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Abstract
SIF (Servlet Information Flow) is a novel software
framework for building high-assurance web applications,
using language-based information-flow control to en-
force security. Explicit, end-to-end confidentiality and
integrity policies can be given either as compile-time
program annotations, or as run-time user requirements.
Compile-time and run-time checking efficiently enforce
these policies. Information flow analysis is known to
be useful against SQL injection and cross-site scripting,
but SIF prevents inappropriate use of information more
generally: the flow of confidential information to clients
is controlled, as is the flow of low-integrity information
from clients. Expressive policies allow users and appli-
cation providers to protect information from one another.

SIF moves trust out of the web application, and into
the framework and compiler. This provides application
deployers with stronger security assurance.

Language-based information flow promises cheap,
strong information security. But until now, it could not
effectively enforce information security in highly dy-
namic applications. To build SIF, we developed new lan-
guage features that make it possible to write realistic web
applications. Increased assurance is obtained with mod-
est enforcement overhead.

1 Introduction
Web applications are now used for a wide range of
important activities: email, social networking, on-line
shopping and auctions, financial management, and many
more. They provide services to millions of users and
store information about and for them. However, a
web application may contain design or implementation
vulnerabilities that compromise the confidentiality, in-
tegrity, or availability of information manipulated by the
application, with financial, legal, or ethical implications.
According to a recent report [33], web applications ac-
count for 69% of Internet vulnerabilities. Current tech-
niques appear inadequate to prevent vulnerabilities in
web applications.

In general, information security vulnerabilities arise
from inappropriate information dependencies, so track-
ing information flows within applications offers a com-
prehensive solution. Confidentiality can be enforced
by controlling information flow from sensitive data to

clients; integrity can be enforced by controlling infor-
mation flow from clients to trusted information—as a
side effect, protecting against common vulnerabilities
like SQL injection and cross-site scripting. In fact, recent
work [14, 19, 37, 15] on static analysis of PHP and Java
web applications has used dependency analyses to find
many vulnerabilities in existing web applications and
web application libraries. Dynamic tainting can detect
some improper dependencies and has also proved use-
ful in detecting vulnerabilities [39, 6]. However, static
analyses have the advantage that they can conservatively
identify information flows, providing stronger security
assurance [28].

Therefore, we have developed Servlet Information
Flow (SIF), a novel framework for building web appli-
cations that respect explicit confidentiality and integrity
information security policies. SIF web applications are
written in Jif 3.0, an extended version of the Jif program-
ming language [21, 24] (which itself extends Java with
information-flow control). The enforcement mechanisms
of SIF and Jif 3.0 track the flow of information within
a web application, and information sent to and returned
from the client. SIF reduces the trust that must be placed
in web applications, in exchange for trust in the servlet
framework and the Jif 3.0 compiler—a good bargain be-
cause the framework and compiler are shared by all SIF
applications.

The security policies used in SIF are both strong and
expressive. Information flow is tracked through a type
system that tracks all information flows, not merely ex-
plicit flows. Security enforcement isend-to-end, because
policies are enforced on information from when it en-
ters the web application, to when it leaves, even as in-
formation flows between different client requests. The
security policies are expressive, allowing complex secu-
rity requirements of multi-user systems to be enforced.
Unlike prior frameworks for tracking information flow
in web applications, policies can express fine-grained re-
quirements forbothconfidentiality and integrity. Further,
the interactions between confidentiality and integrity are
controlled.

The end-to-end security provided by information-flow
control has long been appealing, but much theoretical
work on language-based information flow has not yet
been successfully put into practice. We have identified
limitations of existing security-typed languages for rea-



soning about security in a dynamic external environment,
and we have extended the Jif language with new features
supporting these dynamic environments, resulting in a
new version of the language, Jif 3.0.

Information-flow control mechanisms work by label-
ing information. In previous information flow mecha-
nisms, the space of labels is essentially static. In ear-
lier versions of Jif, for example, labels are expressed in
terms of principals, but the set of principals is fixed at
compile time. This is a serious limitation for web appli-
cations, which often add new users at run time. Jif 3.0
adds the ability for applications to create their own prin-
cipals, dynamically extending the space of information
labels. Moreover, Jif 3.0 allows applications to imple-
ment their own authentication and authorization mecha-
nisms for these application-specific principals—a neces-
sity given the diversity of authentication schemes needed
by different applications. Jif 3.0 also improves Jif’s abil-
ity to reason about dynamic security policies, allowing,
for example, web application users to specify their own
security requirements at run time and have them enforced
by the information flow mechanisms. These new mecha-
nisms create new information channels, but Jif 3.0 tracks
these channels and prevents their misuse.

To explore the performance and usability of SIF, we
developed two web applications with non-trivial security
requirements: an email application specialized for cross-
domain communication, and a multiuser shared calendar.
Both applications add new principals and policies at run
time, and both allow users to define their own informa-
tion security policies, which are enforced by the same
mechanisms used for compile-time policies.

In summary, this paper makes three significant contri-
butions:

• It shows how to use language-based information
flow to construct a practical framework for high-
assurance web applications, in which information
flow is tracked to and from clients, and users can
specify and reason about information security. To
our knowledge, this is the first implemented web ap-
plication framework to strongly enforce both confi-
dentiality and integrity.
• It shows that application-defined mechanisms for

access control and authentication, and a dynami-
cally extensible space of labels, can be integrated
securely with language-based information flow.
• It describes the experience using these new mecha-

nisms to build realistic web applications.

The remainder of the paper is structured as follows.
Section 2 gives an overview of the Servlet Informa-
tion Flow framework, including some background on Jif.
Section 3 introduces the new dynamic features in Jif 3.0,
which enhance Jif’s ability to express and enforce dy-

namic security requirements. Our experience with build-
ing web applications in SIF is described in Section 4.
Section 5 covers related work, and Section 6 concludes.

2 Servlet Information Flow framework
SIF is built using the Java Servlet framework [7], but
presents a higher-level interface to web applications.
Through a combination of static and dynamic mecha-
nisms, SIF ensures that web applications use data only
in accordance with specified security policies, by track-
ing the flow of information in the server, and informa-
tion sent to and from the client. Web applications in
SIF are written entirely in Jif 3.0, an extended version of
the security-typed language[36] Jif, in which types are
annotated with information flow policies. Security poli-
cies are enforced on information as it flows through the
system, giving stronger security assurance than ordinary
(discretionary) access control.

In designing SIF, we faced two main challenges. The
first was identifying information flows in web applica-
tions, including information that flows over multiple re-
quests. For example, a request sent to a server by a
user may contain information about the user’s previous
request and response. The second challenge was to re-
strict insecure information flows while providing suffi-
cient flexibility to implement full-fledged web applica-
tions. The resulting framework is a principled approach
to designing realistic, secure web applications.

SIF is implemented in about 4040 non-comment, non-
blank lines of Java code. An additional 960 lines of Jif
code provide signatures for the Java classes that web ap-
plications interact with. Jif signatures provide security
annotations for Java classes, and expose only a subset of
the actual methods and fields to clients. SIF web appli-
cations are compiled against the Jif signatures, but linked
at run time against the Java classes. Some Java Servlet
framework functionality makes reasoning about infor-
mation security infeasible. Using signatures and wrap-
per classes, SIF necessarily limits access to this func-
tionality, but without preventing implementation of full-
fledged web applications.

In this section, we first describe the threat model that
SIF addresses, and the security assurances that SIF pro-
vides. We present some background about Jif before de-
scribing the design of SIF.

2.1 Threat model and security assurance

Threat model. We assume that web application clients
are potentially malicious, and that web application im-
plementations are benign but possibly buggy. Thus, we
aim to ensure that appropriate confidentiality and in-
tegrity security policies are enforced on server-side in-



formation regardless of the actions of clients, or the mis-
takes of well-meaning application programmers.

Although the Jif programming language prevents the
unintentional violation of information security, it pro-
vides mechanisms for explicit intentional downgrading
of security policies (see Section 4.3). While a well-
meaning programmer will be unable to accidentally mis-
use these mechanisms, a malicious programmer may be
able to subvert them, or use certain covert channels that
Jif does not track (see Section 2.2).

We do not address network threats, such as denial of
service attacks, or the interception and alteration of data
sent over the network.

The Jif compiler and SIF are added to the trusted com-
puting base, which already includes the servlet container,
and the software stack required to run the servlet con-
tainer. Note that SIF web applications are not part of
the trusted computing base, whereas in standard servlet
frameworks, web applications must be trusted.

Security assurance.In a typical web application, secu-
rity assurance consists of convincing each party with a
stake in the system that the application enforces their se-
curity requirements. Obviously users would like to have
assurance that information they input will be confiden-
tial, and information they view is not corrupted. The ap-
plication provider (i.e., deployer) may also have confi-
dentiality and integrity requirements for its information.
Like other recent work on improving security of web ap-
plications (e.g., [14, 18, 37, 15]), we focus on providing
assurance to deployers. The difference here is that SIF
enforces rich policies for information integrity and con-
fidentiality, including policies provided by the user.

Although we focus on providing assurance to deploy-
ers, it is worth considering security assurance from a
web application user’s perspective. Users must be con-
vinced that they are communicating with an application
that enforces their security requirements. The security
validation offered by SIF effectively partitions the secu-
rity assurance problem into two parts: first, ensuring that
the application respects users’ security requirements, and
second, ensuring the server users communicate with is
correctly running the application.

SIF addresses the first part of the assurance problem:
verifying the security properties of web application code.
SIF does not address the second part: convincing a re-
mote client they are communicating with verified code.
This step is important if the web application provider
might be malicious. However, remote attestation meth-
ods [34, 10, 30] seem likely to be effective in solving
this second problem. Attestation methods could be used
to sign application code, or alternatively, to sign a veri-
fication certificate from a trusted SIF compiler that has
checked the code. We leave integration of attestation
mechanisms till future work.

In any case, concern about malicious application
providers should not be exaggerated; users’ willingness
to spend money via web applications suggests they al-
ready place a modicum of trust in them. This work aims
to ensure this trust is justified. At a minimum, this means
application deployers can be more confident in making
possibly legally binding representations to their users.

The SIF framework provides the following security as-
surances to deployers of web applications.

• SIF applications enforce explicit information secu-
rity policies. In particular, SIF ensures that infor-
mation sent to the client is permitted to be read by
the client, thus ensuring that confidential informa-
tion held on the server is not inadvertently released
to the client. Further, information received from
the client is marked as tainted by the client, help-
ing prevent inappropriate use of low-integrity infor-
mation. Thus, useful confidentiality and integrity
restrictions are enforced in SIF applications.
• The information security policies of back-end sys-

tems (e.g., a database, file system, or legacy applica-
tion) are also enforced, provided these systems have
appropriate interfaces annotated with Jif 3.0 secu-
rity policies. Thus, adding a web front-end to an
existing system does not weaken the security assur-
ance of that system, modulo the assumptions of our
threat model.
• Jif ensures that security policies on information

are not unintentionally weakened, ordowngraded.
However, many web applications that handle sensi-
tive information intentionally downgrade informa-
tion as part of their functionality. As discussed fur-
ther in Section 4.3, SIF web applications must sat-
isfy rules that enforceselective downgrading[22,
26] androbustness against all attackers[5], secu-
rity conditions that provide strong information flow
guarantees in the presence of downgrading.
• SIF web applications can produce only well-formed

HTML. While cascading style sheets and JavaScript
may be used, they cannot be dynamically generated,
and must be explicitly specified in the deployment
descriptor, where they can be more easily reviewed
by the application deployer. The deployer thereby
gains assurance that a web application does not con-
tain malicious client-side code.

2.2 Background on Jif
SIF web applications are written in Jif 3.0, a new ver-
sion of the Jif programming language. To understand the
design of SIF, some background on the Jif programming
language is helpful. Readers familiar with Jif may skip
this subsection. Details of some of the new features of
Jif 3.0 are given in Section 3.



Jif is asecurity-typed language[36]: a type has a se-
curity labelL that describes restrictions on information
at that type, which the compiler enforces. Security-type
systems like that in Jif can enforcenoninterference, en-
suring that information labeledL can depend only on in-
formation labeledL or with a less restrictive label [28].
In other words, information cannot leak from higher to
lower levels, nor can untrusted information affect trusted
information. Proofs for noninterference exist for numer-
ous security-typed languages, but not for any language as
expressive as Jif. Jif labels are based on policies from the
decentralized label model(DLM) [22], in which princi-
pals express ownership of information-flow policies.

A principal is an entity with security concerns, and
the power to observe and change certain aspects of the
system. In a web application, principals may be users
of the application, user groups, or even the web appli-
cation itself; SIF applications may choose which entities
to model as principals. Web application principals may
have different security concerns, and do not necessarily
trust each other. By allowing principals to have different
security policies, the DLM can express security concerns
of mutually distrusting principals.

A principal p may delegate to another principalq, in
which caseq is said toact for p. The acts-for relation
is reflexive and transitive, and is similar to thespeaks-
for relation [16]. Theacts-for relation is needed to ex-
press trust relationships between principals, and can en-
code groups and roles. Jif supports atop principal> able
to act for all principals, and abottom principal⊥ that al-
lows all principals to act for it. A principal may also grant
its authority to code, meaning the code is trusted to per-
form actions such as declassification that could violate
the principal’s information security.

Jif labels are constructed fromreader policiesand
writer policies[5]. A reader policyo→r1, . . . , rn means
that principalo owns the policy, ando permits any princi-
pal that can act for anyri (or o itself) to read the data. For
example, the reader policy>→p says that the top prin-
cipal permitsp to observe information. A writer policy
o←w1, . . . , wn is owned by principalo, ando has per-
mitted any principal that can act for any ofw1, . . . , wn,
or o to have influenced (“written”) the data.

Reader policies restrict to which principals informa-
tion may flow, whereas writer policies describe from
which principals information may have flowed. Reader
policies thus describe confidentiality, and writer policies
describe integrity (provenance) of information.

A Jif label is a pair of aconfidentiality policyand anin-
tegrity policy, written{c ; d} for confidentiality policyc
and integrity policyd. The set ofconfidentiality policies
is formed by closing reader policies under conjunction
and disjunction, denotedt andu respectively. The con-
junction of two confidentiality policies,c1 t c2, enforces

the restrictions of bothc1 andc2. Thus, the readers per-
mitted byc1 t c2 is the intersection of readers permitted
by c1 andc2. Similarly, the readers permitted by the dis-
junction c1 u c2 is the union of readers permitted byc1

and c2. Integrity policiesare formed by closing writer
policies under conjunction and disjunction. Dually to
confidentiality, conjunction and disjunction are respec-
tively denotedu andt.

For example, in the label{Alice→ Bob t Chuck →
Bob,Dave ; Alice ← >}, the confidentiality policy
is the join of two reader policies,Alice → Bob and
Chuck → Bob,Dave. Thus, information with this la-
bel can be read only by principals that can act for at
least one ofAlice or Bob, and at least one ofChuck ,
Bob, or Dave; clearly,Bob is one such principal. The
integrity policy of the label consists of a single writer
policy, owned byAlice, stating thatAlice believes the
data has been influenced only by principals able to act
for Alice or the top principal>. SIF uses confidentiality
policies to restrict what information is sent to the client,
and integrity policies to restrict how information received
from the client is used.

Secure information flow requires that the label on a
piece of information can only become more restrictive
as the information flows through the system. Given la-
belsL andL′, we writeL v L′ if the labelL′ restricts
the use of information at least as much asL does. To
handle computations that combine information from dif-
ferent sources, the labelL1 tL2 imposes the restrictions
of bothL1 andL2.

The types of variables and expressions in Jif programs
include labels. For example, a value with typeint{o→
r;⊥←⊥} is an integer with label{o→ r ; ⊥←⊥}: it
can be read only by principals that can act forr or o, and
has the lowest possible integrity. A Jif programmer may
annotate the type declarations of fields, variables, and
methods with labels; use of fields, variables, and meth-
ods must comply with the label annotations. For types
left unannotated, the Jif compiler either chooses default
labels, or automatically infers labels, thus reducing the
annotation burden on the programmer.

Although a Jif programmer may annotate a program
with arbitrary labels, he does not have complete control
over security. Labels must be internally consistent for the
program to type-check, and moreover, the labels must be
consistent with security policies from the external envi-
ronment. In SIF, a web application interacts with the
external environment through the SIF interfaces, as well
as interfaces for back-end services (e.g., databases).

Jif’s type system prevents labeled information from
being unintentionallydowngraded, or assigned a less-
restrictive label. Downgrading confidentiality increases
the set of principals permitted to read the information,
whereas downgrading integrity reduces the set of prin-
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Figure 1: Handling a request in SIF.

cipals considered to have influenced the information.
The type system prevents unintentional downgrading by
tracking the data dependencies (information flow) in the
program, includingimplicit flows [8]: covert storage
channels that arise from program control structure. Jif
does permit information to be intentionally downgraded,
but any code that does so requires the authority of all
principals whose reader or writer policies are weakened
or removed as a result of the downgrading.

Timing and synchronization channels.Jif’s type sys-
tem does not track information flow via timing or ter-
mination channels. These covert channels are not a se-
rious concern if web applications are not implemented
by adversaries; we assume that application programmers
are not malicious. Other work (e.g., [1, 31]) has investi-
gated checking and transforming security-typed code to
remove timing channels. Termination channels (which
can be regarded as an extreme timing channel) are low-
bandwidth, leaking at most one bit per interaction with
the web application, that is, one bit per request.

Jif was developed assuming a single-threaded execu-
tion model. However, SIF web applications are multi-
threaded Jif programs, and thread synchronization can
create covert timing channels that transmit information.
This risk can be mitigated by configuring the web server
to handle at most one concurrent request per servlet,
or by isolating concurrent requests or sessions in the
protection domains offered by some Java run-time sys-
tems [12, 3].

2.3 Design of SIF
Like the Java Servlet framework, SIF allows application
code to define how client requests are handled. However,
there are some structural differences that facilitate the ac-
curate tracking of information flow. Figure 1 presents an
overview of how SIF handles a request from a web client:

1. An HTTP request is made from a web client to a
servlet;

2. The HTTP request is wrapped in aRequest object;
3. An appropriateAction object of the servlet is

found to handle the request, and itsinvoke method
called with theRequest object;

4. The action’sinvoke method generates aPage ob-
ject to return for the request;

5. ThePage object is converted into HTML, which is
returned to the client.

Step 1: HTTP request from web client to servlet.Web
applications must extend the classServlet, which is
similar to theHttpServlet class of the Java Servlet
framework. Figure 2 shows a simplified Jif signature for
the Servlet class, as well as other key classes of SIF.
The important aspects of these signatures are explained
as they arise, but because of space limitations, the syntax
of Jif methods and fields are not fully explained.

Web clients establishsessionswith the servlet; ses-
sions are tracked by the servlet container, as in the Java
Servlet specification. The SIF framework creates ases-
sion principalfor each session, which can be thought of
as corresponding to the session key shared between the
client and server [16], if such a key exists. The applica-
tion would typically define its own user principals, which
can delegate to the session principal.

Step 2: HTTP request wrapped in aRequest object.
The classRequest is a SIF wrapper class for an HTTP
request, providing restricted access to information in the
request, via thegetParam method. The restricted in-
terface ensures that web applications are unable to cir-
cumvent the security policies on data contained in the
request, as described below.

Step 3: AnAction is found and invoked.Web applica-
tions implement their functionality inactions, which are



abstract class Servlet {
// allows servlets to specify
// a default action
protected Action{req} defaultAction(Request req);

// allows servlets to create a
// servlet-specific SessionState object
protected SessionState createSessionState();

public void setReturnPage{*:req.session}(
Request{*:req.session} req,
label out, label in,
Node[out,in]{*in} page)

where {*out;*in} <= {*:req.session};
}

abstract class Action {
public abstract void

invoke{*lbl}(label{*lbl} lbl,
Request{*lbl} req)

where caller(req.session);
}

// base class of HTML elements
abstract class Node[label Out, label In] { }

final class Request {
// principal representing the session
// between client and server
public final principal session;

// reference to the Servlet
public final Servlet servlet;

// acquire a parameter value from the Request
public String{*inp.L t inp t (⊥→⊥;>←session)}

getParam(Input inp);

// obtain a reference to
// the SessionState object
public SessionState getSessionState();

}

final class Input {
private final Nonce n;
public final label L;

}
abstract class InputNode[label Out, label In]

extends Node[Out,In] {
// framework statically enforces Out t In v inp.L
private final Input{L} inp;

}

Figure 2: Jif signatures for SIF classes

application-defined subclasses of the SIF classAction.
A SIF servlet may have many action objects associated
with it; each action object belongs to a single servlet.

Actions can be used as the targets of forms and hyper-
links. For example, the target of a form is an action ob-
ject responsible for receiving and processing the data the
user submits via the form. This mechanism differs from
the standard Java servlet interface, which requires the ap-
plication implementor to write explicit request dispatch-
ing code (thedoGet method). However, explicit dispatch
code in the application makes precise tracking of infor-
mation flow difficult, as the dispatch code is executed for
all requests, even though different requests may reveal
different information. By avoiding dispatch code, the
action mechanism permits more precise reasoning about
the information revealed by client requests to the server,
as discussed further in Section 2.4.

Action objects may besession-specific actions, which
can only ever be used by a single session, or they may
beexternal actionsnot specific to any given session. All
action objects within a given servlet have a unique iden-
tifier. For session-specific actions, the identifier is a se-
cure nonce, automatically generated by the framework
on construction of the action. For external actions, the
identifier is a (human-readable) string specified by the
web application. Since external actions have fixed iden-
tifiers, they may be the target of external hyperlinks, such
as a hyperlink in static HTML on a different web site.

When an HTTP request is received by a servlet, the
framework finds a suitable action to handle it. Typically,
the HTTP request contains a parameter value specifying
the unique identifier of the appropriate action; for exam-
ple, forms generated by the servlet identify the action to
which the form is to be submitted. If the HTTP request
does not contain an action’s unique identifier, then a de-

fault action specified by theServlet.defaultAction
method is used to handle the request. This default is use-
ful for handling the first request of a new session. If the
HTTP request contains an invalid action identifier (e.g.,
the identifier of a session-specific action of an expired
or invalidated session), an error page is returned, which
then redirects the user to the default action.

Actions allow web applications to maintain control
over application control flow. Because session-specific
actions are named with a nonce, other sessions cannot
invoke them. In addition, SIF tracks theactive setof
actions for each session. An error page is returned if a
request tries to invoke an action that is not active. The
active set contains all external actions, and all session-
specific actions that were targets of hyperlinks and forms
of the last response. Thus, a client by default cannot re-
submit a form by replaying its (inactive) action identifier.

Once the appropriate action object has been found, the
invoke method is called on it with aRequest object
as an argument. Theinvoke method executes with the
authority of the session principal, as shown by thewhere
caller(req.session) annotation in Figure 2.

Web applications implement their functionality in the
action’s invoke method, as Jif 3.0 code. If required,
the invoke method can access back-end services (e.g.,
a database) provided that suitable Jif interfaces exist for
the services. For example, web applications can access
the file system since the Jif run-time library provides a Jif
interface for it, which translates file system permissions
into Jif security policies.

SIF web applications can provide secure web inter-
faces to legacy systems, by accessing the legacy sys-
tems as back-end services. The information security of
these systems is not compromised by allowing SIF appli-
cations to access them, since all accesses from Jif code



must conform to the system’s Jif interface.

Step 4: Theinvoke method generates aPage object.
An object of the classPage is a representation of an
HTML page. SIF uses the classNode to represent HTML
elements; the classPage, and other HTML elements,
such asParagraph andHyperlink, are subclasses of
Node. Nodes may be composed to form trees, which
represent well-formed HTML code. The classNode is
parameterized by two labels,Out andIn. TheOut la-
bel is an upper bound on the labels of information con-
tained in the node object and its children. For example,
an HTML body may contain several paragraphs, each of
which contains text and hyperlinks; theOut parameter
of eachParagraph node is at least as restrictive as the
Out parameters of its childNodes. TheIn parameter is
used to bound information that may be gained by from
subsequent requests originating from this page, and is
discussed further in Section 2.4.

The Action.invoke method must generate aPage
object, and callServlet.setReturnPage with that
Page object as an argument. The signature for
Servlet.setReturnPage ensures that theOut param-
eter of thePage is at most as restrictive as the label
{>→ req.session;⊥← ⊥}, wherereq.session is
the session principal. This label is an upper bound on
all labels that permit the principalreq.session to read
information, and thus thePage object returned for the re-
quest can contain only information that the session prin-
cipal is permitted to view. This restriction is enforced
statically through the type-system, and requires no run-
time examination of labels by the SIF framework. Thus,
assurance is gained prior to deployment that confidential
information on the server is not inadvertently released.

In addition, by requiring the application to produce
Page objects instead of arbitrary byte sequences, SIF can
ensure that each input field on a page has an appropriate
security policy associated with it (see Section 2.4), and
that the web application serves only well-formed HTML
that does not contain possibly malicious JavaScript.

Step 5: ThePage is converted into HTML. SIF con-
verts thePage object into HTML, which is sent to the
client. ThePage object may contain hyperlinks and
forms whose targets are actions of the servlet; SIF en-
sures that the HTML output for these hyperlinks and
forms contain parameter values specifying the appropri-
ate actions’ unique identifiers; if the user follows a hyper-
link or submits a form, the appropriate action is invoked.

2.4 Information flow over requests
The Jif compiler ensures that security policies are en-
forced end-to-end within a servlet, that is, from when a
request is submitted until a response is returned. How-
ever, information may flow over multiple requests within

the same session, for example, by being stored in session
state, or by being sent to a (well-behaved) client that re-
turns it in the next request. SIF tracks information flow
over multiple requests, to ensure that appropriate security
labels are enforced on data at all times.

Information flow through parameter values. SIF re-
quires each input field on a page to have an associated
security label to be enforced on the input when submit-
ted. This label is statically required to be at least as re-
strictive as the label of any default value for the input
field, to prevent a default value from being sent back to
the server with a less restrictive policy enforced on it.

SIF ensures that the submitted value of an input field
has the correct label enforced on it by preventing ap-
plications from arbitrarily accessing the HTTP request’s
map from parameter keys to parameter values. In-
stead, when an input field is created in the outgoing
Page object, anInput object is associated with it. An
Input object is a pair(n, L), wheren is a freshly gen-
erated nonce, andL is the label enforced on the input
value. An application can retrieve a data value from an
HTTP request only by presenting theInput object to
the Request.getParam(Input inp) method, which
checks the nonce, and returns the submitted value with
labelinp.L enforced on it. This “closes the loop,” en-
suring that data sent to the client has the correct security
enforced on it when the client subsequently sends it back.

SIF does not try to protect against the user copying
sensitive information from the web page, and pasting into
a non-sensitive input field. That is impossible in general,
and the application should define labels that prevent the
user from seeing information that they are not trusted to
see. By keeping track of input labels, SIF prevents web
applications from laundering away security policies by
sending information through the client. As discussed in
Section 2.5, the user can also inspect the labels on inputs
to see how the application will treat the information.

ThegetParam method signature also ensures that the
label {⊥ → ⊥ ; > ← session} is enforced on val-
ues submitted by the user. This label indicates that
the value has been influenced by the session princi-
pal. Thus, SIF ensures that the integrity policy of any
value obtained from the client correctly reflects that the
client has influenced it; the Jif 3.0 compiler then ensures
that this “tainted,” or low-integrity, information cannot
be incorrectly used as if it were “untainted,” or high-
integrity. This helps avoid vulnerabilities such as SQL
injection, where low-integrity information is used in a
high-integrity context.

Information flow through session state. Java servlets
typically store session state in the session map of
the classjavax.servlet.http.HttpSession. How-
ever, direct access to the session map would allow
SIF applications to bypass the security policies that



should be enforced on values stored in the map. In-
stead, SIF web applications may store state in fields
of session-specific actions, or in an application-defined
subclass ofSessionState. Since fields must have
labels, the Jif compiler ensures that web applica-
tions honor labels associated with values stored in
the state. Web applications may override the method
Servlet.createSessionState to create an appropri-
ateSessionState object; SIF ensures at run time that
this method is called exactly once per session.

Information flow through action invocation. A sub-
tlety of the framework is that the very act of invoking an
action, by following a hyperlink or submitting a form,
may reveal information to the web application. For ex-
ample, if a hyperlink to some actiona is generated if and
only if some secret bit is 1, then knowing thata is in-
voked reveals the value of the secret bit.

To account for this information flow, the
Action.invoke method takes two arguments: a
label lbl, and a reference to theRequest object. The
labellbl is an upper bound on the information that may
be gained by knowing which action has been invoked.
This means thatlbl must be at least as restrictive as
the output information for the hyperlink or form used
to invoke the action. In our example, the value oflbl
when invokinga would be at least as restrictive as the
label of the secret bit. In general, the value forlbl is
the value of theIn parameter of theNode that contains
the link to the action; the constructors for theNode
subclasses ensure that the parameterIn correctly bounds
the information that may be gained by knowing the node
was present in thePage returned for the request.

The method signature forAction.invoke ensures
that the security labellbl is enforced on the reference
to theRequest object (“...Request{*lbl} req...”) and
thatlbl is a lower-bound for observable side-effects of
the method (“invoke{*lbl}(...)”), meaning that any
effects of the method (such as assignments to fields) must
be observable only at security levels bounded below by
lbl. These restrictions ensure that SIF correctly tracks
the information that may be gained by knowing which
actions were available for the user to invoke.

2.5 Deploying SIF web applications
SIF web applications may be deployed on standard Java
Servlet containers, such as Apache Tomcat, and thus may
be used in a multi-tier architecture wherever Java servlets
are used. The SIF and Jif run-time libraries must be
available on the class path, but deployment of SIF web
applications is otherwise similar to deployment of ordi-
nary Java servlets. The deployer of a SIF web application
is free to specify configuration information in the appli-
cation’s deployment descriptor (theweb.xml file). For

example, the deployer may require all connections to use
SSL, thus protecting the confidentiality and integrity of
information in transit between client and server. Addi-
tionally, there are several SIF-specific options that a de-
ployer may specify in the deployment descriptor.

Cascading style sheets.SIF applications must use the
Node subclasses to generate responses to requests, which
allows them to generate only well-formed HTML. To al-
low flexibility in presentation details such as colors and
font attributes, SIF permits the deployment descriptor
to specify a cascading style sheet (CSS) to use in the
presentation of all HTML pages generated by the ap-
plication; SIF adds this URL in the head of all gener-
ated HTML pages.Node objects can specify aclass
attribute, allowing style sheets to provide almost arbi-
trary formatting. While this allows great flexibility, care
must be taken that the CSS does not contain mislead-
ing formatting. For example, inappropriate formatting
might lead a user to enter sensitive information into a
non-sensitive input field, such as a social security num-
ber into an address field. The deployer should review the
CSS before deploying the application.

JavaScript. Dynamically generated JavaScript can pro-
vide rich user interfaces, but introduces new possibili-
ties for security violations and covert channels. SIF does
not allow web applications to send dynamic JavaScript
to the client. However, as with CSSs, SIF allows deploy-
ment descriptors to specify a URL containing (static)
JavaScript code to be included on all generated HTML
pages. Explicit inclusion of JavaScript permits easy re-
view by the deployer. Ideally, SIF should automatically
check included JavaScript code (or perhaps an extension
of JavaScript with information-flow control); we leave
this to future work.

Policy visualization. User awareness of security poli-
cies is an important aspect of secure systems. Since SIF
tracks the policies of information sent to the user, SIF
can augment the user interface to inform the user of the
security policies of data they view and supply. Provided
the user trusts the interface (see Section 2.1), this helps
prevent, for instance, a user from inappropriately copy-
ing sensitive information from the browser into an email,
or from following an untrusted hyperlink.

Web applications may opt to allow SIF to automati-
cally color-code information sent to the client, based on
policy annotations. When the user presses a hotkey com-
bination, JavaScript code recolors the page elements to
reflect their confidentiality, varying from red (highly con-
fidential) to green (low confidentiality). Both displayed
information and inputs are colored appropriately. An ad-
ditional hotkey colors the page based on the integrity
policies of information. A third hotkey shows a legend of
colors and corresponding labels so the user can identify



the precise security policy for each page element.

3 Language extensions
Web applications have diverse, complicated, and dy-
namic security requirements. For example, web appli-
cations display a plethora of authentication schemes, in-
cluding various password schemes, password recovery
schemes, biometrics, and CAPTCHAs to identify human
users. Web applications often enforce dynamic security
policies, such as allowing users to specify who may view
and update their information. Moreover, the security en-
vironment of a web application is dynamic: new users
are being created, users are starting and ending sessions,
and authenticating themselves.

In order both to accommodate diverse, complicated,
and dynamic security requirements, and to provide as-
surance that these requirements are met, we have pro-
duced Jif 3.0, a new version of Jif. Section 2.2 describes
the previous version of Jif; this section presents new fea-
tures that support dynamic security requirements: inte-
gration of information flow with application-defined au-
thentication and authorization, and improved ability to
reason about and compute with dynamic security labels
and principals.

Care was needed in the design and implementation of
these language extensions, since there is always a tension
in language-based security between expressiveness and
security. In particular, the new dynamic security mech-
anisms in Jif 3.0 create new information channels, com-
plicating static analysis of information flow. Importantly,
Jif 3.0 tracks these channels to prevent their misuse.

3.1 Application-specific principals
Principals are entities with security concerns. Applica-
tions may choose which entities to model as principals.
Principals in Jif are represented at run time, and thus can
be used as values by programs during execution. Jif gives
run-time principals the primitive typeprincipal. Jif
3.0 introduces an open-ended mechanism that allows ap-
plications great flexibility in defining and implementing
their own principals.

Applications may implement the Jif 3.0 interface
jif.lang.Principal, shown in simplified form in
Figure 3. Any object that implements thePrincipal in-
terface is a principal; it can be cast to the primitive type
principal, and used just as any other principal. The
Principal interface provides methods for principals to
delegate their authority and to define authentication.

Delegation is crucial. For example, user principals
must be able to delegate their authority to session princi-
pals, so that requests from users can be executed with
their authority. The method callp.delegatesTo(q)
returnstrue if and only if principalp delegates its au-

interface Principal {
String name();

// does this principal delegate authority to q?
boolean delegatesTo(principal q);

// is this principal prepared to authorize the
// closure c, given proof object authPrf?
boolean isAuthorized(Object authPrf,

Closure[this] c);

// methods to guide search for acts-for proofs
ActsForProof findProofUpTo(Principal p);
ActsForProof findProofDownTo(Principal q);

}
interface Closure[principal P] authority(P) {

// authority of P is required to
// invoke a Closure
Object invoke() where caller(P);

}

Figure 3: Signatures for application-specific principals

thority to principalq. The implementation of a prin-
cipal’s delegatesTo method is the sole determiner of
whether its authority is delegated. Anacts-for proof
is a sequence of principalsp1, . . . , pn, such that each
pi delegates its authority topi+1, and is thus a proof
that pn can act forp1. Acts-for proofs are found using
the methodsfindProofUpTo and findProofDownTo
on thePrincipal interface, allowing an application to
efficiently guide a proof search. Once an acts-for proof
is found, it is verified usingdelegatesTo, cleanly sepa-
rating proof search from proof verification.

The authority of principals is required for certain oper-
ations. For example, the authority of the principalAlice
is required to downgrade information labeled{Alice→
Bob ; >←>} to the label{Alice→Bob,Chuck ; >←
>} since a policy owned byAlice is weakened. The au-
thority of principals whose identity is known at compile
time may be obtained by these principals approving the
code that exercises their authority. However, for dynamic
principals, whose identity is not known at compile time,
a different mechanism is required. We have extended Jif
with a mechanism for dynamically authorizing closures.

An authorization closureis an implementation of the
interfacejif.lang.Closure, shown in Figure 3. The
Closure interface has a single methodinvoke, and
is parameterized on a principalP. Theinvoke method
can only be called by code that possesses the author-
ity of principal P, as indicated by the annotationwhere
caller(P). Code that does not have the authority of
principal P can request the Jif run-time system to exe-
cute a closure forP; the run-time system will do so only
if P authorizes the closure.

The Principal interface provides a method for au-
thorizing closures,isAuthorized. It takes two argu-
ments: aClosure object instantiated with the princi-
pal represented by thethis object, and an application-
specific proof of authentication and/or authorization.
For example, the proof might be a password, a check-
able proof that the closure satisfies certain safety re-



quirements, or a collection of certificates or capabil-
ities. The application-specific implementation of the
isAuthorized method examines the closure and the
proof object, and returnstrue if the principal grants its
authority to the closure.

The Principal interface and authorization closures
provide a flexible mechanism for web applications to
implement their own authentication and authorization
mechanisms. For example, in the case studies of Sec-
tion 4, closures are used to obtain the authority of ap-
plication users after they have authenticated themselves
with a password. Other implementations of principals
are free to choose other authentication and authorization
mechanisms, such as delegating the authorization deci-
sion to a XACML service. Dynamic authorization tests
introduce new information flows that are tracked using
Jif’s security-type system. To prevent the usurpation of a
principal’s authority, the Jif run-time library cannot exe-
cute a closure unless appropriately authorized.

Legacy systems may have their own abstractions for
users, authentication, and authorization. Application-
specific principals allow legacy-system security abstrac-
tions to be integrated with web applications. For exam-
ple, when integrating with a database with access con-
trols, database users can be represented by suitable im-
plementations of thePrincipal interface; web appli-
cations can then execute queries under the authority of
specific database users, rather than executing all queries
using a distinguished web server user.

3.2 Dynamic labels and principals
Jif can represent labels at run time, using the primitive
type label for run-time label values. Following work
by Zheng and Myers [42], Jif 3.0’s type system has been
extended with more precise reasoning about run-time la-
bels and principals. It is now possible for the label of a
value (or a principal named in a label) to be located via a
final access path expression. A final access path expres-
sion is an expression of the formr.f1.. . ..fn, wherer is
either a final local variable (including final method argu-
ments), or the expressionthis, and eachfi is an access
to a final field. For example, in Figure 2, the signature
for the methodRequest.getParam(Input inp) indi-
cates that the return value has the labelinp.L enforced
on it. Therefore, the Jif 3.0 compiler can determine that
the label of the result of thegetParam method is found
in the objectinp. The additional precision of Jif 3.0 is
needed to capture this relationship.

This additional precision allows SIF web applications
to express and enforce dynamic security requirements,
such as user-specified security policies. SIF web appli-
cations can also statically control information received
from the currently authenticated user, whose identity is
unknown at compile time.

The use of dynamic labels and principals introduces
new information flows, because which label is enforced
on information may itself reveal information. Jif 3.0’s
type system tracks such flows, and prevents dynamic la-
bels and principals from introducing covert channels.

3.3 Caching dynamic tests
To allow efficient dynamic tests of label and principal
relations, the Jif 3.0 runtime system caches the results
of label and principal tests. Separate caches are main-
tained for positive and negative results of acts-for and
label tests. Care must be taken that the use of caches
does not introduce unsoundness. When a principal del-
egation is added, the negative acts-for and label caches
are cleared, as the new delegation may now enable new
relationships. When a principal delegation is removed,
entries in the positive acts-for and label caches that de-
pend upon that delegation are removed, as the relation-
ship may no longer hold.

When principals add or remove delegations, they
should notify the Jif 3.0 runtime system, which updates
the caches appropriately. Although an incorrectly or ma-
liciously implemented principalp may fail to notify the
runtime system, lack of notification can hurt only the
principalp, sincep (and onlyp) determines to whom its
authority is delegated.

4 Case studies
Using SIF, we have designed and implemented two web
applications. The first is a cross-domain information
sharing system that permits multiple users to exchange
messages. The second is a multi-user calendar applica-
tion that lets users create, edit, and view events.

This section describes the key functionality of these
applications, their information security requirements,
and how we reflected these requirements in the imple-
mentations. Real applications must release information,
reducing its confidentiality. In SIF, this is implemented
by downgradingto a lower security label. We discuss
and categorize downgrades that occur in the applications.
Based on our experience, we make some observations
about programming with information-flow control.

4.1 Application descriptions

Cross-domain information sharing (CDIS). CDIS ap-
plications involve exchange of information between dif-
ferent entities with varying levels of trust between them.
For example, organizational policy may require the ap-
proval of a manager to share information between mem-
bers of certain departments. Many CDIS systems pro-
vide an automatic process; for example, they determine
what approval is needed, and delay information delivery
until approval is obtained.



We have designed and implemented a prototype CDIS
system. The interface is similar to a web-based email
application. The application allows users to log in and
compose messages to each other. A message may require
review and approval by other users before it is available
to its recipients. The review process is driven by a set of
system-wide mandatory rules: each rule specifies for a
unique sender-recipient pair which users need to review
and approve messages. Once all appropriate reviewers
have approved a message, it appears in the recipient’s in-
box. Each user also has a “review inbox,” for messages
requiring their approval or rejection. In this prototype, all
messages are held centrally on the web server; a full im-
plementation would be integrated with an SMTP server.

Calendar. We have also implemented a multi-user cal-
endar system. Authenticated users may create, edit, and
view events. Events have a time, title, list of attendees,
and description. Events are controlled by expressive se-
curity policies, customizable by application users. A user
can edit an event only if the user acts for the creator of
the event (recall that theacts-forrelation is reflexive). A
user may view the details of an event (title, attendees, and
description) if the user acts for either the creator or an at-
tendee. An event may specify a list of additional users
who are permitted to view the time of the event—to view
an event, a user must act for the creator, for an attendee,
or for a user on this list.

A user’s calendar is defined to be the set of all events
for which the user is either the creator or an attendee.
When a useru views another userv’s calendar,u will
see only the subset of events onv’s calendar for which
u is permitted to see the details or time. If the user is
permitted to view the time, but not the details of an event,
the event is shown as “Busy.”

Measurements.Measurements of the applications’ code
are given in Figure 4, including non-blank non-comment
lines of code, lines with label annotations, and the num-
ber ofdeclassify andendorse annotations, which in-
dicate intentional downgrading of information (see Sec-
tion 4.3).

Performance tests indicate that the overhead due to
the SIF framework is modest. We compared the calen-
dar case study application to a Java servlet we imple-
mented with similar functionality, using the same back-
end database; the Java servlet does not offer the security
assurances of the SIF servlet. Tests were performed us-
ing Apache Tomcat 5.5 in Redhat Linux, kernel version
2.6.17, running on a dual-core 2.2GHz Opteron proces-
sor with 3GB of memory. As the number of concur-
rent sessions varies between 1 and 245, the SIF servlet
exhibits at most a 29% reduction in requests processed
per second, showing that SIF does not dramatically af-
fect scalability. At peak throughput, the Java servlet pro-
cesses 2010 requests per second, compared with 1503

for the SIF servlet. Of the server processing time for a
request to the SIF servlet, about 17% is spent rendering
thePage object into HTML, and about 9% is spent per-
forming dynamic label and principal tests.

4.2 Implementing security requirements
Many of the security requirements of both applications
can be expressed using Jif’s security mechanisms, in-
cluding dynamic principals and security labels, and thus
automatically enforced by Jif and SIF’s static and run-
time mechanisms. Other security requirements are en-
forced programmatically.

Principals. Users of the applications are application-
specific principals (see Section 3.1). We factored out
much functionality from both applications relating to
user management, such as selecting users and logging
on and off. The sharing of code across both case studies
shows that SIF permits the design and implementation of
reusable components. Figure 4 also shows measurements
of the reusable user library.

The login process works as follows: a user and pass-
word are specified on the login screen, and if the pass-
word is correct, the authority of the user is dynamically
obtained via a closure; the closure is used to delegate the
user’s authority to the session principal, who can then act
on behalf of the now logged-in user.

In addition to user principals, the two applications de-
fine principalsCDISApp and CalApp, representing the
applications themselves. These model the security of
sensitive information that is not owned by any one user,
such as the set of application users. This information is
labeled{p→> ; p←>}, wherep is one ofCDISApp or
CalApp, and relevant portions are downgraded for use as
needed. In particular, information in the database has this
label. Since all information sent to and from the database
(including data used in SQL queries) must have this la-
bel, the authority of the application principal (CDISApp
or CalApp) is required to endorse information sent to the
database and to declassify information received from it.
This provides a form of access control, ensuring that only
code authorized by the application principal is able to ac-
cess the database. The need to explicitly endorse data
used in SQL queries also helps to prevent SQL injec-
tion attacks, by making the programmer aware of exactly
what information may be used in SQL queries.

Dynamic security labels. The security labels of Jif
3.0 are expressive enough to capture the case studies’
information-sharing requirements. In particular, we are
able to model the confidentiality and review require-
ments for CDIS messages by enforcing appropriate la-
bels on the messages. For instance, suppose senders
is sending a message to recipientt. The confidentiality
policy s→ t would allow boths andt to read the mes-



Annotated Downgrade Functional downgrades
Lines Lines Annotations Access control Imprecision Application Total

CDIS 1325 277 76 11 0 3 14
Calendar 1779 443 73 12 0 5 17

User 925 283 31 3 1 4 8

Figure 4: Summary of case studies.

sage. However, beforet is permitted to read the mes-
sage, it may need to be reviewed. Suppose reviewers
r1, r2, ..., rn must review all messages sent froms to t.
Whens composes the message, it initially has the follow-
ing confidentiality policy:(s→ t, r1, . . . , rn) t (r1 →
r1, . . . , rn) t . . . t (rn → r1, . . . , rn). In this policy,
s permitst and all reviewers to read the message, and
each reviewer permits all other reviewers to read the mes-
sage. This label allows the message to be read by each re-
viewer, but preventst from reading it. As each reviewer
reviews and approves the message, their authority is used
to remove their reader policy from the confidentiality
policy usingdeclassify annotations. Eventually the
message is declassified to the policys → t, r1, . . . , rn,
which permitst to read it.

The calendar application also enforces user-defined
security requirements by labeling information with ap-
propriate dynamic labels. Event details have the confi-
dentiality policyc→a1, . . . , an enforced on them, where
c is the creator of the event anda1, . . . , an are the event
attendees. The time of an event has confidentiality pol-
icy c→ a1, . . . , an u c→ t1, . . . , tm, wheret1, . . . , tm
are the users explicitly given permission byc to view the
event time. Event labels ensure that times and details
flow only to users permitted to see them; run-time label
tests are used to determine which events a user can see.

4.3 Downgrading
Jif prevents the unintentional downgrading of informa-
tion. However, most applications that handle sensitive
information, including the case study applications, need
to downgrade information as part of their functionality.
Jif provides a mechanism for deliberate downgrading of
information:selective declassification[22, 26] is a form
of access control, requiring the authorization of the own-
ers of all policies weakened or removed by a downgrade.
Authorization can be acquired statically if the owner of a
policy is known at compile time; or authorization can be
acquired at run time through a closure (see Section 3).

Jif 3.0 programs must also satisfy typing rules to en-
force robust declassification[40, 23, 5]. In the context
of Jif, robustness ensures that no principalp (including
attackers) is able to influence eitherwhat information is
released top (a laundering attack), or whetherto release
information top. For a web application, robustness im-
plies that users are unable to cause the incorrect release
of information. Selective declassification and robust de-

classification are orthogonal, providing different guaran-
tees regarding the downgrading of information.

In Jif programs, downgrading is marked by explicit
program annotations. Adeclassify annotation allows
confidentiality to be downgraded, whereas anendorse
annotation downgrades integrity.

Downgrading annotations are typically clustered to-
gether in code, with several annotations needed to ac-
complish a single “functional downgrade.” For example,
declassifying a data structure requires declassification of
each field of the structure [2]. The two applications had
a combined total of 39 functional downgrades, with an
average of 4.6 annotations per functional downgrade.

Figure 4 shows a more detailed breakdown of the use
of downgrading in each case study. (Details of each
downgrade appear in Appendix A.) We found that down-
grading could be divided into three broad categories: ac-
cess control, imprecision, and application requirements.

The first category is downgrades associated with dis-
cretionary access control. Discretionary access control
is used as a mechanism to mediate information release
between different application components; any informa-
tion release requires explicit downgrading. For exam-
ple, in the calendar application, the set of all events has
the label{CalApp → > ; CalApp ← >}; thus, down-
grading is required both to extract events to display to
the user, and to update events edited by the user; the
authority of CalApp is required for these downgrades,
and thus the downgrades serve as a form of discretionary
access control to the event set. The choice of the label
{CalApp→> ; CalApp←>} for the event set neces-
sitates these downgrades; using other labels may result
in fewer downgrades, but without the benefits of this dis-
cretionary access control.

Imprecision is another reason for downgrading: some-
times the programmer can reason more precisely than
the compiler about security labels and information flows.
For example, suppose a method is always called with a
non-null argument: Jif 3.0 has no ability to express this
precondition, and conservatively assumes that accessing
the argument may result in aNullPointerException.
Since the exception may reveal information, a spurious
information flow is introduced, which may require ex-
plicit downgrading later. Few downgrades fall into this
category, giving confidence that Jif 3.0 is sufficiently ex-
pressive. Some imprecision could be removed entirely
by extending the compiler to accept and reason about ad-



ditional annotations, as in JML [17].
Security requirements of the application provide the

third category of downgrade reasons. These downgrades
are inherent in the application, and cannot and should
not be avoided. For example, in the calendar application,
when users are added to the list of event attendees, more
users are able to see the details of the event, an informa-
tion release that requires explicit downgrading.

4.4 Programming with information flow
During the case studies’ development, we obtained sev-
eral insights into the design and implementation of appli-
cations with information flow control.

Abstractions and information flow. Information flow
analysis tends to reveal details of computations occurring
behind encapsulation boundaries, making it important to
design abstractions carefully. Unless sufficient care is
taken during design, abstractions will need to be modi-
fied during implementation. For example, we sometimes
needed to change a method’s signature several times,
both while implementing the method body (and discover-
ing flows we hadn’t considered during design), and while
calling the method in various contexts (as method invo-
cation may reveal information to the callee, which we
hadn’t considered when designing the signature).

Coding idioms. We found that certain coding idioms
simplified reasoning about information flow, by putting
code in a form that either allowed the programmer to bet-
ter understand it, or allowed Jif’s type system to reason
more precisely about it. As a simple example, consider
the following (almost) equivalent code-snippets for as-
signing the result of method callo.m() to x, followed by
an assignment toy:

1. x = o.m(); y = 42;
2. if (o != null) { x = o.m(); } y = 42;
The first snippet throws aNullPointerException if

o is null, and thus information about the value ofo flows
to x, and also toy (since the assignment toy is executed
only in the absence of an exception). The information
flow to y is subtle, and a common trap for new Jif pro-
grammers. In the second snippet, no exception can be
thrown (the compiler detects this with a data-flow analy-
sis), and so information abouto does not flow toy. This
snippet avoids the subtle implicit flow toy. More gener-
ally, making implicit information flow explicit simplifies
reasoning about information flow.

Declarative security policies. Many of the case stud-
ies’ security requirements were expressed using Jif la-
bels. SIF and the Jif compiler ensure that these labels
(and thus the security requirements) are enforced end-to-
end. In general, Jif’s declarative security policies can re-
lieve the programmer of enforcing security requirements
programmatically, and give greater assurance that the re-

quirements are met. This argues for even greater expres-
siveness in security policies, to allow more application
security requirements to be captured, and to verify that
programs enforce these requirements.

5 Related work
The most closely related work is Li and
Zdancewic’s [18], which proposes a security-typed
PHP-like scripting language to address information-flow
control in web applications. Their system has not been
implemented. It assumes a strongly-typed database
interface, and, like SIF, ensures that applications respect
the confidentiality and integrity policies on data sent
to and from the database. Their security policies can
expresswhat information may be downgraded; in con-
trast, the decentralized label model used in Jif specifies
who needs to authorize downgrading. In a multi-user
web application with mutually distrusting users, the
concept ofwho a session or process is executing on
behalf of is crucial to security. We believe that prac-
tical information-flow control will ultimately need to
specify multiple aspects of downgrading [29]; extending
the decentralized label model to reason about other
downgrading aspects is ongoing work.

Huang et al. [14], Xie and Aiken [37], and Jovanovic
et al. [15] all present frameworks for statically analyz-
ing information flow in PHP web applications. Xie and
Aiken, and Jovanovic et al. track information integrity
using a dataflow analysis, while Huang et al. extend
PHP’s type system with type state. Livshits and Lam [19]
use a precise static analysis to detect vulnerabilities in
Java web applications. Each of these frameworks has
found previously unknown bugs in web applications. Xu
et al. [38], Halfond and Orso [11] and Nguyen-Tuong
et al. [25] use dynamic information-flow control to pre-
vent attacks in web applications. All of these approaches
use a simple notion of integrity: information is either
tainted or untainted. While this suffices to detect and
prevent certain web application vulnerabilities, such as
SQL injection, it is insufficient for modeling more com-
plex, application-level integrity requirements that arise
in applications with multiple mutually distrusting princi-
pals. Also, they do not address confidentiality informa-
tion flows, and thus do not control the release of sensitive
server-side information to web clients.

Xu et al. [39] propose a framework for analyzing
and dynamically enforcing client privacy requirements
in web services. They focus on web service composi-
tion, assuming that individual services correctly enforce
policies. Their policies do not appear suitable for rea-
soning about the security of mutually distrusting users.
Otherwise, this work is complementary, as we provide
assurance that web applications enforce security policies.

While there has been much recent work on language-



based information flow (see [28, 29] for recent surveys),
comparatively little has focused on creating real systems
with information flow security, or on languages and tech-
niques to enable this. No prior work has built real ap-
plications that enforce both confidentiality and integrity
policies while dealing securely with their interactions.

The most realistic prior application experience is that
of Hicks et al. [13], who use an earlier version of Jif to
implement a secure CDIS email client, JPmail. Although
there are similarities between JPmail and the CDIS mail
application described here, SIF is a more convincing
demonstration of information flow control in three ways.
First, SIF is a reusable application framework, not just
a single application. Second, SIF applications enforce
integrity, not just confidentiality, and they ensure that de-
classification is robust [5]. Third, SIF applications can
dynamically extend the space of principals and labels and
define their own authentication mechanisms; JPmail re-
lies on mechanisms for principal management and au-
thentication that lie outside the scope of the application.

Askarov and Sabelfeld [2] use Jif to implement crypto-
graphic protocols for mental poker. They identify several
useful idioms for (and difficulties with) writing Jif code;
recent extensions to Jif should assuage many of the diffi-
culties.

Praxis High Integrity System’s language SPARK [4]
is based on a subset of Ada, and adds information-flow
analysis. SPARK checks simple dependencies within
procedures. FlowCaml [27] extends the functional lan-
guage OCaml with information-flow security types. Like
SPARK, it does not support features needed for real ap-
plications: downgrading, dynamic labels, and dynamic
and application-defined principals.

Asbestos [9], Histar [41], and SELinux [20] are oper-
ating systems that track information flow for confiden-
tiality and integrity. To varying degrees, they provide
flexible security labels and application-defined princi-
pals. However, these systems are coarse-grained, track-
ing information flow only between processes. Informa-
tion flow is controlled only dynamically, which is impre-
cise, and creates additional information flows from run-
time label checking. By contrast, Jif checks information
flow mostly statically, at the granularity of program vari-
ables, providing increased precision and greater assur-
ance that a program is secure prior to deployment. As-
bestos has a web server that allows web applications to
isolate users’ data from one another, using one process
per user. All downgrades are performed by trusted pro-
cesses. Unlike Jif, this granularity of information flow
tracking does not permit different security policies for
different data owned by a single user.

Tse and Zdancewic [35] present a monadic type sys-
tem for reasoning about dynamic principals, and certifi-
cates for authority delegation and downgrading. Jif 3.0’s

dependent type system for dynamic labels and princi-
pals allows similar reasoning. Tse and Zdancewic as-
sume that certificates are contained in the external en-
vironment, and do not provide a mechanism to dynam-
ically create them. Closures in Jif 3.0 can be dynam-
ically authorized, and may perform arbitrary computa-
tion, whereas Tse and Zdancewic’s certificates permit
only authority delegation and downgrading.

Swamy et al. [32] consider dynamic policy updates,
and introduce a transactional mechanism to preventun-
intentional transitive flowsthat may arise from policy up-
dates. In Jif, policies are updated dynamically by adding
and removing principal delegations, and unintentional
transitive flows may occur. Their techniques are com-
plementary to our work, and should be applicable to Jif
to stop these flows.

6 Conclusion
We have designed and implemented Servlet Informa-
tion Flow (SIF), a novel framework for building high-
assurance web applications. Extending the Java Servlet
framework, SIF addresses trust issues in web applica-
tions, moving trust out of web applications and into SIF
and the Jif compiler.

SIF web applications are written entirely in the Jif 3.0
programming language. At compile time, applications
are checked to see if they respect the confidentiality and
integrity of information held on the server: confiden-
tial information is not released inappropriately to clients,
and low-integrity information from clients is not used in
high-integrity contexts. SIF tracks information flow both
within the handling of a single request, and over multiple
requests—it closes the loop of information flow between
client and server.

Jif 3.0 extends Jif in several ways to make web appli-
cations possible. It adds sophisticated dynamic mecha-
nisms for access control, authentication, delegation, and
principal management, and shows how to integrate these
features securely with language-based, largely static,
information-flow control.

We have used SIF to implement two applications with
interesting information security requirements. These
web applications are among the first to statically enforce
strong and expressive confidentiality and integrity poli-
cies. Many of the applications’ security requirements
were expressible as security labels, and are thus enforced
by the Jif 3.0 compiler.

As language-based information-flow control becomes
more mature, and information-flow tools become more
useful and robust, we expect the task of writing and un-
derstanding programs with information-flow control to
become easier. This work makes an important step to-
wards wider use of information-flow control by provid-
ing a framework in which useful applications can be de-



signed, implemented, and deployed. The Jif 3.0 compiler
and run-time system and the SIF framework are all pub-
licly available.
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A Downgrading in case studies
These tables describe the case studies’ functional downgrades.

CDIS application

Description Category

Error composing message.If an error is made
when composing a message (e.g., leaving Sub-
ject field empty), the user is sent back to message
composition. Downgrading this information flow
reveals very little about the message data.

Application

Message approval. When a reviewer approves
a message, he downgrades his confidentiality re-
striction. Once all reviewers have approved the
message, the recipient may view it.

Application

Database access. Access to the database is
done with the authority of the principalCDISApp.
There are 11 functional downgrades for database
accesses, releasing info fromCDISApp to the user.

Access
control

Delegation toCDISRoot. All users delegate au-
thority to a root user for the CDIS application,
CDISRoot, to perform operations that affect all
users. This delegation requires user endorsement.

Application

User library

Description Category

Unsuccessful login.When user enters a password
on the login page, he learns if the password was
correct. If incorrect, the user is returned to the lo-
gin page with an error message. This information
release about the password is acceptable.

Application

Successful login. When the user logs in suc-
cessfully, he learns that the password was correct.
This information flow is secure.

Application

Delegation to session principal.When the user
logs in, he delegates authority to the session prin-
cipal, using a closure. The decision to authorize
the delegation closure must be declassified.

Application

Delegation to session principal.Delegating au-
thority from a newly logged in user to the session
principal requires the trust of the user, and thus an
endorsement.

Application

Retrieving users from the database.When se-
lecting one or more users, info must be retrieved
from the database, and returned to the caller of the
Select User(s) page. This transfer requires a total
of 3 functional downgrades during user selection.

Access
control

Error selecting user(s). A user making an error
on the Select User(s) page (e.g., no user id en-
tered) is returned to the Select User(s) page. As
this page is a reusable component, its label is set
conservatively. A declassification is needed for
the error message, from the conservative label to
the actual label used for a given page invocation.

Imprecision

Calendar application

Description Category

Update session state with date to display.The
display date must be trusted by the session prin-
cipal. The date input by the user is trusted by the
user, but must be endorsed by the session princi-
pal before it’s stored in session state.

Access
control

Update session state with which user’s calen-
dar to display. Similarly, the user selects a user’s
calendar to display. This downgrade ensures that
the session principal authority is required to up-
date session state.

Access
control

Fresh id for new event. A new event requires
a fresh unique id. The unique id may act as a
covert channel, revealing info about the order in
which events are created. Since ids are generated
randomly, downgrading the fresh id is secure.

Application

Update and retrieve info from database.When
info needs to be updated in the database (e.g.,
edit an event) or retrieved (e.g., fetch user details,
or events) information must be transferred be-
tween the current user and the application princi-
pal CalApp. There are 10 such functional down-
grades, for different database accesses.

Access
control

Go to View/Edit Event page. An event’s name
is displayed as a hyperlink to the View Event
or Edit Event page (depending on user’s permis-
sions). Since the link contains the event’s name,
the info gained by invoking View/Edit Event ac-
tion is at least as restrictive as the event detail’s
label. This reveals little aboutwhichevent is be-
ing viewed/edited.

Application

Error editing event. The user who makes an er-
ror editing an event (e.g., end time before start) is
sent back to the Edit Event page. Like the “Go
to View/Edit Event” downgrade, this reveals little
about the data input.

Application

Changing attendees or viewers of an event.
When the user edits an event and changes the at-
tendees or viewers of an event, the labels to en-
force on the event time and details change. This
requires a downgrade.

Application

Delegation toCalRoot. All users delegate their
authority to a root user for the calendar applica-
tion, CalRoot, whose authority is needed to per-
form operations that affect all users. This requires
an endorsement from each user.

Application


