
Decentralized Robustness

Stephen Chong Andrew C. Myers

Department of Computer Science,
Cornell University

E-mail: {schong,andru}@cs.cornell.edu

Abstract

Robustness links confidentiality and integrity properties
of a computing system and has been identified as a useful
property for characterizing and enforcing security. Previ-
ous characterizations of robustness have been with respect
to a single idealized attacker; this paper shows how to de-
fine robustness for systems with mutual distrust. Further,
we demonstrate that the decentralized label model (DLM)
can be extended to support fine-grained reasoning about ro-
bustness in such systems. The DLM is a natural choice for
capturing robustness requirements because decentralized
labels are explicitly expressed in terms of principals that
can be used to characterize the power of attackers across
both the confidentiality and integrity axes. New rules are
proposed for statically checking robustness and qualified
robustness using an extended DLM; the resulting type sys-
tem is shown to soundly enforce robustness. Finally, sound
approximations are developed for checking programs with
bounded but unknown label parameters, which is useful for
security-typed languages. In sum, the paper shows how to
use robustness to gain assurance about secure information
flow and information release in systems with complex secu-
rity requirements.

1 Introduction
To describe information security in realistic applications,

it is necessary to go beyond rigid security properties such
as noninterference [7]. Real applications release informa-
tion by intention, so validating their security requires some
assurance that information release is intentional and that
its implications are understood by the programmer and the
user. The problem of expressing and enforcing policies for

This work was supported by the Department of the Navy, Office of Naval
Research, under ONR Grant N00014-01-1-0968. This work was also sup-
ported by the National Science Foundation under Grant Nos. 0133302 and
0430161, and by an Alfred P. Sloan Research Fellowship. Any opinions,
findings, conclusions, or recommendations here are those of the authors
and do not necessarily reflect the views of any funding agencies.

information release is crucial for putting language-based in-
formation security into practice [15, 16].

One useful security property that has been identified for
this purpose isrobustness, which intuitively says that an at-
tacker should not be able to affect the security of informa-
tion flow. Robustness has been applied to the control of
information release in previous work onrobust declassifi-
cation [19, 18, 12]. Robust declassification ensures that an
entity who can influence the behavior of a system (for ex-
ample, by providing or modifying data or code), is unable
to observe more information than an entity who cannot in-
fluence system behavior. Robustness has also been applied
to the erasure of information [3].

Previous work defines robustness with respect to a sin-
gle attacker, but real computing systems serve the needs of
multiple principals who in general do not trust each other.
This paper considers the problem of enforcing robustness
in such decentralized systems, where security assurance re-
quires convincing every principal that information flow is
robust. This is challenging because the identity and power
of the attacker depend on whose viewpoint is considered.

Mutually distrusting principals need the tools to express
and enforce information security requirements. The de-
centralized label model (DLM) [11] provides the required
expressive power because it expresses information security
policies in terms of principals, and because individual prin-
cipals can express and retain ownership over information
security policies regarding confidentiality and integrity.

Rules intended for checking robust declassification have
earlier been proposed for a simplified version of the
DLM [18], but those rules do not enforce robustness as
defined here. Relative to that work, this paper makes two
important contributions. First, the rules defined here are
shown to enforce a semantic security property of robust-
ness. Second, this paper extends the DLM with support for
fine-grained integrity policies. The resulting richer policy
language enables a more precise characterization of trust,
integrity, and the power of the attacker.

The paper proceeds as follows. Sections 2 and 3 re-
view robustness and the decentralized label model, includ-

ing some minor extensions. Section 4 shows that robustness
can be naturally expressed in the DLM framework, because
attackers can be treated as principals in that framework.
Constraints for checking robustness in that framework are
derived. Section 5 shows that these constraints can be added
to a security type system for a simple imperative language,
with the result that any well-typed program enforces robust-
ness against any attacker. In Section 6, qualified robust-
ness [12] is shown to be enforced by constraining the uses
of endorsement to boost integrity. The described robustness
rules have been implemented in the Jif programming lan-
guage [10, 13]; Section 7 discusses some additional issues
that arise there, such as how to correctly handle labels un-
known at compile time. Section 8 discusses further related
work, and Section 9 concludes.

2 Robustness
We define robustness with respect to an abstract notion of

system; a more concrete instantiation is given in Section 5.
A system hasconfigurations, and an execution of a system
is a sequence of configurations, called atrace. A config-
uration may consist of memory, code, data, or other ele-
ments; the specifics of a configuration are system-specific.
Every element of a configuration is associated with a secu-
rity level, drawn from a set of security levelsL. For exam-
ple, the security level associated with a memory location in
a configuration could represent the security level of infor-
mation that is allowed to be stored in that memory location.

Each security level̀ ∈ L is a pair of a confidentiality
policy and an integrity policy; we writeC(`) for the confi-
dentiality policy of`, andI(`) for the integrity policy. We
assume there is a binary relationvL onL that indicates the
relative restrictiveness of security levels: for security levels
` and `′, if ` vL `′, then` requires confidentiality lower
than (or equal to) that of̀′, and higher (or equal) integrity.

The definition of robustness assumes that there is anat-
tacker, an entity that is able to modify the behavior of the
system in limited ways. An attacker is characterized by its
power, its ability to modify system behavior. The power of
an attackerA is a pair of security levels:〈RA,WA〉. Se-
curity level RA is an upper bound on the security level of
elements in a configuration thatA can read, andWA is a
lower bound on the security level of configuration elements
thatA can influence.

An attackby attackerA is a modification to some or all
elements of a configuration with a security level bounded
below byWA. That is, an attack byA can modify any ele-
ment in a configuration whose associated security level in-
dicates thatA is able to influence it. An attacka applied
to a configurations is denoteds[a]. The form of attacks is
system-specific, but might include modifying the contents
of a memory location, or replacing code in the system.

After attacking a system, the attacker observes the sub-

sequent execution of the system. The observational ability
of the attacker is system-specific, but is characterized by the
security levelRA. We assume there is a relation over traces
that indicates when two traces are indistinguishable to an at-
tacker. We lift the indistinguishability relation over traces to
two indistinguishability relations over configurations:weak
indistinguishabilityandstrong indistinguishability.

Let Tr(s) denote the set of traces that start from the con-
figurations. Two configurationss ands′ are weakly indis-
tinguishable, writtens ≈A s′, if for every terminating trace
in Tr(s), there is a terminating trace inTr(s′) such that
the two traces are indistinguishable to the attackerA. Con-
figurationss ands′ are strongly indistinguishable, written
s uA s′, if s is weakly indistinguishable froms′ and all
traces in bothTr(s) andTr(s′) are terminating.

Having defined systems, attackers, and attacks, we can
now present the definition of robustness.

Definition 1 (Robustness)A system hasrobustnesswith
respect to attacks by attackerA with power〈RA,WA〉 if
for all configurationss ands′, and all attacksa anda′ by
attackerA, if s[a] uA s′[a], thens[a′] ≈A s′[a′].

Robustness captures the idea that the observations of an
attacker should be independent of what attacks the attacker
can make. In particular, an attacker should be unable to
force the system to declassify information, or to influence
what information is declassified by the system. (The latter
is known as alaundering attack.)

By requiring strong indistinguishability in the premise
of the condition, the robustness condition ignores inept at-
tacks that cause a system to diverge and thus to present the
attacker with fewer observations. See [12] for more discus-
sion of this technical issue.

3 Decentralized label model
The robustness security condition ensures the inability of

a single entity, the attacker, to influence the declassification
of information. However, in a system containing several
mutually distrusting entities, there is no single distinguished
attacker. Indeed, from the perspective of any one entity,
every other entity may be a potential attacker.

The decentralized label model(DLM) [11] provides a
means to consider any entity as a potential attacker. It is a
framework in which mutually distrusting principals can ex-
press information-flow security policies for confidentiality
and integrity. Aprincipal is any entity with security con-
cerns, such as a user, a process, or a user group. A principal
may delegate its authority to other principals: if principal
p delegates its authority to principalq, thenq is said toact
for p, written q � p. Theacts-forrelation is reflexive and
transitive; it is similar to thespeaks-forrelation [9], and can
be used to encode groups and roles.

Principals express their security concerns withlabels. A
label is a pair of a confidentiality policy and an integrity
policy. Labels are associated with information, and a sys-
tem that enforces labels ensures that the policies of a label
are enforced on the appropriate information. Confidentiality
policies are formed from conjunctions and disjunctions of
reader policies, and integrity policies are formed from con-
junctions and disjunctions ofwriter policies. Each reader
policy and writer policy has an owning principal; a policy
owned by a principalp is a statement ofp’s beliefs or re-
quirements about the security of information.

3.1 Confidentiality policies

A reader policyallows the owner of the policy to spec-
ify which principals the owner permits to read a given piece
of information. A reader policy is writteno→ r1, . . . , rn,
where the principalo is the owner of the policy, and the prin-
cipalsr1, . . . , rn are the specified readers. A reader policy
o→ r1, . . . , rn says thato permits a principalq to read in-
formation only if q can act for the owner of the policy or
for any of the specified readersri. As a formal semantics
for reader policies, we define the functionreaders(p, c) to
be the set of principals that principalp believes should be
allowed to read information according to reader policyc:

readers(p, o→r1, . . . , rn) , {q | if o � p then

(q � o or ∃i ∈ 1..n. q � ri)}

A principal p believes that a reader policyc should re-
strict the readers of information only if the owner of the
policy can act forp. The parameterization onp is impor-
tant in the presence of mutual distrust, because it allows the
significance of the policy to be expressed for every prin-
cipal independently. If principalo owns a policy that re-
stricts the readers of information, it does not necessarily
mean that another principalp also believes those restric-
tions should apply. Thus, ifo does not act forp, then
readers(p, o → r1, . . . , rn) is the set of all principals; in
other words,p does not credit the policy with any signif-
icance. While this semantics is expressed differently, it is
consistent with the original DLM semantics [11].

Conjunction and disjunction. Greater expressiveness
can be achieved by taking conjunctions and disjunctions of
reader policies. We defineconfidentiality policiesto be the
smallest set containing all reader policies and closed under
the binary operatorst andu. That is, ifc andd are confi-
dentiality policies, then bothc u d andc t d are too.

The operatort is conjunction for confidentiality poli-
cies: c t d is the policy that enforces bothc andd. The
policy c t d permits a principal to read information only if
both c andd allow it. Thus,c t d is at least as restrictive

as bothc andd. The operatoru is disjunction for confiden-
tiality policies: c u d allows a principal to read information
if either c or d allows it. Thus,c u d is no more restrictive
than eitherc or d.

We extend readers(p, c) for confidentiality policies.
Sincec t d enforces bothc andd, the reader sets forc and
d are intersected; forc u d the reader sets are combined.

readers(p, c t d) , readers(p, c) ∩ readers(p, d)

readers(p, c u d) , readers(p, c) ∪ readers(p, d)

Ordering confidentiality policies. Using thereaders(·, ·)
function, we can define a “no more restrictive than” relation
vC on confidentiality policies. For two confidentiality poli-
ciesc andd, we havec vC d if and only if for all principals
p, readers(p, c) ⊇ readers(p, d). If c vC d then every prin-
cipal p believes thatc permits at least as many readers asd
does. The confidentiality policyc is thus of lower (or equal)
confidentiality thand, and so information labeledc can be
used in at least as many places as information labeledd:
policy c is no more restrictive than policyd.

The relationvC forms a pre-order over confidentiality
policies, and the equivalence classes form a lattice. The op-
eratorst andu are the join and meet operators of this lat-
tice. The least restrictive confidentiality policy is the reader
policy⊥→⊥, where⊥ is a principal that all principals can
act for, since all principals believe that information labeled
⊥→⊥ is allowed to be read by any principal. The most re-
strictive expressible confidentiality policy is>→>, where
> is a principal that can act for all principals; information
labeled>→> is allowed to be read only by principal>.

Previous presentations of the DLM have considered only
conjunctions of reader policies, resulting in a join semi-
lattice structure. This work adds disjunctions of confiden-
tiality policies, producing a lattice structure that is exploited
in Sections 5 and 6, where the meet operation is used to ex-
press constraints that enforce robustness in the DLM.

3.2 Integrity policies

Integrity and confidentiality are well-known duals, and
we define integrity policies dually to confidentiality poli-
cies. The set ofintegrity policiesis formed by closingwriter
policiesunder conjunction and disjunction.

A writer policy o ← w1, . . . , wn allows the owner to
specify which principals may have influenced (“written”)
the value of a given piece of information. The policy
o ← w1, . . . , wn means that according to the ownero, a
principalq could have influenced the value of the informa-
tion only if q can act for the ownero or one of the specified
writersw1, . . . , wn. Writer policies describe the integrity of
information in terms of its provenance.

We define the functionwriters(p, c) to be the set of prin-
cipals that principalp believes may have influenced infor-

mation according to writer policyc. Like reader policies, a
principalp believes that writer policyo← w1, . . . , wn de-
scribes the writers of information only ifo can act forp.

writers(p, o←w1, . . . , wn) , {q | if o � p then

(q � o or ∃i ∈ 1..n. q � wi)}

Dually to confidentiality policies, we denote disjunction
for integrity policies with the operatort, and conjunction
with u. The integrity policyc u d is the conjunction of
c andd, meaning that a principalp could have influenced
information labeledc u d only if both c andd agree thatp
could have influenced it. The writer sets forc andd are thus
intersected to produce the writer set forc u d. The integrity
policy c t d is the disjunction ofc andd; the writer set for
c t d is thus the union of the writer sets forc andd.

writers(p, c u d) , writers(p, c) ∩ writers(p, d)

writers(p, c t d) , writers(p, c) ∪ writers(p, d)

The “no more restrictive than” relationvI on integrity
policies is defined dually to the relationvC : for two in-
tegrity policiesc andd, we havec vI d if and only if for all
principalsp, writers(p, c) ⊆ writers(p, d). Intuitively, in-
formation with a smaller writer set has higher integrity than
information with a larger writer set, since fewer principals
may have influenced the value of the former; the higher the
integrity of information, the fewer restrictions on where that
information may be used.

The relationvI forms a pre-order over integrity poli-
cies, and the equivalence classes form a lattice, with join
and meet operatorst andu respectively. The most restric-
tive integrity policy is⊥←⊥, since all principals believe
that any principal may have influenced the information. The
policy > ← > is the least restrictive expressible integrity
policy, as all principals believe that only principal> (who
can act for all other principals) has influenced the informa-
tion.

3.3 Labels

A label is a pair of a confidentiality policy and an in-
tegrity policy. We write a label{c; d}, wherec is a confiden-
tiality policy, andd is an integrity policy. The confidential-
ity projection of{c; d}, writtenC({c; d}), is c, and the in-
tegrity projectionI({c; d}) is d. We extend thereaders(·, ·)
andwriters(·, ·) functions appropriately:

readers(p, {c; d}) , readers(p, c)

writers(p, {c; d}) , writers(p, d)

Example. Consider the following label.

{Alice→Bob,Chuck ;
Alice←Chuck t Bob←Chuck ,Dave}

The confidentiality policy of this label is a single reader pol-
icy, and the integrity policy is the disjunction of two writer
policies. The reader policy is owned by Alice, and permits
any principal that can act for Bob, Chuck, or Alice to read
information. No other principal specifies a reader policy, so
principals for whom Alice cannot act for allow all princi-
pals to read the information; principals that Alice can act
for adhere to Alice’s restrictions, and permit only princi-
pals that can act for Bob, Chuck, or Alice to read informa-
tion. Of the two writer policies, one is owned by Alice and
the other by Bob. Alice believes that only Chuck or Alice
could have influenced the information, while Bob believes
only principals that can act for any of Chuck, Dave, or Bob
could have influenced the information. Principals that nei-
ther Alice nor Bob can act for implicitly believe that the
information may have been influenced by any principal at
all, and is thus completely untrustworthy. A principal that
both Alice and Bob can act for believes that principals that
can act for Alice, Bob, Chuck, or Dave may have influenced
the information.

Ordering labels. We define the “no more restrictive than”
relationv on labels using the relationsvC andvI . In par-
ticular,{c; d} v {c′; d′} if and only if c vC c′ andd vI d′.
For labelsL1 andL2, L1 v L2 holds if there are the same
or more restrictions on uses of information labeled withL2

as there are on information labeled withL1.
The relationv forms a pre-order, whose equivalence

classes form a lattice. We uset andu for the join and
meet operations over this lattice,

L1 t L2 , {C(L1) t C(L2) ; I(L1) t I(L2)}
L1 u L2 , {C(L1) u C(L2) ; I(L1) u I(L2)}

For the rest of the paper, we assume the set of security
levelsL is the set of decentralized labels, and the relation
vL, used in Section 2, is this relationv on DLM labels.

4 Robustness in the DLM
In the DLM, the security condition of robustness can

be generalized to consider attacks launched by an arbitrary
principal. To motive this, we first present an example of
a simple system with mutually distrusting principals. We
then present the definition ofrobustness against all attack-
ers, and derive label constraints that ensure a declassifica-
tion is robust against all attackers.

4.1 Example

Consider a simple Vickrey auction, shown in Figure 1.
There are two bidders, Alice and Bob, abbreviatedA and
B respectively. There are ten consecutive auctions, indexed
by the variablei, each auction for a different item. In each

int{⊥→⊥;A←au uB←au} winner[10];
int{⊥→⊥;A←au uB←au} i;
for (i = 1..10) {

int{A→au;A←au uB←au} bidA = getAliceBid(i);
int{B→au;A←au uB←au} bidB = getBobBid(i);

// end of auction i
int{⊥→⊥;A←au uB←au} openA =

declassify(bidA, {⊥→⊥;A←au uB←au});
int{⊥→⊥;A←au uB←au} openB =

declassify(bidB, {⊥→⊥;A←au uB←au});
// compute winner
winner[i] = computeWinner(openA, openB);

// process payment of winning bid
...

}

Figure 1. Vickrey auction example.

auction, both bidders submit a secret bid; after all bids for
the ith auction have been submitted, the secret bids are de-
classified, and the winner computed. We model each bidder
as a principal, and have an auctioneer principalau. We as-
sume there are noacts-forrelationships between these prin-
cipals. Every variable in the program is annotated with a
security label from the DLM, which is enforced on infor-
mation stored in the variable.

Consider the auction program from Alice’s perspective.
In each auction, Alice submits a bid, stored in variablebidA,
with the label{A → au;A ← au u B ← au} enforced
on it. Thus, Alice specifies that her bid should be readable
only by the auctioneer, and both Alice and Bob are prepared
to accept the bid as high integrity, influenced only by the
auctioneer (due to his ability to control when theith auction
commences). After Bob has submitted his bid, Alice’s bid
is declassified to{⊥→⊥;A←auuB←au}, allowing the
bid to be read by all principals, and stored inopenA.

Alice may be concerned with attempts by Bob to cor-
rupt the auction. For example, could Bob corrupt the con-
trol flow so that Alice’s bid is declassified before Bob has
submitted his bid, permitting Bob to always win with the
minimal winning bid? Or could Bob alter the value stored
in bidA, and fool the system into releasing sensitive infor-
mation of Alice’s, such as her credit card number, or her bid
for auctioni + 1?

Alice would like assurance that the program is robust
against attacks by Bob. However, Bob also needs assur-
ance that the program is robust against attacks by Alice.
And both principals may be concerned with the auctioneer’s
ability to corrupt the auction. Even in this simple example
there are several potential attackers, and it is necessary to
reason about robustness against all possible attackers.

4.2 Robustness against all attackers

The power of an attackerA is defined by the pair of la-
bels〈RA,WA〉, which bound the information thatA can ob-
serve and influence. In the setting of Myers, Sabelfeld and
Zdancewic [12], there is noa priori relationship between
RA andWA, making it difficult to characterize an arbitrary
attacker’s power, and therefore difficult to prove robustness
against all possible attackers.

However, in the DLM the power of an attackerA can
be expressed in terms of the attacker’s identity, because all
entities are represented by principals. Moreover, we can
express the power of an attacker as perceived by a particular
principal: for principalsp andq, the security levelsRp→q

andWp←q are bounds on the labels of information thatp
believesq can read and write:

Definition 2 The labelRp→q is the least upper bound on
labels of information that principalp believes principalq
can read:

L v Rp→q if and only ifq ∈ readers(p, L)

The labelWp←q is the greatest lower bound on labels of
information that principalp believes principalq can influ-
ence:

Wp←q v L if and only ifq ∈ writers(p, L)

The labelsRp→q andWp←q cannot be expressed as con-
junctions and disjunctions of reader and writer policies. We
can, however, characterize their reader and writer sets.

readers(r, Rp→q) , {q′ | q′ � q andr � p}
writers(r, Rp→q) , {q′ | q′ is a principal}

readers(r, Wp←q) , {q′ | q′ is a principal}
writers(r, Wp←q) , {q′ | q′ � q andp � r}

We extend the labels of the DLM to include the labels
Rp→q andWp←q for all principalsp andq. The definition
of the label relationv is extended in the obvious way, us-
ing the definitions forRp→q andWp←q given above. The
key property, thatv forms a pre-order whose equivalence
classes are a lattice, continues to hold.

Figure 2 depicts the pointsRp→q andWp←q in the prod-
uct lattice of confidentiality and integrity. Their confiden-
tiality and integrity levels divide the set of all labels into
four subsets characterized by the power of the attacker to
either read or write information with those labels.

Having precisely described an arbitrary attacker’s power,
we can now define robustness against all attackers.

Definition 3 (Robustness against all attackers)A system
has robustness against all attackersif for all principals p
andq, the system has robustness with respect to attackerq
with power〈Rp→q,Wp←q〉.

Rp→q

Wp←q

{>→>; ⊥←⊥}

{⊥→⊥;>←>}

{⊥→⊥;⊥←⊥}{>→>; >←>}

confidentiality

in
te
gr
ity

attacker

can write

attacker

can read

L
from

L
to

Figure 2. Robust declassification in a
confidentiality–integrity product lattice.

If a system is robust against all attackers, then every prin-
cipal p believes that the system is robust against attacks by
any principalq.

4.3 Constraints for checking robustness

As will be seen in Section 5, the key to enforcing robust-
ness is to ensure that if a declassification reveals informa-
tion to attackerA, thenA is unable to influence either the
decision to declassify, or the data to be declassified. This
requirement has a very natural expression in the DLM.

SupposeLfrom is the label of the information to be de-
classified,Lto is the label of the declassified information,
and pc is the program counter label, an upper bound on
the labels of information contributing to the decision to
declassify. If, from the perspective of a principalp, the
declassification reveals information to a principalq, then
q ∈ readers(p, Lto)− readers(p, Lfrom); if this is the case,
then we require thatq cannot influence either the decision to
declassify (q 6∈ writers(p, pc)), or the data to be declassified
(q 6∈ writers(p, Lfrom)).

Figure 2 shows part of this requirement graphically:
if the declassification fromLfrom to Lto crosses the
line defined by Rp→q (i.e., q ∈ readers(p, Lto) −
readers(p, Lfrom)) thenLfrom should not be above the line
defined byWp←q (i.e.,q 6∈ writers(p, Lfrom)).

Since we would like this requirement to hold from every
principal’s perspective, and for all principals that the de-
classification may reveal information to, the following state-
ment should hold at every declassification:

∀p. ∀q ∈ readers(p, Lto). q ∈ readers(p, Lfrom) or

(q 6∈ writers(p, pc) andq 6∈ writers(p, Lfrom))
(1)

Unfortunately, it is difficult to prove directly that this
statement is true: membership of the setswriters(p, pc) and
writers(p, Lfrom) depends upon theacts-forrelation�, and

we may have only partial knowledge of theacts-for rela-
tion that will be in effect at run time [2]. Demonstrat-
ing that a principalq is not a member ofwriters(p, pc) or
writers(p, Lfrom) is impossible.

However, the following two label constraints suffice to
entail condition (1).

Lfrom v Lto t writersToReaders(pc) (2)

Lfrom v Lto t writersToReaders(Lfrom) (3)

These label constraints can be verified syntactically, with
only partial knowledge of theacts-forrelation [11]. The la-
bel constraints make use of operatorwritersToReaders(L),
which converts the writers of labelL into readers of label
writersToReaders(L).

writersToReaders(L) , {wtr(I(L));>←>}
wtr(c t d) , wtr(c) u wtr(d)

wtr(c u d) , wtr(c) t wtr(d)

wtr(o←w1, . . . , wn) , o→w1, . . . , wn

We do not definewritersToReaders(·) for the labels
Rp→q or Wp←q. Although suitable definitions could be
given, we ensure thatRp→q andWp←q never appear in label
constraints (2) or (3).

The key property ofwritersToReaders(·) is that if prin-
cipal p believesq is a writer of labelL, thenp believesq is
a reader ofwritersToReaders(L):

Property 1 For all labels L, and all princi-
pals p and q, if q ∈ writers(p, L), then q ∈
readers(p, writersToReaders(L)).

Proof: By induction on the structure of the integrity pol-
icy I(L), exploiting the duality between confidentiality and
integrity policies. �

The following lemma shows that if constraints (2) and
(3) hold, then condition (1) holds, that is, every principal
p believes that if the declassification reveals information to
principalq, thenq could not have influenced the decision to
declassify or the information to be declassified.

Lemma 1 If Lfrom v Lto t writersToReaders(pc)
and Lfrom v Lto t writersToReaders(Lfrom) then
∀p. ∀q ∈ readers(p, Lto). q ∈ readers(p, Lfrom) or (q 6∈
writers(p, pc) andq 6∈ writers(p, Lfrom)).

Proof: AssumeLfrom v Lto twritersToReaders(pc) and
Lfrom v Lto t writersToReaders(Lfrom). Let p be a prin-
cipal, and letq ∈ readers(p, Lto). If q ∈ readers(p, Lfrom)
then we are done. Supposeq 6∈ readers(p, Lfrom).
From the definition ofv, we havereaders(p, Lfrom) ⊇
readers(p, Lto) ∩ readers(p, writersToReaders(pc)). If
q ∈ writers(p, pc) then by Property 1 we have

e ::= val | v | e1 op e2 | declassify(e, `)
c ::= skip | v := e | c1; c2 | if e then c1 else c2 | while e do c

Figure 3. Language grammar

q ∈ readers(p, writersToReaders(pc)). But then q ∈
readers(p, Lto) ∩ readers(p, writersToReaders(pc)), and
so we haveq ∈ readers(p, Lfrom), a contradiction.
So q 6∈ writers(p, pc). By a similar argument,q 6∈
writers(p, Lfrom). �

Consider the declassification of Alice’s bid in the auction
example of Section 4.1. The label of Alice’s bid is{A→
au;A← au u B← au}, and it is declassified to the label
{⊥ → ⊥;A ← au u B ← au}. The program counter at
the declassification depends only on the variablei, so the
pc label is {⊥ → ⊥;A ← au u B ← au}. Instantiating
label constraints (2) and (3) for these labels results in the
following constraint:

{A→au;A←au uB←au}
v {⊥→⊥ tA→au tB→au;A←au uB←au}

The integrity policies of both of these labels are identi-
cal, and the reader policy of the left hand side (A→ au) is
contained in a join on the right hand side, so the constraint
is satisfied. This implies that every principal believes that
any principal who gains the ability to read Alice’s bid is
unable to influence either the value declassified, or the de-
cision to declassify that value. Thus, Alice believes that if
the auctioneer is trusted, then the declassification will never
reveal anything other than Alice’s bid, and will not occur
other than at the appropriate time.

5 Enforcing robustness
In this section, we consider enforcing robustness against

all attackers in the setting of a simple imperative language.
After introducing the language, we refine the definitions of
robustness and robustness against all attackers, and present
a type system for enforcing robustness against all attackers.

The language grammar is presented in Figure 3; it is
identical to that of Myers, Sabelfeld and Zdancewic [12].
The language and its semantics are standard, with
the exception of the explicit declassification operator,
declassify(e, `), which declassifies expressione to security
level `, and is operationally equivalent to the expressione.
The language includes literal valuesval ∈ Val , and vari-
ablesv ∈ Var . A variable contextΓ : Var → Lmaps each
variable to a security level that is an upper bound (with re-
spect tovL) on the security level of information that can be
stored in the variable. The range ofΓ is restricted to labels
of pairs of confidentiality and integrity policies—Rp→q and

Wp←q are not permitted as security levels of variables. The
function Vars(e) returns the set of variables that occur in
the expressione.

This language captures the key aspects of language-
based declassification, while being simple enough to per-
mit straightforward proofs. In Section 7 we apply the type
system to Jif, a more complex and practical language.

5.1 Defining robustness

In order to give a meaningful definition of robustness
(and robustness against all attackers) in this language-based
setting, we must first define what attacks can be made by
an attackerA with power 〈RA,WA〉. Following Myers,
Sabelfeld and Zdancewic, we define an attack byA to be
a commanda that will be inserted into a program. The at-
tacka is not arbitrary code, but is restricted to a subset of
the language, to model “fair” attacks. The allowed attacks
are defined by the following grammar, where variablev can
be read or updated only if the security labelΓ(v) permits
these accesses by the attacker.

a ::= skip | v := e | a1; a2 | if e thena1 elsea2 | while edoa

The allowed attacks do not include declassifications, be-
cause if the attacker can declassify confidential information
directly, the game is already over.

Attacks may be inserted into the program at points where
the attacker is able to influence the execution of code. For
example, in a distributed system, the attacker may be able
to insert attacks on a server that is under the attacker’s con-
trol. Myers, Sabelfeld and Zdancewic assume that program
points at which an attacker may insert attacks are explicitly
marked bycode holes(•). There may be multiple holes in
a command, represented as a vector of holes~•; the holes in
a programc[~•] will be replaced with a vector of attacks~a to
obtain a complete (hole-free) program, writtenc[~a]. The
grammar of commands with holesc[~•] extends the com-
mand grammar from Figure 3:

c[~•] ::= . . . | [•]

We can now refine Definition 1, the definition of ro-
bustness, for this language-based setting. A configuration
is a pair〈M, c〉 of memoryM and commandc. A mem-
ory is a function fromVars to Val . Configurations〈M, c〉
and〈M ′, c′〉 are indistinguishable toA (written 〈M, c〉 =A

〈M ′, c′〉) if for all variablesv ∈ Var , if Γ(v) vL RA then
M(v) = M ′(v). Traces are indistinguishable toA if the se-
quence of configurations are equivalent (according to=A)
up to stuttering. The definition of trace indistinguishabil-
ity is enough to define weak indistinguishability (≈A) and
strong indistinguishability (uA).

Definition 4 (Robustness)Commandc[~•] has robustness
with respect to attacks by attackerA with power〈RA,WA〉

if for all memoriesM1 and M2, and all attacks~a and
~a′ by attacker A, if 〈M1, c[~a]〉 uA 〈M2, c[~a]〉, then
〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉.

This refinement of robustness assumes that the code
holes where an attacker may insert code are explicitly given;
however, in general, the location of code holes depends
upon which attacker we are considering. Since we are con-
cerned with the possibility of many attackers, we need to
reason about the security of code into which different at-
tackers may insert code at different locations.

To indicate where code holes may be inserted for a given
attackerA, we assume the existence of ahole insertion re-
lation CA. Let c CA d[~•] denote that the command with
holesd[~•] can be obtained by inserting code holes into com-
mandc at program points where attackerA is able to insert
code. The actual form of the hole-insertion relation depends
on the system. For example, in the context of automatic
program partitioning [20] (in which a program is automat-
ically partitioned into code segments executed on different
servers), an attacker may be able to insert code into any seg-
ment that is placed on a server controlled by the attacker.

For the purposes of this paper, we require only that the
hole insertion relationCA does not allow holes to be in-
serted into high-confidentiality contexts. That is, an attacker
may not insert code at a program point whose execution de-
pends upon information with a security level not bounded
above byRA. In the context of automatic program par-
titioning, program points in a high-confidentiality context
correspond to code segments whose very execution would
insecurely reveal sensitive information to the attacker; such
code segments are never placed on a server where the at-
tacker could insert attacks. More formally, we define the
property ofsafe hole insertionas follows.

Definition 5 (Safe hole insertion) A hole insertion rela-
tion CA is safe if whenever c CA d[~•], then for all
holes in d[~•], if the hole is a subcommand of a com-
mandif e then c1 else c2 or a subcommand of a command
while e do c1, then for all variablesv ∈ Vars(e), we have
Γ(v) v RA.

We can now refine Definition 3, the definition of robust-
ness against all attackers, for the specific language-based
setting presented here.

Definition 6 (Robustness against all attackers)
Commandc has robustness against all attackersif for
all principals p and q, and all commands with holesd[~•]
such thatc Cq d[~•], commandd[~•] has robustness with
respect to attackerq with power〈Rp→q,Wp←q〉.

5.2 Enforcing robustness

Myers, Sabelfeld and Zdancewic present a type system,
parameterized on a single attackerA, that enforces robust-

ness against attacks byA. However, due to the number of
possible attackers, it is infeasible to show directly that a pro-
gram is well-typed in their type system instantiated on each
and every possible attackerA. Instead, we ensure that a pro-
gram that is well-typed in our type system is also well-typed
with respect to Myers, Sabelfeld and Zdancewic’s type sys-
tem instantiated on any possible attacker. This implies that
our type system enforces robustness against all attackers.

Figure 4 presents Myers, Sabelfeld and Zdancewic’s type
system, adapted slightly for our purposes. The judgment
Γ, pc À c indicates that commandc is well typed under
variable contextΓ and program counter labelpc; the judg-
mentΓ À e : ` indicates that the expressione is well typed
under variable contextΓ, and` is an upper bound on the se-
curity level of the information thate depends upon. The at-
tackerA appears in the typing rules forv := declassify(e, `)
and command holes[•]. All other typing rules are standard
for an imperative security-typed language.

The key idea of enforcing robustness is to ensure that
if a declassification may reveal information to an attacker
A, then both the data to be declassified and the decision to
declassify information cannot have been influenced byA.
The typing rule for declassification is where this restriction
is enforced: the constraintsWA 6vL pc and WA 6vL `′

ensure that both the decision to declassify and the informa-
tion to be declassified are high-integrity with respect to the
attacker’s power.

We have adapted Myers, Sabelfeld and Zdancewic’s type
system by using two different typing rules for declassifica-
tions. The first is for declassifications that reveal informa-
tion to the attackerA; that is, information is declassified
from security level̀ ′ (whereA cannot read information) to
security level̀ (whereA can read information). The sec-
ond rule is for declassifications that do not reveal informa-
tion to attackerA, either because the attacker could already
read information at level̀′, or because after declassifica-
tion the attacker is still unable to read the information at its
new level`. Only the first rule needs to enforce the robust-
ness conditions; Myers, Sabelfeld and Zdancewic’s original
system did not contain the second rule, requiring suitably
high integrity for all declassifications, even if they do not
reveal information to the attacker. We modify their declas-
sification typing rule in anticipation of enforcing robustness
against all attackers.

The rule for command holes restricts holes from occur-
ring in high-confidentiality contexts, which ensures that an
attacker is unable to observe sensitive information through
implicit flows [6].

Theorem 1 If Γ, pc À c then commandc has robustness
with respect to attackerA.

Proof: Similar to Myers, Sabelfeld and Zdancewic’s,
adapted for the modified declassification typing rules.�

Γ À val : `
Γ(v) = `
Γ À v : `

Γ À e : `
Γ À e′ : `

Γ À e op e′ : `

Γ À e : `
` vL `′

Γ À e : `′ Γ, pc À skip

Γ À e : `
` t pc vL Γ(v)
Γ, pc À v := e

Γ, pc À c1

Γ, pc À c2

Γ, pc À c1; c2

Γ À e : `
Γ, ` t pc À c1 Γ, ` t pc À c2

Γ, pc À if e then c1 else c2

Γ À e : `
Γ, ` t pc À c

Γ, pc À while e do c

Γ, pc À c
pc′ vL pc
Γ, pc′ À c

pc vL RA

Γ, pc À [•]

Γ À e : `′ ` t pc vL Γ(v) I(`′) vL I(`)
` vL RA `′ 6vL RA WA 6vL pc WA 6vL `′

Γ, pc À v := declassify(e, `)

Γ À e : `′ ` t pc vL Γ(v) I(`′) vL I(`)
` 6vL RA or `′ vL RA

Γ, pc À v := declassify(e, `)

Figure 4. Typing rules for Γ À e : ` and Γ, pc À c

Γ ` e : `′ ` t pc v Γ(v)
`′ v ` t writersToReaders(pc)
`′ v ` t writersToReaders(`′)
Γ, pc ` v := declassify(e, `)

Figure 5. Declassification rule for Γ, pc ` c

To enforce robustness against all attackers, we derive
a type system using constraints (2) and (3) given in Sec-
tion 4.3. This type system ensures that for all principalsp
andq, a well-typed program is robust against attacks byq
with power〈Rp→q,Wp←q〉. We prove this by showing that
a well-typed program is also well-typed in Myers, Sabelfeld
and Zdancewic’s type system instantiated on the attackerq
with power〈Rp→q,Wp←q〉.

The new typing judgments areΓ, pc ` c (commandc is
well typed under variable contextΓ and program counter
label pc) andΓ ` e : ` (expressione is well typed under
variable contextΓ, and` is an upper bound on the security
level of the information thate depends upon). All inference
rules forΓ À e : ` are also inference rules forΓ ` e : `.
All inference rules forΓ, pc À c are also inference rules
for Γ, pc ` c, with the exception of the rules for declassifi-
cation and command holes. There is no need for a rule for
command holes, as we are only concerned with complete
programs; holes are introduced through hole insertion re-
lationsCA. The new declassification rule, which replaces
both previous declassification rules, is shown in Figure 5.
The inference rules for the new typing judgments contain
no negated label ordering relations (6v), which is consistent
with having only partial knowledge of theacts-forrelation
in effect at run time.

Theorem 2 If Γ, pc ` c then commandc has robustness
against all attackers.

Proof: Let Γ, pc ` c, let p andq be principals, and let
d[~•] be a command with holes such thatcCq d[~•]. We show
thatΓ, pc À d[~•], whereA = q, and thus by Theorem 1,
d[~•] has robustness with respect to attackerq with power

〈Rp→q,Wp←q〉.
We first showΓ, pc À c, by induction onΓ, pc ` c. The

only interesting case is for declassification. If the declassifi-
cation doesn’t reveal information toA (i.e., either̀ 6vL RA

or `′ vL RA), then the declassification type-checks with the
second declassification rule. If it does reveal information to
A, then by definition ofRp→q andWp←q and Lemma 1 we
haveWp←q 6v pc andWp←q 6v `′ as required.

Given thatΓ, pc À c andc Cq d[~•], we can use the hole
safety ofCq to show thatΓ, pc À d[~•], since code holes
can only be introduced in low-confidentiality contexts, and
thus any hole type-checks. �

6 Qualified robustness
Robustness is concerned with systems in which the con-

fidentiality of information can be downgraded. In some sys-
tems, it is also necessary to downgrade the integrity of in-
formation, also calledendorsementof information. For in-
stance, in the auction example of Section 4.1, Alice submits
a bid via the functiongetAliceBid(), which returns a value
with integrity A← au u B← au. Clearly Alice influences
the value of the bid, yet Bob is prepared to treat the infor-
mation as high integrity, since the actual value of Alice’s
bid is unimportant for the security properties of the auction.
An endorsement is thus required in the implementation of
the functiongetAliceBid().

Robustness does not hold when a system endorses data
that is subsequently used to determine what information is
declassified. For example, consider a system where a user
pays a fee and then chooses one of two files to download.
The system is prepared to endorse the user’s choice, to treat
is as high-integrity data, since the system is prepared to al-
low either file to be downloaded. However, the user’s choice
controls which file is declassified for download, violating
robustness with respect to attacks by the user.

Myers, Sabelfeld and Zdancewic define a weaker secu-
rity condition that may hold in the presence of endorsement:
qualified robustness[12]. Qualified robustness allows an
attacker limited ability to influence what information is de-

` t pc vL Γ(v) C(`′) vL C(`)
Γ À e : `′ WA 6vL ` WA vL `′ WA 6vL pc

Γ, pc À v := endorse(e, `)

` t pc vL Γ(v) C(`′) vL C(`)
Γ À e : `′ WA vL ` or WA 6vL `′

Γ, pc À v := endorse(e, `)

Γ ` e : `′ ` t pc v Γ(v) `′ u writersOnly(pc) v `
Γ, pc ` v := endorse(e, `)

Figure 6. Additional typing rules for endorse

classified. This is made explicit in the language by provid-
ing a new expression:endorse(e, `). Intuitively, a command
has qualified robustness if the only control that an attacker
exerts over information release is via explicit endorsement.

To formally define qualified robustness, Myers,
Sabelfeld and Zdancewic define an alternate nondetermin-
istic semantics for the language, in which the evaluation
of an endorse(e, `) expression returns all possible values.
This captures the idea that the system is prepared to treat
the result of evaluatingendorse(e, `) as high-integrity data,
regardless of the actual value of the expressione.

The statement of qualified robustness is syntactically
identical to that of robustness; it differs only in the new pro-
gram semantics.

Definition 7 (Qualified robustness) Command c[~•] has
qualified robustnesswith respect to fair attacks by attacker
A with power〈RA,WA〉 if for all memoriesM1 and M2,
and all attacks~a and ~a′ by attackerA, if 〈M1, c[~a]〉 uA

〈M2, c[~a]〉, then〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉.

Just as robustness can be generalized to qualified robust-
ness to account for the downgrading of integrity of informa-
tion, so robustness against all attackers can be generalized
to qualified robustness against all attackers.

Definition 8 (Qualified robustness against all attackers)
Commandc hasqualified robustness against all attackersif
for all principalsp andq, and all commands with holesd[~•]
such thatc Cq d[~•], commandd[~•] has qualified robustness
with respect to attackerq with power〈Rp→q,Wp←q〉.

6.1 Enforcing qualified robustness

The key idea for enforcing qualified robustness is simi-
lar to that for enforcing robustness: the decision to endorse
information must be of high integrity. However, unlike ro-
bustness, the information being downgraded does not need
to be high integrity. (Indeed, by definition, the information
to be endorsed is low integrity.)

Myers, Sabelfeld and Zdancewic extend their type sys-
tem with a rule forendorse statements, which we adapt and

present in Figure 6. As with the two rules for declassifi-
cation, endorsement has two rules: one for raising the in-
tegrity of data beyond the attacker’s ability to modify it, and
the other for leaving integrity unchanged from the attacker’s
perspective. Note that the first typing rule for endorsement
requires the program counter labelpc to be high integrity,
ensuring that only high-integrity information influences the
decision to endorse.

Theorem 3 If Γ, pc À c then commandc has qualified
robustness with respect to attackerA.

Proof: Similar to Myers, Sabelfeld and Zdancewic’s,
adapted for the modified endorsement typing rules. �

Qualified robustness against all attackers can be enforced
through a suitable label constraint, which we derive analo-
gously to the constraints for robustness against all attack-
ers. If a principalp believes that the endorsement removes
a principalq from the writer set, thenq should be unable
to influence the decision to endorse the data. That is, if
q ∈ writers(p, Lfrom) − writers(p, Lto), then we require
q 6∈ writers(p, pc). This requirement should hold for all
principalsp andq. From this requirement we can derive a
sufficient label constraint:

Lfrom u writersOnly(pc) v Lto (4)

The label operatorwritersOnly(·) strips away the confi-
dentiality policy of a label. More precisely, for any labelL
and we definewritersOnly(L) , {>→>; I(L)}.

The following lemma shows that if label constraint (4)
holds, then every principal believes that if the endorsement
removes a principalq from the writer set, thenq could not
have influenced the decision to endorse.

Lemma 2 If Lfrom u writersOnly(pc) v Lto then
∀p. ∀q ∈ writers(p, Lfrom). q ∈ writers(p, Lto) or q 6∈
writers(p, pc).

Proof: Similar to proof of Lemma 1. �
Label constraint (4) leads to a new typing rule for en-

dorsement, given in Figure 6. Adding this rule to the type
system ensures qualified robustness against all attackers.

Theorem 4 If Γ, pc ` c then commandc has qualified ro-
bustness against all attackers.

Proof: Similar to proof of Theorem 2. �

7 Jif implementation
The type system for enforcing robustness against all at-

tackers is a practical one. Unlike the type system of Myers,
Sabelfeld and Zdancewic, it is not parameterized on a par-
ticular attacker. We have adapted the type system for en-
forcing robustness against all attackers and implemented it
in the Jif compiler [10, 13].

1 final label{⊥→⊥;>←>} lbl = ...;
2 int{∗lbl} i = ...;
3 if (lbl v {Alice→Bob;Alice←Chuck}) {
4 int j = declassify(i, {⊥→⊥;Alice←Chuck});
5 }

Figure 7. Example Jif code

Jif extends the Java [8] programming language with in-
formation flow control, using DLM labels to annotate vari-
ables and methods. The Jif compiler checks that the policies
specified by label annotations in Jif programs are obeyed.

To implement robustness against all attackers, we first
extended Jif with the modified DLM of Section 3 to allow
the expression of the required label constraints. Although
some Jif variants [20] incorporate (less expressive) integrity
policies, the base Jif compiler did not. We implemented
writer policies, and extended the label ordering within Jif
to allow for meets of labels. These modifications did not
require extensive changes to the Jif compiler.

7.1 ImplementingwritersToReaders(·)
Jif contains a number of sophisticated type mechanisms

to facilitate the creation, use, and reuse of expressive, mod-
ular, secure code [10]. These mechanisms include param-
eterized classes, labels for method arguments, dynamic la-
bels [21] and dynamic principals [17]. Labels in Jif thus
include class parameters, argument labels, and dynamic la-
bels, as well as pairs of confidentiality and integrity poli-
cies. This complicates the implementation of the label con-
straints of Section 5.

In particular,writersToReaders(·) must be extended to
account for the additional labels in Jif, such as dynamic la-
bels. A dynamic label is a first-class value that is repre-
sented at run time. A dynamic labeldyn(x) is equivalent to
the value stored in a final variable namedx, of type label;
however, at compile time, it may not be known what the
value of variablex will be at run time. Dynamic labels may
be used to label other variables. For example, in the Jif code
of Figure 7, the label of the variablei is dyn(lbl), the value
that is held at run time in the dynamic label variablelbl.

In extendingwritersToReaders(·) to dynamic labels, we
must ensure that Property 1 continues to hold: for all prin-
cipalsp andq, and labelsL, if q ∈ writers(p, L), thenq ∈
readers(p, writersToReaders(L)). Clearly, we could safely
definewritersToReaders(dyn(x)) to be{⊥→⊥;>←>}
for all possiblex; sincereaders(p,{⊥→⊥;>←>}) is the
set of all principals, this would satisfy Property 1. While
imprecise, this is the best we can do without additional in-
formation about the dynamic label.

However, in some situations, a given dynamic label has
an upper bound. For example, at the declassification state-

ment in line 4 of Figure 7, we know statically that{Alice→
Bob;Alice ← Chuck} is an upper bound on the dynamic
label lbl, because of the run-time label test on line 3.

If L is an upper bound fordyn(x), we havedyn(x) v
L, and so for any principalp, by definition of v,
we have writers(p, dyn(x)) ⊆ writers(p, L). Thus,
if L consists only of reader and writer policies, then
writersToReaders(L) is a conservative approximation for
writersToReaders(dyn(x)), and if q ∈ writers(p, dyn(x)),
thenq ∈ readers(p, writersToReaders(L)).

We can extend this technique for approximating
writersToReaders(·) to other labels, such as class param-
eters and polymorphic argument labels. Other than the im-
plementation ofwritersToReaders(·), there were no major
challenges in adapting and implementing the type system of
Section 5 for Jif.

8 Related work
It has been recognized since the beginnings of work on

information flow that noninterference is too rigid to de-
scribe the information security of real applications [5, 7].
There has been a great deal of work on mechanisms and se-
curity definitions that relax noninterference in various ways.
Much of this work (particularly, that which is language-
based) has been summarized in a survey paper [15]. More
recently, Sabelfeld and Sands constructed a taxonomy of
different methods for securely mediating information re-
lease [16]. According to their taxonomy, robustness oper-
ates on the “who” dimension of declassification controls, as
it prevents untrusted entities from affecting how informa-
tion is released to them. We compare the robustness mech-
anism in this paper to other mechanisms operating along
the “who” dimension, which is not to disparage the other,
largely orthogonal, dimensions of declassification.

Selective declassification (introduced in the DLM [11]
and developed more abstractly by Pottier and Conchon [14])
is a more primitive “who” mechanism that imposes stati-
cally enforced access controls on declassification so only
explicitly authorized information release can occur. Further
extensions to the DLM have added capability mechanisms
for controlling access to declassification and have integrated
these mechanisms with public-key infrastructures [4, 17].
Banerjee and Naumann have also explored mediating infor-
mation release with the Java access control mechanism [1].

Access controls are useful, but robustness offers addi-
tional assurance since it prevents the owner of information
from authorizing information release that is not robust. Ro-
bustness not only prevents attackers from using declassifi-
cation directly, it prevents them even from affecting declas-
sification. Thus, robustness can be seen as an end-to-end
extension of “who” mechanisms based on access control.

Zdancewic has earlier given typing rules intended to
check robustness [18] (but not qualified robustness), for-

malizing rules used in work on secure program partition-
ing [20]. The rules differ from those given here because
they do not take into account the label on the declassified
value, and because they use a simpler integrity policy lan-
guage. The checking rules in this paper are the first that
provably enforce robustness for a rich policy language.

9 Conclusion
This work extends the semantic security condition of ro-

bustness to systems with mutually distrusting entities. Pre-
vious work on robustness considers attacks only by a single
idealized attacker.

We use the decentralized label model to characterize the
power of an arbitrary attacker, allowing the derivation of
label constraints that ensure robustness against all possible
attackers. We prove that a type system incorporating these
label constraints enforces robustness against all attackers in
the setting of a simple imperative language with explicit de-
classification. These constraints have been implemented in
the Jif programming language, using sound approximations
for the bounded but unknown labels that occur in Jif’s type
system.

We also extend qualified robustness, a security condi-
tion for systems that endorse information, and prove that a
type system for a simple imperative language with explicit
declassification and endorsement enforces qualified robust-
ness against all attackers.

Robustness has been identified as a useful property for
characterizing and enforcing security. This work shows
how robustness applies to, and can be obtained in, sys-
tems with mutual distrust, providing new tools for reason-
ing about secure information flow and information release
in systems with complex security requirements.

Acknowledgments. We thank Lantian Zheng and the
anonymous reviewers for useful comments.

References
[1] A. Banerjee and D. A. Naumann. Using access control for

secure information flow in a Java-like language. InProc.
16th IEEE Computer Security Foundations Workshop, pages
155–169, June 2003.

[2] H. Chen and S. Chong. Owned policies for information se-
curity. In Proc. 17th IEEE Computer Security Foundations
Workshop, June 2004.

[3] S. Chong and A. C. Myers. Language-based information
erasure. InProc. 18th IEEE Computer Security Foundations
Workshop, pages 241–254, June 2005.

[4] T. Chothia, D. Duggan, and J. Vitek. Type-based distributed
access control. InProc. 16th IEEE Computer Security Foun-
dations Workshop, pages 170–186, June 2003.

[5] E. S. Cohen. Information transmission in computational sys-
tems.ACM SIGOPS Operating Systems Review, 11(5):133–
139, 1977.

[6] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow.Comm. of the ACM, 20(7):504–
513, July 1977.

[7] J. A. Goguen and J. Meseguer. Security policies and security
models. InProc. IEEE Symposium on Security and Privacy,
pages 11–20, Apr. 1982.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Lan-
guage Specification. Addison Wesley, 2nd edition, 2000.
ISBN 0-201-31008-2.

[9] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: Theory and practice.
In Proc. 13th ACM Symp. on Operating System Principles
(SOSP), pages 165–182, October 1991.Operating System
Review, 253(5).

[10] A. C. Myers. JFlow: Practical mostly-static information
flow control. In Proc. 26th ACM Symp. on Principles of
Programming Languages (POPL), pages 228–241, San An-
tonio, TX, Jan. 1999.

[11] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model.ACM Transactions on Software
Engineering and Methodology, 9(4):410–442, Oct. 2000.

[12] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing ro-
bust declassification. InProc. 17th IEEE Computer Security
Foundations Workshop, pages 172–186, June 2004.

[13] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and
N. Nystrom. Jif: Java information flow. Software release, at
http://www.cs.cornell.edu/jif, July 2001–.

[14] F. Pottier and S. Conchon. Information flow inference for
free. InProc. 5nd ACM SIGPLAN International Conference
on Functional Programming (ICFP), pages 46–57, 2000.

[15] A. Sabelfeld and A. Myers. Language-based information-
flow security.IEEE Journal on Selected Areas in Communi-
cations, 21(1):5–19, Jan. 2003.

[16] A. Sabelfeld and D. Sands. Dimensions and principles of de-
classification. InProc. 18th IEEE Computer Security Foun-
dations Workshop, pages 255–269, June 2005.

[17] S. Tse and S. Zdancewic. Run-time principals in
information-flow type systems. InIEEE Symposium on Se-
curity and Privacy, Oakland, CA, May 2004.

[18] S. Zdancewic. A type system for robust declassification.
In Proceedings of the Nineteenth Conference on the Mathe-
matical Foundations of Programming Semantics, Electronic
Notes in Theoretical Computer Science, Mar. 2003.

[19] S. Zdancewic and A. C. Myers. Robust declassification. In
Proc. 14th IEEE Computer Security Foundations Workshop,
pages 15–23, June 2001.

[20] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using
replication and partitioning to build secure distributed sys-
tems. InProc. IEEE Symposium on Security and Privacy,
pages 236–250, Oakland, California, May 2003.

[21] L. Zheng and A. C. Myers. Dynamic security labels and non-
interference. InProc. 2nd Workshop on Formal Aspects in
Security and Trust, IFIP TC1 WG1.7. Springer, Aug. 2004.

