...,r,,
where the principab is the owner of the policy, and the prin-
cipalsry,...,r, are the specified readers. A reader policy
o—r11,...,T, Says thab permits a principal to read in-
formation only if ¢ can act for the owner of the policy or
for any of the specified readers. As a formal semantics
for reader policies, we define the functiesaders(p, ¢) to
be the set of principals that principalbelieves should be
allowed to read information according to reader policy

1) 2 {q|if o = pthen
(g=oordiel.n.g>=r)}

readers(p,0—1, ..

A principal p believes that a reader polieyshould re-
strict the readers of information only if the owner of the
policy can act forp. The parameterization omis impor-

We extend readers(p, ¢) for confidentiality policies.
Sincec LI d enforces botle andd, the reader sets farand
d are intersected; far M d the reader sets are combined.

readers(p, c LI d) = readers(p, c) N readers(p, d)

L

readers(p, c M d) = readers(p, ¢) U readers(p, d)

Ordering confidentiality policies. Using thereaders(-,)
function, we can define a “no more restrictive than” relation
C ¢ on confidentiality policies. For two confidentiality poli-
ciesc andd, we haver C¢ d if and only if for all principals

p, readers(p, ¢) D readers(p, d). If ¢ T d then every prin-
cipal p believes that permits at least as many readersias
does. The confidentiality poliayis thus of lower (or equal)
confidentiality thand, and so information labeledcan be
used in at least as many places as information labéied
policy ¢ is no more restrictive than poliay.

The relationC forms a pre-order over confidentiality
policies, and the equivalence classes form a lattice. The op-
eratorsU and are the join and meet operators of this lat-
tice. The least restrictive confidentiality policy is the reader
policy | — 1, where_L is a principal that all principals can
act for, since all principals believe that information labeled
1 — 1 is allowed to be read by any principal. The most re-
strictive expressible confidentiality policy §— T, where
T is a principal that can act for all principals; information
labeledT — T is allowed to be read only by principal.

Previous presentations of the DLM have considered only

tant in the presence of mutual distrust, because it allows theconjunctions of reader policies, resulting in a join semi-

significance of the policy to be expressed for every prin- |agice structure. This work adds disjunctions of confiden-
cipal independently. If principab owns a policy that re- yigjity policies, producing a lattice structure that is exploited
stricts the readers of information, it does not necessarily, Sections 5 and 6, where the meet operation is used to ex-

mean that another principal also believes those restric- g5 constraints that enforce robustness in the DLM.
tions should apply. Thus, 6 does not act fop, then

readers(p,0 — r1,...,7,) is the set of all principals; in
other words,p does not credit the policy with any signif-
icance. While this semantics is expressed differently, it is
consistent with the original DLM semantics [11].

3.2 Integrity policies

Integrity and confidentiality are well-known duals, and
we define integrity policies dually to confidentiality poli-
cies. The set ahtegrity policiesis formed by closingvriter
policiesunder conjunction and disjunction.

Conjunction and disjunction. Greater expressiveness A writer policy o «— wy,...,w, allows the owner to
can be achieved by taking conjunctions and disjunctions of specify which principals may have influenced (“written”)
reader policies. We defirnfidentiality policieto be the the value of a given piece of information. The policy
smallest set containing all reader policies and closed under «— wy,...,w, means that according to the owngra
the binary operators andr. That is, ifc andd are confi- principalg could have influenced the value of the informa-
dentiality policies, then both d andc U d are too. tion only if ¢ can act for the ownes or one of the specified

The operatord is conjunction for confidentiality poli- writerswy, . .., w,. Writer policies describe the integrity of
cies: ¢ U d is the policy that enforces bothandd. The information in terms of its provenance.
policy ¢ LI d permits a principal to read information only if We define the functiomriters(p, c) to be the set of prin-
both ¢ andd allow it. Thus,c LI d is at least as restrictive cipals that principap believes may have influenced infor-

mation according to writer policy. Like reader policies, a
principal p believes that writer policy <« wy, ..., w, de-
scribes the writers of information only éfcan act forp.
Swy) = {q|if o= pthen
(g=oordiel.n.qg=w)}

writers(p, o«—wq, . .

Dually to confidentiality policies, we denote disjunction
for integrity policies with the operatar, and conjunction
with M. The integrity policyc 1 d is the conjunction of
¢ andd, meaning that a principal could have influenced
information labeled: 1 d only if both ¢ andd agree thap
could have influenced it. The writer sets toandd are thus
intersected to produce the writer set fon d. The integrity
policy ¢ LI d is the disjunction ot andd; the writer set for
c U d is thus the union of the writer sets foandd.

writers(p, ¢ 1 d) = writers(p, c) N writers(p, d)
writers(p, ¢ LU d) = writers(p, c) U writers(p, d)

The “no more restrictive than” relation; on integrity
policies is defined dually to the relatian: for two in-
tegrity policiesc andd, we have: C; d if and only if for all
principalsp, writers(p,c) C writers(p, d). Intuitively, in-

The confidentiality policy of this label is a single reader pol-
icy, and the integrity policy is the disjunction of two writer
policies. The reader policy is owned by Alice, and permits
any principal that can act for Bob, Chuck, or Alice to read
information. No other principal specifies a reader policy, so
principals for whom Alice cannot act for allow all princi-
pals to read the information; principals that Alice can act
for adhere to Alice’s restrictions, and permit only princi-
pals that can act for Bob, Chuck, or Alice to read informa-
tion. Of the two writer policies, one is owned by Alice and
the other by Bob. Alice believes that only Chuck or Alice
could have influenced the information, while Bob believes
only principals that can act for any of Chuck, Dave, or Bob
could have influenced the information. Principals that nei-
ther Alice nor Bob can act for implicitly believe that the
information may have been influenced by any principal at
all, and is thus completely untrustworthy. A principal that
both Alice and Bob can act for believes that principals that
can act for Alice, Bob, Chuck, or Dave may have influenced
the information.

Ordering labels. We define the “no more restrictive than”
relationC on labels using the relations andC;. In par-

formation with a smaller writer set has higher integrity than jciar, {e:d} T {¢;d'} ifand only ife Cc ¢ andd C; d.

information with a larger writer set, since fewer principals gq, labelsL, andL,, L, C L holds if there are the same
may have influenced the value of the former; the higher the o 1 ore restrictions on uses of information labeled with
integrity of information, the fewer restrictions on where that 55 there are on information labeled with.

information may be used.
The relationC"; forms a pre-order over integrity poli-

The relationC forms a pre-order, whose equivalence
classes form a lattice. We useand for the join and

cies, and the equivalence classes form a lattice, with join jeet operations over this lattice

and meet operators andr respectively. The most restric-
tive integrity policy isL < L, since all principals believe
that any principal may have influenced the information. The
policy T « T is the least restrictive expressible integrity
policy, as all principals believe that only principal (who
can act for all other principals) has influenced the informa-
tion.

3.3 Labels

A label is a pair of a confidentiality policy and an in-
tegrity policy. We write a labe{c; d}, wherec is a confiden-
tiality policy, andd is an integrity policy. The confidential-
ity projection of{¢; d}, written C'({¢; d}), is ¢, and the in-
tegrity projection/ ({c¢; d}) is d. We extend theeaders(-,)
andwriters(-, -) functions appropriately:

readers(p, {c; d}) = readers(p, c)

writers(p, {c; d}) £ writers(p, d)

Example. Consider the following label.

{Alice — Bob, Chuck ;
Alice — Chuck U Bob+ Chuck, Dave}

LiULy 2 {C(L1) UC(Ly) ;
Ll M LQ é {C(Ll) M O(Lg)]

For the rest of the paper, we assume the set of security
levels £ is the set of decentralized labels, and the relation
C ., used in Section 2, is this relatiahon DLM labels.

4 Robustness in the DLM

In the DLM, the security condition of robustness can
be generalized to consider attacks launched by an arbitrary
principal. To motive this, we first present an example of
a simple system with mutually distrusting principals. We
then present the definition edbustness against all attack-
ers and derive label constraints that ensure a declassifica-
tion is robust against all attackers.

4.1 Example

Consider a simple Vickrey auction, shown in Figure 1.
There are two bidders, Alice and Bob, abbreviatednd
B respectively. There are ten consecutive auctions, indexed
by the variable, each auction for a different item. In each

int{L— 1; A«—aul B« au} winner[10];
int{L — L; A—aun B—au} i
for (i=1..10) {
int{A— au; A<—au B+« au} bidA = getAliceBid(i)
int{ B—au; A«au M B+« au} bidB = getBobBid(i)

/I end of auction i
int{L— 1; A«—aun B«—au} openA =
declassify(bidA, { L — 1; A«—auM B« au});
int{L— 1; A—aul B«<—au} openB =
declassify(bidB,{ L — 1; A«—au M B«—au});

/I compute winner
winner[i] = computeWinner(openA, openB);

k)

i

/I process payment of winning bid

Figure 1. Vickrey auction example.

auction, both bidders submit a secret bid; after all bids for

theith auction have been submitted, the secret bids are de-

4.2 Robustness against all attackers

The power of an attacket is defined by the pair of la-
bels(R 4, W4}, which bound the information that can ob-
serve and influence. In the setting of Myers, Sabelfeld and
Zdancewic [12], there is na priori relationship between
R4 andW 4, making it difficult to characterize an arbitrary
attacker’s power, and therefore difficult to prove robustness
against all possible attackers.

However, in the DLM the power of an attackdr can
be expressed in terms of the attacker’s identity, because all
entities are represented by principals. Moreover, we can
express the power of an attacker as perceived by a particular
principal: for principalsp andg, the security levels?, .,
and W,_, are bounds on the labels of information that
believesy can read and write:

Definition 2 The labelR,_,, is the least upper bound on
labels of information that principap believes principal
can read:

LC R,_,ifandonly ifq € readers(p, L)

The labelWV,_, is the greatest lower bound on labels of

classified, and the winner computed. We model each bidderinformation that principalp believes principal can influ-

as a principal, and have an auctioneer principal We as-
sume there are nacts-forrelationships between these prin-
cipals. Every variable in the program is annotated with a
security label from the DLM, which is enforced on infor-
mation stored in the variable.

Consider the auction program from Alice’s perspective.
In each auction, Alice submits a bid, stored in variaiit&\,
with the label{A — au; A «— au N B < au} enforced
on it. Thus, Alice specifies that her bid should be readable
only by the auctioneer, and both Alice and Bob are prepared
to accept the bid as high integrity, influenced only by the
auctioneer (due to his ability to control when tiie auction
commences). After Bob has submitted his bid, Alice’s bid
is declassified t§ L — | ; A« au B+« au}, allowing the
bid to be read by all principals, and storecisenA.

Alice may be concerned with attempts by Bob to cor-
rupt the auction. For example, could Bob corrupt the con-
trol flow so that Alice’s bid is declassified before Bob has
submitted his bid, permitting Bob to always win with the
minimal winning bid? Or could Bob alter the value stored
in bidA, and fool the system into releasing sensitive infor-
mation of Alice’s, such as her credit card number, or her bid
for auctioni + 1?

Alice would like assurance that the program is robust
against attacks by Bob. However, Bob also needs assur
ance that the program is robust against attacks by Alice.
And both principals may be concerned with the auctioneer’s
ability to corrupt the auction. Even in this simple example

ence:
Wy—q T Lifandonly ifg € writers(p, L)

The labelsk,_., andW,._, cannot be expressed as con-

junctions and disjunctions of reader and writer policies. We

can, however, characterize their reader and writer sets.

L

{d'| ¢' = gandr = p}
{q" | ¢’ is a principa}
{¢" | ¢' is a principa}
writers(r, W) = {¢' | ¢’ = g andp = r}

readers(r, Rp_q

. A
writers(r, R,,_.q) =

A

)
)
)

readers(r, W4

We extend the labels of the DLM to include the labels
R,_., andW,_, for all principalsp andg. The definition
of the label relatioriC is extended in the obvious way, us-
ing the definitions forRk,_,, andW,._, given above. The
key property, that_ forms a pre-order whose equivalence
classes are a lattice, continues to hold.

Figure 2 depicts the poini8,_., andW,,_, in the prod-
uct lattice of confidentiality and integrity. Their confiden-
tiality and integrity levels divide the set of all labels into
four subsets characterized by the power of the attacker to
either read or write information with those labels.

Having precisely described an arbitrary attacker’s power,

‘we can now define robustness against all attackers.

Definition 3 (Robustness against all attackers)A system
hasrobustness against all attackéfrdor all principals p

there are several potential attackers, and it is necessary tand ¢, the system has robustness with respect to attagker

reason about robustness against all possible attackers.

with power(R,_.,, Wp—q)-

we may have only partial knowledge of tlaets-forrela-
tion that will be in effect at run time [2]. Demonstrat-
ing that a principal is not a member ofvriters(p, pc) or
writers(p, Lfronm) iS impossible.

However, the following two label constraints suffice to

(T=T; T—T} entail condition (1).

~-—-, attacker

Ljrom T Ly, U writersToReaders(pc) @)
' _.i can write

Ljrom T Ly, U writersToReaders(Lrom,) 3)
’ "Iattacker

\ _ Jcanread These label constraints can be verified syntactically, with
only partial knowledge of thacts-forrelation [11]. The la-
Figure 2. Robust declassification in a bel constraints make use of operatoitersToReaders(L),
writersToReaders(L).
writersToReaders(L) £ {wtr(I(L)); T« T}
. Ifa syst.em is robust against a!l attackers, then every prin- wtr(cU d) 2 wtr(c) M wtr(d)
cipal p believes that the system is robust against attacks by N
any principalg. wtr(cMd) = wtr(c) U wtr(d)
wtr(o—wy, ..., w,) = 0—wi, ..., wy

4.3 Constraints for checking robustness _
We do not definewritersToReaders(-) for the labels

As.will be seenin Seption 5, the_Key t.o enforcing _robust— R,_, or W,._,. Although suitable definitions could be
ness is to ensure that if a declassification reveals mforma-givem we ensure that,_,, and¥,._, never appear in label

tion.t(.) attackerA, thenA is unable to influence ei'ther the _ constraints (2) or (3).
decision to declassify, or the data to be declassified. This Tp¢ key property ofvritersToReaders(-) is that if prin-

requirement has a very natural expression in the DLM. cipal p believes is a writer of labell, thenp believes; is

SUpPOSEL o is the label of the information to be de- 4 reader ofivritersToReaders(L):
classified,L;, is the label of the declassified information,
and pc is the program counter labelan upper bound on Property 1 For all labels L, and all princi-
the labels of information contributing to the decision to pals p and ¢, if ¢ € writers(p,L), then ¢ €
declassify. If, from the perspective of a principal the readers(p, writersToReaders(L)).
declassification reveals information to a princigalthen
g € readers(p, Ly,) — readers(p, Lyom); if this is the case,
then we require that cannot influence either the decision to
declassify § ¢ writers(p, pc)), or the data to be declassified
(g & writers(p, Lrom))-

Figure 2 shows part of this requirement graphically:
if the declassification fromL,,, t0 L, crosses the
line defined by R,_., (i.e., ¢ € readers(p,Ls,) —
readers(p, Lfrom)) then L., should not be above the line

deﬁr?ed byWp—q (i.e_.,q ¢_writers_(p, Lirom))- Lemmal If Lgom T Ly U writersToReaders(pc)
Since we would like this requirement to hold from every 5nq Lyom T Ly, U writersToReaders(Loy,) then

principal’s perspective, and for all principals that the de- Vp. Vq € readers(p, Ly,). g € readers(p, Ljyom) OF (¢ &
classification may reveal information to, the following state- writers(p, pc) andq & writers(p, L rom))-
ment should hold at every declassification: ‘

Proof: By induction on the structure of the integrity pol-
icy I(L), exploiting the duality between confidentiality and
integrity policies. O

The following lemma shows that if constraints (2) and
(3) hold, then condition (1) holds, that is, every principal
p believes that if the declassification reveals information to
principalq, theng could not have influenced the decision to
declassify or the information to be declassified.

Proof: AssumeL o T Ly, U writersToReaders(pc) and

Vp. Vq € readers(p, L,). q € readers(p, Lrom) OF 1) Lfrom T Ly, L writersToReaders(Lrom). Letp be a prin-

(g & writers(p, pc) andq & writers(p, Lrom,)) cipal, and lely € readers(p, L;,). If ¢ € readers(p, Lrom)

then we are done. Suppose ¢ readers(p, Lfrom)-

Unfortunately, it is difficult to prove directly that this From the definition ofC, we havereaders(p, Lrom) 2

statement is true: membership of the setiers(p, pc) and readers(p, Ly,) N readers(p, writersToReaders(pc)). If
writers(p, Lo) depends upon thacts-forrelation-, and g € writers(p,pc) then by Property 1 we have

e =wal | v | e op ey | declassify(e, £)

cu=skip |v:=e|ci;ca | if ethen ¢ else ¢y | while e do ¢

Figure 3. Language grammar

q € readers(p,writersToReaders(pc)). But theng €
readers(p, L1,) N readers(p, writersToReaders(pc)), and
so we haveq € readers(p, Lsom), @ contradiction.
So q ¢ writers(p,pc). By a similar argumentg ¢
writers(p, Lfrom)- O
Consider the declassification of Alice’s bid in the auction

example of Section 4.1. The label of Alice’s bid{isl —
au; A — au B «— au}, and it is declassified to the label
{L — 1;A < aun B« au}. The program counter at
the declassification depends only on the variapko the
pe label is{1 — 1;A «— au T B « au}. Instantiating

Wp—q are not permitted as security levels of variables. The
function Vars(e) returns the set of variables that occur in
the expression.

This language captures the key aspects of language-
based declassification, while being simple enough to per-
mit straightforward proofs. In Section 7 we apply the type
system to Jif, a more complex and practical language.

5.1 Defining robustness

In order to give a meaningful definition of robustness
(and robustness against all attackers) in this language-based
setting, we must first define what attacks can be made by
an attackerA with power (R4, W,). Following Myers,
Sabelfeld and Zdancewic, we define an attack4to be
a command: that will be inserted into a program. The at-
tack a is not arbitrary code, but is restricted to a subset of
the language, to model “fair” attacks. The allowed attacks
are defined by the following grammar, where variabtzan

label constraints (2) and (3) for these labels results in thebe read or updated only if the security lali&l) permits

following constraint:

{A—au; A—aun B«+—au}
C{l—1 UA—aulUB—au; A—aul B+—au}

The integrity policies of both of these labels are identi-
cal, and the reader policy of the left hand side—{ au) is

contained in a join on the right hand side, so the constraint

is satisfied. This implies that every principal believes that
any principal who gains the ability to read Alice’s bid is

unable to influence either the value declassified, or the de-

cision to declassify that value. Thus, Alice believes that if

these accesses by the attacker.
a :=skip | v:=e|aj;ay | ifethena; elseas | whileedoa

The allowed attacks do not include declassifications, be-
cause if the attacker can declassify confidential information
directly, the game is already over.

Attacks may be inserted into the program at points where
the attacker is able to influence the execution of code. For
example, in a distributed system, the attacker may be able
to insert attacks on a server that is under the attacker’s con-
trol. Myers, Sabelfeld and Zdancewic assume that program

the auctioneer is trusted, then the declassification will neverP0INts at which an attacker may insert attacks are explicitly

reveal anything other than Alice’s bid, and will not occur
other than at the appropriate time.

5 Enforcing robustness

marked bycode holege). There may be multiple holes in
a command, represented as a vector of héjékse holes in
a prograrm[e] will be replaced with a vector of attackto
obtain a complete (hole-free) program, writtef@]. The
grammar of commands with hole$s] extends the com-

In this section, we consider enforcing robustness againstmand grammar from Figure 3:

all attackers in the setting of a simple imperative language.

After introducing the language, we refine the definitions of

cle] =

- | [o]

robustness and robustness against all attackers, and present \y can now refine Definition 1. the definition of ro-
a type system for enforcing robustness against alll attackersbustness’ for this language-based setting. A configuration

The language grammar is presented in Figure 3; it is

is a pair(M, c) of memory M and command. A mem-

identical to that of My_ers, Sabelfgld and Zdancewic [12]_. ory is a function fromVars to Val. Configurations/M, c)
The language and its semantics are standard, W'thand<M’,c’> are indistinguishable td (written (M, ¢) =4

the exception of the explicit declassification operator,
declassify(e, £), which declassifies expressierto security
level ¢, and is operationally equivalent to the expression
The language includes literal valuesl € Val, and vari-
ablesv € Var. A variable context™ : Var — £ maps each
variable to a security level that is an upper bound (with re-
spect ta_) on the security level of information that can be
stored in the variable. The rangeldis restricted to labels
of pairs of confidentiality and integrity policies®;_., and

(M', ") if for all variablesv € Var, if I'(v) Cz R4 then

M (v) = M’(v). Traces are indistinguishable 1bif the se-
guence of configurations are equivalent (according-19

up to stuttering. The definition of trace indistinguishabil-
ity is enough to define weak indistinguishability {) and
strong indistinguishability=€ 4).

Definition 4 (Robustness)Commandc[e] has robustness
with respect to attacks by attackdrwith power(R, W4)

and all attacksad and
(M, cld]), then

h: for all memoriesM; and Ms,
a’ by attacker A, if (M, c[d])
(M, cla’]) ma (M2, cla’]).

A

This refinement of robustness assumes that the cod
holes where an attacker may insert code are explicitly given

ness against attacks by. However, due to the number of
possible attackers, it is infeasible to show directly that a pro-
gram is well-typed in their type system instantiated on each
and every possible attackdr Instead, we ensure that a pro-

&ram that is well-typed in our type system is also well-typed

with respect to Myers, Sabelfeld and Zdancewic's type sys-

however, in general, the location of code holes dependsigm instantiated on any possible attacker. This implies that

upon which attacker we are considering. Since we are con-

cerned with the possibility of many attackers, we need to
reason about the security of code into which different at-
tackers may insert code at different locations.

To indicate where code holes may be inserted for a given
attackerA, we assume the existence ofiale insertion re-
lation <14. Letc <14 d[e] denote that the command with
holesd[e] can be obtained by inserting code holes into com-
mandc at program points where attackéris able to insert

our type system enforces robustness against all attackers.
Figure 4 presents Myers, Sabelfeld and Zdancewic's type
system, adapted slightly for our purposes. The judgment
T',pc F4 c indicates that commandis well typed under
variable contexl” and program counter labgt; the judg-
mentI” k4 e : £ indicates that the expressieris well typed
under variable context, and/ is an upper bound on the se-
curity level of the information that depends upon. The at-
tackerA appears in the typing rules for:= declassify(e, ¢)

code. The actual form of the hole-insertion relation depends 5,4 command holels]. All other typing rules are standard

on the system. For example, in the context of automatic
program partitioning [20] (in which a program is automat-
ically partitioned into code segments executed on different

for an imperative security-typed language.
The key idea of enforcing robustness is to ensure that
if a declassification may reveal information to an attacker

servers), an attacker may be able to insert code into any seg then hoth the data to be declassified and the decision to

ment that is placed on a server controlled by the attacker.
For the purposes of this paper, we require only that the

hole insertion relationk4 does not allow holes to be in-

serted into high-confidentiality contexts. Thatis, an attacker

may not insert code at a program point whose execution de-

pends upon information with a security level not bounded
above byR 4. In the context of automatic program par-
titioning, program points in a high-confidentiality context

declassify information cannot have been influenceddby
The typing rule for declassification is where this restriction
is enforced: the constraini®’y Z, pc andW, Z, ¢
ensure that both the decision to declassify and the informa-
tion to be declassified are high-integrity with respect to the
attacker’s power.

We have adapted Myers, Sabelfeld and Zdancewic’s type
system by using two different typing rules for declassifica-

correspond to code segments whose very execution wouldijons The first is for declassifications that reveal informa-

insecurely reveal sensitive information to the attacker; such

tion to the attackerd; that is, information is declassified

code segments are never placed on a server where the afom security level’ (whereA cannot read information) to

tacker could insert attacks. More formally, we define the

property ofsafe hole insertioms follows.

Definition 5 (Safe hole insertion) A hole insertion rela-
tion <14 is safe if wheneverc <14 d[e], then for all
holes in d[e], if the hole is a subcommand of a com-
mandif e then c; else ¢y or a subcommand of a command
while e do ¢y, then for all variablesy € Vars(e), we have
F(U) E RA.

We can now refine Definition 3, the definition of robust-

security levell (where A can read information). The sec-

ond rule is for declassifications that do not reveal informa-
tion to attackerA, either because the attacker could already
read information at level’, or because after declassifica-

tion the attacker is still unable to read the information at its
new level?. Only the first rule needs to enforce the robust-
ness conditions; Myers, Sabelfeld and Zdancewic’s original
system did not contain the second rule, requiring suitably
high integrity for all declassifications, even if they do not

reveal information to the attacker. We modify their declas-

ness against all attackers, for the specific language-basedification typing rule in anticipation of enforcing robustness

setting presented here.

Definition 6 (Robustness against all attackers)
Commandc has robustness against all attackefsfor
all principals p and ¢, and all commands with hole#e]
such thatc <, d[e], commandd[e¢] has robustness with
respect to attackeq with power(R,_.,, Wp—q)-

5.2 Enforcing robustness

Myers, Sabelfeld and Zdancewic present a type system,

parameterized on a single attackgrthat enforces robust-

against all attackers.

The rule for command holes restricts holes from occur-
ring in high-confidentiality contexts, which ensures that an
attacker is unable to observe sensitive information through
implicit flows [6].

Theorem 1 If T, pc F4 ¢ then command has robustness
with respect to attackeA.

Proof: Similar to Myers, Sabelfeld and Zdancewic’s,
adapted for the modified declassification typing rules]

FFAB:K FFABIZ FFABIK
I'v) =14 Dhye 4 LTV LU pcCp T(v)
I'tgval : # I'bqgov:d I'kFpoeope : /4 Thye:t T', pc k4 skip T,pckav:i=e
T',pckacy I'kqe: ¥ I'kqge:/ T',pckac
I',pcka co DlUpckacr ThlUpecky co [éUpckyc pc’ Cr pc pcCr Ry
I',pcka ci;eo T', pc b4 if ethen c; else ¢o I', pc F4 while e do ¢ I,pc’ Fac T,pc kg [o]
Phae:t! LUpcCoT(v) IW)CeI(0) Chae: ! fUpcCoT(v) I(W)Ce I(0)

CCr Ry VUUZrRa Wallppe Wallpl

CZsRy0rl' Cp Ry

T, pc ta v := declassify(e, £)

Figure 4. Typing rules for

The:t LU pec CT(v)

¢ C ¢ U writersToReaders(pc)

¢ C ¢ U writersToReaders(¢')
T, pct v := declassify(e, £)

Figure 5. Declassification rule for T',pck ¢

To enforce robustness against all attackers, we derive
a type system using constraints (2) and (3) given in Sec-

tion 4.3. This type system ensures that for all princigals
andq, a well-typed program is robust against attacksyby
with power(R,_.4, W,,). We prove this by showing that
a well-typed program is also well-typed in Myers, Sabelfeld
and Zdancewic'’s type system instantiated on the attagker
with power(R,_.q, Wpq).

The new typing judgments aie pc - ¢ (command: is
well typed under variable conteXt and program counter
labelpc) andT + e : ¢ (expressiore is well typed under
variable context’, and/ is an upper bound on the security
level of the information that depends upon). All inference
rules forl' k4 e : ¢ are also inference rules far - e : ¢.

All inference rules forl", pc -4 ¢ are also inference rules
for ', pc - ¢, with the exception of the rules for declassifi-
cation and command holes. There is no need for a rule fo

command holes, as we are only concerned with complete
programs; holes are introduced through hole insertion re-

lations<14. The new declassification rule, which replaces
both previous declassification rules, is shown in Figure 5.
The inference rules for the new typing judgments contain
no negated label ordering relationg)(which is consistent
with having only partial knowledge of thects-forrelation

in effect at run time.

Theorem 2 If T, pc + ¢ then command has robustness
against all attackers.

Proof: LetT',pc F ¢, letp andq be principals, and let
d[e¢] be a command with holes such that, d[¢]. We show
thatT, pc -4 d[e], whereA = ¢, and thus by Theorem 1,
d[¢] has robustness with respect to attackewith power

T, pcta v := declassify(e, £)

I'kqpe:fand I',pc k4 ¢

<RP*>Q’ WP‘*Q>'

We first showl”, pc k4 ¢, by induction o', pc - ¢. The
only interesting case is for declassification. If the declassifi-
cation doesn’t reveal information té (i.e., either! IZ, R4
or/ T, R,), then the declassification type-checks with the
second declassification rule. If it does reveal information to
A, then by definition of?,,_,, andW,._, and Lemma 1 we
haveW,._, Z pcandW,._, £ ¢’ as required.

Given thatl’, pc -4 ¢ andc <, d[e], we can use the hole
safety of<, to show thafl’, pc -4 d[e], since code holes
can only be introduced in low-confidentiality contexts, and
thus any hole type-checks. O

6 Qualified robustness

Robustness is concerned with systems in which the con-
fidentiality of information can be downgraded. In some sys-
tems, it is also necessary to downgrade the integrity of in-
formation, also calleéndorsementf information. For in-
stance, in the auction example of Section 4.1, Alice submits
a bid via the functiorgetAliceBid(), which returns a value
with integrity A < au M B < au. Clearly Alice influences
the value of the bid, yet Bob is prepared to treat the infor-
mation as high integrity, since the actual value of Alice’s
bid is unimportant for the security properties of the auction.
An endorsement is thus required in the implementation of
the functiongetAliceBid().

Robustness does not hold when a system endorses data
that is subsequently used to determine what information is
declassified. For example, consider a system where a user
pays a fee and then chooses one of two files to download.
The system is prepared to endorse the user’s choice, to treat
is as high-integrity data, since the system is prepared to al-
low either file to be downloaded. However, the user’s choice
controls which file is declassified for download, violating
robustness with respect to attacks by the user.

Myers, Sabelfeld and Zdancewic define a weaker secu-
rity condition that may hold in the presence of endorsement:
qualified robustnes§l?2]. Qualified robustness allows an
attacker limited ability to influence what information is de-

r

(UpcCeT(w) C()ELC0) present in Figure 6. As with the two rules for declassifi-

Dhae:l! Wallpl Walpll Walppe cation, endorsement has two rules: one for raising the in-
', pc k4 v := endorse(e, £) tegrity of data beyond the attacker’s ability to modify it, and

¢Upe Ty D(v) C) T C(0) the other_for I?\Iavmghlnteﬁntg unchgngedlfr(;m thedattackers

Thae:l WaCplorWaZe ' perspective. Note that the first typing rule for endorsement

requires the program counter lakel to be high integrity,
ensuring that only high-integrity information influences the
Pke: ¢ ¢UpcET(v) ¢ MwritersOnly(pc) C ¢ decision to endorse.

T, pc b v := endorse(e, £)

T, pcta v := endorse(e, £)

Theorem 3 If ', pc -4 ¢ then command has qualified
Figure 6. Additional typing rules for endorse robustness with respect to attackér

Proof: Similar to Myers, Sabelfeld and Zdancewic’s,
classified. This is made explicit in the language by provid- adapted for the modified endorsement typing rules. [
ing a new expressiorendorse(e,). Intuitively, a command Qualified robustness against all attackers can be enforced
has qualified robustness if the only control that an attackerthrough a suitable label constraint, which we derive analo-
exerts over information release is via explicit endorsement. gously to the constraints for robustness against all attack-

To formally define qualified robustness, Myers, €rs. If a principalp believes that the endorsement removes
Sabelfeld and Zdancewic define an alternate nondetermin-2 Principalq from the writer set, the should be unable
istic semantics for the language, in which the evaluation 0 influence the decision to endorse the data. That is, if
of an endorse(e, £) expression returns all possible values. ¢ € writers(p, Lrom) — writers(p, Ly,), then we require
This captures the idea that the system is prepared to trea¢ & Wwriters(p, pc). This requirement should hold for all
the result of evaluatingndorse(e, ¢) as high-integrity data, ~ Principalsp andg. From this requirement we can derive a
regardless of the actual value of the expression sufficient label constraint:

The statement of qualified robustness is syntactically
identical to that of robustness; it differs only in the new pro-
gram semantics. The label operatowritersOnly(-) strips away the confi-

dentiality policy of a label. More precisely, for any label
Definition 7 (Qualified robustness) Command c[#] has and we definavritersOnly(L) £ {T — T;I(L)}.

Lrom MwritersOnly(pc) C Ly, 4)

qualified robustneswith respect to fair attacks by attacker The following lemma shows that if label constraint (4)
A with power (R4, W) if for all memoriesM; and M, holds, then every principal believes that if the endorsement
and all attacksa and o’ by attackerA, if (M, c[a]) =4 removes a principaj from the writer set, theg could not
(M, c[a)), then(My, c[a’]) ~4 (M, c[a]). have influenced the decision to endorse.

Just as robustness can be generalized to qualified robust-8mma 2 If Ly, M writersOnly(pe) C Ly, then
ness to account for the downgrading of integrity of informa- 7p- V4 € writers(p, Lyrom). ¢ € writers(p, Ly,) Or g ¢
tion, so robustness against all attackers can be generalize#riters(p, pc).

to qualified robustness against all attackers. Proof: Similar to proof of Lemma 1. O

Label constraint (4) leads to a new typing rule for en-
dorsement, given in Figure 6. Adding this rule to the type
system ensures qualified robustness against all attackers.

Definition 8 (Qualified robustness against all attackers)
Command: hasqualified robustness against all attackiérs
for all principalsp andg, and all commands with holeke]
such thatc <, d[#], commandi[s] has qualified robustness Theorem 4 If T, pc |- ¢ then command has qualified ro-
with respect to attackey with power(R,.,, W) bustness against all attackers.

61 Enforc|ng qua“fled robustness Proof: Similar to pI’OOf of Theorem 2. O

The key idea for enforcing qualified robustness is simi- s .
lar to that for enforcing robustness: the decision to endorse7 Jif implementation
information must be of high integrity. However, unlike ro- The type system for enforcing robustness against all at-
bustness, the information being downgraded does not needackers is a practical one. Unlike the type system of Myers,
to be high integrity. (Indeed, by definition, the information Sabelfeld and Zdancewic, it is not parameterized on a par-
to be endorsed is low integrity.) ticular attacker. We have adapted the type system for en-

Myers, Sabelfeld and Zdancewic extend their type sys- forcing robustness against all attackers and implemented it
tem with a rule forendorse statements, which we adapt and in the Jif compiler [10, 13].

ment in line 4 of Figure 7, we know statically thghlice —
Bob; Alice < Chuck} is an upper bound on the dynamic
labellbl, because of the run-time label test on line 3.
if (Ibl © {Alice— Bob; Alice «— Chuck}) { If L is an upper bound fodyn(z), we havedyn(z) C
int j = declassify(i, { L — L; Alice <~ Chuck}); L, and so for any principalp, by definiton of C,
} we have writers(p,dyn(z)) C writers(p, L). Thus,
if L consists only of reader and writer policies, then
writersToReaders(L) is a conservative approximation for
writersToReaders(dyn(x)), and if¢ € writers(p, dyn(z)),
Jif extends the Java [8] programming language with in- theng € readers(p, writersToReaders(L)).
formation flow control, using DLM labels to annotate vari- ~ We can extend this technique for approximating
ables and methods. The Jif compiler checks that the policieswriters ToReaders(:) to other labels, such as class param-
specified by label annotations in Jif programs are obeyed. €ters and polymorphic argument labels. Other than the im-
To implement robustness against all attackers, we firstPlementation ofvritersToReaders(-), there were no major
extended Jif with the modified DLM of Section 3 to allow challenges in adapting and implementing the type system of
the expression of the required label constraints. Although Section 5 for Jif.
some Jif variants [20] incorporate (less expressive) integrity
policies, the base Jif compiler did not. We implemented 8 Related work
writer policies, and extended the label ordering within Jif
to allow for meets of labels. These modifications did not
require extensive changes to the Jif compiler.

final label{ L — L; T—T}Ibl = ..;
int{+Ibl} i = ...

a b~ W NP

Figure 7. Example Jif code

It has been recognized since the beginnings of work on
information flow that noninterference is too rigid to de-
scribe the information security of real applications [5, 7].
There has been a great deal of work on mechanisms and se-
7.1 curity definitions that relax noninterference in various ways.

Jif contains a number of sophisticated type mechanismsMuch of this work (particularly, that which is language-
to facilitate the creation, use, and reuse of expressive, mod-based) has been summarized in a survey paper [15]. More
ular, secure code [10]. These mechanisms include param+recently, Sabelfeld and Sands constructed a taxonomy of
eterized classes, labels for method arguments, dynamic ladifferent methods for securely mediating information re-
bels [21] and dynamic principals [17]. Labels in Jif thus lease [16]. According to their taxonomy, robustness oper-
include class parameters, argument labels, and dynamic laates on the “who” dimension of declassification controls, as
bels, as well as pairs of confidentiality and integrity poli- it prevents untrusted entities from affecting how informa-
cies. This complicates the implementation of the label con- tion is released to them. We compare the robustness mech-
straints of Section 5. anism in this paper to other mechanisms operating along

In particular,writersToReaders(-) must be extended to the “who” dimension, which is not to disparage the other,
account for the additional labels in Jif, such as dynamic la- largely orthogonal, dimensions of declassification.
bels. A dynamic label is a first-class value that is repre- Selective declassification (introduced in the DLM [11]

Implementing writersToReaders(+)

sented at run time. A dynamic labdn(x) is equivalent to
the value stored in a final variable namedof typelabel;
however, at compile time, it may not be known what the
value of variabler will be at run time. Dynamic labels may

and developed more abstractly by Pottier and Conchon [14])
is a more primitive “who” mechanism that imposes stati-

cally enforced access controls on declassification so only
explicitly authorized information release can occur. Further

be used to label other variables. For example, in the Jif codeextensions to the DLM have added capability mechanisms
of Figure 7, the label of the variabids dyn(lbl), the value for controlling access to declassification and have integrated
that is held at run time in the dynamic label varialthle these mechanisms with public-key infrastructures [4, 17].
In extendingwritersToReaders(-) to dynamic labels, we Banerjee and Naumann have also explored mediating infor-
must ensure that Property 1 continues to hold: for all prin- mation release with the Java access control mechanism [1].
cipalsp andgq, and labeld, if ¢ € writers(p, L), thenq € Access controls are useful, but robustness offers addi-
readers(p, writers ToReaders(L)). Clearly, we could safely tional assurance since it prevents the owner of information
definewritersToReaders(dyn(z)) to be{l — L; T « T} from authorizing information release that is not robust. Ro-
for all possibler; sincereaders(p,{ L — L;T <« T}) is the bustness not only prevents attackers from using declassifi-
set of all principals, this would satisfy Property 1. While cation directly, it prevents them even from affecting declas-
imprecise, this is the best we can do without additional in- sification. Thus, robustness can be seen as an end-to-end
formation about the dynamic label. extension of “who” mechanisms based on access control.
However, in some situations, a given dynamic label has Zdancewic has earlier given typing rules intended to
an upper bound. For example, at the declassification statecheck robustness [18] (but not qualified robustness), for-

malizing rules used in work on secure program partition- [6] D. E. Denning and P. J. Denning. Certification of programs
ing [20]. The rules differ from those given here because for secure information flonComm. of the ACM20(7):504—
they do not take into account the label on the declassified 513, July 1977.

value, and because they use a simpler integrity policy lan- [7] J.A. Goguen and J. Meseguer._ Security poli_cies and s_ecurity
guage. The checking rules in this paper are the first that ~ Models. InProc. IEEE Symposium on Security and Privacy

. . pages 11-20, Apr. 1982.
provably enforce robustness for a rich policy language. [8] J. Gosling, B. Joy, G. Steele, and G. Braciiae Java Lan-

guage Specification Addison Wesley, 2nd edition, 2000.
9 Conclusion ISBN 0-201-31008-2.
[9] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: Theory and practice.
In Proc. 13th ACM Symp. on Operating System Principles
(SOSP) pages 165-182, October 199Dperating System

This work extends the semantic security condition of ro-
bustness to systems with mutually distrusting entities. Pre-
vious work on robustness considers attacks only by a single

idealized attacker. Review 253(5).
We use the decentralized label model to characterize the[10] A. C. Myers. JFlow: Practical mostly-static information
power of an arbitrary attacker, allowing the derivation of flow control. InProc. 26th ACM Symp. on Principles of

label constraints that ensure robustness against all possible ~ Programming Languages (POPljages 228-241, San An-
attackers. We prove that a type system incorporating these ~ tonio, TX, Jan. 1999.

label constraints enforces robustness against all attackers i1l A- C. Myers and B. Liskov. Protecting privacy using the
the setting of a simple imperative language with explicit de- decentralized label modeCM Transactions on Software
classification. These constraints have been implemented in. ., E"9neering and Methodolog§(4):410-442, Oct. 2000,

he Jif inal | . d . . [12] A.C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing ro-
the Jif programming language, using sound approximations bust declassification. IRroc. 17th IEEE Computer Security

for the bounded but unknown labels that occur in Jif’'s type Foundations Workshgpages 172-186, June 2004
system. - _ ~ [13] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and
We also extend qualified robustness, a security condi- N. Nystrom. Jif: Java information flow. Software release, at

tion for systems that endorse information, and prove that a http://www.cs.cornell.eduljif, July 2001—.

type system for a simple imperative language with explicit [14] F. Pottier and S. Conchon. Information flow inference for

declassification and endorsement enforces qualified robust- ~ free. InProc. Snd ACM SIGPLAN International Conference

ness against all attackers. on Functional Programming (ICFRpages 46—57_, 2000. _
Robustness has been identified as a useful property forlt2] A Sabelfeld and A. Myers. Language-based information-

characterizing and enforcing security. This work shows flow security.|[EEE Journal on Selected Areas in Communi-
'zIng Ing security. This w W cations 21(1):5-19, Jan. 2003.

how robustness applies to, and can be obtained in, Sys-16] A, Sabelfeld and D. Sands. Dimensions and principles of de-

tems with mutual distrust, providing new tools for reason- classification. IProc. 18th IEEE Computer Security Foun-

ing about secure information flow and information release dations Workshogpages 255-269, June 2005.

in systems with complex security requirements. [17] S. Tse and S. Zdancewic. Run-time principals in
information-flow type systems. IEEEE Symposium on Se-

Acknowledgments. We thank Lantian Zheng and the curity and Privacy Oakland, CA, May 2004.

[18] S. Zdancewic. A type system for robust declassification.
In Proceedings of the Nineteenth Conference on the Mathe-
matical Foundations of Programming Semanti€kectronic

References Notes in Theoretical Computer Science, Mar. 2003.

[1] A. Banerjee and D. A. Naumann. Using access control for [19] S. Zdancewic and A. C. Myers. F_Qobust decl_assification. In
secure information flow in a Java-like language. Airoc. Proc. 14th IEEE Computer Security Foundations Workshop

anonymous reviewers for useful comments.

16th IEEE Computer Security Foundations Work pages 15-23, June 2001.
155-169 Ju?]r:gléoeé ecurity Foundations Workshuzges [20] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using
[2] H. Chen ’and S. Chong. Owned policies for information se- replication and partitioning tq build secure_distributeql sys-
curity. In Proc. 17th IEEE Computer Security Foundations tems. InProc. IEEE Symposium on Security and Privacy
Workshop June 2004. pages 236-250, Oakland, California, May 2003.
[3] S. Chong and A. C. Myers. Language-based information [21] L. Zheng and A. C. Myers. Dynamic security labels and non-
erasure. IProc. 18th IEEE Computer Security Foundations interference. IrProc. 2nd Workshop on Formal Aspects in
Workshoppages 241-254, June 2005. Security and Trust, IFIP TC1 WG1.3pringer, Aug. 2004.

[4] T. Chothia, D. Duggan, and J. Vitek. Type-based distributed
access control. IRroc. 16th IEEE Computer Security Foun-
dations Workshoppages 170-186, June 2003.

[5] E.S. Cohen. Information transmission in computational sys-
tems.ACM SIGOPS Operating Systems Reyie#(5):133—
139, 1977.

