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Building systems with rigorous security guarantees is difficult, because most

programming languages lack support for reasoning about security. This situa-

tion is amplified by emerging timing attacks, which reveal secrets from compu-

tation time. Recent work shows that timing channels can quickly leak sensitive

information, such as private keys of RSA and AES. Such threats greatly harm

the security of many emerging applications, such as cloud computing, mobile

computing, and embedded systems.

This dissertation describes novel programming languages and run-time en-

forcement mechanisms for full-system control of timing channels. The proposed

approach has two major components: A new software-hardware security inter-

face, and control mechanisms present at separate levels of system abstraction.

These control mechanisms include:

1) A type system for an imperative language, so that well-typed programs

provably leak only a bounded amount of information via timing channels,

2) SecVerilog, a hardware description language that supports mostly-static, pre-

cise reasoning about information flows in hardware designs, and

3) Predictive mitigation, a general run-time mechanism that permits tunable

tradeoffs between security and performance.

Evaluation on real-world security-sensitive applications suggest that the

proposed approach is sound and has reasonable performance.
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CHAPTER 1

INTRODUCTION

Timing channels have long been a difficult and important problem for com-

puter security. The difficulty has long been recognized since the 70’s [47, 26, 66],

but their importance has been reinforced by recent work that shows timing

channels can quickly leak sensitive information. Attacks exploit the timing

of cryptographic operations [43, 13] and of web server responses [11]. These

attacks work even without cooperation of any software on the system being

timed. If the system contains malicious code or hardware (e.g., [74]), timing can

also be exploited as a robust covert channel. Further, timing channels can be

exploited stealthily, at low risk to the attacker [51].

Controlling timing channels is nevertheless extremely challenging, because

confidential information can affect timing throughout the entire computer sys-

tem. At the software level, a branch or loop conditioned on secret values creates

timing channels. For instance, a branch condition depends on the private key in

an early implementation of RSA, resulting in exploitable timing channels [43].

Moreover, even machine instructions with different operators can take variable

time [18]. At the hardware level, shared hardware resources such as the data

cache also creates timing channels. For example, cache probing attacks (e.g.,

[68, 65, 32]) exploit the timing channel that arises because accesses to memory

locations by one process affect the cache, and thereby observably affect the tim-

ing behavior of later accesses by other processes. The cache is not the only

problem. Attacks have also been shown that exploit timing channels arising

from other components: instruction and data caches [2], branch predictors and

branch target buffers [3], and shared functional units [87].
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This dissertation introduces a sound and practical approach for full-system

timing channel control. The core of this approach is a new software-hardware

security interface, which for the first time, enables accurate reasoning about tim-

ing channels at the software-language level. Unlike previous work on language-

based timing channel control, such as code transformation [4], this interface

supports more realistic programs and hardware. For example, it can be im-

plemented on hardware with an instruction cache, branch predictors, shared

functional units, and so on. Such a new security interface forms a rigorous se-

curity contract between the software (language) level and the hardware imple-

mentation, enabling provable control of timing channels throughout the entire

computer system.

On the software side, this dissertation presents a type system that provides

fine-grained reasoning about timing channels, assuming the hardware follows

the security contract. The type system can distinguish between benign timing

variations and those carrying confidential information, and can distinguish be-

tween multiple distinct security levels. This fine-grained reasoning about tim-

ing channels improves the tradeoff between security and performance: benign

timing variations provably leak no confidential information, so only the timing

of code fragments that carry confidential information needs to be controlled.

On the hardware side, the security contract is formalized into three security

requirements, guiding secure hardware designs. To formally verify such secure

designs, this dissertation presents SecVerilog, a new hardware design language

that statically checks information flows within hardware, including flows via

timing channels. Unlike previous approaches, SecVerilog enables flexible, fine-

grained reuse and sharing of hardware across security domains, via a novel type

2



system with dependent types. The benefit is that almost no additional run-time

overhead is added, since SecVerilog checks information flows at compile time;

little chip area and energy consumption is added since hardware resources can

be shared securely across security domains.

To control timing channels arising from code fragments that do leak infor-

mation, this dissertation proposes predictive mitigation, a practical method for

a broad class of computing systems. Unlike previous general techniques for tim-

ing channel mitigation, this framework offers tunable tradeoffs between secu-

rity and performance, so that programmers may improve system performance

with a programmer-specified leakage function. By incorporating mechanisms

for predictive mitigation of timing channels, the aforementioned software-level

type system can also permit an expressive programming model, where applica-

tions with a provably bounded amount of timing leakage are allowed.

The soundness and effectiveness of the proposed approach are demon-

strated on applications previously shown to be vulnerable to timing attacks,

as well as security benchmarks. A complete MIPS processor with modern pro-

cessor features, such as data hazard detection and data bypassing, is formally

verified in SecVerilog. The results suggest that the combination of language-

based mitigation and secure hardware works well, with overheads of only 1%

in chip area, critical path delay and power consumption. Moreover, perfor-

mance overhead for the verified applications running on the verified processor

is about 20% on average .

3



1.1 Timing channel control: challenges

Timing channels are perhaps the most challenging aspect of information flow

security, because confidential information can affect timing in various ways: at

the software level, a branch or loop conditioned on secret values creates timing

channels [43]; at the hardware level, shared hardware resources such as the data

cache also create timing channels [68, 65, 18, 32].

1.1.1 Direct and indirect timing dependencies

We first define direct and indirect timing dependencies to distinguish timing

channels arising from software and hardware respectively. We call timing chan-

nels visible at the source-language level direct timing dependencies. In the follow-

ing example, control flow affects timing.

1 if (h)
2 sleep(1);

3 else
4 sleep(10);

5 sleep(h);

Assume h holds confidential data and that sleep (e) suspends execution of the

program for the amount of time specified by e. Since line 4 takes longer to

execute than line 2, one bit of h is leaked through timing. Such control-flow-

related timing channels are real issues in practice, as demonstrated by attacks on

RSA [43, 13]. Another source of direct timing dependencies is operations whose

execution time depends on parameter values, such as the sleep command at

line 5. In general, even machine instructions can take variable time [18].
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Modern hardware also creates indirect timing dependencies in which execution

time depends on hardware state that has no source-level representation. The

following code shows that the data cache is one source of indirect dependencies.

1 if (h1)
2 h2:=l1;

3 else
4 h2:=l2;

5 l3:=l1;

Suppose only h1 and h2 are confidential and that neither l1 nor l2 are cached

initially. Even though both branches have the same instructions and similar

memory access patterns, executing this code fragment is likely to take less time

when h1 is not zero: because l1 is cached at line 2, line 5 runs faster, and the

value of h1 leaks through timing.

Some timing attacks [65, 32] exploit data cache timing dependencies to infer

AES encryption keys, but indirect dependencies arising from other hardware

components have also been exploited to construct attacks: instruction and data

caches [2], branch predictors and branch target buffers [3], and shared func-

tional units [87].

1.1.2 Limitations of previous approaches

Due to the existence of indirect timing dependencies, software-based solutions

are doomed to fail. Much prior language-based work uses simple, implicit mod-

els of timing, and no previous work fully addresses indirect dependencies. For

example, type systems have been proposed to prevent timing channels, but are

very restrictive. Often (e.g., [86, 78, 73, 76]) timing behavior of the program is

assumed to be accurately described by the number of steps taken in an opera-
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tional semantics. This assumption does not hold even at the machine-language

level. As a result, these prior methods fail to handle timing channels arising

from hardware features, such as data cache.

Some previous work uses program transformation to remove indirect de-

pendencies, though only those arising from the data cache. The main idea is to

equalize the execution time of different branches, but a price is paid in expres-

siveness, since these languages either rule out loops with confidential guards (as

in [4, 34, 10]), or limit the number of loop iterations (as in [56, 18]). Moreover,

these methods do not handle all indirect timing dependencies; for example,

the instruction cache is not handled, so verified programs remain vulnerable

to other indirect timing attacks [87, 3, 2].

Recent work in the architecture community has aimed for hardware-based

solutions to timing channels. Their hardware designs implicitly rely on assump-

tions about how software uses the secure hardware, but these assumptions have

not been rigorously defined or formally verified. For example, the cache design

by Wang and Lee [88] works only under the assumption that the AES lookup

table is preloaded into the cache and that the load time is not observable to the

adversary [44].

1.2 Sound and practical full-system timing channel control

Timing channels cannot be controlled effectively at the software level only.

Hardware mechanisms can help, but do a poor job of controlling language-level

leaks such as direct timing dependencies. The question, then, is how to usefully

and accurately characterize the timing semantics of code at the source level. Our
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insight is to combine the language-level and hardware-level mechanisms, via a

new cross-domain interface.

1.2.1 Hardware abstraction and assumptions

Throughout this dissertation, we use the term machine environment to refer to all

hardware state that is invisible at the language level but that is needed to predict

timing. Timing channels relying on indirect dependencies are at best difficult to

reason about at the language level—the semantics of programming languages

and even of instruction set architectures (ISAs) hide information about execu-

tion time by abstracting away low-level implementation details. For instance, it

is difficult to reason about timing without knowing how the data cache works.

We assume all (software-level) information is associated with a security label,

describing the confidentiality of the information. Labels `1 and `2 are ordered,

written `1 v `2, if `2 describes a confidentiality requirement that is at least as

strong as that of `1. It is secure for information to flow from label `1 to label `2

if `1 v `2. We assume there are at least two distinct labels L (low) and H (high)

such that L v H and H @ L. The label of public information is L; that of secret

information is H.

Accordingly, we can logically partition the machine environment according

to the security labels associated with hardware state. For example, a commodity

cache with no partition is a special case where all cache lines are associated with

the same label. In general, different partitions in a partitioned cache [88] can be

associated with different labels. For hardware components such as a pipeline,

we can time-multiplex their use according to different security labels.
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1.2.2 Timing interface and software enforcements

To concisely track how the machine environment affects timing, and how infor-

mation flows into the machine environment, we propose a new cross-domain

timing interface, in form of two timing labels. In particular, we associate two

timing labels with each command in the program. The first of these labels is

the command’s read label `r. The read label is an upper bound on the label of

machine environment that affects the run time of the command. For example,

the run time of a command with `r = L depends only on cache state with la-

bel L or below. The second of these labels is the command’s write label `w. The

write label is a lower bound on the label of machine environment that the com-

mand can modify. It ensures that the labels of machine environment reflect the

confidentiality of information that has flowed into that machine environment.

For example, suppose that there is only one (low) data cache, which to be

conservative means that anyone can learn from timing whether a given memory

location is cached. Therefore, both the read and write label of every command

must be L. The example in Section 1.1.1 is then annotated as follows, where the

first label in brackets is the read label, and the second, the write label.

1 if (h1)[L,L]
2 h2:=l1;[L,L]
3 else
4 h2:=l2;[L,L]
5 l3:=l1;[L,L]

This example is insecure because execution of lines 2 and 4 is conditioned

on the high variable h1. Therefore these lines are in a high context, one in which

the program counter label [21] is high. If lines 2 and 4 update cache state in the

usual way, the low write label permits low hardware state to be affected by h1.
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This insecure information flow is a form of implicit flow [21], but one in which

hardware state with no language-level representation is being updated.

Since lines 2 and 4 occur in a high context, the write label of these commands

must be H for this program to be secure. Consequently, the hardware may not

update low parts of the machine environment. One way to avoid modifying

the low parts of a commodity cache is to deactivate it in high contexts, since the

entire cache is low. A generalization of this idea is to use a partitioned cache,

where different partitions are associated with different labels. In this case, cache

misses in a high context then cause only the high cache partition to be updated.

With the read and write labels abstracting the timing behavior of hardware,

timing channel security can be statically checked at the language level, accord-

ing to the type system described in Chapter 2. Moreover, these timing labels

could be inferred automatically according to the type system, reducing the bur-

den on programmers.

1.2.3 Provably secure hardware design

The aforementioned cross-domain interface (read and write labels) communi-

cates information flows between the software and hardware, enabling timing

channels to be rigorously controlled. The interface defines a contract that both

software and hardware must follow for their composition to correctly control

information flows. The next question is how to design complex hardware that

correctly enforces its part of the contract.

To provide provable security for hardware designs, Chapter 3 presents a
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method for designing hardware that correctly, precisely, and efficiently enforces

secure information flow. This method is based on a new hardware description

language (HDL) called SecVerilog, which adds a security type system to Verilog

so that hardware-level information flows can be checked statically. In combina-

tion with software-level information flow control, our hardware design method

enables building computing systems in which all forms of information flow are

tracked, including implicit flows and timing channels.

SecVerilog has several advantages over the state of the art in secure hard-

ware design. SecVerilog checks information flows statically while providing

formal security assurance and guidance to hardware designers, avoiding run-

time costs of tracking and checking of information flow. The language is expres-

sive enough to prove security of a design even when hardware resources are

shared among multiple security levels that are changed at a per-cycle granular-

ity, avoiding the duplication of hardware resources. The novel dependent type

system of SecVerilog follows a modular design that decouples the program anal-

yses required for precision from the type system, making it more amenable to

future extension. Our prototype secure pipelined MIPS processor with a cache

adds area and clock cycle overheads of only about 1%.

1.2.4 Quantitative control of timing channels

Strictly disallowing all timing leakage can be done as sketched thus far, but

results in an impractically restrictive programming language, or computer sys-

tem, because execution time is prevented from depending on confidential infor-

mation in any way.
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To provide a strict bound on timing channel leakage while providing prac-

tical performance, Chapter 4 introduces a general framework called predictive

mitigation. The key idea is that given a prediction of how long a computation

will take, solely based on public information, a run-time enforcement can en-

sure that at least that much time is consumed by simply waiting if necessary. In

the case of a misprediction (i.e., when the estimate is too low), a larger predic-

tion is generated, and the execution time is padded accordingly. Mispredictions

also inflate the predictions generated by subsequent mitigated computation, so

that the total timing leakage is tightly bounded.

Predictive mitigation bounds the amount of information leaked through the

timing channel as a function of elapsed time. Simple mitigation schemes can

ensure that no more than log2(T ) bits of information are leaked, where T is the

running time (all logarithms in this dissertation are base 2). Further, an arbi-

trary bound on information leakage can be enforced. However, tighter bounds

have a price: they can reduce system throughput and increase system latency,

particularly if the system has unpredictable behavior.

Chapter 5 incorporates the predictive mitigation framework into the soft-

ware language in Chapter 2 by a new command called mitigate. Command

(mitigate (e, `) c) executes the command c while ensuring that timing leakage

is bounded. Here, the expression e computes an initial prediction for the execu-

tion time of c. The label ` bounds what information can be learned by observing

the timing leakage c. That is, no information at level `′ such that `′ @ ` can be

learned from c’s execution time.

11



1.3 Outline

This dissertation presents and explores practical methods for full-system tim-

ing channel control. The key component, a cross-domain timing interface that

enables compositional enforcement, is presented in Chapter 2. Chapter 2 also

includes formal restrictions that are required by the interface on hardware im-

plementation, as well as how the timing interface enables a software-level type

system that provably eliminates all timing channels, with the assumption that

hardware respects the interface.

Chapter 3 introduces the SecVerilog language, which extends Verilog with

expressive type annotations that enable precise reasoning about information

flow. The language also comes with rigorous formal assurance: SecVerilog prov-

ably enforces timing-sensitive noninterference and thus ensures secure informa-

tion flow.

Chapter 4 describes a general framework, called predictive mitigation,

which provides provable tight timing-channel leakage bound for applications

where a limited leakage is allowed. We start from a black-box model, where we

know nothing about a system other than the output events, and then extend it

to interactive systems, which receive input requests from multiple clients and

deliver responses.

Chapter 5 incorporates the predictive mitigation framework (Chapter 4) into

the software language introduced in Chapter 2. The result is an expressive pro-

gramming model, where applications with a provably bounded amount of tim-

ing leakage are allowed.
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The soundness and effectiveness of the approach proposed in this disserta-

tion is demonstrated on real-world security-sensitive applications, in Chapter 6.

The results suggest this approach controls timing channels, and has reasonable

performance for these real-world applications. Chapter 7 summarizes.

The materials presented in Chapters 2, 4 and 5 are adapted from joint work

with Aslan Askarov and Andrew Myers [95, 6, 94]. Chapter 3, the SecVerilog

language, is adapted from joint work with Yao Wang, G. Edward Suh and An-

drew Myers [96].
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CHAPTER 2

LANGUAGE-BASED CONTROL AND MITIGATION

OF TIMING CHANNELS

Timing channels have long been a difficult and important problem for computer

security. They can be used by adversaries as side channels or as covert channels

to learn private information, including cryptographic keys and passwords.

This chapter introduces a complete and effective language-based method for

controlling timing channels. An important contribution of this chapter is a sys-

tem of simple, static annotations that provides just enough information about

the underlying language implementation to enable accurate reasoning about

timing channels. These annotations form a contract (formalized in this chap-

ter) between the software (language) level and the hardware implementation.

We design a novel type system based on the annotations, and formally prove

that any well-typed program has no timing channel leakage, assuming that the

hardware implementation obeys the contract.

2.1 Assumptions

Recall that throughout this dissertation, we follow the terms and assumptions

defined in Section 1.2.1. We use the term machine environment to refer to all hard-

ware state that is invisible at the language level but that is needed to predict tim-

ing. Examples include the compiler, operating system, data cache, instruction

cache, and so on. We assume all software-level information and all components

of the machine environment are associated with security labels, describing the
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corresponding confidentiality. As a special case, commodity cache with no par-

tition has all cache lines associated with the same label. In general, different

partitions in a partitioned cache [88] can be associated with different labels. For

hardware components such as a pipeline, we can time-multiplex the use of them

according to different security labels.

2.2 A cross-domain timing interface

The syntax and semantics of programming languages and even of instruction

set architectures (ISAs) intentionally hide information about execution time by

abstracting away low-level implementation details. Doing so is beneficial for

simpler reasoning about non-timing-related software properties, as well as for

portability. But on the other hand, hiding timing information also makes it at

best difficult to reason about timing channels arising from hardware features,

such as the data cache, at the language level.

To track how information flows into the machine environment, but without

concretely representing the hardware state, we propose a novel cross-domain

interface in this dissertation. This interface consists of two labels with each com-

mand in the program. The first of these labels is the command’s read label `r. The

read label is an upper bound on the label of hardware state that affects the run

time of the command. For example, the run time of a command with `r = L de-

pends only on hardware state with label L or below. The second of these labels

is the command’s write label `w. The write label is a lower bound on the label

of hardware state that the command can modify. For example, no machine en-

vironment with a label H can be modified during the execution of a command

with `r = L.
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e ::= n | x | e op e
c ::= skip[`r ,`w] | (x := e)[`r ,`w] | c; c | (while e do c)[`r ,`w]

| (if e then c1 else c2)[`r ,`w] | (sleep e)[`r ,`w]

Figure 2.1: Syntax of the language.

Next, we introduce a core language with read and write labels. Formal defi-

nition and semantics of these labels are deferred to Section 2.3.6.

2.3 A language for controlling timing channels

Figure 2.1 gives the syntax for an imperative language with timing channel con-

trol. The novel elements—read and write labels—have already been introduced.

Notice that the sequential composition command itself needs no timing labels.

The syntax is mostly standard: it has assignments, sequential compositions,

loops and branches. Command (sleep e) suspends execution of the program

for the amount of time specified by e.

We present our semantics in a series of modular steps. We start with a core

semantics, a largely standard semantics for a simple while-language, which ig-

nores timing. Next, we develop an abstracted full semantics that describes the

timing semantics of the language more accurately while abstracting away pa-

rameters that depend on the language implementation, including the hardware

and the compiler.
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〈skip[`r ,`w],m〉 → 〈stop,m〉 〈(sleep e)[`r ,`w],m〉 → 〈stop,m〉

〈c1,m〉 → 〈stop,m′〉

〈c1; c2,m〉 → 〈c2,m′〉

〈c1,m〉 → 〈c′1,m
′〉 c′1 , stop

〈c1; c2,m〉 → 〈c′1; c2,m′〉

〈e,m〉 ⇓ v

〈(x := e)[`r ,`w],m〉 → 〈stop,m[x 7→ v]〉

〈e,m〉 ⇓ n n , 0 =⇒ i = 1 n = 0 =⇒ i = 2

〈(if e then c1 else c2)[`r ,`w],m〉 → 〈ci,m〉

〈e,m〉 ⇓ n n , 0

〈(while e do c)[`r ,`w],m〉 → 〈c; (while e do c)[`r ,`w],m〉

〈e,m〉 ⇓ n n = 0

〈(while e do c)[`r ,`w],m〉 → 〈stop,m〉

Figure 2.2: Core semantics of commands.

2.3.1 Core semantics

For expressions we use a standard big-step evaluation 〈e,m〉 ⇓ v when expres-

sion e in memory m evaluates to value v. For commands (Figure 2.2), we write

〈c,m〉 → 〈c′,m′〉 for the transition of command c in memory m to command c′ in

memory m′. Note that read and write labels are not used in these rules. The rules

use stop as a syntactic marker of the end of computation. We distinguish stop

from the command skip[`r ,`w] because skip is a real command that may consume

some measurable time (e.g., reading from the instruction cache), whereas stop

is purely syntactic and takes no time at all. Since time is not part of the core

semantics, sleep behaves like skip.
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2.3.2 Abstracted full language semantics

The core semantics discussed so far ignores timing; the job of the full language

semantics is to supply a complete description of timing so that timing channels

can be precisely identified.

Writing down a full semantics as a set of transition rules would define the

complete timing behavior of the language. But this semantics would be useful

only for a particular language implementation on particular hardware. Instead,

we permit any full semantics that satisfies a certain set of properties yet to be

described. What is presented here is therefore a kind of abstracted full semantics

in which only the key properties are fixed. This approach makes the results

more general.

These key properties fall into two categories, which we call faithfulness

requirements and security requirements. The faithfulness requirements (Sec-

tion 2.3.5) are mostly straightforward; the security requirements (Section 2.3.6)

are more subtle.

2.3.3 Configurations

Configurations in the full semantics have the form 〈c,m, E,G〉. As in the core

semantics, c and m are the current program and memory. Component E is the

machine environment, and G is the global clock. In general G can be measured

in any units of time, but we interpret it as machine clock cycles hereafter. We

write 〈c,m, E,G〉 → 〈c′,m′, E′,G′〉 for evaluation transitions.

The full semantics of expression evaluation obviously also needs to be small-
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step, but we choose a presentation style that elides the details of expression

evaluation for simplicity.

As before, the machine environment E represents hardware state that may

affect timing but that is not needed by the core semantics. Hardware compo-

nents captured by E include the data cache and instruction cache, the branch

prediction buffer, the translation lookaside buffer (TLB), and other low-level

components. The machine environment might also include hidden state added

by the compiler for performance optimization.

For example, if one considers only the timing effects of data and instruction

caches, denoted by D and I respectively, E could be a configuration of the form

E = 〈D, I〉.

Note that while both the memory m and the machine environment E can af-

fect timing, only the memory affects program control flow. This is the reason

to distinguish them in the semantics. The environment E can be completely

abstract as long as the properties for the full semantics are satisfied. This sepa-

ration also ensures that the core semantics is completely standard.

The separation of m and E also clarifies possibilities for hardware design.

For instance, it is possible for confidential data to be stored securely in a public

partition of E, but not in public memory (cf. Section 2.4.1).

2.3.4 Threat model

To evaluate whether the programming language achieves its security goals, we

need to describe the power of the adversary in terms of the semantics. We as-
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sociate an adversary with a security level `A bounding what information the

adversary can observe directly. To represent the confidentiality of memory, we

assume that an environment Γ maps variable names to security levels. If a mem-

ory location (variable) has security level ` that flows to `A (that is, ` v `A), the

adversary is able to see the contents of that memory location. By monitoring

such a memory location for changes, the adversary can also measure the times

at which the location is updated.

Two memories m1 and m2 are `-equivalent, denoted m1 ∼` m2, when they agree

on the contents of locations at level ` and below:

m1 ∼` m2 , ∀x . Γ(x) v ` . m1(x) = m2(x)

Intuitively, `-equivalence of two memories means that an observer at level `

cannot distinguish these two memories.

Projected equivalence We define projected equivalence on memories to require

equivalence of variables with exactly level `:

m1 '` m2 , ∀x . Γ(x) = ` . m1(x) = m2(x)

We assume there is a corresponding projected equivalence relation on machine

environments. If two machine environments E1 and E2 have equivalent `-

projections, denoted E1 '` E2, then `-level information that is stored in these

environments is indistinguishable. The precise definition of projected equiva-

lence depends on the hardware and perhaps the language implementation. For

example, for a two-level partitioned cache containing some entries at level L

and some at level H, two caches have equivalent H-projections if they contain

the same cache entries in the H portion, regardless of the L entries.

20



Using projected equivalence it is straightforward to define `-equivalence on

machine environments:

E1 ∼` E2 , ∀`
′ v ` . E1 '`′ E2

2.3.5 Faithfulness requirements for the full semantics

The faithfulness requirements for the full semantics comprise four properties:

adequacy, deterministic execution, sequential composition, as well as accurate

sleep duration.

Adequacy specifies that the core semantics and the full semantics describe

the same executions: for any transition in the core semantics there is a matching

transition in the full semantics and vice versa.

Property 1 (Adequacy of core semantics) ∀m, c, c′, E,G .

(∃E′,G′ . 〈c,m, E,G〉 → 〈c′,m′, E′,G′〉)⇔ 〈c,m〉 → 〈c′,m′〉

We also require that the full semantics be deterministic, which means that the

machine environment E completely captures the possible influences on timing.

Property 2 (Deterministic execution) ∀m, c, E,G .

〈c,m, E,G〉 → 〈c1,m1, E1,G1〉∧〈c,m, E,G〉 → 〈c2,m2, E2,G2〉 =⇒ E1 = E2∧G1 = G2

Since the core semantics is already deterministic, determinism of the machine

environment and time components suffices.
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Sequential composition must correctly accumulate time and propagate the

machine environment.

Property 3 (Sequential composition)

1. ∀c1, c2,m, E,G .

〈c1,m, E,G〉→〈stop,m′, E′,G′〉 ⇔ 〈c1; c2,m, E,G〉→〈c2,m′, E′,G′〉

2. ∀c1, c2, c′1,m, E,G such that c′1 , stop .

〈c1,m, E,G〉→〈c′1,m
′, E′,G′〉 ⇔ 〈c1; c2,m, E,G〉→〈c′1; c2,m′, E′,G′〉

Finally, the sleep command must take the correct amount of time. When its

argument is negative, it is assumed to take no time.

Property 4 (Accurate sleep duration) ∀n,m, E,G, `r, `w .

〈(sleep n)[`r ,`w],m, E,G〉 → 〈stop,m, E′,G′〉 ⇒ G′ = G + max(n, 0)

Discussion The faithfulness requirements are mostly straightforward. The as-

sumption of determinacy might sound unrealistic for concurrent execution. But

if information leaks through timing because some other thread preempts this

one, the problem is in the scheduler or in the other thread, not in the current

thread. Deterministic time is realistic if we interpret G as the number of clock

cycles the current thread has used.
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Property 5 (Write label) Given a labeled command c[`r ,`w], and a level ` such that
`w @ `

∀m, E,G . 〈c[`r ,`w],m, E,G〉 → 〈c′,m′, E′,G′〉 =⇒ E '` E′

Property 6 (Read label) Given any command c[`r ,`w],

∀m1,m2,E1, E2,G . (∀x ∈ Vars1(c[`r ,`w]) . m1(x) = m2(x))
∧ E1 ∼`r E2

∧ 〈c[`r ,`w],m1, E1,G〉 → 〈c1,m′1, E
′
1,G1〉

∧ 〈c[`r ,`w],m2, E2,G〉 → 〈c2,m′2, E
′
2,G2〉 =⇒ G1 = G2

Property 7 (Single-step machine-environment noninterference) Given any
labeled command c[`r ,`w], and any level `,
∀m1,m2, E1, E2,G1,G2 . m1 ∼` m2 ∧ E1 ∼` E2

∧ 〈c[`r ,`w],m1, E1,G1〉 → 〈c1,m′1, E
′
1,G

′
1〉

∧ 〈c[`r ,`w],m2, E2,G2〉 → 〈c2,m′2, E
′
2,G

′
2〉 =⇒ E′1 ∼` E′2

Figure 2.3: Security requirements.

2.3.6 Security requirements for the full semantics

For security, the full semantics also must satisfy certain properties to ensure that

read and write labels accurately describe timing. These properties are specified

as constraints on the full semantics that must hold after each evaluation step. In

the formalization of these properties, we quantify over labeled commands with

the form c[`r ,`w]: that is, all commands except sequential composition.

Write labels The write label `w is the lower bound on the parts of the machine

environment that a single evaluation step modifies. Property 5 in Figure 2.3

formalizes the requirements on the machine environment: executing a labeled

command c[`r ,`w] cannot modify parts of the environment at levels to which `w

does not flow.
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Example Consider program sleep(h)[`r ,H] under the two-level security lattice

L v H. This command is annotated with the write label H. The only level `

such that `w @ ` is ` = L. In this case, Property 5 requires that an execution of

sleep(h)[`r ,H] does not modify L parts of the machine environment.

Consider program sleep(h)[`r ,L] which has write label L. Because there is

no security level ` such that L @ `, Property 5 does not constrain the machine

environment for this command.

Read labels The read label `r of a command specifies which parts of the ma-

chine environment may affect the time necessary to perform the single next eval-

uation step. For a compound command such as if or while, this time does not

include time spent in subcommands.

Property 6 in Figure 2.3 formalizes the requirement that read labels accu-

rately capture the influences of the machine environment. This formalization

uses the Vars1 function, which identifies the part of memory that may affect the

timing of the next evaluation step—that is, a set of variables. We need Vars1 be-

cause parts of the memory can also affect timing, such as e in sleep (e). A simple

syntactic definition of Vars1 conservatively approximates the timing influences

of memory, but a more precise definition might depend on particularities of the

hardware implementation. For skip, this set is empty; for x := e and sleep (e),

the set consists of x and all variables in expression e; for if e then c1 else c2 and

while e do c, it contains only variables in e and excludes those in subcommands,

since only e is evaluated during the next step.

In the definition in Figure 2.3, equality of G1 and G2 means that a single step

takes exactly the same time. Both configurations take the same time, because
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m1 and m2 must agree on all variables x that are evaluated in this step. This

expresses our assumption that values of variables other than those explicitly

evaluated in a single step cannot influence its timing. Machine environments

E1 and E2 are required to be `r-equivalent, to ensure that parts of the machine

environment other than those at `r and below also cannot influence its timing.

Consider command sleep (h)[L,`w] with read-label `r = L, with respect to all

possible pairs of memories m1,m2 and machine environments E1, E2. Whenever

m1(h) and m2(h) have different values, Property 6 places no restrictions on the

timing of this command regardless of E1, E2. When m1(h) = m2(h), we require

that if E1 and E2 are L-equivalent, the resulting time must be the same. To sat-

isfy such a property, the H parts of the machine environment cannot affect the

evaluation time.

Single-step noninterference Property 5 specifies which parts of the machine

environment can be modified. However, it does not say anything more about

the nature of the modifications. For example, consider a three-level security lat-

tice L v M v H, and a command (x := y)[M,M], where both the read label and

write label are M. Property 5 requires that no modifications to L parts of the en-

vironment are allowed, but modifications to the M level are not restricted. This

creates possibilities for insecure modifications of machine environments when

H-parts of the machine environment propagate into the M-parts. To control

such propagation, we introduce Property 7 in Figure 2.3. Note that here level `

is independent of read or write labels.
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2.4 A sketch of secure hardware

To illustrate how the requirements for the full language semantics enable secure

hardware design, we sketch two possible ways for a design of cache and TLB

to realize Properties 5–7, and reason about their security informally. In Chap-

ter 3, we present a formal method for verifying more complex designs (e.g., a

complete MIPS processor).

For simplicity, we assume that the two-point label lattice L v H throughout

this section.

We start with a standard single-partition data cache similar to current com-

modity cache designs and then explore a more sophisticated partitioned cache

similar to that in prior work [88].

2.4.1 Choosing machine environments

The machine environment does not need to include all hardware state. It should

be precise enough to ensure that equivalent commands take the same time in

equal environments, but no more precise. Including state with no effect on tim-

ing leads to overly conservative security enforcement that hurts performance.

For example, consider a data cache, usually structured as a set of cache lines.

Each cache line contains a tag, a data block and a valid bit. Let us compare

two possible ways to describe this as a machine environment: a more precise

modeling of all three fields—a set of triples 〈tag,data block,valid bit〉—versus a

coarser modeling of only the tags and valid bits—a set of pairs 〈tag,valid bit〉.
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The coarse-grained abstraction of data cache state is adequate to predict ex-

ecution time, since for most cache implementations, the contents of data blocks

do not affect access time at all. The fine-grained abstraction does not work as

well. For example, consider the command h := h’ occurring in a low context.

That is, variables h and h’ are confidential, but the fact that the assignment is

happening is not. With the fine-grained abstraction, the low part of the cache

cannot record the value of h if Property 7 is to hold, because the low-equivalent

memories m1 and m2 appearing in its definition may differ on the value of h’.

However, with the coarse-grained abstraction, the location h can be stored in

low cache, because Property 7 holds without making the value of h’ part of the

machine environment.

The coarse-grained abstraction shows that high variables can reside in low

cache without hurting security in at least some circumstances. This treatment of

cache is quite different from the treatment of memory, because public memory

cannot hold confidential data. Without the formalization of Property 7, it would

be difficult to reason about the security of this treatment of cache. Yet this insight

is important for performance: otherwise, code with a low timing label cannot

access high variables using cache.

2.4.2 Realization on standard hardware

At least some standard CPUs can satisfy the security requirements (Proper-

ties 5–7). Intel’s family of Pentium and Xeon processors has a “no-fill” mode

in which accesses are served directly from memory on cache misses, with no

evictions from nor filling of the data cache.
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Our approach can be implemented by treating the whole cache as low, and

therefore disallowing cache writes from high contexts. For each block of instruc-

tions with `w = H, the compiler inserts a no-fill start instruction before, and a

no-fill exit instruction after.

It is easy to verify that Properties 5–7 hold, as follows:

Property 5 For commands with `w = L, this property is vacuously true since

there is no ` such that L @ `. Commands with `w = H are executed in “no-fill”

mode, so the result is trivial.

Property 6 Since there is only one (L) partition, E1 ∼`r E2 is equivalent to

E1 = E2. The property can be verified for each command. For instance, consider

command sleep (e)[`r ,`w]. The condition ∀x ∈ Vars1(c[`r ,`w]).m1(x) = m2(x) ensures

that m1(e) = m2(e). Thus, this command is suspended for the same time. More-

over, since E1 = E2, cache access time must be the same according to Property 2.

So, we have G1 = G2.

Property 7 We only need to check the L partition, which can be verified for

each command. For instance, consider command sleep (e)[`r ,`w]. When `w =

H, the result is true simply because the cache is not modified. Otherwise, the

same addresses (variables) are accessed. Since initial cache states are equivalent,

identical accesses yields equivalent cache states.
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2.4.3 A more efficient realization

A more efficient hardware design might partition both the cache(s) and the TLB

according to security labels. Let us assume both the cache and TLB are equally,

statically partitioned into two parts: L and H. The hardware accesses different

parts as directed by a timing label that is provided from the software level. Here

we focus on the correctness of this hardware design; a simulation of this design

is discussed in Section 6.2.

One subtle issue is consistency, since data can be stored in both the L and the

H partitions. We avoid inconsistency by keeping only one copy in the cache and

TLB. In any CPU pipeline stage that accesses memory when the timing label is

H, both H and L partitions are searched. If there is a cache miss, data is installed

in the H partition. When the timing label is L, only the L partition is searched.

However, to preserve consistency, instead of fetching the data from next level or

memory, the controller moves the data from the H partition if it already exists

there. To satisfy Property 6, the hardware ensures this process takes the same

time as a cache miss.

We can informally verify Properties 5–7 for this design as well:

Property 5 When the write label is L, this property holds trivially because

there is no label such that L @ `. When the write label is H, a new entry is

installed only in the H partition, so E ∼L E′.

Property 6 The premise of Property 6 ensures that all variables evaluated in

a single step have identical values, so any variation in execution time is due to
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the machine environment. When the read label is H, E1 ∼H E2 ensures that the

machine environments are identical; therefore, the access time is also identical.

When the read label is L, the access time depends only on the existence of the

entry in L-cache/TLB. Even if the data is in the H partition, the load time is the

same as if there were an L-partition miss.

Property 7 This requirement requires noninterference for a single step. Con-

tents of the H partition can affect the L part in the next step only when data is

stored in the H partition and the access has a timing label L. Since data is in-

stalled into the L part regardless of the state of the H partition, this property is

still satisfied.

Discussion on formal proof and multilevel security We have discussed effi-

cient hardware for a two-level label system. Verification of multilevel security

hardware is more challenging. In Chapter 3, we present SecVerilog to formally

verify multilevel security hardware.

2.5 A type system for controlling timing channels

Next, we present the security type system for our language. We show that the

type system eliminates all timing channels in a well-type program, with the

assumption that Properties 1–7 hold.
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pc v `w

Γ, pc, τ ` skip[`r ,`w] : τ t `r
T-SKIP

Γ ` e : ` pc v `w ` t pc t τ t `r v Γ(x)

Γ, pc, τ ` x := e[`r ,`w] : Γ(x)
T-ASGN

Γ ` e : ` pc v `w

Γ, pc, τ ` (sleep (e))[`r ,`w] : τ t ` t `r
T-SLEEP

Γ ` e : ` pc v `w Γ, ` t pc, ` t τ t `r ` ci : τi i = 1, 2

Γ, pc, τ ` (if e then c1 else c2)[`r ,`w] : τ1 t τ2
T-IF

Γ ` e : ` pc v `w ` t τ t `r v τ
′ Γ, ` t pc, τ′ ` c : τ′

Γ, pc, τ ` (while e do c)[`r ,`w] : τ′
T-WHILE

Γ, pc, τ ` c1 : τ1 Γ, pc, τ1 ` c2 : τ2

Γ, pc, τ ` c1; c2 : τ2
T-SEQ

Figure 2.4: Typing rules: commands.

2.5.1 Security type system

Typing rules for expressions have form Γ ` e : ` where Γ is the security environ-

ment (a map from variables to security labels), e is the expression, and ` is the

type of the expression. The rules are standard [72] and we omit them here. Typ-

ing rules for commands, in Figure 3.5, have form Γ, pc, τ ` c : τ′. Here pc is the

usual program-counter label [72], τ is the timing start-label, and τ′ is the timing

end-label. The timing start- and end-labels bound the level of information that

flows into timing before and after executing c, respectively. When timing end-

labels are not relevant, we write Γ, pc, τ ` c. We use Γ ` c to denote Γ,⊥,⊥ ` c.

All rules enforce the constraint τ v τ′ because timing dependencies accumu-
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late as the program executes. Every rule also propagates the timing end-labels

of subcommands. This can be seen most clearly in the rule for sequential com-

position (T-SEQ): the end-label from c1 is the start-label for c2.

All remaining rules require pc v `w. This restriction, together with Prop-

erty 5, ensures that no confidential information about control flow leaks to the

low parts of the machine environment. We do not require τ v `w because we

assume the adversary cannot directly observe the timing of updates to the ma-

chine environment. This assumption is reasonable since the ISA gives no way

to check whether a given location is in cache.

Rule (T-SKIP) takes the read label `r into account in its timing end-label. The

intuition is that reading from confidential parts of the machine environment

should be reflected in the timing end-label.

Rule (T-ASGN) for assignments x := e requires ` t pc t τ t `r v Γ(x), where

` is the level of the expression. The condition ` t pc v Γ(x) is standard. We also

require τ t `r v Γ(x), to prevent information from leaking via the timing of the

update, from either the current time or the machine environment. The timing

end-label is set to Γ(x), bounding all sources of timing leaks.

Notice that the write label `w is independent of the label on x. The reason is

that `w is the interface for software to tell hardware which state may be modified.

A low write label on an assignment to a high variable permits the variable to be

stored in low cache.

Because sleep has no memory side effects, rule (T-SLEEP) is slightly sim-

pler than that for assignments; the timing end-label conservatively includes all

sources of timing information leaks.
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Rule (T-IF) restricts the environment in which branches c1 and c2 are type-

checked. As is standard, the program-counter label is raised to `tpc. The timing

start-labels are also restricted to reflect the effect of reading from the `r-parts of

the machine environment and of the branching expression. Rule (T-WHILE)

imposes similar conditions on end-label τ′, except that τ′ can also be used as

both start- and end-labels for type-checking the loop body.

We have seen that for security, the write label of a command must be higher

than the label of the program counter. There is no corresponding restriction

on the read label of a command. The hardware may be able to provide better

performance if a higher read label is chosen. For instance, in most cache designs,

reading from the cache changes its state. The cache can only be used when

`r = `w, so this condition should be satisfied for best performance.

2.5.2 Machine-environment noninterference

An important property of the type system is that it guarantees machine envi-

ronment noninterference. This property requires execution to preserve low-

equivalence of memory and machine environments.

Theorem 1 (Memory and machine-environment noninterference)

∀E1, E2,m1,m2,G, c, ` . Γ ` c ∧ m1 ∼` m2 ∧ E1 ∼` E2

∧ 〈c,m1, E1,G〉 →∗ 〈stop,m′1, E
′
1,G1〉

∧ 〈c,m2, E2,G〉 →∗ 〈stop,m′2, E
′
2,G2〉

=⇒ m′1 ∼` m′2 ∧ E′1 ∼` E′2
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Theorem 1 guarantees the adversary obtains no information by observing public

parts of the memory and machine environments. Therefore, for any well-typed

program, information leakage via storage channels and machine environment

is eliminated.

More importantly, the type system guarantees that a well-typed program

leaks no information via timing channels. To formalize this property, we start

from observable assignment events.

Observable assignment events As discussed in Section 2.3.4, an adversary at

level `A observes memory, including timing of updates to memory, at levels up

to `A. To formally define adversary observations, we refine our presentation of

the language semantics with observable assignment events.

Let α ∈ {(x, v, t), ε} range over observable events, which can be either an as-

signment to variable x of value v at time t, or an empty event ε. An event (x, v,G′)

is generated by assignment transitions 〈x := e,m, E,G〉 → 〈stop,m′, E′,G′〉,

where 〈m, e〉 ⇓ v, and by all transitions whose derivation includes a subderiva-

tion of such a transition.

We write 〈c,m, E,G〉 V (x, v, t) if configuration 〈c,m, E,G〉 produces a se-

quence of events (x, v, t) = (x1, v1, t1) . . . (xn, vn, tn) and reaches a final configura-

tion 〈stop,m′, E′,G′〉 for some m′, E′,G′.

`A-observable events An event (x, v, t) is observable to the adversary at level `A

when Γ(x) v `A. Given a configuration 〈c,m, E,G〉 such that 〈c,m, E,G〉V (x, v, t),

we write 〈c,m, E,G〉V`A (x′, v′, t′) for the longest subsequence of (x, v, t) such that

for all events (xi, vi, ti) in (x′, v′, t′) it holds that Γ(xi) v `A.
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For example, for program l1 := l2; h1 := l1, the H-adversary observes two as-

signments: 〈c,m, E,G〉 VH (l1, v1, t1), (h1, v2, t2) for some v1, t1, v2 and t2. For the

L-adversary, we have 〈c,m, E,G〉 VL (l1, v1, t1), which does not include the as-

signment to h1.

Timing-sensitive noninterference Now we are ready to state the most impor-

tant property of the type system. That is, all well-typed programs are timing

channel free.

Theorem 2 (Timing-sensitive noninterference)

∀E1, E2,m1,m2,G, c, ` . Γ ` c ∧ m1 ∼` m2 ∧ E1 ∼` E2

∧ 〈c,m1, E1,G〉V` (x1, v1, t1) ∧ 〈c,m2, E2,G〉V` (x2, v2, t2)

=⇒ x1 = x2 ∧ v1 = v2 ∧ t1 = t2

In other words, given two different secrets, an adversary who observes

memory, including timing of updates to memory, at levels up to `, will always

observe the same observations regardless of the secrets.

Proofs For technical reasons, we defer the proofs of Theorem 1 and Theorem 2

until Chapter 5, where these results become corollaries of more general results

presented in that chapter.

A note on termination The definition of memory and machine noninter-

ference in Theorem 1 is presented in the batch-style termination-insensitive

35



form [5]. Such definitions are simple but ordinarily limit one’s results to pro-

grams that eventually terminate. Because termination channels are a special

case of timing channels, using a batch-style definition is not fundamentally lim-

iting here.

2.6 Related work

Control of internal timing channels has been studied from different perspec-

tives, and several papers have explored a language-based approach. Low ob-

servational determinism [93, 37] can control these channels by eliminating dan-

gerous races.

External timing channels are harder to control. Much prior language-based

work on external timing channels uses simple, implicit models of timing, and no

previous work fully addresses indirect dependencies. Type systems have been

proposed to prevent timing channels [86], but are very restrictive. Often (e.g.,

[86, 78, 73, 76]) timing behavior of the program is assumed to be accurately de-

scribed by the number of steps taken in an operational semantics. This assump-

tion does not hold even at the machine-language level, unless we fully model

the hardware implementation in the operational semantics and verify the entire

software and hardware stack together. Our approach adds a layer of abstraction

so software and hardware can be designed and verified independently.

Some previous work uses program transformation to remove indirect de-

pendencies, though only those arising from data cache. The main idea is to

equalize the execution time of different branches, but a price is paid in expres-

siveness, since these languages either rule out loops with confidential guards (as
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in [4, 34, 10]), or limit the number of loop iterations [56, 18]. These methods do

not handle all indirect timing dependencies; for example, the instruction cache

is not handled, so verified programs remain vulnerable to other indirect timing

attacks [87, 3, 2].

Secure multi-execution [22, 42] provides timing-sensitive noninterference

yet is probably less restrictive than the prior approaches discussed above. The

security guarantee is weaker than in our approach: that the number of instruc-

tions executed, rather than the time, leaks no information for incomparable lev-

els. Extra computational work is also required per security level, hurting per-

formance, and no quantitative bound on leakage is obtained.

Though security cannot be enforced purely at the hardware level, hardware

techniques have been proposed to mitigate timing channels. Targeting cache-

based timing attacks, both static [67] and dynamic [88, 89, 50] mechanisms,

based on the idea of partitioned cache, have been proposed. Such designs are

ad hoc and hard to verify against other attacks. For example, Kong et al. [44]

show vulnerabilities in Wang’s cache design [88]. SecVerilog, the new hardware

description language introduced in Chapter 3, and languages designed by Li et

al. [49, 48] are statically verifiable hardware description languages for building

hardware that is information-flow secure by construction. We defer a detailed

comparison to Chapter 3.
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CHAPTER 3

A HARDWARE DESIGN LANGUAGE FOR

TIMING-SENSITIVE INFORMATION-FLOW SECURITY

Chapter 2 shows that a new timing contract can communicate information flows

between the software and hardware, enabling timing channels to be rigorously

controlled in the entire computer system. Left open is the question of how to

design complex hardware that correctly enforces its part of the contract.

This chapter fills in the critical missing piece, offering a method for designing

hardware that correctly and precisely enforces secure information flow. Our

approach is based on a new hardware description language, called SecVerilog,

that statically checks information flows within hardware using a security type

system. This hardware design method enables computing systems in which all

forms of information flow are tracked, including explicit flows, implicit flows,

and flows via timing channels.

3.1 Background and approach

3.1.1 Information flow control in hardware

Recall that information flow control aims to ensure that all information flows in

a system respect a security policy. For this purpose, information in the system

is associated with a security level drawn from a lattice L whose partial ordering

v specifies which information flows are allowed. As defined in Section 1.2.1, a

lattice with two security levels L (low, public) and H (high, secret) can be used
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to forbid information labeled as H from flowing into L (H 6v L) while allowing

the other direction (L v H).

The goal of SecVerilog is to enforce fine-grained information flow control for

hardware designs in a statically verifiable fashion. With SecVerilog, hardware

designers specify hardware-level information flow policies by annotating wires

and registers with security labels and specifying a security lattice. Then, the

SecVerilog type system statically checks and verifies timing-sensitive informa-

tion flow properties within hardware at design time. While we use a simple

lattice with two security levels (L and H) in our examples, the approach applies

to an arbitrary security lattice.

3.1.2 Threat model

We follow the threat model in Section 2.3.4. In particular, we assume a software-

level adversary, who can observe all information at or below a certain security

level that we will call low (L). We assume the adversary may either directly

or indirectly (e.g., by measuring the timing of L instructions) observe machine

environment state at or below the level L. Hence, both storage and timing chan-

nels [47] are considered.

Moreover, we target synchronous circuits driven by a fixed-frequency clock.

We assume the software-level adversary has no physical access to the hardware,

and we do not consider physical attacks such as directly tapping internal cir-

cuits. Therefore, the adversary may only observe machine environment at the

granularity of a clock cycle. In other words, the instable circuit state between

clock ticks is invisible to the adversary.
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1 if (h1)[L]
2 h2:=l1;[H]
3 else
4 h2:=l2;[H]
5 l3:=l1;[L]

Security policy on hardware designs:

1) The high partition cannot affect the timing of instruc-
tions with label L,

2) the low partition cannot be modified when the tim-
ing label is H, and

3) the contents of the high partition cannot affect those
of the low partition.

Figure 3.1: An example of full-system timing channel control. The well-
typed program on the left is secure if the hardware enforces
the security policy on the right.

Furthermore, we do not consider side channels that require physical prox-

imity, such as power consumption analysis.

3.1.3 Controlling timing channels in hardware

The ability to verifiably control fine-grained information flow in hardware can

enhance security in many applications. One notable example, and a focus of

this chapter, is designing efficient hardware that controls timing channels.

Our goal is an efficient hardware design that enforces the complex security

policy required by the full-system timing channel control mechanism proposed

in Chapter 2. Recall that in this approach, the security of the whole system rests

on a concise contract between the software and hardware, provably controlling

timing channels if both meet their requirements. For example, the code frag-

ment in Figure 3.1 illustrates a well-typed program, in which timing labels are

shown in brackets; h1 and h2 are confidential, and other variables are public1.

1The general contract in Chapter 2 uses two timing labels, called the read and write labels.
SecVerilog is expressive enough to verify the general contract, which is implemented in our
verified MIPS processor (Section 6.3). For simplicity, we assume these two labels are equal in
most of examples.
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1 reg[18:0] {L} tag0[256],tag1[256];

2 reg[18:0] {H} tag2[256],tag3[256];

3 wire[7:0] {L} index;

4 //Par(0)=Par(1)=L Par(2)=Par(3)=H

5 wire[1:0] {Par(way)} way;

6 wire[18:0] {Par(way)} tag_in;

7 wire {Par(way)} write_enable;

8

9 always @(posedge clock) begin

10 if (write_enable) begin

11 case (way)

12 0: tag0[index]=tag_in;

13 1: tag1[index]=tag_in;

14 2: tag2[index]=tag_in;

15 3: tag3[index]=tag_in;

16 endcase

17 end

18 end

(a) SecVerilog code for cache tags

1 wire {L} isLoad,isStore;

2 wire {L} hit0,hit1; // hitX: 1 iff way

3 wire {H} hit2,hit3; // X gets a cache hit

4 //LH(0)=L LH(1)=H

5 wire {LH(timingLabel)} stall, hit, timingLabel;

6 reg[2:0] {LH(timingLabel)} dFsmState;

7

8 assign stall = ((isLoad | isStore) &

9 (˜hit | (dFsmState != DFSM_IDLE)));

10 assign hit = (timingLabel == 0) ?

11 ((hit0|hit1)?1:0):((hit0|hit1|hit2|hit3)?1:0);

12 ...

13 case (dFsmState)

14 DFSM_IDLE: begin

15 // load hit

16 if (isLoad && hit) begin

17 dFsmState <= DFSM_IDLE;// nonblocking

18 ...

19 endcase

(b) SecVerilog code for a cache controller

Figure 3.2: SecVerilog extends Verilog with security label annotations
(shaded in gray).

Here, the existence of h1 in data cache, rather than the value of h1, can affect

the execution time of line 1. Hence, line 1 has a timing label of L. The benefit of

these timing labels is that only the timing of instructions with H timing labels

needs to be controlled and mitigated at software level, as long as the security

policy in Figure 3.1 is enforced on hardware.

3.1.4 Example: secure cache design

Designing hardware to meet the complex security policy in Figure 3.1 is chal-

lenging. As an illustration, we consider designing a secure cache, statically

partitioned between security levels L (low) and H (high) as proposed in prior

work [67, 88]. The L and H partition correspond to the L and H machine envi-

ronment respectively.
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Figure 3.2(a) presents a simplified fragment of SecVerilog code to update

cache tags. For now, ignore the shaded annotations. This design logically par-

titions a 4-way set-associative cache so that ways 0 and 1 (tag0 and tag1) are

used as the L partition, and the other ways (tag2 and tag3) are used as the

H partition. The code writes a new cache tag to a way specified by way when

write_enable is asserted.

This simple example shows the intricacy of correctly enforcing the afore-

mentioned security policy in hardware. First, tag_in must not contain high

information when way is 0 or 1, to prevent the H partition from affecting the

state of the L partition (tag0 and tag1). Second, write_enable, which controls

whether a write occurs, cannot be influenced by high information when way is

0 or 1 (an instance of implicit flows [72]). Verifying these restrictions is tricky

since the cache partition that tag_in and write_enable belong to can change at

run time.

More challenging is to enforce secure timing: the H partition cannot af-

fect the timing of instructions with timing label L. A simplified fragment of

the SecVerilog code for the cache controller is shown in Figure 3.2(b), where

timingLabel represents the timing label of a cache access, propagated from the

software level, hiti (0 ≤ i ≤ 3) indicates if way i gets a cache hit, and the stall

signal indicates when a cache access completes.

Since the stall signal affects the execution time of an instruction, a secure

design must ensure that only the L partition can affect the execution time when

timingLabel is 0 (encoding L). Verifying this property is difficult, since the

cache controller may access H data even when timingLabel is 0 (e.g., to execute

line 1 of the example in Figure 3.1). Perhaps counterintuitively, this access is se-
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cure, because timing may be affected by the existence of H data in the cache but

not by the value of the data. Moreover, the hit and dFsmState signals, which

affect stall (line 8), are shared across both cache partitions. A secure design

must ensure that no information leaks through these shared variables, which is

difficult since their uses are spread across multiple statements (lines 13–19 only

show a snippet).

3.1.5 The SecVerilog approach

SecVerilog extends Verilog with the ability to give each variable a label that spec-

ifies the security level of the variable. In Figure 3.2, these labels are the shaded

annotations, which indicate, e.g., that variables tag0 and tag1 are labeled L

whereas tag2 and tag3 are labeled H. Using these annotations, the SecVerilog

type system automatically verifies information flow properties of Verilog code

at compile time.

Programming languages that provide the ability to label variables have been

developed before [9, 59, 75], but their labels are not expressive enough to han-

dle practical hardware designs where resources need to be shared across secu-

rity levels. In effect, the security levels might be changed at run time. We use

dependent types to address this challenge.

Consider the example in Figure 3.2(a). The labels of way, write_enable, and

tag_in depend on which cache way is being accessed. In fact, we observe that a

precise dependent label can be assigned to these variables without any change

to the Verilog code. The proper label is Par(way), where the name Par denotes a

type-level function that maps 0 and 1 to level L, and 2 and 3 to level H (concisely,
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Par = {0 7→ L, 1 7→ L, 2 7→ H, 3 7→ H}). Intuitively, these dependent labels

express a lightweight invariant on variables (e.g., when way is 0, write_enable

must have level L).

For the example in Figure 3.2(b), stall, hit and dFsmState can be labeled

with LH(timingLabel) where LH = {0 7→ L, 1 7→ H} to ensure that they can be

affected only by the low partition when timingLabel is 0.

Such invariants can be maintained by the type system described in Sec-

tion 3.3. For instance, to ensure that the explicit flow from tag_in to tag0 at

line 12 in Figure 3.2(a) is secure, the type system generates a proof obligation

(way = 0 ⇒ Par(way) v L), meaning that when way is 0, information flow from

tag_in (with label Par(way)) to tag0 (with label L) is permissible. This proof

obligation can easily be discharged by an external solver.

The soundness of our type system (Section 3.4) guarantees that all security

violations are detected at compile time. For example, consider the case when

timingLabel is 0 in line 11 in Figure 3.2(b). If the H partition, such as variable

hit2, were accessed in that case, an error would be reported because the type

system would generate an invalid proof obligation: (timingLabel = 0) ⇒ H v

LH(timingLabel).

3.1.6 Benefits over previous approaches

Our approach enjoys several benefits compared with prior efforts with verifi-

able information-flow security for hardware [84, 49, 48]. First, verification is

done at compile time, avoiding run-time overhead and detecting errors at an
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Program Prog ::= B1 . . . Bn

Thread B ::= always@(γ) c

Trigger γ ::= posedge clock | negedge clock | ~v

Cmds c ::= skipη | begin c1; . . . ; cn; end
| v =η e | v⇐η e | ifη (e) c1 else c2

Expr e ::= v | n | uop e | e bop e

Vars x, y, v ∈ Vars

Figure 3.3: Syntax of SecVerilog.

early design stage. This is not possible with GLIFT [84] and Sapper [48]. Sec-

ond, variables and logic can be shared across multiple security levels (e.g., way

and hit are shared with various timing labels), which is not possible with Cais-

son [49]. Moreover, SecVerilog adds little programming effort: Verilog code

can be verified almost as-is, with annotations (security labels) required only for

variable declarations.

3.2 SecVerilog: Syntax and semantics

Except for added annotations, SecVerilog has essentially the same syntax and

semantics as Verilog [30]. It builds on the synthesizable subset of the Verilog lan-

guage. The target language of our compiler is synthesizable Verilog from which

hardware can be generated using existing tools. We restrict to synthesizable

code because unsynthesizable Verilog code is used only for testing purposes; it

has no effect on the final hardware.

A core subset of SecVerilog is shown in Figure 3.3. We choose this subset

because it includes all interesting features, and the omitted features (e.g., case,

assign and the ternary conditional) can be translated into the core language.
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A SecVerilog program (Prog) consists of a set of variable declarations and a

set of thread definitions that use these variables. Variable v can represent either

a register or a wire. The difference is that wires are stateless, and must be driven

by other signals. We do not distinguish them in the syntax.

“Always blocks” (B) in (Sec)Verilog are similar to threads from the software

perspective. Each always block translates into a hardware module that operates

in parallel to other modules.

Threads are activated by triggers. A trigger γ can either be a change to the

clock signal (posedge/negedge means the rising/falling edge of the clock sig-

nal), or a change to a variable in a variable list ~v. For example, commands in the

always block at line 9 in Figure 3.2(a) are activated at every rising edge of the

clock signal.

Commands c are similar to those in software languages. Symbols η are

unique identifiers for program points and can be ignored for now. A feature

of Verilog not found in most programming languages is the distinction between

blocking assignment v =η e and nonblocking assignment v ⇐η e. The effects of

blocking assignments are visible immediately, but those of nonblocking assign-

ments are delayed until the end of the current time unit. For example, consider

the two code fragments x = 1; y ⇐ x and x ⇐ 1; y ⇐ x. If the value of x is

initially 0, then y becomes 1 in the first piece of code, but 0 in the second.

We provide a formal operational semantics for SecVerilog in Section 3.5.1.
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Level ` ∈ L

Family f ∈ Zn → L

Label τ ::= ` | f (v) | τ1 t τ2 | τ1 u τ2

Figure 3.4: Syntax of security labels.

3.3 SecVerilog: Type system

The SecVerilog type system statically controls information flow in a rigorous

and verifiable way. The most novel features of the type system include: 1) mu-

table, dependent security labels, 2) a permissive yet sound way of controlling

label channels, and 3) a modular design that decouples the program analyses

required for precision from the type system. These novel features are essential

for statically verifying highly efficient, practical hardware designs.

3.3.1 Type syntax

Types in SecVerilog are simply Verilog types extended with security label ex-

pressions, whose syntax is shown in Figure 3.4. The simplest form of label τ is a

concrete security level ` drawn from the security lattice L.

Unlike in most previous work on language-based security, SecVerilog sup-

ports dynamic labels: labels that can change at run time. A dynamic label f (v) is

constructed using a type-valued function f applied to a variable v. Type-valued

functions are needed in order to decode the simple values that the hardware can

convey into labels from the lattice L.
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Γ, pc,M ` skipη
T-SKIP

Γ, pc,M ` c1 Γ, pc,M ` c2

Γ, pc,M ` c1; c2
T-SEQ

Γ ` e : τ v < FV(Γ(v)) |= P(•η)⇒ τ t pc v Γ(v)

Γ, pc,M ` v =η e Γ, pc,M ` v⇐η e
T-ASSIGN

Γ ` e : τ
v ∈ FV(Γ(v))

v′ < Γ

|= P(•η)⇒ pc v Γ(v) if v<M

|= P(•η), v′ = beca ⇒ τ t pc v Γ(v) {v′/v}

Γ, pc,M ` v =η e Γ, pc,M ` v⇐η e
T-ASSIGN-REC

Γ ` e : τ
Γ, pc t τ,M∩ DA(η) ` c1

Γ, pc t τ,M∩ DA(η) ` c2

Γ, pc,M ` ifη (e) c1 else c2
T-IF

Figure 3.5: Typing rules: commands.

Dynamic labels are needed to accurately describe information flows in com-

plex hardware designs, where resources are used by multiple security levels.

One example is the label Par(way) used in Figure 3.2(a). Note that all secu-

rity labels in SecVerilog, including dynamic labels and label-decoding functions,

only exist for compile-time type checking; they have no run-time manifestation.

Because security labels can mention terms (in particular, variables such as

way), the type system has dependent types. Dependent security types have

been explored in some prior work on security type systems that track infor-

mation flow (e.g., [59, 85, 97]), where they provide valuable expressive power.

However, in order to support analysis of hardware security, the type system

for SecVerilog includes some unique features: first, the use of type-valued func-

tions for label decoding, and second, even more unusual, the presence of muta-

ble variables in types—that is, types may depend on variables whose value can

change at run time.
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The design philosophy of SecVerilog is to offer an expressive language with

a low annotation burden, along with fast, automatic type checking. Following

this philosophy, the only kind of term to which a label decoding function can be

applied is a variable. This restriction ameliorates two problems: first, the unde-

cidability of type equality involving general program expressions, and second,

side effects changing the meaning of types.

Despite this restriction, dependent types in SecVerilog nevertheless turn out

to be expressive enough for the intended use in hardware design. Restricting

dependent types allows type checking to be fast (e.g., two seconds to verify

a complete MIPS CPU in Section 6.3.1) and fully automatic. The syntax also

alleviates the resulting limitations on expressiveness by allowing joins (t) and

meets (u) of labels.

3.3.2 Typing rules

Typing rules for expressions have the form Γ ` e : τ where Γ is a typing environ-

ment that maps variables to security labels, e is the expression, and τ is its label.

Since these rules are mostly standard [72], we leave the details in Section 3.5.

The typing rules for commands are shown in Figure 3.5. The typing judg-

ment has the form Γ, pc,M ` c. Similar to the usual program-counter label [72]

for software languages, pc is used to control implicit flows. More interesting

is M, which tracks a set of variables that must be modified in all alternative

executions. The type system usesM to improve its precision, as we see shortly.

In the next three sections, we explore the challenges of designing the SecVer-

ilog type system and along the way explain the rules of Figure 3.5 in more depth.
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1 reg[7:0] {H} secret, {L} public, {L} x;
2 reg[7:0] {LH(x)} y; // LH(0)=L LH(1)=H
3 always@(posedge clock) begin
4 if (x==1) begin y ⇐ secret; end
5 else begin public ⇐ y; end
6 end
7 end

Figure 3.6: An example of implicit declassification.

3.3.3 Mutable dependent security labels

Dependent types need to mention mutable variables in practical hardware de-

signs. For example, the variable way in Figure 3.2(a) can be modified whenever

a new read request comes to the data cache, updating which cache way to use.

Mutability creates challenges for the soundness of the type system. We begin by

illustrating these challenges.

Implicit declassification Whenever a variable changes, the meaning of any

security label that depends on it also changes. To be secure, SecVerilog needs to

prevent such changes from implicitly declassifying information. Consider the

example in Figure 3.6. This code is clearly insecure since it copies secret into

publicwhen x changes from 1 to 0 (not shown for brevity).

At the assignment to y in the first branch, its level is H, but at the assignment

to public, the level of y has become L. The insecurity arises from the change to

the label of y during the execution, while its content remains the same. In other

words, if x changes from 1 to 0, the label of y cannot protect its content.

We rely on a dynamic mechanism to ensure register contents are erased

when the old label is not bounded by the new one. This is captured by the
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〈σ, e〉 ⇓ n σ′ = switch(v, σ[v 7→ n])

〈σ, v =η e〉 ⇓ σ′
S-ASGN1

switch(v, σ)(v′) =

0 if v′ , v ∧ v ∈ FV(Γ(v′))
σ(v) otherwise

Figure 3.7: Dynamic erasure of contents.

small-step rule for assignments, shown in Figure 3.7. Note that since wires in

hardware are stateless, this rule only applies to registers. The rule (S-ASGN1)

ensures that after an assignment that changes the label of a variable, that vari-

able’s value is zeroed out. Code to dynamically zero out registers is automat-

ically inserted as part of the translation to Verilog. In the rule, the expression

FV(τ) returns the set of free variables in type τ.

While this dynamic mechanism may affect the functionality of the original

hardware design, we believe that it is not a major issue in practice for the fol-

lowing reasons:

1. Dynamic erasure happens very rarely in our design experience. Most vari-

ables with dynamic labels are wires in our prototype processor design

(e.g., way, tag_in and write_enable in Figure 3.2(a)). So the dynamic

mechanism has no effect on these variables.

2. For registers with dynamic labels, this clearing is indeed necessary for se-

curity; hardware designers need to explicitly implement it anyway. Con-

sider dFsmState in Figure 3.2(b), the state of the cache controller. It is reset

anyway in a secure design, when the pipeline is flushed in the case that

the timing label changes from H to L.

3. Further, the compiler can notify a designer when automatic clearing is

generated, and ask the designer to explicitly approve such changes.
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1 reg{H} high;

2 reg{L} low, low’;

3 reg{LH(x)} x;

4 //LH(0)=L LH(1)=H

5 ...

6 if (high) begin

7 x ⇐ 1;

8 end

9 if (x==0 && low==1) begin

10 low’ ⇐ 0;

11 end

12 low ⇐ 1;

13 ...

(a) Insecure program with a
label channel.

1 reg{H} hit2, hit3;

2 reg[1:0]{Par(way)} way;

3 // Par(0)=Par(1)=L

4 // Par(2)=Par(3)=H

5 ...

6 if (hit2 || hit3) begin

7 way ⇐ (hit2?2’b10:2’b11);

8 end

9 else begin

10 way ⇐ 2’b10;

11 end

12 ...

(b) No-sensitive-upgrade rejects se-
cure code.

1 reg{H} high;

2 reg{L} low, low’;

3 reg{Par(x)} x;

4 // Par(0)=Par(1)=L

5 // Par(2)=Par(3)=H

6 ...

7 if (x==0) begin

8 low ⇐ 1;

9 end

10 else begin

11 high ⇐ 1;

12 end

13 low’ ⇐ low;

14 ...

(c) Flow-sensitive
systems reject secure
code.

Figure 3.8: Examples illustrating the challenges of controlling label chan-
nels.

Label channels Mutable dependent types create label channels in which the

value of a label becomes an information channel. For instance, consider the

code snippet in Figure 3.8(a). This example appears secure as the assignment to

low’ only occurs when the label of x is L (when x is 0). When high is 1, the label

of x becomes H, which correctly protects the secrecy of high. However, this code

is insecure because the change of label x also leaks information. Suppose that the

variables represent flip-flops that are initialized to (x = 0, low = 0, low′ = 1) on

a reset. The value of x in the second clock cycle after a reset is determined by

the value of high in the first cycle; 1 if high is 1, 0 if high is 0. Then, low’ in the

third clock cycle reflects the value of x in the second cycle, leaking information

from high to low’.

Similar vulnerabilities have also been observed in the literature on flow-

sensitive security types, in which security labels of a variable may change dy-

namically (e.g., [71, 38, 8]). However, prior solutions are all too conservative

(i.e., they reject secure programs) for practical hardware designs.
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The first approach is no-sensitive-upgrade [8], which forbids raising a low la-

bel to high in a high context. However, this restriction rules out useful secure

code, such as the secure code in Figure 3.8(b), adapted from our partitioned

cache design. This code selects a cache way to write to. Variables hit2 and hit3,

representing the existence of a hit in high cache, have label H. No-sensitive-

upgrade rejects this program, since waymight be L before the assignment.

The second approach [38, 71] raises the label of variables modified in any

branch to the context label (the label of the branch condition). Returning to

the example in Figure 3.8(a), the label of x would become H because of the if-

statement at lines 6–8. This over-approximation can be too conservative as well.

For example, consider the secure code in Figure 3.8(c). Here, the label of x spec-

ifies an invariant: whenever x is 0 or 1 (i.e., Par(x)=L), nothing is leaked by the

value of x nor by the time at which its value changes. Hence, low’s transition

to 1 at line 8 is secure. However, the approach in [38] raises the label of low to

Par(x) after the if-else statement. This conservative label of lowmakes checking

at line 13 fail, since there is a flow from H to L when x is 2 or 3. Even a more

permissive approach rejects this secure code. When x is 2 or 3, the dynamic

monitor described in [71] tracks a set of variables that may be modified in an-

other branch (low in this case), and raises their label to the context label (H).

Hence, line 13 is still rejected.

We propose a more permissive mechanism that accepts the secure programs

in Figure 3.8(b) and 3.8(c). Our insight is that no-sensitive-upgrade is needed

for security, but only when the modified variable might not be assigned in an

alternative path. For example, in Figure 3.8(b), the variable way is modified in

both branch paths. Here, the label of way is checked for both branch paths on

53



the assignments to way (line 7 and 10), ensuring that the label of way must be

higher than the context label (H) at the merge point. In other words, the fact

that the label of way becomes H leaks no information. Hence, the no-sensitive-

upgrade check is unnecessary in this case. This insight is formally justified in

our soundness proof in Section 3.5.

This insight motivates using a definite-assignment analysis, which identifies

variables that must be assigned to in any possible execution. Definite as-

signment analysis is a common static program analysis useful for detecting

uninitialized variables. Since SecVerilog, like Verilog, has no aliasing, definite-

assignment analysis is simple; we omit the details.

We assume an analysis that returns DA(η), variables that must be assigned

to in any possible execution of the command at location η. The type system

propagates this information to branches, so that for an assignment to v, the no-

sensitive-upgrade check is avoided if v must be assigned to in other paths. For

example, the program in Figure 3.8(b) is well-typed because the variable way is

modified in both branches, avoiding the limitations of [8]. Moreover, the type

system still enables the remaining (necessary) no-sensitive-upgrade checks. So

there is no need to raise the label of a variable assigned to in an alternative

path. For example, there is no need to check the assignment to low at line 8 of

Figure 3.8(c) in a high context (the else branch), avoiding the limitations of [38,

71]. Soundness is preserved despite the extra permissiveness (see Section 3.4).
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3.3.4 Constraints and hypotheses

The design goal of SecVerilog is to achieve both soundness and precision, with

a low annotation burden. The key to precision is to make enough information

about the run-time values of variables available to the type system. For instance,

consider the assignment to hit at line 10 in our cache controller (Figure 3.2(b)).

To rule out an insecure flow from hit2 and hit3 (with label H) to hit (with

label LH(timingLabel)), the type system must ensure H v LH(timingLabel).

In other words, in any possible evaluation of the assignment, the label H

must be bounded by LH(timingLabel). In fact, this must be true because the

condition timingLabel=1 holds whenever the assignment happens (note that

timingLabel is a single bit). However, a naive type system without knowledge

of run-time values of timingLabel has to conservatively reject the program.

We use a modular design to separate the concerns of soundness and pre-

cision of our type system. In this design, the type system, along with a race-

condition analysis in Section 3.4.3, ensures soundness (i.e., observational deter-

minism in Section 3.4.2). The precision of the type system is improved further,

without harming soundness, by integrating two program analyses: a predicate

transformer analysis and the definite-assignment analysis already discussed.

Specifically, the type system generates proof obligations: partial orderings

that must hold on pairs of security labels, regardless of the run-time values of

those labels. To statically check a partial ordering on labels, we might require

the partial ordering to hold for any possible values of free variables:

τ1 v τ2 ⇔ ∀~n . τ1
{
~n/~v

}
v τ2

{
~n/~v

}
where ~v = FV(τ1)∪FV(τ2), and FV(τ) is the free variables in τ. However, this static

approximation is too conservative.
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To escape this conservatism, the type system uses a more precise approxima-

tion of the possible hardware states that can arrive at each program point. We

denote the facts that program analysis has derived about the hardware states as

predicates indexed by command identifiers η. The predicates P(•η) and P(η•)

respectively denote overapproximations of the hardware states that can exist

before and after the execution of the command at location η. Using even sim-

ple program analyses to generate these predicates considerably improves the

precision of information flow analysis without harming soundness. Returning

to our example, supposing that the program analysis can derive the predicate

P(•η) = (timingLabel = 1). The type system then only needs to know that

the flow from H to LH(timingLabel) is secure when timingLabel is 1. This

requirement can be expressed as an (easily verified) constraint:

timingLabel = 1⇒ H v LH(timingLabel)

3.3.5 Generating state predicates

Many techniques can be used to generate predicates describing the run-time

state, with a tradeoff between precision and complexity. For example, weakest

preconditions [23] could be used. However, shallow knowledge of run-time

state is enough for our type system to be effective. We use a simple abstract

interpretation to propagate predicates forward through each thread definition,

starting from the predicate true and overapproximating the postcondition at

each program point. The rules defining this analysis are given in Figure 3.9.

The algorithm generates predicates in linear time.

Expression results are coarsely approximated by tracking only constant val-
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bnca=n bvca = v beca = > (otherwise)

be1 bop e2cb=


be1cb bop be2cb if bop ∈ {∧,∨}
be1ca bop be2ca if bop ∈ {=,,}
> otherwise

buop ecb=

¬becb if uop ∈ {¬} , becb , >
> otherwise

{P} skipη {P}

{P} c1 {Q} {Q} c2 {R}

{P} c1; c2 {R}

Q = remove(v, P)

{P} v =η e {Q ∧ (v = beca)} {P} v⇐η e {P}

{P ∧ (becb)} c1 {Q} {P ∧ (¬becb)} c2 {R}

{P} ifη (e) c1 else c2 {Q ∩ R}

Figure 3.9: Predicate generation in Hoare logic.

ues and variables, and replacing more complex expressions with the “un-

known” value >. Operators beca and becb estimate the arithmetic and boolean

values of e, respectively. The result of binary operators is > if any operand is >.

The translation rules on commands are written as admissible weakenings of the

rules of Hoare Logic [35]. They specify how to compute a postcondition from a

precondition. To make reasoning practical, the rules do not derive the strongest

possible postcondition—but of course it is sound to weaken postconditions.

Consequently, postconditions and preconditions are represented as conjunc-

tions. The rule for assignment weakens the strongest-postcondition rule [25]

by discarding all conjuncts that mention the assigned variable, in remove(v, P).

For efficiency, the rule for ifweakens the obvious postcondition, Q∨R, by syn-

tactically intersecting the sets of conjuncts in Q and R.
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3.3.6 Discussion of typing rules

The most interesting rules in Figure 3.5 are (T-ASSIGN), (T-ASSIGN-REC) and

(T-IF). Proof obligations are generated for assignments v =η e and v⇐η e. These

proof obligations are discharged by an external solver; our implementation uses

Z3 [58]. The informal invariants the type system maintains are 1) the new label

of v is more restrictive than both the context label pc and label of e, 2) the no-

sensitive-upgrade check is enabled if there might not be an assignment to v in

an alternative branch. Rule (T-ASSIGN-REC) checks these invariants explicitly.

To check the invariant after update, the rule generates a fresh variable v′ to rep-

resent the new value of v. Though pc and the security level of e may also change

after the assignment, the rule checks against the old value since semantically,

information flows from the old state to variable v. The no-sensitive-upgrade

check is enforced with the condition v < M adding precision in the case where

the variable is assigned in every branch. The single check in Rule (T-ASSIGN)

is sufficient for these invariants since Γ(v) remains the same when there is no

self-dependency, and the check entails no-upgrade-check (because pc v τ t pc).

To improve precision of the type system, predicates on states are used only as

hypotheses in these proof obligations. Blocking and nonblocking assignments

use the same typing rule, differing only on when the assignment takes effect.

Rule (T-IF) propagates the set of variables that must be modified in both

branches (DA(η)) to c1 and c2. Taking the intersection ofM and DA(η) is needed

for nested if-statements.
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3.3.7 Scalability of type checking

Queries sent to Z3 are generated by typing rules (T-ASSIGN) and (T-ASSIGN-

REC) in Figure 3.5. Note that these queries are essentially predicates on a (finite)

lattice of security labels. In other words, only simple theories (e.g., no quan-

tifiers, no real numbers) of the full-fledged Z3 solver are needed by the type

system. These queries can be efficiently solved by Z3.

Moreover, the static analyses used by SecVerilog to enable precise type

checking (definite assignment analysis and predicate generation) are both mod-

ular. Race condition analysis may vary depending on the hardware design tool,

but is scalable for most tools.

For the complete MIPS CPU in Section 6.3.1, it takes a total of only two sec-

onds to generate all 1257 constraints by the type system, and solve them with

Z3, suggesting that type checking is likely to scale to larger hardware designs.

3.3.8 Well-formed typing environments

The use of dynamic labels also puts constraints on the typing environment Γ: Γ

is well-formed, denoted ` Γ, when 1) no variable depends on a more restrictive

variable, preventing secrets from flowing into a label, and 2) no dependencies

are chained, preventing cyclic dependencies. If FV(τ) is the free variables in τ,

this can be expressed formally as follows:

Definition 1 (Well-formedness) Γ is well-formed iff

∀v ∈ Vars . (∀v′ ∈ FV(Γ(v)) . Γ(v′) v Γ(v)) ∧ (∀v′ ∈ FV(Γ(v)) . v′ , v⇒ FV(Γ(v′)) = ∅)
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3.4 Soundness

Central to our approach is rigorous enforcement of a strong information security

property. We formalize this property in this section and show the full proofs in

Section 3.5.

3.4.1 Proving hardware properties from HDL code

Our goal is to prove that the actual hardware implementation controls infor-

mation flow. However, information flow is analyzed at the level of the HDL.

The argument that language-level reasoning is accurate has two steps. First, the

operational semantics of SecVerilog correspond directly to hardware simulation

at the RTL (Register Transfer Level) of abstraction. Second, for a synchronously

clocked design, these RTL simulations accurately reflect behavior of synthesized

hardware; in fact, functional verification of modern hardware relies mainly on

RTL simulation. Thus, HDL-level reasoning suffices to prove hardware-level

security properties.

3.4.2 Observational determinism

Our formal definition of information flow security is based on observational de-

terminism [70, 93], a generalization of noninterference [28] that provides a strong

end-to-end security guarantee even for nondeterministic systems. Observa-

tional determinism requires that in any two executions that receive the same low

(adversary-visible) input, the system’s low behavior must also be indistinguish-
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able regardless of both high inputs and (possibly adversarial) nondeterministic

choices.

Formalizing this property in the presence of dynamic labels presents some

challenges, since the security level of a variable may differ in two hardware

states. We start by defining a low-equivalence relation ≈` on hardware states σ,

indexed by a level ` ∈ L. Two states are low-equivalent at level ` if they cannot

be distinguished by an adversary able to observe information only at that level

or below.

We assume a typing environment Γ that maps variables to security labels.

Given state σ, the security level of a variable x is: T (x, σ) = `′, where `′ is the

value of label Γ(x) in σ. We formalize the low-equivalence relation as follows:

Definition 2 (Low equivalence at level `) Two states are low-equivalent at level `

iff any variable whose label is below ` in one state must have the same label and value

in the other:
∀σ1, σ2 . σ1 ≈` σ2 ⇐⇒ ∀x∈Vars . (T (x, σ1) v ` ⇔ T (x, σ2) v `)

∧ (T (x, σ1) v ` ⇒ σ1(x) = σ2(x))

It is straightforward to check that ≈` is an equivalence relation. Note that

we require the level of x to be bounded by ` in σ2 whenever T (x, σ1) v `. This

definition corresponds to our adversary model: all variables below ` are ob-

servable to the adversary. For example, consider the case Γ(x) = LH(x), σ1(x) = 0

and σ2(x) = 1. Since x has different labels in the two states, σ1 6≈L σ2. This is

necessary because the ability to make the observation itself leaks information.

An event is a pair (t, σ), meaning that state σ occurred at clock cycle t. As-

suming synchronous logic, events are produced only when a clock tick occurs
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(formalized as the semantic rule (S-CLOCK) in Section 3.5.1). A trace T is a

countably infinite sequence of events. We write 〈σ, Prog〉 ↪→ T if executing Prog

with initial states σ produces a trace T . Since the semantics is nondetermin-

istic, there can be multiple traces T such that 〈σ, Prog〉 ↪→ T . Two traces are

low-equivalent when the states in traces are clockwise low-equivalent.

We formalize observational determinism as follows:

Definition 3 (Observational Determinism) Program Prog obeys observational de-

terminism if for any low-equivalent states σ1 and σ2, execution from those states always

produces low-equivalent traces:

σ1 ≈L σ2 ∧ 〈σ1, Prog〉 ↪→ T1 ∧ 〈σ2, Prog〉 ↪→ T2 =⇒ T1 ≈L T2

Note that traces include the clock-cycle counter, so this definition is timing-

sensitive, controlling timing channels.

In principle, observational determinism restricts expressiveness, since the

scheduling of low assignments must be deterministic even when refinements

cannot leak secret information. In practice, it rules out few useful designs, since

nondeterministic behavior is caused by race conditions, which for hardware

design are usually bugs.

3.4.3 Soundness of SecVerilog

The type system in Section 3.3 along with a race-condition analysis ensures that

well-typed SecVerilog programs satisfy observational determinism.

62



Race freedom Today’s synchronous hardware design methods disallow race

conditions in order to produce deterministic systems. Existing synthesis tools

prevent races by ensuring that only one thread updates each variable once per

clock cycle. Intuitively, a program is race-free if the sequence of thread execu-

tions does not affect the synchronized state. This assumption is formalized as

the following property.

Definition 4 (Race Freedom) Program c is race free if for any state σ,

〈σ, c〉 ↪→ T1 ∧ 〈σ, c〉 ↪→ T2 =⇒ T1 = T2

Soundness proof We use the notation 〈c, σ〉 ⇓ σ′ for a big step: fully evaluat-

ing command c in state σ results in state σ′. To simplify notation, V(τ, σ) rep-

resents the security level resulting from evaluating type τ in σ. We sketch one

lemma and two theorems in this section and defer formal proofs to Section 3.5.

The first lemma states that any variable assigned to in a high context has a

high label in the final state.

Lemma 1 (Confinement) Let 〈σ, c〉 ⇓ σ′. If c can be typed under a given program

counter label pc and well-formed typing environment Γ, then for every variable v as-

signed in command c, we have

V(pc, σ) v T (v, σ′)

The next theorem states that running a command atomically to finish en-

forces noninterference.
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Theorem 3 (Single-command noninterference) If the states σ1, σ2 are low-

equivalent at the beginning of a clock cycle, running any well-typed command c in

σ1 and σ2 produces low-equivalent states at the beginning of next cycle as well:

(` Γ) ∧ (Γ ` c) ∧ (σ1 ≈L σ2) ∧ 〈σ1, c〉 ⇓ σ′1 ∧ 〈σ2, c〉 ⇓ σ′2 =⇒ σ′1 ≈L σ′2

Finally, any well-typed SecVerilog program obeys observational determin-

ism and is therefore secure:

Theorem 4 (Soundness of the type system) If a SecVerilog program is well-typed

under any well-formed typing environment, the program obeys observational determin-

ism:

(` Γ) ∧ (Γ ` Prog) ∧ (σ1 ≈L σ2) ∧ 〈σ1, Prog〉 ↪→ T1 ∧ 〈σ2, Prog〉 ↪→ T2

=⇒ T1 ≈L T2

3.5 Soundness proof

3.5.1 Semantics

We now present a formal small-step operational semantics of SecVerilog.

Though expressed more concisely, this semantics is largely motivated and justi-

fied by prior semantics for Verilog [30, 24].

We separate the semantics into command-level and thread-level semantics.

A command-level configuration consists of a global store σ (a map from vari-

ables to values), a command c to be executed (or stop), a set of active assign-
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S-SKIP

〈σ, skip, AS, NB〉 → 〈σ, stop, AS, NB〉

S-SEQ1
〈σ, c1, AS, NB〉 → 〈σ

′, stop, AS′, NB′〉

〈σ, c1; c2, AS, NB〉 → 〈σ
′, c2, AS

′, NB′〉

S-SEQ2
〈σ, c1, AS, NB〉 → 〈σ

′, c′1, AS
′, NB′〉

〈σ, c1; c2, AS, NB〉 → 〈σ
′, c′1; c2, AS

′, NB′〉

S-ASSIGN
〈e, σ〉 ⇓ n AS′ = AS ∪ {(v, n)}

〈σ, v =η e, AS, NB〉 → 〈σ[v 7→ n], stop, AS′, NB〉

S-NBASSIGN
〈e, σ〉 ⇓ n NB′ = NB ∪ {(v, n)}

〈σ, v⇐η e, AS, NB〉 → 〈σ, stop, AS, NB′〉

S-IF
〈e, σ〉 ⇓ v v , 0⇒ i = 1 v = 0⇒ i = 2

〈σ, if e then c1 else c2, AS, NB〉 → 〈σ, ci, AS, NB〉

Figure 3.10: Small-step operational semantics of commands.

S-ADV
〈σ, ci, ∅, NB〉 → 〈σ

′, c′i , AS, NB
′〉

~c′ = ~c
{
c′i/ci

}
∪ B �AS

〈t, σ,~c, B, NB〉 → 〈t, σ′, ~c′, B − B �AS, NB′〉

S-TRANS
NB , ∅ @i . 〈σ, ci, ∅, NB〉 → 〈σ

′, c′i , AS, NB
′〉

m′ = apply(m, NB)

〈t, σ,~c, B, NB〉 → 〈t, σ′, B �NB, B − B �NB, ∅〉

S-CLOCK
@i . 〈σ, ci, ∅, ∅〉 → 〈σ

′, c′i , AS, NB〉

〈t, σ,~c, B, ∅〉
(t,σ)
→ 〈t + 1, σ,S,C, ∅〉

Figure 3.11: Small-step operational semantics of threads.
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ments AS and a set of pending assignments NB. Commands merely accumulate

AS and NB; their use will be clear in the thread-level semantics.

The semantics of commands are presented in Figure 3.10. Most rules are self-

explanatory. The most interesting part is the difference between (S-ASSIGN)

and (S-NBASSIGN), where the latter captures the delayed effect of nonblocking

assignments.

The thread-level semantics in Figure 3.11 is also complicated by the need

to defer effects of nonblocking assignments until the end of the current clock

cycle. A thread-level configuration consists of the current clock cycle counter

(t), global store (σ), a set of active commands to be executed in parallel (~c), a set

of inactive combinational blocks (B) and a set of delayed updates accumulated

from the execution of commands (NB).

We explain these rules by imagining the run of sequential blocks S and com-

binational blocks C from initial state 〈0, σ, ∅, ∅, ∅〉 for some initial store σ. The

(S-CLOCK) rule applies when the system is quiescent: no thread can make any

progress and there are no pending nonblocking assignments. This applies to

the initial state. When a clock tick occurs (the clock counter increases), all se-

quential blocks are activated2 and all combinational blocks are waiting to be

activated. Rule (S-ADV) then applies as long as there are activated and unfin-

ished commands. In this step, an arbitrary thread ci is scheduled and executed

nondeterministically, using the rules in Figure 3.10. Combinational blocks that

are activated by the execution (B �AS) are moved to the active commands. All

previously active threads remain the same, except that the scheduled thread

advances by one step (~c
{
c′i/ci

}
).

2to overapproximate all schedules, sequential logic on falling edges are also activated.
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When all active threads finish, delayed assignments accumulated in NB take

effect by rule (S-TRANS). To do that, the store is updated by applying all

changes in NB in the order that assignments are added to NB (apply(σ, NB)). At

this point, the semantics allows all possible orders of applying assignments in

NB to model all possible schedulers. Meanwhile, combinational logic triggered

by these delayed assignments (B �NB) is activated. Notice that the semantics per-

mits race conditions. Therefore, different positions of an assignment in NB may

result in different store states. Events, pairs of (t, σ), are produced only by the

rule (S-CLOCK) since we focus on synchronous logic. We write 〈σ, Prog〉 ↪→ T

if 〈0, σ, ∅, ∅, ∅〉 ↪→ T .

3.5.2 Typing rules

The typing rules for expressions and threads are shown in Figure 3.12 and Fig-

ure 3.13 respectively. The rules for expressions are standard. To type-check a

combinational always block (rule (T-ALWAYS-COMB)), the join of all variables’

label in the sensitive list is used as the pc label since the execution of block c re-

veals the fact that some of these variables are modified. The must-be-modified

set of variables M is set to ∅ since combinational logic only executes when a

variable in the sensitive list changes. On the other hand, the rule (T-ALWAYS-

SEQ) uses ⊥ as the pc label since c is executed whenever a clock tick comes. We

say a program is well-typed under Γ (Γ ` Prog) when all blocks are well-typed.

M is initialized to Vars since sequential logic is always triggered by the clock.
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Γ ` n : ⊥
T-CONST

Γ(v) = τ

Γ ` v : τ
T-VAR

Γ ` e : τ1 Γ ` e′ : τ2

Γ ` e bop e′ : τ1 t τ2
T-BOP

Γ ` e : τ

Γ ` uop e : τ
T-UOP

Figure 3.12: Typing rules: expressions.

Γ ` vi : τi Γ,tτi, ∅ ` c

Γ ` always@(~v) c
T-ALWAYS-COMB

Γ,⊥,Vars ` c

Γ ` always@(posedge (negedge )clock) c
T-ALWAYS-SEQ

Figure 3.13: Typing rules: threads.

3.5.3 Proofs

To aid the proof, we first define a big-step semantics of SecVerilog, shown in

Figure 3.14 and 3.15. It is easy to check that this semantics defines one particular

run of all threads in SecVerilog, according to the small-step semantics. Showing

two runs starting from low-equivalent memory in this big-step semantics obeys

observational determinism is sufficient to prove for any possible scheduling in

the small-step semantics, due to the race-freedom assumption.

To simplify notation, we write 〈σ, c〉 instead of 〈σ, c, AS, NB〉 when AS and NB

are irrelevant. To aid the proof, in the big-step semantics, AS and NB are ex-

tended with a security level `, the concrete level of v after the execution. One
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S-SKIP

〈σ, skip, AS, NB〉 ⇓ 〈σ, AS, NB〉

S-SEQ

〈σ, c1, AS, NB〉 ⇓ 〈σ
′′, AS′′, NB′′〉 〈σ′′, c2, AS

′′, NB′′〉 ⇓ 〈σ′, AS′, NB′〉

〈σ, c1; c2, AS, NB〉 ⇓ 〈σ
′, AS′, NB′〉

S-ASSIGN
〈e, σ〉 ⇓ n σ′ = σ{v 7→ n} AS′ = AS ∪ {(v, n,T (v, σ′))}

〈σ, v =η e, AS, NB〉 ⇓ 〈σ′, AS′, NB〉

S-NBASSIGN
〈e, σ〉 ⇓ n NB′ = NB ∪ {(v, n,T (v, σ{v 7→ n}))}

〈σ, v⇐η e, AS, NB〉 ⇓ 〈σ, AS, NB′〉

S-IF1
〈e, σ〉 ⇓ 1 〈σ, c1, AS, NB〉 ⇓ 〈σ

′, AS′, NB′〉

〈σ, if e then c1 else c2, AS, NB〉 ⇓ 〈σ
′, AS′, NB′〉

S-IF2
〈e, σ〉 ⇓ 0 〈σ, c2, AS, NB〉 ⇓ 〈σ

′, AS′, NB′〉

〈σ, if e then c1 else c2, AS, NB〉 ⇓ 〈σ
′, AS′, NB′〉

Figure 3.14: Big-step operational semantics of commands.

S-ADV

~c , ∅
〈σ, c1, ∅, NB〉 ⇓ 〈σ

′, AS, NB′〉
~c′ = (~c − {c1}) ∪ B �AS

〈t, σ,~c, B, NB〉 → 〈t, σ′, ~c′, B − B �AS, NB′〉

S-TRANS
NB , ∅ ~c = ∅ σ′ = apply(σ, NB)

〈t, σ,~c, B, NB〉 → 〈t, σ′, B �NB, B − B �NB, ∅〉

S-CLOCK
~c = ∅

〈t, σ,~c, B, ∅〉
(t,σ)
→ 〈t + 1, σ,S,C, ∅〉

Figure 3.15: Big-step operational semantics of threads.
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exception is the rule (S-NBASSIGN), where ` is a hypothetical security level, as

if the delayed assignment occurs immediately as a blocking assignment. Notice

that this change does not affect the semantics: the purpose is solely to facilitate

the proof.

The projection up to level L (�L) of AS is the longest subsequence of AS such

that ∀(x, v, `) ∈ AS �L we have ` v L. We define NB �L in a similar way. Similar to

the definition of low-equivalence on memory, AS1 ≈L AS2 ⇔ AS1 �L= AS2 �L and

NB1 ≈L NB2 ⇔ NB2 �L= NB2 �L.

We first prove several useful lemmas, and then show the type system en-

forces noninterference.

Lemma 2 Let 〈σ, v =η e〉 ⇓ σ′ (or 〈σ, v⇐η e〉 ⇓ σ′). We have

∀u ∈ FV(Γ(v)) . (u , v⇒ σ(u) = σ′(u))

Proof. Trivial for ⇐ since σ′ = σ. For blocking assignments (=), since u ∈

FV(Γ(v)), we have FV(Γ(u)) = ∅ due to the well-formedness of Γ. Hence, by the

semantics of assignment and switch, u will not be zeroed. So σ(u) = σ′(u). �

Lemma 3 (Assignment) Let 〈σ, v =η e, ∅, NB〉 ⇓ 〈σ′, (v, n, `), NB〉. If ` Γ ∧ Γ, pc,M `

v =η e and Γ ` e : τ, we have the following properties:

1. if v < FV(Γ(v)), thenV(pc, σ) tV(τ, σ) v ` andV(pc, σ) v T (v, σ)

2. if v ∈ FV(Γ(v)), thenV(pc, σ) tV(τ, σ) v ` andV(pc, σ) v T (v, σ) if v <M

3. ∀v < FV(Γ(u)) ∧ u , v . σ(u) = σ′(u) ∧ T (u, σ) = T (u, σ′)

Proof. By induction on the typing rules.
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1. By the typing rule (T-ASSIGN), we have P(•η) → pc t τ v Γ(v). By the

correctness of P and Lemma 5,V(pc, σ) tV(τ, σ) = V(pc t τ, σ) v T (v, σ).

By the property of t,V(pc, σ) v T (v, σ).

Now consider any u ∈ FV(Γ(v)), we have u , v by assumption. By Lemma 2,

σ(u) = σ′(u). This is true for all u ∈ FV(Γ(v)), hence T (v, σ) = T (v, σ′).

Therefore,V(pc, σ)tV(τ, σ) v T (v, σ′) = `, andV(pc, σ)tV(τ, σ) v T (v, σ).

2. When v < M, we have P(•η) → pc v Γ(v) by the typing rule (T-ASSIGN-

REC). By the correctness of P and Lemma 5,V(pc, σ) v T (v, σ).

By the typing rule (T-ASSIGN-REC), we have P(•η), v′ = ~e� → τ v

Γ(v) {v′/v}. By the correctness of beca, beca = n where 〈e, σ〉 ⇓ n. We extend

σ to σe s.t. ∀u ∈ Vars . σe(u) = σ(u) ∧ σe(v′) = n. Easy to check σe satis-

fies the precondition. By Lemma 5, T (pc, σe) t T (τ, σe) = T (pc t τ, σe) v

σe(Γ(v) {v′/v}). Since σe agrees with σ for all variables except v′, which is

not in pc and τ, T (pc, σ) t T (τ, σ) v σe(Γ(v) {v′/v}).

Now consider any u ∈ FV(v) such that u , v. By Lemma 2, σ′(u) = σ(u) =

σe(u). By the semantics, σ′(v) = n = σe(v′). Hence, T (v, σ′) = σe(Γ(v) {v′/v}).

Therefore,V(pc, σ) tV(τ, σ) v T (v, σ′) = `.

3. σ(u) = σ′(u) is clear from the semantics of assignment. For any w ∈

FV(Γ(u)), we prove σ(w) = σ′(w) by contradiction.

Otherwise, we have w = v or v ∈ FV(Γ(w)) from the semantics of assign-

ment. In the first case, v ∈ FV(Γ(u)) which contradicts our assumption that

v < FV(Γ(u)).

In the second case, v ∈ FV(Γ(w)). The case w = v is already considered.

When w , v, by the well-formedness of Γ, we have FV(Γ(w)) = ∅ since

w ∈ FV(Γ(u)). This contradicts the fact that v ∈ FV(Γ(w))).
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Since σ(w) = σ′(w) for all w ∈ FV(Γ(u)), T (u, σ) = T (u, σ′).

�

Lemma 4 (NBAssignment) Let 〈σ, v ⇐η e, AS, ∅〉 ⇓ 〈σ′, AS, (v, n, `)〉. If ` Γ ∧

Γ, pc,M ` v⇐η e and Γ ` e : τ, we have the following properties:

1. if v < FV(Γ(v)), thenV(pc, σ) tV(τ, σ) v ` andV(pc, σ) v T (v, σ)

2. if v ∈ FV(Γ(v)), thenV(pc, σ) tV(τ, σ) v ` andV(pc, σ) v T (v, σ) if v <M

3. ∀v < FV(Γ(u)) ∧ u , v . σ(u) = σ′(u) ∧ T (u, σ) = T (u, σ′)

Proof. Similar to the proof for blocking assignments since they have the same

typing rules. The last claim holds trivially since σ = σ′. �

Lemma 5 The lifted partial order on labels (v) is conservative:

∀σ, τ1, τ2 . P(σ) ∧ P⇒ τ1 v τ2 =⇒ V(τ1, σ) v V(τ2, σ)

Proof. Clear from the definition of v. �

Lemma 6 Low expressions may only contain low variables:

Γ ` e : τ ∧V(τ, σ) v L =⇒ for all v in e T (v, σ) v L

Proof. By induction on the structure of expressions.

• n: trivial.
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• v: by the typing rule, Γ(v) = τ. Hence, T (v, σ) = V(Γ(v), σ) = V(τ, σ) v L.

• e1 bop e2: by the typing rule, Γ ` τ1∧Γ ` τ2∧τ = τ1tτ2. Hence,V(τ1tτ2, σ) =

V(τ1, σ) t V(τ2, σ) v L, which gives us V(τ1, σ) v L and V(τ2, σ) v L. By

the induction hypothesis, for all v in e1 or e2 (that is, in e), T (v, σ) v L.

• uop e: by the induction hypothesis.

�

Lemma 7 Low expressions must have the same concrete label in low-equivalent mem-

ories:

σ1 ≈L σ2 ∧ Γ ` e : τ ∧V(τ, σ1) v L =⇒ V(τ, σ1) = V(τ, σ2)

Proof. By induction on the structure of τ.

• `: V(`, σ2) = ` = V(`, σ1).

• f i: by the well-formedness of Γ, Γ(i) v f i. By Lemma 5, T (i, σ1) =

V(Γ(i), σ) v V( f i, σ1). By the transitivity of v, T (i, σ1) v L. Since σ1 ≈L σ2,

T (i, σ2) v L as well andV(i, σ1) = V(i, σ2). Hence,V( f i, σ1) = V( f i, σ2).

• τ1 t τ2: V(τ1, σ1) t V(τ2, σ1) = V(τ1 t τ2, σ1) v L. Hence, V(τ1, σ1) v

L ∧ V(τ2, σ1) v L. By the induction hypothesis, V(τ1, σ1) = V(τ1, σ2) and

V(τ2, σ1) = V(τ2, σ2). Therefore,V(τ1 t τ2, σ1) = V(τ1 t τ2, σ2).

• τ1u τ2: since no typing rule generates meet labels, there must be a variable

v such that Γ(v) = τ1 u τ2. By the well-formedness of Γ, ∀u ∈ FV(τ1 u τ2) . u v

τ1 u τ2. By Lemma 5, V(u, σ1) v V(τ1 u τ2, σ1) v L. By the induction

hypothesis, we haveV(u, σ1) = V(u, σ2). Since this is true for all variables

in τ1 u τ2,V(τ1 u τ2, σ1) = V(τ1 u τ2, σ2).
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�

Lemma 8 Low expressions must evaluate to the same value in low-equivalent memo-

ries:

σ1 ≈L σ2 ∧ Γ ` e : τ ∧V(τ, σ1) v L ∧ 〈e, σ1〉 ⇓ n1 ∧ 〈e, σ2〉 ⇓ n2

=⇒ V(τ, σ2) v L ∧ n1 = n2

Proof. We haveV(τ, σ2) = V(τ, σ1) v L by Lemma 7.

By Lemma 6, for all v in e, we have T (v, σ1) v L and T (v, σ2) v L. Since

σ1 ≈L σ2, σ1(v) = σ2(v). This is true for all v in e, hence n1 = n2. �

Lemma 9 (PC Subsumption) If a command can be typed under a given program

counter label pc, it can also be typed under a lower level pc′:

Γ, pc,M ` c ∧ pc′ v pc =⇒ Γ, pc′,M ` c

Proof. By induction on the typing rules.

• Case T-Seq, T-If: by the induction hypothesis.

• Case T-Assign: from the typing rule, we have P(•η)⇒ τ t pc v Γ(x) where

Γ ` e : τ. Since τ t pc′ v τ t pc, P(•η) ⇒ τ t pc′ v Γ(x). Hence, Γ, pc′,M `

x =η e.

• Case T-Assign-Rec: similar to T-Assign.

�
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Lemma 10 (Aliveness Subsumption) If a command can be typed under a given

alive setM, it can also be typed under a larger setM′:

Γ, pc,M ` c ∧M ⊆ M′ ⇒ Γ, pc,M′ ` c

Proof. By induction on the typing rules.

• Case T-Seq, T-If: by the induction hypothesis.

• Case T-Assign, T-Stop: trivial sinceM is not used in the promise.

• Case T-Assign-Rec: since M ⊆ M′, for all v < M′, we have v < M. Since

Γ, pc,M ` v =η e, we have P(•η)⇒ τ t pc v Γ(v). Hence, Γ, pc,M′ ` v =η e.

�

Proof of Lemma 1 [Confinement] If 〈σ, c〉 ⇓ σ′ and c can be typed under a

given program counter label pc and well-formed typing environment Γ, then

for every v assigned to in c, we have

V(pc, σ) v T (v, σ′) ∧V(pc, σ) v V(pc, σ′)

Proof. By induction on the structure of c.

• c1; c2: by the typing rule, we have Γ, pc,M ` ci where i ∈ {1, 2}. From

semantics of sequential statement, we have

〈σ, c1〉 ⇓ σ
′′ 〈σ′′, c2〉 ⇓ σ

′

〈σ, c1; c2〉 ⇓ σ
′
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By the induction hypothesis, for every u assigned to in c1, we have

V(pc, σ) v T (u, σ′′) and V(pc, σ) v V(pc, σ′′). Also, for every w assigned

to in c2, we haveV(pc, σ′′) v T (w, σ′) andV(pc, σ′′) v V(pc, σ′).

Therefore,V(pc, σ) v V(pc, σ′) is straightforward by the transitivity of v.

Hence, for every v assigned to in c1; c2. If v is assigned to in c2, we have

V(pc, σ) v V(pc, σ′′) v T (v, σ′). If v is assigned to in c1 but not in c2,

we have V(pc, σ) v T (v, σ′′). It must hold that T (v, σ′′) = T (v, σ) since

otherwise, there must be some v′ ∈ FV(Γ(v)) be assigned to in c2. However,

by the semantics of assignment, either v = v′ or v is assigned to in c2.

Contradiction.

• v =η e: By Lemma 3, we have V(pc, σ) t V(τ, σ) v T (v, σ′) no matter

v ∈ FV(Γ(v)) or not. Therefore,V(pc, σ) v T (v, σ′).

By the semantics of assignment, v ∈ FV(Γ(u)) may also be assigned to. By

the well-formedness of Γ, we have Γ(v) v Γ(u). By Lemma 5, T (v, σ′) v

T (u, σ′). Hence,V(pc, σ) v T (u, σ′) as well.

Now consider u ∈ FV(pc). If u is not assigned to, we have V(u, σ′) =

V(u, σ). Otherwise, V(pc, σ) v T (u, σ′) by the argument above. Due to

the well-formedness of Γ, Γ(u) v pc. By Lemma 5, T (u, σ) v V(pc, σ).

Hence,V(u, σ) v V(u, σ′). Putting together, for every u ∈ FV(pc),V(u, σ) v

V(u, σ′). Therefore,V(pc, σ) v V(pc, σ′).

• if e then c1 else c2: by the typing rule (T-IF), we have Γ ` e : τ and

Γ, pc t τ,M′ ` ci where i ∈ {1, 2} and M′ = M ∩ DA(η). By Lemma 9 and

Lemma 10, Γ, pc,M ` ci.

Consider the case when the if branch is taken. From semantics of if state-
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ment, we have

〈σ, e〉 ⇓ 1 〈σ, c1〉 ⇓ σ
′

〈σ, if e then c1 else c2〉 ⇓ σ
′

By the induction hypothesis, we have V(pc, σ) v T (v, σ′) for every v

assigned to in c1 , which is the same set of variables assigned to in

if e then c1 else c2.

V(pc, σ) v V(pc, σ′) can be derived directly from the induction hypothe-

sis.

The case when the else branch is taken is similar.

�

Lemma 11 (Definite Assignments) If 〈σ, c, AS, NB〉 ⇓ 〈σ′, AS′, NB′〉 and c can be

typed under someM returned by a definite-assignments analysis, pc and well-formed

Γ, then we have

∀(v, n, `) ∈ (AS′ − AS) ∪ (NB′ − NB) . v <M⇒V(pc, σ) v T (v, σ)

Proof. By induction on the structure of c.

• c1; c2: by the typing rule, both c1 and c2 can be typed under M. By the

induction hypothesis if (v, n, `) is generated in c1. Otherwise, by Lemma 1,

V(pc, σ) v V(pc, σ′′). Therefore,V(pc, σ) v ` by the induction hypothesis.

• v =η e: by Lemma 3.

• v⇐η e: by Lemma 4.
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• if e then c1 else c2: by the typing rule (T-IF), we have Γ ` e : τ and

Γ, pc t τ,M′ ` ci where i ∈ {1, 2} and M′ = M ∩ DA(η). By Lemma 9 and

Lemma 10, Γ, pc,M ` ci. Consider evaluation rules (S-IF1) and (S-IF2),

V(pc, σ) v ` by the induction hypothesis.

�

Proof of Theorem 3 [Single-command Noninterference]

` Γ ∧ Γ ` c ∧ σ1 ≈L σ2 ∧ 〈σ1, c〉 ⇓ σ′1 ∧ 〈σ2, c〉 ⇓ σ′2 =⇒ σ′1 ≈L σ′2

Proof. Induction on the structure of c.

• c1; c2: by the typing rule, we have Γ, pc,M ` ci where i ∈ {0, 1}. From

evaluation rule, we have

〈σ, c1, AS, NB〉 ⇓ 〈σ
′′, AS′′, NB′′〉 〈σ′′, c2, AS

′′, NB′′〉 ⇓ 〈σ′, AS′, NB′〉

〈σ, c1; c2, AS, NB〉 ⇓ 〈σ
′, AS′, NB′〉

From the induction hypothesis, σ′′1 ≈L σ
′′
2 ∧AS

′′
1 ≈L AS

′′
2 ∧NB

′′
1 ≈L NB

′′
2 . Using

the induction hypothesis again on c2, we get σ′1 ≈L σ
′
2∧AS

′
1 ≈L AS

′
2∧NB

′
1 ≈L

NB′2.

• v =η e: From the evaluation rules, we have for i ∈ {1, 2}

〈σi, e〉 ⇓ ni σ′i = switch(v, σi[v 7→ ni])

〈σi, v =η e, ASi, NBi〉 ⇓ 〈σ
′
i , AS

′
i , NB

′
i〉

Let ` e : τ and (v, n1, `1) is generated for AS1, (v, n2, `2) is generated for AS2.

First consider the case when `1 v L.
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We have V(τ, σ1) ≤ `1 v L by Lemma 3. By Lemma 28, n1 = n2. So σ′1(v) =

σ′2(v).

Next, we prove `2 v L. Consider any u ∈ FV(v) ∧ u , v. By the well-

formedness of Γ, Γ(u) v Γ(v). By Lemma 5, T (u, σ′1) v T (v, σ′1) v L. By

Lemma 2, we also have σ′1(u) = σ1(u). Hence, T (u, σ1) = T (u, σ′1) = ` v L.

By the assumption, σ1 ≈L σ2, so T (u, σ1) = T (u, σ2). By Lemma 2 again,

we have T (u, σ′2) = T (u, σ2) = T (u, σ1) = T (u, σ′2). This is true for all

u ∈ FV(v) ∧ u , v. Since we already shown σ′1(v) = σ′2(v), `2 = T (v, σ′2) =

T (v, σ′1) = `1 v L. Hence, we have AS′1 ≈L AS
′
2.

For variables v < FV(Γ(u)) ∧ u , v. There are two possibilities: T (u, σ1) =

T (u, σ2) v L or 6v L by Lemma 7. By Lemma 3, T (u, σ1) = T (u, σ′1) and

T (u, σ2) = T (u, σ′2). Hence, T (u, σ′1) = T (u, σ′2) v L or 6v L by Lemma 7. In

the first case, we have σ′1(u) = σ1(u) = σ2(u) = σ2(u)′ by Lemma 3. In the

second case, ≈L has no restriction on the values of u.

For variables v ∈ FV(Γ(u)) ∧ u , v, σ′1(u) = σ′2(u) = 0 by the semantics.

Now consider any w ∈ FV(Γ(u)). We observe that FV(Γ(w)) = ∅ by the well-

formedness of Γ. Hence, v < FV(Γ(w)) ∨ w = v. By the argument above, for

any w, T (w, σ′1) v L ⇔ T (w, σ′2) v L and T (w, σ′1) v L ⇒ σ′1(w) = σ′2(w).

If ∀w ∈ FV(Γ(u)) . T (w, σ′1) v L, we have σ′1(w) = σ′2(w). So T (u, σ′1) v

L ⇔ T (u, σ′2) v L because T (u, σ′1) = T (u, σ′2). Otherwise, there is some

w such that T (w, σ′1) 6v L and T (w, σ′2) 6v L. By the well-formedness of Γ,

Γ(w) v Γ(u). By Lemma 5, T (u, σ′1) 6v L and T (u, σ′2) 6v L as well. Still

T (u, σ′1) v L⇔ T (u, σ′2) v L holds.

Next, consider the case when `v 6v L. It must be true that T (v, σ′2) 6v L since

otherwise, we can derive `v v L as above.

For variables v ∈ FV(Γ(u))∧ u , v, Γ(v) v Γ(u) due to the well-formedness of
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Γ. Hence, T (u, σ′1) 6v L and T (u, σ′2) 6v L.

For variables v < FV(Γ(u)) ∧ u , v. There are two possibilities: T (u, σ1) =

T (u, σ2) v L or 6v L by Lemma 7. By Lemma 3, T (u, σ1) = T (u, σ′1) and

T (u, σ2) = T (u, σ′2). Hence, T (u, σ′1) = T (u, σ′2) v L or 6v L by Lemma 7. In

the first case, we have σ′1(u) = σ1(u) = σ2(u) = σ2(u)′ by Lemma 3. In the

second case, ≈L has no restriction on the values of u.

NB′1 ≈L NB
′
2 is trivial since NB1 = NB1 and NB2 = NB′2

• v⇐η e: σ′1 ≈L σ
′
2 is trivial since σ1 = σ′1 and σ2 = σ′2.

Let ` e : τ and (v, n1, `1) is generated for NB1, (v, n2, `2) is generated for NB2.

First consider the case when `1 v L.

We have V(τ, σ1) v `1 v L by Lemma 4. By Lemma 28, n1 = n2. So σ′1(v) =

σ′2(v). Similar to the proof for blocking assignments, we can prove `2 v L.

Hence, NB2 ≈L NB
′
2.

Next, consider the case when `1 6v L. It must be true that `2 6v L since

otherwise, we can derive `1 v L as above. Hence, NB′1 ≈L NB
′
2.

AS′1 ≈L AS
′
2 is trivial since AS1 = AS1 and AS2 = AS′2

• if e then c1 else c2: let Γ ` e : τ. Since σ1 ≈L σ2, there are two possibilities

due to Lemma 7: V(τ, σ1) = V(τ, σ2) v L or 6v L. First case is easy by the

induction hypothesis.

When 6v L, the interesting case is different branches are taken, say σ1 eval-

uates to σ′1 and generates AS′1 and NB′1; σ2 evaluates to σ′2 and generates AS′2

and NB′2.

By the typing rules, we have Γ, pc t τ,M′ ` ci, where i ∈ {1, 2}. We de-

note the triple of variables, values and levels in (AS′1 − AS1) ∪ (NB′1 − NB1)

as assign(c1) and that for second evaluation assign(c2) respectively. By
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Lemma 1, we have ∀(v1, n1, `1) ∈ assign(c1) . V(pc t τ, σ1) v `1 and

∀(v2, n2, `2) ∈ assign(c2) . V(pc t τ, σ2) v `2. Since V(τ, σ1) 6v L and

V(τ, σ2) 6v L, `1 6v L and `2 6v L. Hence we have AS′1 ≈L AS
′
2 and NB′1 ≈L NB

′
2.

Hence, ∀(v, n, `) ∈ assign(c1) ∩ assign(c2), we have T (v, σ′1) 6v L and

T (v, σ′2) 6v L. That is, σ′1 and σ′2 are low-equivalent on these variables.

∀(v, n, `) ∈ assign(c1) − assign(c2), it must be true that v < DA(η). From

the typing rules, Γ, pc t τ,M′ ` ci, where M′ = M ∩ DA(η) ⊆ DA(η). Since

v < DA(η), v <M′ as well. By Lemma 11,V(τ, σ1) v V(pc t τ, σ1) v T (v, σ1).

SinceV(τ, σ1) 6v L, T (v, σ1) 6v L as well. Since σ1 ≈L σ2, we have T (v, σ2) 6v

L by Lemma 7. Since v is not assigned in c2, σ′2(v) = σ2(v). Hence, T (v, σ′2) 6v

L. Therefore, σ′1 and σ′2 agrees on these variables as well. Similarly, we can

prove for all v in v ∈ assign(c2) − assign(c1).

∀v < assign(c1) ∪ assign(c2), v is not assigned in both c1 and c2. Hence,

σ′1(v) = σ1(v) ∧ σ′2(v) = σ2(v). Therefore, σ′1 and σ′2 must agree on v since

σ1 ≈L σ2.

�

Next, we prove several lemmas that are useful for the results on the thread-

level semantics.

Lemma 12 (High PC)

∀pc, σ, c .V(pc, σ) 6v L ∧ (` Γ ∧ Γ, pc, ∅ ` c) ∧ 〈σ, c, AS, NB〉 ⇓ 〈σ′, AS′, NB′〉 ⇒

σ ≈L σ
′ ∧ AS ≈L AS

′ ∧ NB ≈L NB
′
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Proof. For variables not assigned to in c, σ and σ′ are trivially low-equivalent

for them. Moreover, AS, AS′, NB, NB′ contain no events for these variables.

Now consider any v that is assigned to in c. By Lemma 1,V(pc, σ) v T (v, σ′).

Since V(pc, σ) 6v L, T (v, σ′) 6v L as well. For the label of v in σ, because the

typing rules for commands only narrows the set M, which is ∅, M must be ∅

when any assignment in c is typed. Hence, by Lemma 3, V(pc, σ) v T (v, σ).

Given V(pc, σ) 6v L, T (v, σ) 6v L for any v assigned to in c. Hence, σ and σ′ are

low-equivalent for variables assigned in c as well. Moreover, by Lemma 3 and 4,

V(pc, σ) v V(pc, σ) t V(τ, σ) v `, where ` is label of the generated assignment

events in AS′ − AS and NB′ − NB. Since T (pc, σ) 6v L, ` 6v L as well.

Therefore, σ ≈L σ
′ ∧ AS ≈L AS

′ ∧ NB ≈L NB
′. �

Lemma 13 (Stable event labels) If an assignment event (v, n, `) is produced in some

clock cycle with cycle counter t, then T (v, σ) = ` for all configurations 〈t′, σ,~c, B, NB〉

where t′ = t after the event is produced.

Proof. By the semantics, we know there exists some store σ0, when the event

is generated, such that T (v, σ0) = `. If T (v, σ0) , T (v, σ), it must be true that

at least a variable in FV(Γ(v)) is modified in between. However, by the rule for

dynamic erasure of contents (S-ASGN1), modifying any variable that v’s type

depends on resets the value of v. This contradicts the race-free assumption.

Hence, T (v, σ) = T (v, σ0) = `. �

Lemma 14 (Delayed assignment) If NB1 ≈L NB2 and σ1 ≈L σ2, then we have

apply(σ1, NB1) ≈L apply(σ2, NB2)
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Proof. By induction on the length of NB1 and NB2. Denote the first events NB1

and NB2 as (v1, n1, `1) and (v2, n2, `2) respectively.

When `1 v L and `2 v L, it must be true that v1 = v2 ∧ n1 = n2 by the def-

inition of low-equivalence on assignment events. Hence, apply(σ1, v1 = n1) ≈L

apply(σ2, v2 = n2). The result for the remaining events in NB1 and NB2 is true by

induction hypothesis.

When at least one event has a label not bounded by L. Without losing gen-

erality, assume `1 6v L. By Lemma 13, T (v1, σ1) = `1 6v L. We next show

T (v1, σ1{v1 7→ n1}) = `1 6v L as well.

Suppose the event (v1, n1, `1) is generated when the following rule is applied:

〈e, σ0〉 ⇓ n1 NB′ = NB ∪ {(v1, n1,T (v1, σ0{v1 7→ n1}))}

〈σ0, v1 ⇐η e, AS, NB〉 ⇓ 〈σ0, AS, NB
′〉

By the dynamic erasure of contents rule (S-ASGN1), ∀x ∈ FV(v1) . σ0(x) =

σ1(x). Hence, T (v1, σ1{v1 7→ n1}) = T (v1, σ0{v1 7→ n1}) = `1 6v L.

Therefore, apply(σ1, (v1, n1, `1)) ≈L σ1 ≈L σ2. The result for the remaining

events in NB1 and NB2 is true by the induction hypothesis.

�

Before proving our final soundness theorem, we first define a low projection

of command sequence. In the thread-level semantics, a sequence of commands

to be executed, ~c as the third element in the configuration, can either be part

of a sequential logic, or part of a combinational logic triggered by some event

(v, n, `) according to the semantics. We write ~c � L as the longest subsequence
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of ~c such that any command in ~c � L is not triggered by some event (v, n, `)

where ` 6v L. Two command sequences are low-equivalent (≈L) when they have

identical L-projections. Similarly, two sets of threads are low-equivalent when

their command sets are low-equivalent.

We define a low-equivalent relation thread-level configurations in the fol-

lowing way:

〈t1, σ1, ~c1, B1, NB1〉 ≈L 〈t2, σ2, ~c2, B2, NB2〉 ⇔

t1 = t2 ∧ σ1 ≈L σ2 ∧ ~c1 ≈L ~c2 ∧ B1 ≈L B2 ∧ NB1 ≈L NB2

Proof of Theorem 4 [Soundness]

` Γ ∧ Γ ` Prog⇒ σ1 ≈L σ2 ∧ 〈σ1, Prog〉 ↪→ T1 ∧ 〈σ2, Prog〉 ↪→ T2 =⇒ T1 ≈L T2

Proof. We prove a stronger result, a thread-level noninterference result for the

small-step semantics of threads. The desired result is a direct implication of this

stronger result. We proceed by induction on the number of steps in the thread-

level semantics.

Base case: given σ1, σ2 and Prog, the machine starts from the states

〈0, σ1,S,C, ∅〉 and 〈0, σ2,S,C, ∅〉, where S and C are the sequential and combi-

national threads of Prog. So the initial configurations are low-equivalent.

For the induction step, we induct on the number of steps in the thread-level

semantics. To simplify notation, we refer to the configurations before (after)

the semantic steps starting from σ1 as conf1 (conf′1), and that from σ2 as conf2

(conf′2).
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• (S-ADV): since ~c1 ≈L ~c2, either the same command is executed in conf1

and conf2, or at least one command executed is from combinational logic,

and it is triggered by some event (v, n, `) where ` 6v L by definition.

In the first case, by Theorem 3, σ′1 ≈L σ
′
2, AS′1 ≈L AS

′
2 and NB′1 ≈L NB

′
2. Since

AS′1 ≈L AS
′
2, B �AS may only differ for the ones triggered by (v, n, `) where

` 6v L. Hence, ~c′1 ≈L ~c′2, where ~c′1 and ~c′2 are the third dimension of conf′1

and conf′2. Therefore, conf′1 ≈L conf
′
2.

In the second case, we assume it is the command executed under σ1, say

c1, that is triggered by some assignment (v, n, `) where ` 6v L. By Lemma 13,

T (v, σ) = ` 6v L. By the typing rule (T-ALWAYS-COMB) and Lemma 9, c1

can be typed with pc label Γ(v) andM = ∅. Hence, by Lemma 26, we have

σ′1 ≈L σ1 ∧ NB
′
1 ≈L NB1 and ∅ ≈L AS1. Hence, commands in B �AS1 are all

triggered by (v, n, `) where ` 6v L. So, B1 − B1 �AS1≈L B1.

Therefore, conf′1 ≈L conf1 ≈L conf2.

• (S-TRANS): by Lemma 14, σ′1 ≈L σ
′
2. Since NB1 ≈L NB2, B �NB may only differ

for the ones triggered by (v, n, `) where ` 6v L. Hence, B1 �NB1≈L B2 �NB2 .

Therefore, conf′1 and conf′2.

• (S-CLOCK): trivial.

�
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3.6 Related work

Verifiable secure hardware Dynamic information flow tracking is applied at

the logic-gate level in GLIFT [84, 82, 62, 63, 83]. Dynamic checks in the ini-

tial GLIFT design [84] add high overheads in area, power, and performance.

Subsequent work [62, 63, 83] checks designs before fabrication, but enumerates

all possible states through gate-level simulation, an approach unlikely to scale

to large designs without rigid time-and-space multiplexing. SecVerilog allows

more flexible resource sharing and identifies security issues early in the design

process.

Sapper [48] also adds logic for tracking information flows, incurring run-

time overhead. Sapper cannot capture the dependencies between types and val-

ues needed for complex security policies. For example, it would not be possible

to use the label LH(timingLabel) for variable stall, as shown in Figure 3.2(b),

to capture the policy that the label of stallmust be L when timingLabel is 0.

Caisson [49] supports static analysis but with purely static security levels

that prevent fine-grained sharing of hardware resources across security levels.

E.g., write_enable, tag_in and stall in Figure 3.2 would require duplication

(per security level) since their labels cannot be determined at compile time. Du-

plicated resources must be controlled by extra encoders and decoders, adding

run-time overhead (Section 6.3).

Dynamic security labels Some prior type systems for information flow also

support limited forms of dynamic labels [59, 97, 85, 39, 81, 31, 52]. The type-

valued functions needed to express the communication of security levels at the
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hardware level are absent in most of these, and none permit dynamic labels

to depend on mutable variables, a feature key to allowing SecVerilog to verify

practical hardware designs. The modular design of the SecVerilog type system

makes it more amenable to future extension. Fine [79] and F∗ [80] can verify

stateful information flow policies, modeling state changes with affine types.

Affine types suffice for functional programming, but HDLs need SecVerilog’s

new feature of dependence on mutable variables.

Flow-sensitive information flow control Flow-sensitive information flow

control [71, 38, 8], where security labels may change during execution, encoun-

ters label channels similar to those observed in our type system. Our type sys-

tem controls these channels more permissively (Section 3.3.3) because it cap-

tures the dependency between types and values.

Dependent type systems Dependent types have been widely studied and

have been applied to practical programming languages (e.g., [92, 91, 59, 17, 7]).

Information flow adds new challenges, such as precise, sound handling of label

channels. RHTT [61] supports rich information flow policies with dependent

types, but has much more complex specifications and verification is not auto-

matic.
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CHAPTER 4

PREDICTIVE MITIGATION OF TIMING CHANNELS

Strictly disallowing all timing leakage can be done as sketched thus far, but

results in an impractically restrictive programming language, or computer sys-

tem, because execution time is not permitted to depend on confidential infor-

mation in any way.

To enable general computation with a strict bound on timing channel leak-

age while providing practical performance, this chapter introduces a general

framework called predictive mitigation. We start from a simple black-box system

model, and then generalize it to interactive systems.

4.1 Simple mitigation schemes

4.1.1 Black-Box system model

We begin with a simple model of a computing system that produces externally

observable events whose timing may introduce a timing channel. Because the

mitigation scheme works regardless of the internal details of computation, the

event
source

      mitigator

b
u

ff
e
r

source
events

delayed
events

Figure 4.1: System overview.
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computing system is treated simply as a black-box source of events. As de-

picted in Figure 4.1, the event source generates events that are delayed by the

mitigation mechanism so that their times of delivery convey less information.

Delaying events while preserving their order is the only behavior of the mitiga-

tor that we consider.

We ignore for now the attributes of events other than time. These attributes

include the actual content of an event and also the choice of communication

medium (e.g., different networks, or even visual displays or sound) over which

it can be conveyed. Both content and choice of medium can be viewed as storage

channels [47], which we assume are controlled by other means. Therefore we

assume that the only information requiring control is encoded in the times at

which events arrive from the source. This separate treatment of timing and

storage channels is justified in Section 4.2.5.

We assume the attacker observes delayed events and knows the design of

the mitigator though not its internal state. The goal of the attacker is to commu-

nicate information from inside the event source to the outside. Therefore the at-

tacker consists of two parts: an insider that controls the timing of source events,

and an external observer that attempts to learn sensitive information from this

timing channel. The content of the events may also be observable to the attacker,

which motivates our choice to not have the mitigator generate dummy events.

The observer may combine information from both the content and timing of

messages. In real world this corresponds to attacker-controlled software that

communicates seemingly benign messages on a storage channel, but transmits

sensitive information using timing.

As shown in the figure, it is useful to allow the mitigation system to buffer
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events in a queue so that the event source can run ahead, generating more events

without waiting for previous event to be delivered. We consider adding input

events to the system model in Section 4.2.6.

4.1.2 Leakage measures

We can bound the amount of information that leaks through the adversary’s

observations through a combinatorial analysis of the number of possible distinct

observations the adversary can make. An observation consists of a sequence of

times at which events are released by the mitigator. For a total number of n

possible distinct observations, the information leakage is at most log(n) bits.

Two other ways to measure information leakage have recently been popu-

lar. The information-theoretic measure of mutual information has a long history

of use; it is advocated, for example, by Denning [21], and has been used for

the estimation of covert channel capacity, including timing channel capacity, in

much prior work (e.g., [54, 55, 57]). Recently, min-entropy leakage has become

a popular measure, motivated by the observation that two systems with the

same leakage according to mutual information may have very different security

properties [77]. Fortunately, the combinatorial analysis used here is sufficiently

conservative that it bounds both the mutual information and the min-entropy

measures of leakage.

The information-theoretic (Shannon) entropy of a finite distribution X over

its n possible values is written as H(X). It achieves its maximal value of log(n)

bits when all n possible values have equal probability. Suppose that O is the

distribution over n possible timing observations by the adversary, and S is the
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distribution over possible secrets that the adversary wants to learn. The mu-

tual information between O and S , written I(O; S ), is equal to H(O) − H(O|S ),

whereH(O|S ) is the conditional entropy of O on S —how much entropy remains

in O once S is fixed. In our context, the conditional entropy describes how ef-

fectively the adversary encodes the secrets S into the observations O. But since

conditional entropy is always positive, the mutual information between O and

S is at mostH(O), or log(n).

Smith argues [77] that the min-entropy of a distribution is a better basis for

assessing the vulnerability introduced by quantitative leakage because it de-

scribes the chance that an adversary is able to guess the value of the secret in

one try. The min-entropy of a distribution is defined as H∞(O) = − log V(O)

where V(O) is the worst-case vulnerability of O to being guessed: the maximum

over the probabilities of all values in O. Let us write P(o|s) for the probability of

observation o given secrets s. Köpf and Smith [46] show that the min-entropy

channel capacity from S to O is equal to log
∑

o∈O maxs∈S P(o|s). This capacity is

maximized when P(o|s) = 1 at all o, in which case it is equal to log(n). Therefore

log(n) is a conservative bound on this measure of leakage as well.

4.1.3 Quantizing time

A very simple mitigation scheme that has been explored in prior work [29, 27,

13] permits events to leave the mitigator only at scheduled times that are mul-

tiples of a particular time quantum q. We refer to the times when events are

permitted as slots, which in this case occur at times q, 2q, etc. Without loss of

generality, let us use q = 1 to analyze this scheme.
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Suppose we allow the system to run for time T , and during that time there

is an event ready to be delivered in every slot except that at some point the

event source may stop producing events (effectively, it terminates). The total

number of events delivered must be an integer between 0 and T . Because all

the slots filled with events precede all the empty slots, the external observer can

make at most T + 1 possible distinct observations. According to information

theory, the maximum amount of information that can be transmitted by one

of T + 1 possible observations is achieved when the possible observations are

uniformly distributed. This value, in bits, is the log base 2 of the number of

possible observations, or log(T + 1). For q , 1, it is log(T+1
q ).

4.1.4 A basic mitigation scheme: fast doubling

An asymptotically logarithmic bound on leakage sounds appealing, but such

leakage bounded is achieved only for an event source that fills every slot with

an event. In the general case, maximum leakage from the simple quantizing

approach is one bit per quantum, leading to an unpleasant tradeoff between

security and performance.

However, a sublinear (in fact, polylogarithmic) bound is achievable even if

the event source misses some slots. Perhaps the simplest way to achieve this is

to double the quantum q every time a slot is missed, which we call fast doubling.

Doubling the quantum ensures that in time T there can be at most log(T + 1)

misses. Effectively, the event source is penalized for irregular behavior. For the

penalty will be effective, the multiplicative factor need not be 2; the number of

misses will grow logarithmically for any multiplicative factor greater than 1.
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We can represent all behaviors of the resulting system as strings constructed

from the symbols e (for an event that fills a slot) and − (for a missed slot). A

given string generated by the regular expression (e|−)∗ precisely determines the

times at which events emerge from the mitigator, so the distinct strings corre-

spond exactly to the possible external timing observations. Therefore, the maxi-

mum of the expected number of bits of information transmitted by time T is the

log base 2 of the number of strings that can be observed within time T . These

strings contain at most log(T + 1) occurrences of −. Between and around these

occurrences are consecutive sequences of between 0 and T filled slots (e’s), as

suggested by this figure:

eeee!eee!ee!eeeee..eee!eeee

at most log(T+1) occurrences of  !

0..T occurrences of  e  per epoch
q=1 q=2 ...

Each sequence of e’s falls into a different epoch with its own characteris-

tic quantum. There are at most log(T + 1) + 1 epochs, so the number of pos-

sible strings observable within time T is at most (T + 1)log(T+1)+1. The maxi-

mum information content of the timing channel is the log of this number, or

log(T + 1) · (log(T + 1) + 1) = log2(T + 1) + log(T + 1). This is bounded above

by (1 + ε) log2 T where ε can be made arbitrarily small for sufficiently large T .

With the more careful combinatorial analysis given next, we can show leak-

age is bounded by O(log T (log T − log log T )). In either case, timing leakage is

O(log2(T )), which is a slowly growing function of time.

A more precise bound on leakage of the basic scheme This derivation is

based on the fact that each possible string can be determined by the placement
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of the misses, that is, the locations of “–” in the string. For m misses in time T ,

there are at most
(

T
m

)
different strings. So

All possible strings ≤
log T∑
m=0

(
T
m

)
≤ (log T + 1)

(
T

log T

)
≤ (log T + 1)

T log T

(log T )!

Thus, the leakage can be no more than log(log T + 1) + log2 T − log((log T )!), and

by Stirling’s approximation,

log((log T )!) = log T log log T − log T + o(log T )

So the whole leakage term is O(log T (log T − log log T ))).

4.1.5 Slow-doubling mitigation

Doubling on every miss performs poorly if the event source is quiescent for long

periods. The quantum-doubling scheme can be refined further to accommodate

quiescent periods, by doubling the quantum only when a missed slot follows a

filled slot (that is, a − after an e). With this mitigator, no performance penalty is

suffered by an event source that is initially quiescent, but then generates all its

output in a rapid series of events.

In this case we have epochs consisting of sequences like “−−−−” and “eeee”.

There can be at most 2 log(T + 1) epochs, and there can be at most T strings per

epoch, so the information content of the channel is no more than 2 log(T ) log(T +

1) ≤ (2 + ε) log2 T . Thus, slow doubling gives much more flexibility without

changing asymptotic information leakage.

In the next section we see that both the fast and slow doubling schemes are
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instances of a more general framework for epoch-based timing mitigation, en-

abling further important refinements such as adaptively reducing the quantum.

4.2 General epoch-based mitigation

The common feature of the mitigation schemes introduced thus far is that the

mitigator divides time into epochs. During each epoch the mitigator operates

according to a fixed schedule that predicts the future behavior of the event

source. As long as the schedule predicts behavior accurately, the event source

leaks no timing information except for the length of the epoch. However, a mis-

prediction by the mitigator causes it to construct a new schedule; because this

choice is in general observable by the adversary, some information leaks.

We can describe the mitigation schemes seen so far in these terms. For exam-

ple, the slow doubling scheme has “e” epochs in which the mitigator predicts

there will be an event ready for slots spaced at the current quantum q. It also

has “−” epochs in which the mitigator predicts there will be no event ready for

slots spaced at the quantum q. On a mispredicted slot (a miss) during an “e”

epoch, the mitigator switches to a “−” epoch with a doubled quantum.

Let us now explore this framework more formally, to enable generating and

analyzing a variety of mitigation schemes that meet specified bounds on timing

channel transmission.
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4.2.1 Mitigation

The mitigator is oblivious to the content of the events and does not alter their

content. From the mitigator’s point of view, source events and delayed events

are considered abstractly as timestamps at which the events are received and

delivered respectively.

Let source events be denoted by a monotonic sequence s1 . . . sn, where 0 ≤ s1

and each si specifies when the i-th event is received by the mitigator. We denote

the mitigator by M. Given a sequence of source events s1 . . . sn, let M(s1 . . . sn) be

the sequence of possibly delayed timestamps d1 . . . dm produced by the mitiga-

tor. The sequence is again monotonically increasing; also, we have m ≤ n and

si ≤ di. The last inequality means the mitigator cannot produce events before

they are received from the source.

A mitigation scheme is online if the delayed sequence does not depend on

timing or contents of future source messages. In this dissertation we are only

interested in online mitigation schemes.

Timing leakage Because timing of the events may depend on the sensitive

data at the source, any variation in observed event timing creates an information

channel. The larger the number of different observable variations, the more

information can be transmitted over this channel. When events are mitigated,

the number of possible sequences of events that a mitigator M can deliver by

time T is

M(T ) = |{d1 . . . dm = M(s1 . . . sn) | dm ≤ T }|
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The amount of information that can be leaked by such mitigator, when the run-

ning time is bounded by T , is a logarithm of M(T ).

Definition 5 (Leakage of the mitigator) Given a mitigator M, the leakage of the

mitigator M is log M(T ).

This definition implicitly assumes that the mitigator can control the timing

of events with perfect precision, but also credits the adversarial observer with

perfect measurement abilities. More realistically, we can assume that the miti-

gator can control timing to at least the measurement precision of the observer,

in which case the above formula still bounds leakage.

Bounding leakage We specify the security requirements for timing leakage as

a bound, expressed as a function on running time T .

Definition 6 (Bounding mitigator leakage) Given a mitigator M, and a leakage

bound B(T ), we say that the leakage of M is bounded by B(T ) if for all T , we have

log M(T ) ≤ B(T ).

4.2.2 Epoch-based mitigation

In this dissertation we focus on a specific class of mitigators that we dub epoch-

based mitigators. An epoch represents a period of time during which the behavior

of the mitigator meets the epoch schedule.

An epoch schedule is a sequence of epoch predictions, one for each slot.

Epoch predictions can be either positive or negative. A positive prediction, de-
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noted by [t]+, means the mitigator expects to be able to deliver an event at time

t. A negative prediction, denoted by [t]−, says that no source events are expected

to be available for delivery at time t. We may simply write t when the sign of

the prediction is not important for the context. A prediction is an element of

R × {+,−}, because times t are real-valued. An epoch schedule S is therefore a

function from slot indices (from the natural numbers N) to predictions.

Definition 7 (Epoch schedule) An epoch schedule is a function S : N→ R × {+,−},

where S (n) is a prediction for the n-th slot in the epoch.

We say that a positive prediction S (n) = [t]+ holds or is valid if at time t,

the mitigator can deliver an event; in this case, this is also the n-th event in

the epoch. A negative prediction S (n) = [t]− holds when no source events are

available at time t.

Conversely, failing a positive prediction [t]+ means that there are no events

(available or buffered) to be delivered at time t. Failing a negative prediction

[t]− means that there are buffered source events that have not yet been delivered

by time t.

When a mitigator prediction S (n) fails at the n-th slot, we observe an epoch

transition. In addition to prediction failure, an epoch transition may be caused

by mitigator adjustments. For example, the mitigator might adjust for a faster

rate of source events, or might improve performance by flushing or partially

flushing the buffer queue. We can now formally define an epoch:

Definition 8 (Epoch) An epoch is a triple (τ, τ′, S ) where timestamps τ and τ′ corre-

spond to the beginning and the end of the epoch, and S is the epoch schedule.
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When the number of the epoch is important, we write S N for the schedule in

epoch N.

Example Revisiting the basic doubling scheme from Section 4.1.4, we see that

the prediction for every N-th epoch that starts at time t is given by the function

S N(i) = [t + i · 2N]+.

For the slow doubling scheme of Section 4.1.5, every odd prediction is

positive—it expects the events to be delivered at regular intervals, and every

even prediction is negative—no events are expected from the source. These

predictions can be expressed as follows:

S N(i) =


[t + i · 2k]+ if N = 2k − 1

[t + i · 2k]− if N = 2k

On the form of schedules Most of the examples of schedules in this disserta-

tion are constant-quantum functions, where prediction times depend linearly on

the epoch sequence number of the events. However, when timing pattern of the

source events is well-understood, a finer prediction, described by an arbitrary

function, could yield better performance. From the standpoint of security, the

form of the schedule is irrelevant as long as the mitigator satisfies the leakage

bound discussed in Section 4.2.4.

4.2.3 Leakage of epoch-based mitigators

Epoch-based design allows us to reduce the analysis of epoch-based mitigation

to the analysis of individual epochs and of the transitions between them.
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Variations within an epoch Because prediction times during an epoch are de-

terministic, the only source of timing variation within an epoch is the number

of valid predictions. The latter is the key element in bounding the number of

possible event sequences within an epoch. The number of valid predictions is

bounded by the duration of the epoch, which itself is bounded by the current

running time T + 1. Therefore the current running time T + 1 is a bound on the

number of variations within each epoch.

Transition variations Epoch transitions may depend on source events too.

Therefore, one needs to take into account the number of possible schedules for

the next epoch. We denote by ΛN the number of possible schedules when tran-

sitioning from epoch N to epoch N + 1.

The exact number of transition variations depends on the particular mitiga-

tion scheme. In the two schemes described thus far, the transition into a new

epoch occurs only when a miss occurs, and only one new schedule is possible;

hence, for all epochs N, we have ΛN = 1.

An example mitigator for which ΛN is greater than 1 is an adaptive scheme that

uses the average rate of the previously received source events to choose the new

schedule. In this case, ΛN can be bounded by the current running time T + 1.

Section 4.3.1 describes the convergence experiment where the number of

possible predictions for a given epoch is chosen from a fixed table and is ex-

actly two.

Bound on the number of total variations Consider an epoch-based mitigator

at time T that has reached at most N epochs. Assume that within each epoch
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the number of variations is at most T + 1, and the number of possible transition

variations into epoch i is Λi, where i ranges from 1 to N. We include ΛN to ac-

commodate the transition from epoch N to epoch N + 1 at time T . We can bound

the number of possible variations of such a mitigator by a function M(T,N):

M(T,N) = (T + 1)N · Λ1 · Λ2 · . . . · ΛN

The leakage of this mitigator is bounded by the logarithm

log M(T,N) = N log(T + 1) +

N∑
j=1

log Λ j (4.1)

We refer to the term log(T + 1) as epoch leakage and to the terms log Λi as

transition leakage.

Basic schemes revisited Revisiting the simple mitigators from Section 4.1.1,

we see that because ΛN = 1, the leakage of such mitigators is bounded by

N log(T + 1).

4.2.4 Bounding leakage

Using Definition 6 and Equation 4.1 we may derive a leakage bound for epoch-

based mitigation.

N log(T + 1) +

N∑
j=1

log Λ j ≤ B(T ) (4.2)

Furthermore, if we consider mitigators where the transition variations are

fixed—that is, there is λmax ≥ log Λ j for all j—then the leakage bound criterion

for such mitigators can be expressed as a bound on the number of epochs.

N ≤
B(T )

log(T + 1) + λmax
(4.3)
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Define the deferral point DN for epoch N to be the solution to the equation N =

B(T )/(log(T + 1) + λmax). The importance of DN is that until DN there must be at

most N epochs; that is, the start of the N +1-th epoch has to be deferred until DN .

Because the N + 1-th epoch starts with the misprediction at the N-th epoch, this

leads us to the only security constraint for the choice of schedule S N . Namely,

for all events i, we should have ∀ N ≥ 1 . S N(i) ≥ DN , and consequently,

∀N ≥ 1 . S N(1) ≥ DN (4.4)

Example Consider the basic scheme from Section 4.1.4, which has prediction

function S N(i) = [t + i · 2N−1]+. For this scheme, we have λmax = 0. Consider

bound log2(T + 1), which leads to deferral points DN for N-th epoch DN = 2N − 1.

The leakage bound requires S N(1) ≥ DN . Since in the basic scheme, the N-th

epoch starts at 0 for N = 1, and at least at time
∑N−2

i=0 2i for all N ≥ 2, therefore the

leakage bound follows from S N(1) = 0 + 20 = 1 ≥ 21 − 1 = DN for N = 1, and

S N(1) ≥
∑N−2

i=0 2i + 2N−1 = 2N−1 − 1 + 2N−1 = 2N − 1 = DN for all N ≥ 2.

Figure 4.2 shows the deferral points for the basic scheme from Section 4.1.1.

Here the bound is B(T ) = log2 T , λmax = 0, and the deferral points correspond to

the intersections of the curves N log T with the bound curve.

Adaptive mitigators In the absence of a misprediction for a sufficiently long

time, the difference B(T ) − N log(T + 1) −
∑N

j=1 log Λ j may allow an extra epoch

transition. An epoch transition is adaptive when it is initiated by the mitigator

rather than by a misprediction. Equations 4.2 and 4.3 are useful as design crite-

ria for adaptive transitions. In particular, an adaptive transition is secure when

B(T ) − N log(T + 1) −
N∑

j=1

log Λ j ≥ log(T + 1) + log ΛN+1

Here ΛN+1 is the number of possible new predictions for epoch number N + 1.
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Figure 4.2: Target bound, capacity approximation for individual epochs,
and deferral points.

One use for adaptive transitions is to help reduce the size of the event buffer.

Past deferral points, the mitigator can choose to release more than one event

from the buffer. The number of choices for how many events can be flushed

from the buffer then contribute to ΛN for the mitigation scheme at that defer-

ral point. Prudent mitigator design probably avoids completely emptying the

buffer, since an empty buffer may risk an unpredicted miss.

A second example of using adaptive transitions to improve performance is

given in Section 4.3.1.

On the choice of bound functions Because the epoch-based mitigation

scheme is parametric on the choice of the bound function B(T ), we briefly dis-

cuss possible choices for practical bounds.
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Recall that we assume the number of processed events in an epoch may

leak information. Under this assumption, the most draconian bound possible

is log T . Enforcing such a bound effectively restricts output to a single epoch for

the entire run of the program. In case of a misprediction, all subsequent events

would have to be delayed until the end of the program.

Our simple and adaptive mitigators use the polylogarithmic bound log2 T ,

which appears to make a reasonable trade-off between performance and secu-

rity. However, as this section illustrates, even with this more relaxed bound, the

distance between deferral bounds increases exponentially.

A third choice corresponds to a larger, more permissive, class of bounds such

as kT + logn T , for n ≥ 2 and small (or zero) k. We have not explored such bounds

in this dissertation, though it is possible that a linear, albeit slowly growing,

bound may be useful in bringing deferral points closer in practice.

4.2.5 Mixing storage and timing

A variety of information flow control techniques have been developed for con-

trolling leakage through storage channels. We can now show that these tech-

niques combine well with timing mitigation.

We use the information theoretic measure of mutual information, to measure

leakage. Given random variables A and B, their mutual information I(A; B) is

the information that A conveys about B, and vice versa. It is defined as I(A; B) =

H(A)+H(B)−H(A, B), where the functionH gives the entropy of a distribution.

Note that the entropy of a variable with n possible values is maximized when

all n outcomes are equally probable, in which case it is log n bits.
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Assume X is a random variable that corresponds to secret input, Y is a ran-

dom variable that corresponds to the storage channel, and Z is a random vari-

able that corresponds to the timing channel. The amount of information that

the attacker gains by observing both storage and timing channel is the mutual

information between the secret and the joint distribution of Y and Z: that is,

I(X; Y,Z). Similarly, the amount of information that the attacker gains by ob-

serving just the storage channel is I(X; Y).

The following easy theorem states that the amount of information leaked by

the combination of timing and storage channels is bounded by the information

leaked by the storage channel, plus the maximum information content of the

timing channel.

Theorem 5 (Separation of storage channel)

I(X; Y,Z) ≤ H(Z) + I(X; Y)

Proof. We prove the theorem by using the definition of I(X; Y) to show that the

expressionH(Z) + I(X; Y) − I(X; Y,Z) is nonnegative.

H(Z) + I(X; Y) − I(X; Y,Z)

= H(Z) +H(X) +H(Y) −H(X,Y)

−H(X) −H(Y,Z) +H(X,Y,Z)

= H(Z) +H(Y) −H(X,Y) −H(Y,Z) +H(X,Y,Z)

≥ H(Z) +H(Y) −H(X,Y) −H(Y) −H(Z) +H(X,Y,Z)

= H(X,Y,Z) −H(X,Y) ≥ 0

�
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A symmetric theorem can be stated for the timing channel, but seems less

useful because of the difficulty of estimating I(X; Z). A direct corollary to this

theorem is that if the system enforces noninterference [28, 54] on the storage

channel, the total secret information leaked from the system is bounded by the

entropy of the timing channel.

4.2.6 Input

Event sources often communicate with the external world by accepting input,

and block waiting for input when no input is available. Let us assume that the

timing of input does not contain sensitive information, or at least that it is the re-

sponsibility of the input provider to control the input timing channel. The time

spent by a computing system waiting for input clearly does not communicate

anything about its internal state provider. Therefore, the system comprising the

event source and mitigator should not be penalized for time spent blocked wait-

ing for input. For the purposes of mitigation, the clock controlling the schedul-

ing of slots can be stopped while the event course is blocked waiting for input.

This refinement is particularly helpful when the event source is a service whose

service time does not fluctuate much.

4.2.7 Leakage with beliefs about execution time

Finally, we consider a particular case of server applications that handle client re-

quests. In this special case, a tighter, albeit probabilistic, bound on leakage can

be established than is possible with the general framework presented thus far.
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For many real applications that handle sequential client requests, such as

RSA encryption and simple web services (see Section 4.3.4), execution times fall

within a narrow range, regardless of the values of secrets. We show that un-

der the assumption that the distribution of execution times is approximately as

expected, expected mitigated leakage can be given a tighter bound than log2 T .

Suppose that with probability at least p, the execution time for a single re-

quest is at most Tbig. That is, the adversarial insider controls execution time

but cannot make the probability of exceeding Tbig greater than 1 − p. For some

computations, such as blinded cryptographic operations on sufficiently iso-

lated computers, p can be gained by sampling with randomly generated inputs.

Given Tbig, a corresponding number of epochs Nbig can be calculated, giving the

number of transitions that must occur before executions of length Tbig are pos-

sible. For instance, in the basic doubling scheme, Nbig = dlog(Tbig)e. Under these

assumptions, expected leakage L(Nbig,T ) is derived using conditional entropy:

L(Nbig,T ) = p · log M(T,Nbig) + (1 − p) ·M(T,N)

where, as before, M(T,Nbig) is the bound on the number of possible variations

of a mitigator when N is at most Nbig.
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Example For the basic doubling scheme, given Tbig, we know that Nbig ≤

dlog(Tbig + 1)e. Using the formula for M(T,N), we can derive

L(Nbig,T ) = p · log M(T,Nbig) + (1 − p) ·M(T,N)

= p · (Nbig · log(T + 1) −
Nbig(Nbig − 1)

2
) + (1 − p) · (N · log(T + 1) −

N(N − 1)
2

)

≤ p · (Nbig · log(T + 1) −
Nbig(Nbig − 1)

2
)

+ (1 − p) · (log2(T + 1) −
log(T + 1)(log(T + 1) − 1)

2
)

= p · (Nbig · log(T + 1) −
Nbig(Nbig − 1)

2
) +

1 − p
2
· (log2(T + 1) + log(T + 1))

This leakage bound is tighter than (log2 T ), although they have the same

asymptotic complexity of O(log2 T ).

4.3 Adaptive mitigation results

Some simple experiments with predictive mitigation help us understand how

the mitigator can converge on the right separation between slots.

4.3.1 Convergence

Buffering source events helps prevent slowing down the event source and ab-

sorbs temporary variations in event rate. However, it is undesirable for the

buffer to grow too large, because it increases latency. If the buffer fills, the event

source must be paused to allow the buffer to drain. We would like to avoid
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significantly pausing well-behaved applications, because pauses could disrupt

their functionality.

In this part, we focus on a simplified event source, and propose one way to

add adaptive transitions to the basic mitigation mechanism of Section 4.1.4. This

particular design typically allows the quantum converge to the event rate, while

still keeping the information leakage lower than the desired bound. Empirical

results demonstrate the convergence of the mitigator in face of many different

event rates. Although currently our solution is restricted to certain input event

patterns, the experiment suggests that adaptive, epoch-based mitigation may

be practical for different applications.

Suppose we use the simple mitigation mechanism with constant-quantum

positive predictions for every epoch. Consider an event source that generates

events at a constant rate, say 1 event per every 8 seconds; call the interval be-

tween events the event interval. When the quantum of the mitigation system is

higher than the event interval—say, 10 seconds—the mitigator begins accumu-

lating events in its buffer queue. Eventually, an increase in the buffer size may

increase the latency and reduce the throughput of the mitigator. On the other

hand, if the quantum is smaller than the event rate—say, 6 seconds—then the

buffer quickly drains, causing unwanted epoch transitions.

Therefore, designing an adaptive mitigation scheme that can converge

roughly to the event interval of the source system is important for reducing

performance overhead for practical applications.
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4.3.2 Assumptions

We now show that adaptive mitigation can work for relatively well-behaved

event source. To capture the behavior of an event source that generates events

at some average rate but with local variation around that rate, we work with

an event source that generates one event at a random point during each fixed

interval. It is easy to see the optimal prediction for an event source of this type is

the one whose constant quantum matches the average interval between events.

The basic intuition behind the construction of the adaptive mitigation mech-

anism is that the size of the buffer indicates how the quantum should be ad-

justed. A quantum that is too large causes the buffer to grow large; a quantum

that is too small causes the buffer to empty. Both of these conditions can be

taken into account by the mitigator.

4.3.3 An adaptive mitigation heuristic

Following the idea of adaptive mitigation from Section 4.2.4, we heuristically

extend the basic mitigator of Section 4.1.1 to adjust future schedules based the

buffer size. There is no reason to believe that the particular mechanism is opti-

mal; we describe this mechanism as a way of illustrating what is possible with

adaptive mitigation.

In this mitigator, an adaptive epoch transition happens when both of the

following conditions hold:

1. the size of the buffer queue is increasing, and

2. the mitigator would meet the leakage bound even if it transitioned into a

new epoch.
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Note that condition (1) here is specific to the design of the current mitiga-

tor, while condition (2) is a necessary condition for all adaptive transitions, as

described in Section 4.2.4.

The adaptive mitigation heuristic works as follows. It doubles the quantum

on each miss transition, which lets the quantum quickly approach the event

interval. Next, the mitigator adjusts the quantum closer to the event interval by

raising or lowering the quantum deterministically at every adaptive transition.

The current quantum ideally fluctuates around the desired quantum and finally

converges to it. We constrain the mitigator to have a deterministic reduction

rate, enabling a deterministic (and small) bound on possible schedule functions.

This scheme uses reduction rates that regulate how quantum size is adapted.

We denote reduction rates by r j, where j ranges from 1 to 9, such that r1 =

0.95, r2 = 0.9, . . . , r9 = 0.55. Note that the number of reduction rates and the

corresponding values for this experiment have been derived empirically, based

on the experimental results, reported in Section 4.3.4.

The mitigator has an internal state, which is a pair (q, j). Here q is current

quantum and j is the current reduction rate. Call the condition that guards

when an adaptive transition may be done an adaptive condition; the next state

(q′, j′) is computed at a transition point and is derived as follows:

(q′, j′) =


(q/2r j, next j) if adaptive condition holds

(2q · r j, next j) if miss occurs
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where function next specifies the choice of the next reduction rate

next j =


j + 1 when j < 9

5 when j = 9

Using this new state, the schedule for the next epoch can be computed as

S N(i) = [τ + i · q′]+.

According to our discussion in Section 4.2.4, since the multiplier rates are

deterministic, and there are only two possible transitions (speed up or slow

down), we have λmax = 1. If we set the total information leakage B(T ) to be

log2(T +1), the number of transitions must be no more than (log2(T +1))/(log (T +

1) + 1) as derived from the leakage bound criterion in Section 4.2.4. Adaptive

transitions are not allowed if this constraint is not met.

4.3.4 Empirical results

Figure 4.3 illustrates how the quantum converges to the event interval through

the adaptive mitigation mechanism, with event interval of 18 seconds. In this

figure, the quantum is indicated by the dashed line and the buffer size is rep-

resented by the solid line. Initially the mitigator doubles the quantum quickly

to 32, and then lowers the quantum because the queue size has grown, around

the 350-second point. Then, the queue slowly drains because the quantum is

smaller than the event interval. When the queue empties around 2000 seconds,

the quantum is raised again. After several adjustments, the quantum finally

converges to 18 at around 5000 seconds and stays constant thereafter. Once con-

verged, the queue size remains small (around 2–3), ensuring low latency.
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Figure 4.3: Adaptive mitigation with average interval of 18 seconds.

While perfect convergence is not required for this scheme to be useful, we

tested the convergence with event intervals ranging from 1 second to 100 sec-

onds, with the results shown in Figure 4.4. Each dot represents the final quan-

tum arrived at by the mitigation system after different total run times. Three

curves are shown, one for the final quantum after 10000 seconds, one for af-

ter 100000 seconds, and one for after 1000000 seconds. The plot shows that

the adaptive mitigation heuristic converges closely to the event interval in most

cases. However, there are certain cases where convergence never occurs, such

as at an event interval of 42; here, the mitigation system loops among five val-

ues close to 42. The current set of reduction rates were chosen in a largely ad

hoc fashion; we leave finding an optimal set for a broad class of event sources

to future work.
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val of 18 seconds.
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4.3.5 Composing mitigators

Figure 4.5 illustrates convergence of composition of two adaptive mitigators.

Here the first mitigator processes events received from a source system with an

18 sec. event interval. The second mitigator processes events that it receives

from the first one. The lines on the graph illustrate the change of quantum

values in each mitigator. Based on the similar experiments for other event in-

tervals, we observe that composed mitigators converge in most cases. We leave

identifying necessary and sufficient conditions for convergence to future work.

4.4 Application-level experiments

We evaluated the effectiveness of the basic timing mitigation mechanism on two

published timing channel attacks: RSA timing channels [13] and remote web

server timing channels [11].

Both experiments show that the basic mitigation mechanism of Section 4.1.4

can successfully defend against these timing channel attacks, although with a

latency penalty.

4.4.1 RSA

To demonstrate the effectiveness of timing mitigation, we applied it to OpenSSL

0.9.7, a widely used open-source SSL library that was shown to be vulnerable

to RSA timing channel attacks [13]. The results show that timing mitigation

eliminates the time difference targeted by RSA timing channel attack, making

this attack infeasible.
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Experiment setup

The experiment was performed on OpenSSL 0.9.7. This version was used be-

cause it is the same version shown to be vulnerable by Brumley et al, and by

default it does not use blinding to prevent timing channels. Measurements were

made on a 3.16GHz Intel Core2 Due CPU, with 4G of RAM, using GCC 4.4.1.

The attacker continuously asks the target to decrypt a message and records all

decryption times, starting a new decryption request whenever the last one is

done. The Intel CPU cycle count obtained using the rdtsc instruction provided

a precise, accurate clock.

Attack strategy

We used the timing channel attack strategy proposed in [13] for this experiment,

attacking RSA keys with 1024 bits. Instead of trying to get the secret key directly,

this attack targets the smaller factor of N used in RSA key generation. More

specifically, the attacker attacks q, where N = pq with q < p. Once q (512 bits for

a 1024-bit key pair) is released, the attacker can easily derive the secret key by

computing d = e−1 mod (p − 1) (q − 1).

The attack works by learning a bit of q at a time, from most significant to

least. In each request, the attack generates two guesses (512-bit numbers) and

records the decryption time for each guess. To set up, the attacker guesses the

first 2–3 bits of q by trying all possible combinations (feeding rest of the bits as

0), and plots all decryption times in a graph where the x-axis is all guesses. The

first peak in the graph corresponds to q. Once the attacker has recovered the top

i − 1 bits of q, two new guesses g1 and g2 are generated, where
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1. g1 has the same top i − 1 bits as q and the remaining are zero.

2. g2 differs from g1 only at the ith bit, by setting it to 1

The attacker then computes ug1 = g1R−1 mod N and ug2 = g2R−1 mod N

(where R is some power of 2 used in Montgomery Reduction), and measures

the time to decrypt both ug1 and ug2 . Denote by ∆ the difference between these

two decryption times.

The goal of this RSA timing channel attack is to find a 0–1 gap when a certain

bit of q is 0 or 1. More specifically, when the ith bit of q is 0, the decryption time

difference ∆ will be large, otherwise small. So the attacker wins by analyzing

the significance of 0–1 gap to get all bits of q. Actually, after recovering the most

significant half of the bits of q, attacker can use Coppersmith’s algorithm [19] to

recover the rest of the bits. So we only show the 0–1 gap for the first 256 bits of

q in this experiment.

Parameter choices

To overcome the effects of a multi-user environment, multiple decryptions for

same guesses are necessary to cancel out the timing differences. Experimentally,

we found the median time of 7 samples gives a reliable decryption time with

very small variation, so this is the sample size used hereafter.

Measuring the decryption time for n + 1 guesses ranging from g, g + 1, . . . ,

g + n can make the 0–1 gap more significant, and thus brings more confidence in

the attacker’s guess, though at a computational cost to the attacker as well [13].

We chose 600 as the value for n, because it was enough to gain a significant 0–1

gap in most cases.
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Timing mitigation of RSA Attack

Since the 0–1 gap does not depend on any specific key [13], we used a randomly

generated 1024-bit key for our experiment. Figure 4.6(a) shows the result with-

out any timing mitigation mechanism. The dotted line is the zero–one gap when

the corresponding bit of q is 1, and the solid one is when the bit is 0. It is easy

to see that an attacker can infer certain bits of q by observing this zero–one gap,

especially when guessing a bit whose position is larger than 30. For bit indices

less than 30, it is possible to increase the 0–1 gap by calculating a larger neigh-

borhood set, with more cost to the attacker.

On the other hand, Figure 4.6(b) shows a RSA decryption process with the

simple timing mitigation mechanism we proposed in Section 4.1.1. The timing

channel attack on RSA is defeated because the two curves are indistinguishable

regardless of which bit is being guessed: our timing mitigation scheme elimi-

nates the 0–1 gap. The mitigation mechanism makes the time difference drop

by four orders of magnitude, because the only source of time difference is the

request time, which does not depend on the currently guessed bit.

Expected leakage

If we are willing to make assumptions about the distribution of encryption time,

we can apply the method for estimating expected leakage that is discussed in

Section 4.2.7. Using 1000 randomly generated inputs to estimate Tbig, we find

that 99% of them are handled within 1∗108 clock cycles, which is approximately

1×108×103

3.16×109 = 31.65 ms (this is a 3.6GHz CPU). With an initial quantum of 1 ms, it is

easy to see that Nbig = dlog(31.65)e = 5. The leakage bound in this case is shown

in Figure 4.7, topping out for practical purposes around 100 bits.
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Figure 4.6: Simple mitigation of the RSA timing attack.

4.4.2 Timing attacks on web servers

Web applications have been shown vulnerable to timing channel attacks, either

by direct timing or cross-site timing. For instance, many web applications try

to keep secret whether a given username is valid, by returning the same error

message regardless of validity. They do this because learned usernames can

be abused for spam, invasive advertising, and phishing. However, timing can
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Figure 4.7: Expected leakage for RSA timing channel attack.

expose username validity, because sites usually execute different code paths for

valid and invalid user names [11].

We implemented a simple web server to expose this timing channel and ap-

plied our mitigation scheme to eliminate this channel. The result shows that our

mitigation mechanism is also useful in the face of web applications, although

with a latency cost.

Experimental setup

We build a small HTTP web service on Tomcat 5.5.28. It takes a username/pass-

word pair as a request and checks its validity. We randomly generate 10,000

username/password pairs, and store the username with a SHA-1 password

hash of passwords into Berkeley DB (Java Edition, 4.0.92) [64]. This experiment

is done between two computers connected by a campus network.

The login service proceeds as follows: first, it checks the database for valid-

ity of the given username. If the username is invalid, this server just returns
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an error message. Otherwise, the server computes the SHA-1 hash of the given

password and checks if it matches the one stored in the database. If the pass-

word does not match, the server returns the same error message as for an in-

valid username, to conceal username validity. This captures the essence of a

login service. However, despite its simplicity, this service also exhibits a pos-

sible timing channel, because the computation of the SHA-1 hash depends on

username validity.

To reduce network timing noise, we measure the query time 20 times for each

username, and choose the smallest one as our sample. For each experiment, we

randomly choose 400 valid usernames from a valid username list, as well as

400 randomly generated invalid usernames to determine the timing difference

between them. As in the RSA experiment, we use a sequential attacker model,

where the attacker issues a query immediately after the response. To make the

difference more precise, we alternately issue valid and invalid queries.

For the basic mitigation mechanism, instead of modifying the Tomcat source

code, we wrap the doGet function in our login service servlet with code imple-

menting the basic mitigation scheme, to control leakage of the time needed to

look up and check the password. Because it is not implemented as part of Tom-

cat, this implementation cannot mitigate timing information communicated by

web service setup time. However, the experiment still shows that timing miti-

gation can defend against this timing channel attack.
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Results

Figure 4.8(a) shows how query time differs for valid and invalid usernames.

Queries for valid usernames take significantly longer, so a timing channel attack

is feasible. Web server setup adds about 1.5ms latency to queries in the begin-

ning of a run, but the query time stabilizes after around 50 queries. An attacker

can determine the validity of an arbitrary username with high confidence.

Figure 4.8(b) shows the response time with the basic mitigation mechanism.

Since server replies only at the end of the current quantum, the time difference is

independent of the validity of username. Close inspection of the results reveals

that there is an initial 1.5ms timing difference that is not mitigated by our im-

plementation. This timing difference is caused by the setup of the web service,

rather than by the login service we mitigated, and underscores the importance

of mitigating timing end-to-end rather than on individual system components.

Another observation not shown in the time difference graph of RSA ex-

periment is that our simple timing mitigation mechanism also adds a latency

penalty to the web service, since the service time is unified to the closest power

of 2 of the largest service time. This latency can be seen in Figure 4.8(b), where

mitigation is seen to add about 9 ms latency.

Expected leakage

We applied the expected-leakage approach of Section 4.2.7 to the web service.

Using 1000 random requests, we determined that 99% of them are below 8 ms.

Replacing Tbig = dlog 8e and p = 0.99 with these two numbers, the expected

leakage for this application as shown in Figure 4.9, with q0 = 1 ms. Clearly, the

mitigated version leaks information slowly in practice.
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Figure 4.8: Simple mitigation of the web server timing attack.
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Figure 4.9: Expected leakage for web server timing attack.

4.5 Generalizing the black-box model for interactive systems

Predictive mitigation introduced so far assumes very little about the event

source, which means that it can be applied to a wide range of systems. However,

its very generality can make the leakage bounds conservative, and performance

of the system is then hurt because the mitigator excessively delays the release of

events. By refining the system model, we can make more accurate predictions

and also bound timing leakage more accurately. The result is a better tradeoff

between security and performance.

Timing channels in network-based services are particularly of interest for

timing channel mitigation. These services are interactive systems that accept

input requests from a variety of clients and send back responses. Figure 4.10

illustrates how we extend predictive mitigation for such a system.

Here, the abstract event source in the black-box model is replaced by a more

concrete interactive system that accepts input messages on multiple input chan-

nels and delivers output messages to corresponding output channels. Output
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Figure 4.10: Predictive mitigation of an interactive system.

messages are passed through the timing mitigator, as before, and released by

the timing mitigator in accordance with the prediction for that message. If a

message arrives early, the mitigator delays it until the predicted time. If it does

not arrive in time—a misprediction has happened—the mitigation starts a new

epoch and makes a new, more conservative prediction.

This scheme significantly generalizes the black-box scheme. First, the time

to produce each event is predicted separately, rather than requiring the mitiga-

tor to predict the entire schedule in advance—which is rather difficult for an

interactive system. Second, the prediction may be computed using any public

information in the system. This public information may be anything deemed

public (the “non-secrets” in the diagram), possibly including some information

about input requests. For example, the mitigator may use the time at which a

given input request arrives to predict the time at which the corresponding out-

put will be available for release. The model also permits the content of input

requests to be partly public. Each request has an application-defined request

type capturing what information about the request is public. If no information

in the request is public, all requests have the same request type.

To see why this generalizes the original black-box scheme, consider what
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happens if the prior history of mitigator predictions is the only information con-

sidered public when predicting the time of output events. In this case, all pre-

dictions within an epoch can be generated at the start of the epoch, yielding

a completely determined schedule for the epoch. By contrast, our generalized

predictive mitigation can make use of information that was not known at the

start of the epoch, such as input time. Therefore, predictions can be made dy-

namically within an epoch.

4.6 Predictions for interactive systems

The system model described in Section 4.5 permits a great deal of flexibility in

constructing predictions. We now begin to explore the possibilities.

Throughout the rest of this chapter we assume that the mitigator has an in-

ternal state, denoted by S. In the simplest schemes, the state only records the

number of epochs N, that is, S = N. But more complex internal state is possible,

as discussed in Section 4.7.2.

4.6.1 Inputs, outputs, and idling

For simplicity, we assume that inputs to and outputs from the interactive system

correspond one-to-one: each input has one output and vice versa. If inputs can

cause multiple output events, this can be modeled by introducing a schedule

for delivering the multiple outputs as a batch.

Many services generate output events only as a response to some external
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input. In the absence of inputs, such systems are idle and produce no output.

If the predictor cannot take this into account when generating predictions, the

failure to generate output produces gratuitous mispredictions. With general-

ized predictive mitigation, these mispredictions can be avoided.

For example, consider applying the original black-box scheme to a service

that reliably generates results in 10ms. If the service is idle for an hour, the series

of ensuing mispredictions will inflate the interval between predicted outputs to

more than an hour, slowing the underlying service by more than five orders of

magnitude. Clearly this is not acceptable.

Consider inputs arriving at times inp1, inp2, . . . inpn, . . . , where each inpi is the

time of input i. We assume that the mitigator has some public state S, and that

this state always includes the index of the current mitigation epoch, denoted

by N. Let the prediction for events for state S be described by a function p(S),

where p gives a bound on how long it is expected to take to compute an answer

to a request in state S.

Whenever the structure of the mitigator state is understood, we use more

concrete notation. For example, in the simple mitigator we have S = N, so

we we write p(N) for p(S). Simple fast doubling has the prediction function

p(N) = 2N−1. For more complex predictors, p might depend on other (public)

parameters as well. If S N(0) is the time of the start of the N-th epoch, subsequent

event i in epoch N is predicted to occur at time S N(i):

S N(i) = max(inpi, S N(i − 1)) + p(N)

The two terms in the expression above correspond to the predicted start of

the computation for event i and the predicted amount of time it takes to com-
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pute the output, respectively. To predict the start of computation for event i, we

take the later of two times: the time when input i is available, and the time when

event i − 1 is delivered.

4.6.2 Multiple input and output channels

Now let us consider mitigation on multiple channels, where requests on differ-

ent channels may be handled in parallel.

There are at least two reasonable concurrency models. The first model as-

sumes that every request type has an associated process and that processes han-

dling requests of one type do not respond to requests of other types. The second

model assumes a shared pool of worker processes that can handle requests of

any type as they become available.

In either model, the mitigator is permitted to use some information about

which channel an input request arrives on and about the content of the request.

This information about the channel and the request is considered abstractly to

be the request type of the request. There is a finite set of request types numbered

1, . . . ,R. Requests coming at time inp with request type r are represented as a

pair (inp, r). A request history is a sequence of requests (inp1, r1) . . . (inpi, ri) . . . ,

where inpi is the time of request i, and ri is the type of the request: 1 ≤ ri ≤ R.

The mitigator makes predictions separately for each request type; however,

with multiple request types, an epoch is a period of time during which predic-

tions are met for all request types. A misprediction for one request type causes

an epoch transition for the mitigator, and may change predictions for every re-
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quest type. We denote the prediction for computation when mitigator is in state

S on request type r by a function p(S, r). When the state consists only of the

number of epochs (S = N), we simply write p(N, r).

Individual processes per request type

In the case where each request type has its own individual process, the predic-

tion for output event i is

S N(i) = max(inpi, S N( j)) + p(N, ri)

where j is the index of the previous request of type ri; that is, j = max{ j′ | j′ <

i ∧ ri = r j′}. Hence S N( j) is the prediction of the previous request of type ri. We

define S N( j) to be zero when there are no previous requests of the same type.

Example Consider a simple system with two request types A and B (for clar-

ity we index request types with letters), and consider a mitigator with these

prediction functions p(N, r) for N = 1:

N p(N, A) p(N, B)

1 10 100

Assume the following input history: (2, A), (4, B), (6, A), and (30, B). That is,

two inputs of type A arrive at times 2 and 6, and two of type B arrive at times 4

and 30.
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The inputs (2, A) and (4, B) are the first requests of the corresponding types.

The predictions for these requests are

S 1(1) = max(2, 0) + 10 = 12

S 1(2) = max(4, 0) + 100 = 104

For the next request of type A, the prediction is

S 1(3) = max(6, 12) + 10 = 22

This prediction takes into account the amount of time it would take for the pro-

cess for request type A to finish processing the last input and then to delay the

message for p(1, A). Similarly, the predicted output time for the fourth request

(30, B) is

S 1(4) = max(30, 104) + 100 = 204

Shared worker pool

For a shared pool of worker processes, predictions must be derived with more

careful computation. Suppose the system has at least n worker processes that

handle input requests. To compute a prediction for input request i that arrives

at time inpi with type ri, the mitigator needs to know two terms: when the han-

dling of that request will start, and an estimate of how long it takes to complete

the request. We assume that the completion estimate is given by p(N, r) and fo-

cus instead on the first term. The main challenge is to predict when a worker

will be available to process a request. For this we introduce a notion of worker

predictions. Intuitively, worker predictions are a data structure internal to the

mitigator that allows it to predict when different requests will be picked up by

worker processes.
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Concretely, worker predictions are n sets W1, . . . ,Wn in which every Wm con-

tains pairs of the form (i, q). When (i, q) ∈ Wm, it means request i is predicted to

be delivered at time q by worker m. Therefore, a given index i appears in at most

one of the sets Wm. The function avail(W) predicts when a worker described by

set W will be available, by choosing the time when the worker should deliver

its last message.

avail(W) ,


max{q | (i, q) ∈ W} if W , ∅

0 otherwise

We describe next the algorithm for computing worker predictions.

Initialization In the initial state of worker predictions, all sets Wm (for 1 ≤ m ≤

n) are empty.

Prediction Given an event i with input time inpi and request type ri, the pre-

diction S N(i) is computed as follows:

1. The earliest available worker j is predicted to handle request i. Therefore,

we find j such that avail(W j) = min1≤m≤n{avail(Wm)}

2. Since worker j is assumed to handle request i, we make the following

prediction q for the i-th output:

q = max(inpi, avail(W j)) + p(N, ri)

The prediction for S N is S N(i) = q.

3. Finally, worker predictions are updated with prediction (i, q):

W j := W j ∪ {(i, q)}
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Misprediction When a misprediction occurs, the mitigator resets the state of

worker predictions. Consider a misprediction at time τN , which defines the start

time of epoch N. We reset the state of worker predictions as follows:

1. For every worker m, we find the earliest undelivered request i′; that is,

request received before the misprediction but not delivered by the mitigator at

τN :

i′ = min{i | (i, q) ∈ Wm ∧ inpi < τN ≤ q}

2. If such i′ cannot be found, that is, the set in the previous equation is empty,

we set Wm to ∅. Otherwise, we let q′ = τN + p(N, ri′) and set Wm = {(i′, q′)}.

3. Note that the above step resets the state of each Wm in the worker pre-

dictions. Using these reinitialized states, we can compute predictions for the

unhandled requests, i.e., all requests j with predicted time q such that q ≥ τN

according to the steps 1) and 2) described in Prediction.

Example Reusing the settings from the example in Section 4.6.2, we have four

inputs: (2, A), (4, B), (6, A) and (30, B), and prediction function p(1, A) = 10 and

p(1, B) = 100. Suppose we have two shared workers.

As described above, the worker predictions are both initialized to be empty:

W1 = ∅ and W2 = ∅. For the first input, both workers are available; that is,

avail(W1) = avail(W2) = 0 since W1 and W2 are all empty sets now. We break the

tie by selecting the worker with smaller index, worker 1, and then we set the

prediction for input (2, A) as

S 1(1) = max(2, 0) + 10 = 12
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Finally, the worker prediction of worker 1 is updated to {(1, 12)}.

For the second input, avail(W1) = 12 and avail(W2) = 0. Worker 2 is the ear-

liest available worker. Similarly to the first input, the prediction for the second

output is S 1(2) = max(4, 0) + 100 = 104. The worker prediction of worker 2 is

updated to {(2, 104)}.

Computation of the predicted worker becomes more interesting for the third

input (6, A). We have

avail(W1) = max{q | (i, q) ∈ {(1, 12)}} = 12

avail(W2) = max{q | (i, q) ∈ {(2, 104)}} = 104

The mitigator picks the worker with earliest availability, worker 1. The third

output is predicted at: S 1(3) = max(6, 12)+10 = 22, and the prediction for worker

1 is updated to {(1, 12), (3, 22)}.

For the last input (30, B), the mitigator first computes the available times for

both workers:

avail(W1) = max{q | (i, q) ∈ {(1, 12), (3, 22)}} = 22

avail(W2) = max{q | (i, q) ∈ {(2, 104)}} = 104

Based on these values, the mitigator picks worker 1 as the predicted worker

for the fourth input. The prediction for corresponding output is S 1(4) =

max(30, 22) + 100 = 130, and the prediction of worker 1 becomes {(1, 12),

(3, 22),(4, 130)}.
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4.7 Leakage analysis

As in Section 4.2, we use a combinatorial analysis to bound how much infor-

mation leaks via predictive mitigation in interactive systems. One difference is

that we take into account the interactive nature of our model and derive bounds

based on the number of input requests and the elapsed time. To conservatively

estimate leakage we bound the number of possible timing variations that an ad-

versary can observe, as a function of the running time T and the length of the

input history M.

We show that a leakage bound of O(log T × log M) can be attained, with a

constant factor that depends on the choice of penalty policy. When there is a

worst-case execution time for every request, a tighter leakage bound of O(log M)

can be derived.

4.7.1 Bounding the number of variations

To bound the number of possible timing variations, we need to know three val-

ues: (1) the number of timing variations within each epoch, (2) the number of

variations introduced by the schedule selector, and (3) the number of epochs.

Let us consider the number of variations within each epoch. Because mes-

sages within a single epoch are delivered according to predictions, the only

source of variations within an individual epoch is whether there is a mispre-

diction, and if so, when the misprediction occurs. This can be specified by the

length of the epoch. When the mitigator has received at most M messages, the

length of any single epoch can be at most M + 1.
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When the mitigator transitions from epoch n to epoch n + 1, it chooses the

schedule for the next epoch. Since the predictor can rely on public informa-

tion, the “schedule” is actually an algorithm parameterized by public inputs.

However, this algorithm may be chosen based on non-public inputs, in which

case the choice of schedule may convey additional information to the adversary.

Following Section 4.2, we denote by ΛN the number of possible schedules when

transitioning between epochs n and n + 1. Its value depends on the details of the

schedule selector. For simple mitigation schemes, where the choice of the next

schedule does not depend on secrets, we have ΛN = 1. For adaptive mitigation

(Section 4.2.4), where the choice of schedule depends on internal state such as

the size of the mitigator’s message buffer, ΛN may be greater than one.

Consider a mitigator that at time T has received at most M requests and

reached at most N epochs. The number of possible timing variations of such a

mitigator is at most

(M + 1)N · Λ1 . . .ΛN

Measured in bits, the corresponding bound on leakage is the logarithm of the

number of variations:

N · log(M + 1) +

N∑
i=1

log Λi

Note that for the simple doubling scheme, because Λi = 1, we also have∑N
i=1 log Λi = 0.

We can enforce an arbitrary enforcing bound on leakage. Denote by B(T,M)

the amount of information permitted to be leaked by the mitigator. Enforcing

bound B(T,M) is satisfied if the mitigator ensures this inequality holds:

N · log(M + 1) +

N∑
i=1

log Λi ≤ B(T,M)
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This equation requires a relationship between the number of epochs, the

elapsed time, and the number of received messages. The exact nature of this

relationship is determined by penalty policies.

4.7.2 Penalty policies

Recall that the function p(S, r) predicts a bound on computation time for request

type r in state S. The intuition is that the more mispredictions have happened

in the past (as recorded in S), the larger is the value of p(S, r). The computation

is penalized by delivering its response later.

Designing a penalty policy function opens up a space of possibilities. The

question is how mispredictions on different request types are interconnected—

for example, whether a particular request type should be penalized for mispre-

dictions on other request types, and if so, then how much.

On one side of the spectrum, we can use a global penalty policy that penalizes

all request types when a misprediction occurs. If all request types are penalized,

it becomes harder to trigger mispredictions on any of them in future. Therefore,

this policy provides a tight bound on N. Intuitively, an adversary gains no addi-

tional power to leak information by switching between request types. However,

performance of all request types is hurt by mispredictions on any request type.

On the other end of the spectrum is a local penalty policy in which request

types are not penalized by mispredictions on other types. This improves per-

formance but offers weaker bounds on leakage. To see this, assume that the

number of mispredictions a single request type can make is N. Since penalties
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are not shared between request types, with R types, as many as R × N mispre-

dictions can occur. Timing leakage might be high if R is large; intuitively, the

adversary can attack each request type independently.

Aiming for more control of the tradeoff between security and performance,

we explore penalty policies that fill in the space between the global and local

penalty policies. The key insight is that the request types with few mispredic-

tions contribute little to total leakage, so they should share little penalty. This

insight brings an l-level grace period policy. In a l-level grace period policy, re-

quest type r is only penalized by other types when the number mispredictions

on r is greater than l.

For more complex penalty policies, leakage analysis becomes more challeng-

ing. In Section 4.7.4, we present an efficient and precise way of bounding N for

some penalty policies.

4.7.3 Generalized penalty policies

We refine the state S to record the number of mispredictions for each request

type. If mr denotes the number of mispredictions on request type r, the mitigator

state contains a vector of misprediction counts ~m = m1, . . . ,mR. Initially all mr are

zero. When the request type r has a misprediction, mr is increased by one. In the

following, we assume S = ~m, and write the penalty function as p(~m, r).

Recall that during an epoch, predictions for all types are met. Given a vector

of mispredictions ~m, the number of epochs N is simply N = 1 +
∑R

i=1 mi. Thus, the

problem of bounding N is the same as bounding the sum
∑R

i=1 mi.
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For convenience, let us focus on a family of penalty functions p that are a

composition of three functions:

p(~m, r) = q(r) × (φ ◦ idx)(~m, r)

Here function φ(n) is a baseline penalty function, which given a penalty index

n returns the prediction for n. The penalty index represents how severely this

request type is penalized. It is computed by function idx(~m, r), which returns the

value of the index in the current state ~m for request type r. Finally, q(r) returns

an initial penalty for request type r, and allows us to model different initial

estimates of how long it takes to respond to the request of type r. For instance,

if one knows that request type r1 needs at least one second, and request type r2

needs at least 100 seconds, then one can set q(r1) = 1, q(r2) = 100.

Examples For penalty policies based on fast doubling, we set φ(n) = 2n, and

q(r) = q0 for all r with some initial quantum q0. For the global penalty policy,

idx can be set to idx(~m, r) =
∑R

i=1 mi. For the local penalty policy, idx is chosen as

idx(~m, r) = mr. For an l-level grace period policy, we define idx to depend on the

parameter l:

idx(~m, r) =


mr if mr ≤ l∑R

i=1 mi otherwise

4.7.4 Generalized leakage analysis

As discussed earlier, different penalty functions yield different bounds on N.

While it is possible to analyze such bounds for specific penalty policies, in gen-

eral it is hard to bound leakage for more complex penalty policies.
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This section describes a precise method for deriving such bounds for several

classes of penalty policies. We transform the problem of finding a bound on the

number of epochs N into an optimization problem with R constraints, where R

is the number of request types. These constraints can be nonlinear in general,

but all considered classes of penalty functions can be solved in constant time.

We focus on penalty functions where p(~m, r) is monotonic. Because mono-

tonicity is natural for a “penalty”, this requirement does not really constrain the

generality of the analysis.

State validity We write ~0 for the initial state ~0 in which no mispredictions have

happened. At the core of our analysis are two notions: state reachability and

state validity. Informally, a state ~m is reachable at time T if there is a sequence of

mispredictions that, starting from ~0, lead to ~m by time T . To bound the number

of possible epochs N at time T , it is sufficient to explore the set of all reachable

states, looking for ~m in which 1 +
∑R

i=1 mi (and therefore N) is maximized.

Enumerating all reachable states may be infeasible. In particular, an exact

enumeration requires detailed assumptions about the thread model presented

in Section 4.6.2. Instead, we overapproximate the set of reachable states for

efficient searching of the resulting larger space.

For this, we define the notion of state validity at time T . State validity at

time T is similar to reachability at time T , except that we focus only on the

predicted time to respond to a request, ignoring the time needed to execute

earlier requests.

We first introduce the notion of a valid successor:
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Definition 9 (Valid successor) A state ~m′ is a valid successor of type j (1 ≤ j ≤ R)

for state ~m when m′j = m j + 1 and m′i = mi for i , j.

For example, with three different request types (R = 3), the state (0, 0, 1) is a

valid successor of type 3 for state ~0.

We can then define state validity:

Definition 10 (State validity for time T ) For penalty function p(~m, r), a state ~m is

a valid state for time T if there exists a sequence of request types j1, . . . jn−1, jn, such

that, if m0 = ~0, it holds that for all i, 1 ≤ i ≤ n we have

• ~mi is valid successor of type ji for state ~mi−1.

• p(~mi−1, r ji) ≤ T

• ~mn = ~m

The second condition approximates whether the state ~mi−1 can make one

more transition: if execution time is predicted to exceed T , no more transitions

are possible.

Note that we put no requirements on the predictions for ~mn. The reason is

that as long as there is a state ~mn−1 such that ~mn−1 can make one more mispre-

diction to ~mn, then it is possible to reach state ~mn. Validity does not depend on

whether the state can make one more transition In particular, this allows us to

include all states such that after misprediction from ~mn−1 we cannot have any

more mispredictions. These states are the candidates for maximizing N.
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Example Consider the simple case of one request type and time 6 with predic-

tion function p(~m, r) = 2mr .

State ~m = (3) is a valid state for time 6. Consider the request type sequence

1, 1, 1. We have ~m0 = ~0. Since ~m1 is a valid successor of type 1 for state ~m0, we

have ~m1 = (1). Similarly, we have ~m2 = (2) and ~m3 = (3). It is easy to check that

p(~m0) = 1 ≤ 6, p(~m1) = 2 ≤ 6 and p(~m2) = 4 ≤ 6. Since ~m3 = ~m, ~m is valid by

definition.

However, state ~m′ = (4) is not valid. Otherwise, since there is only one request

type in this example, jn must be 1. Therefore, ~mn−1 must be (3) because ~mn is a

valid successor of type 1 for ~mn−1. However, p(~mn−1) = 8 > 6. This contracts the

definition of validity.

Transforming to an optimization problem

In this part, we show how to get the maximal
∑R

i=1 mi among all valid states

when prediction function p(~m, r) is monotonic. First, we show a useful lemma.

Lemma 15 Assume p(~m, r) is monotonic. If ~m is a valid successor of some type j for

~m′ such that p(~m′, j) ≤ T , then

~m = (m1, . . . ,mR) is valid for T ⇐⇒ ~m′′ = (m1, . . . ,m j−1, 0,m j+1, . . . ,mR) is valid for T

Proof. ⇐=: since ~m′′ is valid, there is sequence of request types where all in-

termediate states satisfy the constraints. Further, we can construct a sequence

of request types from ~m′′ to ~m by appending j to the previous sequence until

~mi = ~m. Since p(~m′, j) ≤ T and p is monotonic, all new states corresponding to

this sequence still satisfy the constraints.
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=⇒: by definition, there is a sequence of request types r1, . . . , rn such that all

intermediate states satisfy constraints. Moreover, there must be a point i in this

sequence such that ∀l < i, rl , j and ri = j. Thus, the j-th element of ~mi−1 is 0.

Then, a new sequence of request types p1, . . . , pm exists such that pl = rl, 0 ≤

l ≤ i − 1. For l ≥ i, if rl = j, skip this type. Otherwise, add the same type to

sequence ~p. By this construction, two properties of states occurring with ~p are

that the j-th element is always 0, and that there is a corresponding state with

sequence ~r such that they only differ in the j-th element. We denote the final

states with request type sequence ~r, ~p as ~mr and ~mp respectively. Since state ~mr

satisfies p(~mr, rl) ≤ T , by monotonicity, corresponding state ~mp also satisfies this

condition. Since mr
n = ~m′′, ~m′′ is valid at T . �

Lemma 15 allows us to describe valid states by R constraints. To see this,

first observe that because ~m is valid for T , there are some j1 and ~m′ such that ~m

is a valid successor of ~m′ of type j1. By Definition 9, p(~m′, j1) ≤ T . This is our

first constraint on the space of valid states.

By Lemma 15, the validity of ~m for T implies the validity of

(m1, ...,m j1−1, 0, . . . ,mR) for T . Repeating the previous step, there is some j2 , j1

and ~m′′ where (m1, ...,m j1−1, 0, . . . ,mR) is a valid successor of ~m′′ of type j2; this

gives us the second constraint, p(~m′′, j2) ≤ T . Proceeding as above, we obtain R

constraints such that ~m is valid iff all constraints are satisfied.

Based on the properties of p, our analysis proceeds as follows. We present

two different classes of p in the order of difficulty of analyzing them, starting

from the easiest.
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Symmetric predictions We first look at prediction policies in which all request

types are penalized symmetrically:

1. for all i, j, such that 1 ≤ i, j ≤ R it holds that p(m1, . . . ,mi, . . . ,m j, . . .mR, i) =

p(m1, . . . ,m j, . . . ,mi, . . .mR, j).

2. for all i, j, k, such that 1 ≤ i, j, k ≤ R, where i , k, and j , k it holds that

p(m1, . . . ,mi, . . .m j, . . .mR, k) = p(m1, . . . ,m j, . . .mi, . . .mR, k).

These properties allow us to reorder the request types in R constraints that we

have obtained earlier. For example, the first of the obtained constraints can be

rewritten as p((m j1 − 1, . . . ,mR), 1) ≤ T. Moreover, this allows us to rename the

variables in the constraints without loss of generality:

p((m1 − 1,m2, . . . ,mR), 1) ≤ T

p((0,m2 − 1, . . . ,mR), 2) ≤ T

. . .

p((0, 0, . . . ,mR − 1),R) ≤ T

Thus, bounding N is equivalent to finding the maximum sum
∑R

i=1 mi satis-

fying all the conditions.

Examples It is easy to verify that starting with same initial quantum, global,

local, and l-level grace period policies penalize all request types symmetrically.

We proceed with the analysis of these policies below.

1. Consider the global penalty function with fast doubling and the starting

quantum q0 = 1. The j-th constraint in the above system has the form

2(
∑R

i= j mi−1)
≤ T
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Here, N = 1 +
∑R

i=1 mi ≤ log T + 2. This is very close to the bound log(T + 1) + 1

given in Section 4.2.3.1

Using the leakage bound derived in Section 4.7.4, we obtain that for global

penalty policy, when the mitigator runs for at most time T the leakage is

bounded by function B(T,M) where

B(T,M) = (log T + 2) · log(M + 1)

2. Now consider the local penalty policy with the same penalty scheme and

initial quantum. We have R constraints of the form:

2mi−1 ≤ T, 1 ≤ i ≤ R

It is easy to derive N ≤ R · (log T + 1) + 1.

Using this bound for N, we obtain that at running time time T , leakage is

bounded by function B(T,M,R) such that

B(T,M,R) = (R · (log T + 1) + 1) · log(M + 1)

3. We revisit the l-level grace period policy last. In this case, the j-th con-

straint can be split into two cases:
m j − 1 ≤ log T when m j − 1 ≤ l∑R

i= j mi − 1 ≤ log T when m j − 1 > l

In general, l is ordinarily smaller than log T , so N is maximized when mi = l +

1, 1 ≤ i ≤ R − 1 and mR = blog T c + 1. Thus, N ≤ (R − 1) · (l + 1) + log T + 2.
1Though Section 4.2.3 does not consider request types, the penalty policies considered there

are effectively global penalty policies.
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Using this bound for N we obtain that at running time T , leakage is bounded

by function B(T,M,R, l) such that

B(T,M,R, l) = log(M + 1) · ((R − 1) · (l + 1) + log T + 2)

Partially symmetric predictions Request types starting with different initial

quanta, such as the setup in Section 4.7.5, make the prediction function asym-

metric. We proceed as follows.

Let qmin = minR
i=1 q(r), and replace p(r) with qmin for all prediction functions.

The upper bound N of these replaced functions overapproximates that of asym-

metric functions, since any valid state using the latter functions must be valid

for the former ones. Therefore, we can obtain R constraints based on these re-

placed symmetric functions, as for symmetric predictions.

Non-symmetric predictions For other types of penalty functions, we can still

try to partition request types into subsets such that in each subset, request types

are penalized symmetrically. We then generate constraints for validity of these

well-formed subsets.

More formally, we say a vector of mispredictions ~m′ is a subvector of ~m if and

only if m′i = 0 ∨ m′i = mi, 1 ≤ i ≤ R. A set of vectors ~m1, . . . , ~mk is a partition of ~m if

all vectors are subvectors of ~m and for all mi, there is one and only one ~m j such

that m j
i = mi.

The following lemma shows that the condition that ~m is valid is stronger

than the validity of all subvectors. Thus, the constraints on vectors in a partition

overapproximates those on the validity of ~m.
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Lemma 16 When p(~m, r) is monotonic, ~m is valid at time T =⇒ any subvector of ~m

is valid at time T .

Proof. By definition, there is a sequence of request types j1, . . . , jn such that all

conditions in Definition 10 are satisfied. For any subvector of ~m, say ~m′, we can

take a projection of the sequence so that only the request types nonzero in the

subvector are kept.

By monotonicity, it is easy to check that all conditions hold in the definition.

Moreover, ~mn = ~m′. So ~m′ is valid by definition. �

Since there are R non-zero mispredictions among all vectors in the partition,

this estimation still gives R constraints.

4.7.5 Security vs. performance

As discussed informally earlier, the global penalty policy enforces the best leak-

age bound but has bad performance; the local penalty policy has the best per-

formance but more leakage. We explore this tradeoff between security and per-

formance through simulations.

Simulation setup We simulate a set of interactive system services character-

ized by various distributions over execution time. Initial penalty is set to be the

mean of the execution time distribution. The fast doubling scheme is used, so

the prediction function is p(~m, r) = q(r) × 2idx(~m,r), where q(r) is the mean time of

simulated type r. The form of idx(~m, r) is defined by penalty policies.
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Figure 4.11: Performance vs. security.

To see the performance for requests with different variances in execution

time, we simulate both regular types and irregular types. For regular types, the

simulated execution time follows Poisson distribution with different means,

since page view requests to a web page can be modeled as a Poisson process; for

irregular types, execution time follows a perturbed normal distribution which

avoids negative execution time.

Result The results in Figure 4.11 demonstrate the impact of execution-time

variation on performance. The x-axis in Figure 4.11 shows the bound on number

of epochs N and the y-axis shows the slowdown for all simulated request types.

All values shown are normalized so that the local policy has a slowdown of 1

and so that for the number of epochs, the global policy has value 1. The standard

deviation is equal to the mean multiplied by a factor ranging from 23 to 27,

generating around 3 to 7 mispredictions. The number on each line denotes the

grace-period level.

The results confirm the intuition that the global penalty policy has the best

security but bad performance, and the local policy has the best performance.

However, the l-level grace period policies have considerably fewer epochs N,
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yet performance similar to that of the local policy when l is no less than mri for

most types.

When the variance of execution time increases, small grace-period level

(l = 3, 4) can bring slowdown that is orders of magnitude higher than in the

global case. The reason is that each irregular request type can trigger l mispre-

dictions. Once misprediction of a request type is larger than l, idx(~m, r) returns

a large number. However using a larger grace-period level (l = 5) could restore

performance at the cost of more leakage.

Penalty policies with other forms are possible to provide more options be-

tween the trade-off of security and performances. We leave a more comprehen-

sive analysis of more penalty policies as future work.

4.7.6 Leakage with a worst-case execution time

In the analysis above, no assumption is made about execution time for each

request type. The adversary can delay responses for an arbitrarily long time to

covertly convey more information.

However, for some specific platforms, such as real-time systems and web

applications with a timeout setting, we can assume a worst-case execution time

Tw. Given this constraint, we can derive a tighter leakage bound.

The analysis works similarly to that in Section 4.7.3, but instead of using the

conservative constraint p(~mi−1, r ji) ≤ T as in Definition 10, worst-case execution

time provides a tighter estimate:

p(~mi−1, r ji) ≤ Tw
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Compared with bounding running time T , this condition more precisely ap-

proximates whether the state ~mi−1 can make one more misprediction to ~mi. The

reason is that whenever p(~mi−1, r ji) > Tw, the state ~mi−1 cannot have another mis-

prediction because execution is bounded by Tw. Therefore, we can reuse the

bound on the number of epochs in Section 4.7.3 by replacing T with Tw.

For example, total leakage with the assumption of worst-case execution time

Tw for the global penalty policy is bounded by

B(T,M) = (log Tw + 2) · log(M + 1)

This logarithmic bound is asymptotically the same as that achieved by the

less general bucketing scheme proposed by Köpf et al. [45] for cryptographic

timing channels.

For the l-grace-period penalty policy we can perform a similar analysis to

derive a bound on leakage:

B(T,M,R, l) = log(M + 1) · ((R − 1) · (l + 1) + log Tw + 2)

4.8 Composing mitigators

If timing mitigation is used, we can expect large systems to be built by compos-

ing mitigated subsystems. Here, we analyze leakage of composed mitigators.

We analyze composed mitigators by considering the leakage of two gad-

gets: two mitigators connected either in parallel or sequentially (Figures 4.12

and 4.13). More complex systems with mitigated subsystems can be analyzed

by decomposing them into these gadgets.
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Figure 4.12: Parallel composition of mitigators.
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Figure 4.13: Sequential composition of mitigators.

Parallel composition Figure 4.12 is an example of parallel composition of mit-

igators, in which requests received by the system are handled by two indepen-

dent mitigators. The bound on the leakage of the parallel composition is no

greater than the sum of the bounds of the independent mitigators. To see this,

denote by P the total number of variations of the parallel composition, and de-

note by V1 and V2 the number of timing variations of the first and second mitiga-

tors, respectively. We know P ≤ V1 ·V2; consequently, the total leakage of parallel

composition log P is bounded by log V1 + log V2. The same argument generalizes

to n mitigators in parallel.

Sequential composition Suppose we have a security-critical component, such

as an encryption function, and leakage from this component is controlled by a

mitigator that guarantees a tight bound, say at most 10 bits of the encryption

key. We can show that once mitigated, leakage of the encryption key can never

exceed 10 bits, no matter how output of that component is used in the system.

This is true for both Shannon-entropy and min-entropy definitions of leakage.
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Consider sequential composition of two systems as depicted in Figure 4.13.

Suppose that the secrets in the first system are S , and that the outputs of the first

and the second mitigators are O1 and O2 respectively. We consider how much

the output of each of the mitigators leaks about S .

We can view the outputs O1 and O2 as discrete random variables. Since the

second service and its mitigator do not share secret S , the conditional distribu-

tion of O2 depends only on O1 and is conditionally independent of S (in other

words, random variables S ,O1,O2 form a Markov chain). Denoting the proba-

bility mass function of a discrete random variable X as P(X), the joint distribu-

tion of these three random variables has probability mass function P(s, o1, o2) =

P(s)P(o1|s)P(o2|o1). The marginal distribution P(o2, s) is
∑

o1∈O1
P(s, o1, o2), and for

any o1, we have
∑

o2∈O2
P(o2|o1) = 1.

As discussed in Section 4.1.2, the leakage of the first mitigator using mutual

information is I(S ; O1) and the leakage of the second is I(S ; O2). Then we can

show that the second mitigator leaks no more information about S 1 than the

first does. We formalize this in the following lemma.

Lemma 17 I(S ; O1) ≥ I(S ; O2)

Proof. The proof follows from the standard data-processing inequality [20] and

the symmetry of mutual information:

I(S ; O2) + I(S ; O1|O2) = I(S ; O1,O2)

= I(S ; O1) + I(S ; O2|O1)

Note that S and O2 are conditionally independent given O1, since the second

mitigator produces outputs based on only the output of the first mitigator M,
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public inputs, and secrets other than S . Thus I(S ; O2|O1) = 0. Replacing this

term with zero in the above equation, we get

I(S ; O2) + I(S ; O1|O2) = I(S ; O1)

Also, we know that I(S ; O1|O2) ≥ 0, so we have

I(S ; O1) ≥ I(S ; O2)

�

A similar result holds for min-entropy leakage.

Lemma 18 V(S |O1) ≥ V(S |O2)

Proof. As discussed in Section 4.1.2, min-entropy channel capacity is defined

as the maximal value of log V(S |O)
V(S ) among all distributions on S . So it suffices to

show V(S |O1) ≥ V(S |O2) for any distribution on S .

V(S |O2) =
∑

o2∈O2

max
s∈S

P(s)P(o2|s)

=
∑

o2∈O2

max
s∈S

∑
o1∈O1

P(s, o1, o2)

=
∑

o2∈O2

max
s∈S

∑
o1∈O1

P(s)P(o1|s)P(o2|o1)

≤
∑

o2∈O2

∑
o1∈O1

P(o2|o1) max
s∈S

P(s)P(o1|s)

=
∑

o1∈O1

max
s∈S

(P(s)P(o1|s))
∑

o2∈O2

P(o2|o1)

=
∑

o1∈O1

max
s∈S

P(s)P(o1|s)

= V(S |O1)
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Discussion Parallel and sequential composition results enable deriving con-

servative bounds for networks of composed subsystems. The bounds derived

may be quite conservative in the case where parallel mitigated systems have

no secrets of their own to leak. If the graph of subsystems contains cycles, it

cannot be decomposed into these two gadgets. We leave a more comprehensive

analysis of mitigator composition to future work.

4.9 Experiments

To evaluate the performance and information leakage of generalized timing mit-

igation, we implemented mitigators for different applications. The widely used

Apache Tomcat web container was modified to mitigate a local hosted appli-

cation. We also developed a mitigating web proxy to estimate the overhead of

mitigating real-world applications—a non-trivial homepage that results in 49

different requests and a HTTPS webmail service that requires stronger security.

We explored how to tune this general mechanism for different security and

performance requirements. The results show that predictive mitigation does

slow down applications to some extent; we suggest the slowdown is acceptable

for some applications.
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4.9.1 Mitigator design and its limitations

We define the system boundary in the following way. Inputs enter the system

at the point when Tomcat dispatches requests to the servlet or JSP code. Results

returned from this code are considered outputs. Thus, all timing leakage arising

during the processing of the servlet and the JSP files is mitigated.

This implementation of mitigation has limitations. Because of shared hard-

ware and operating-system resources such as filesystem caches, memory caches,

buses, and the network, the time required to deliver an application response

may convey information about sensitive application data. Our current imple-

mentation strategy, chosen for ease of implementation, prevents fully address-

ing these timing channels where they affect timing outside the system boundary

as defined.

To completely mitigate timing channels, mitigation should be integrated

at the operating system and hardware levels. For example, the TCP/IP stack

might be extended to support delaying packets until a mitigator-specified time.

With such an extension, all timing channels, including low-level interactions

via hardware caches and bus contention, would be fully mitigated. Although

we leave the design of such a mechanism to future work, we see no reason why

a more complete mitigation mechanism would significantly change the perfor-

mance and security results reported here.
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4.9.2 Mitigator implementation

We implemented the mitigator as a Java library containing 201 lines of Java

source code, excluding comments and the configuration file. This library pro-

vides two functions:

Mitigator startMitigation (String requestType);

void endMitigation (Mitigator miti);

The function startMitigation should be invoked when an input is avail-

able to the system, passing an application-specific request type identifier. The

function endMitigation is used by the application when an output is ready,

passing the mitigator for the related input. Calling endMitigation blocks the

current thread until the time predicted by the mitigator.

Instead of optimizing for specific applications, we heuristically choose the

following parameters for all experiments: 1. Initial penalty: the initial penalty

for all request types is 50 ms, a delay short enough to be unnoticeable to the

user. 2. Penalty policy: we use the 5-level grace period policy since it provides

good tradeoff between security and performance as shown in 4.7.5. 3. Penalty

function: most requests are returned within 250 ms, and the distribution is quite

even. We evenly divide the first 5 epochs to make predictions more precise: 50

ms, 100 ms, 150 ms, 200 ms, 250 ms, doubling progressively thereafter. 4. Worst-

case execution time Tw: We assume worst-case execution time for requests Tw to

be 300 seconds. This is consistent with Firefox browser version 3.6.12, which

uses this value as a default timeout parameter.
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4.9.3 Leakage revisited

Applying the experiment settings into the formula from Section 4.7.6 with R

request types, the following leakage bound obtains:

((R − 1) · (l + 1) + (log Tw + 2)) · log(M + 1)

=((R − 1) · 6 + (log 300000 + 2)) · log(M + 1)

≤(6 · R + 15) · log(M + 1)

where M is the number of inputs using the simple doubling scheme.

Intuitively, introducing more request types helps make the prediction more

precise for each request, because processing time varies for different kinds of

requests. However, the leakage bound is proportional to the number of request

types. So it is important to find the right tradeoff between latency and security.

4.9.4 Latency and throughput

To enable the mitigation of unmodified web applications, we modified the open

source Java Servlet and JavaServer Pages container Tomcat 6.0.29 using the mit-

igation library.

Experiment setup Mitigating Tomcat requires only three lines of Java code:

one line generating a request type id from the HTTP request, one line to start

the mitigation, and another line to end mitigation after the servlet is finished.

We deployed a JSP wiki application, JSPWiki2, in the mitigating Tomcat server

2http://www.jspwiki.org
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Figure 4.14: Wiki latency with and without mitigation.

to evaluate how mitigation affects both latency and throughput. Measurements

were made using the Apache HTTP server benchmarking tool ab.3 Since we

focus on the latency and throughput overhead of requesting the main page of

the wiki application, the URI is used as the request type identifier.

Results We measured the latency and throughput of the main page of JSPWiki

for both the mitigated and unmitigated versions. We used a range of different

concurrency settings in ab, controlling the number of multiple requests to per-

form at a time. The size of the Tomcat thread pool is 200 threads in the current

implementation. For each setting, we measured the throughput for 5 minutes.

The results are shown in Figure 4.14 and Figure 4.15.

When the concurrency level is 1—the sequential case—the unmitigated Wiki

application has a latency around 11ms. Since the initial penalty is selected to be

50ms in our experiments, the average mitigated latency rises to about 57ms:

about 400% overhead. This is simply an artifact of the choice of initial penalty.

As we increase the number of concurrent requests, the unmitigated appli-

3http://httpd.apache.org/docs/2.0/programs/ab.html
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Figure 4.15: Wiki throughput with and without mitigation.

cation exhibits more latency, because concurrent requests compete for limited

resources. On the other hand, the mitigation system is predicting this delayed

time, and we can see that these predictions introduce less overhead: at most

90% after the concurrency level of 50; an even smaller overhead is found for

higher concurrency levels.

The throughput with concurrency level 1 is much reduced from the unmit-

igated case: only about 1/5 of the original throughput. However, when the

concurrency level reaches 50, throughput increases significantly in both cases,

and the mitigated version has 52.73% of the throughput of the unmitigated ver-

sion. For higher levels of concurrency, the throughput of the two versions is

mostly similar.

4.9.5 Real-world applications with proxy

We evaluated the latency overhead of predictive mitigation on existing real-

world web servers. To avoid the need to deploy predictive mitigation directly

on production web servers, we introduce a mitigating proxy between the client

browser and the target host. We modified an open source Java HTTP/HTTPS
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proxy, LittleProxy4, to use the mitigation library, adding about 70 LOC. We used

it to evaluate latency with two remote web servers: a HTTP web page and an

HTTPS webmail service.

With mitigation again done entirely at user level, timing channels that arise

outside the mitigation boundary cannot be mitigated. The mitigation boundary

is defined as follows: the mitigating proxy treats requests from client browser

as inputs, and forwards these requests to the host. The response from the host

is regarded as an output in the black-box model.

The proxy mitigates both the response time of the server and the round-

trip time between the proxy and server. Only the first part corresponds to real

variation that would occur with a mitigating web server. To estimate this part

of latency overhead, we put the proxy in a local network with the real host.

Because we found measured little variation in this configuration, the results

here should estimate latency for real-world applications reasonably accurately.

HTTP web page

Unlike the previous stress test that requests only one URL, we evaluated la-

tency overhead using a non-trivial HTTP web page, a university home page

that causes 49 different requests to the server. Multiple requests bring up the

opportunity of tuning the tradeoff between security and performance. Various

ways to choose request types were explored:

1. TYPE/HOST: all URLs residing on the same host are treated as one request

type, that is, they are predicted the same way.

4http://www.littleshoot.org/littleproxy/index.html
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Figure 4.16: Latency for an HTTP web page.
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Figure 4.17: Leakage bound for an HTTP web page.

2. HOST+URLTYPE: requests on the same host are predicted differently

based on the URL type of the request. We distinguish URL types based on the

file types, such as JPEG files, CSS files and so on. Each of them corresponds to a

different request type.

3. TYPE/URL: individual URLs are predicted differently.

Figure 4.16 shows the latency of loading the whole page and the num-

ber of request types with these options. The results show that latency in the

most restrictive TYPE/HOST case almost triples that of the unmitigated case.
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HOST+URLTYPE and TYPE/URL options have similar latency results, with

about 30% latency overhead.

From the security point of view, the TYPE/HOST option only results in

two request types: one host is in the organization, and the other one is

google-analytics.com, used for the search component in the main page.

HOST+URLTYPE introduces 6 more request types, while using the TYPE/URL

option, there are as many as 49 request types. The information leakage bounds

for different options are shown in Figure 4.17.

The HOST+URLTYPE choice provides a reasonable tradeoff between secu-

rity and performance: it has roughly a 30% latency overhead, yet information

leakage is below 850 bits for 100,000 requests.

HTTPS webmail service

We also evaluate the latency with a webmail service based on Windows Ex-

change Server. After the user passes Kerberos-based authentication (Auth), he

is redirected to the login page (Login) and may then see the list of emails (List)

or read a message (Email).

Request type selection This application accesses sensitive data, so we eval-

uate performance with the most restrictive scheme: one request type per host.

There are actually two hosts: one host is used to serve only AuthPage.

Results We measured the latency overhead of four representative pages for

this service. Each page generates from 6 to 45 different requests. The results in
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Figure 4.18: Latency overhead for HTTPS webmail service.
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Figure 4.19: Leakage bound for HTTPS webmail service.

Figure 4.18 show that the latency overhead ranges from 2 times to 4 times for

these four pages; in the worst case, latency is still less than 1 second. Also, this

overhead can be reduced with different request type selection options.

Figure 4.19 shows the information leakage bound of this mitigated applica-

tion. The leakage is limited to about 300 bits after 100,000 requests and grows

very slowly thereafter.
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4.10 Related work

Cryptographic side-channels One major motivation for controlling timing

channels is the protection of cryptographic keys against side-channels arising

from timing cryptographic operations. A variety of attacks that exploit timing

side-channels have been demonstrated [13, 43]. Cryptographic blinding [15, 43]

is a standard technique for mitigating such channels.

Köpf et al. [45, 46] introduced the mechanism of bucketing to mitigate timing

side channels in cryptographic operations, achieving asymptotically logarith-

mic bounds on information leakage but with stronger assumptions than in this

work. Their security analyses rely on the timing behavior of the system agree-

ing with a previously measured distribution of times; therefore they implicitly

assume that the adversary does not control timing, and that there is a worst-case

execution time. The bucketing approach does not achieve logarithmic bounds

for general computation.

Quantitative information flow We advocate a quantitative approach to con-

trolling information flow through timing channels. Like much other work on

quantitative information flow [16, 53, 45, 46] we draw on information theory to

obtain bounds on leakage. Millen [54] first observed that noninterference im-

plies zero channel capacity between high and low. DiPierro et. al [69] quantify

timing leaks in a language-based setting. Epoch-based mitigation is similar in

spirit to Mode Security [12] which reduces covert channels to changes in modes.

Unlike Mode Security, we also account for leakage within epochs, via a combi-

natorial analysis.
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Mitigation of timing attacks Giles and Hajek present a comprehensive study

of timing channels [27] in which packet arrival is represented by continuous or

discrete waveforms. Similarly to us, they employ periodic quantization. How-

ever, because of the constant periods, the reduction of the timing channel band-

width is only linear. Another difference lies in the semantics of buffer bounds:

while they assume that a jammer has to release a packet from the queue when a

buffer is full, our mitigators block the input source.

One prior approach to timing channel mitigation is adding noise to timing

measurements. There are two ways to do this. First, we can add random delays

to the time taken by various operations, which reduces the bandwidth of the

timing channel, as in [36, 27]. Adding random delays sacrifices performance,

and it does not asymptotically eliminate timing channels, since the noise can

be eliminated to whatever degree is desired by averaging over a sequence of

identical requests. Methods for creating covert timing robust against added

noise have been demonstrated [51].

A second approach to mitigation, also used in [36], is that programs that

read clocks are given results with random noise. This method only applies to

internal timing channels that are based on reading clocks directly.

Wray [90] views every covert channel that originates from comparing two

clocks as a timing channel. In this light, we focus on the channels that arise from

comparing timing of the events to external reference clock that is not modulated

by the attacker. Our results of Section 4.2.5 can be interpreted as mixing external

timing channels and all other covert channels.

The NRL Pump [40] and its follow-ups, like Network Pump [41], are also
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network service handling that handle requests. The Pump work addresses tim-

ing channels arising from message acknowledgments (which correspond to but

are less general than outputs in this work). Acknowledgment timing is stochas-

tically modulated using a moving average of past activity, and leakage in one

window does not affect later windows. Therefore the NRL/Network Pumps

can enforce only a linear leakage bound.
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CHAPTER 5

LANGUAGE-BASED QUANTITATIVE CONTROL

OF TIMING CHANNELS

The programming language in Chapter 2 disallows execution time depending

on confidential information in any way. The limitation is that such a restrictive

language can be impractical for applications where a limited amount of infor-

mation leakage is allowed.

This chapter integrates the general predictive mitigation framework (Chap-

ter 4) into the programming language in Chapter 2. The result is a permissive

programming model which allows tight timing leakage bounds for applications.

5.1 A language with quantitative timing channel leakage

Figure 5.1 gives the full syntax for a simple imperative language for quantitative

timing channel control. Compared with the syntax in Chapter 2 (Figure 2.1), the

new part is the shaded mitigate command. As a technical convenience, each

mitigate in the source has a unique identifier η. These identifiers are mainly

used in Section 5.2; they are omitted where they are not essential.

e ::= n | x | e op e
c ::= skip[`r ,`w] | (x := e)[`r ,`w] | c; c | (while e do c)[`r ,`w]

| (if e then c1 else c2)[`r ,`w]

| (mitigateη (e, `) c)[`r ,`w] | (sleep e)[`r ,`w]

Figure 5.1: Syntax of the full language with the mitigate command.
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〈(mitigate (e, `) c)[`r ,`w],m〉 → 〈c,m〉

Figure 5.2: Core semantics of the mitigate command.

Γ ` e : ` pc v `w Γ, pc, τ t ` t `r ` c : τ′ τ′ v `′

Γ, pc, τ ` (mitigate (e, `′) c)[`r ,`w] : ` t τ t `r
T-MTG

Figure 5.3: Typing rules: the mitigate command.

For mitigatewe give an identity semantics for now: mitigate (e, `) c simply

evaluates to c.

Unlike other rules presented in Figure 3.5, the typing rule for mitigate com-

mand (T-MTG) does not propagate the timing end-labels of subcommands. In-

tuitively, this command “declassifies” information, justified by dynamic mech-

anisms that tighten information leakage from the mitigated commands. Like

other rules, we require pc v `w. This restriction, together with Property 5 in Sec-

tion 2.3.6, ensures that no confidential information about control flow leaks to

the low parts of the machine environment.

In the added rule (T-MTG), the end-label τ′ from command c is bounded by

mitigation label `′, but τ′ does not propagate to the end-label of the mitigate.

Instead, the end-label of the mitigate command only accounts for the timing

of evaluating expression e. This is because the predictive mitigation mechanism

used at run time controls how c’s timing leaks information.
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5.2 Quantitative properties of the type system

The type system in Chapter 2 identifies potential timing channels in a program.

We now introduce a quantitative measure of leakage for multilevel systems, and

show that the type system for the extended language with mitigate command

quantitatively bounds leakage through both timing and storage channels. The

main result of this section is that information leakage can be bounded in the

terms of the variation in the execution time of mitigate commands alone.

5.2.1 Adversary observations

As discussed earlier in Section 2.3.4, an adversary at level `A observes memory,

including timing of updates to memory, at levels up to `A. The adversary does

not directly observe the time of termination of the program, but this is easily

simulated by adding a final low assignment to the program. To formally define

adversary observations, we refine our presentation of the language semantics

with observable assignment events.

Observable assignment events Let α ∈ {(x, v, t), ε} range over observable

events, which can be either an assignment to variable x of value v at time t,

or an empty event ε. An event (x, v,G′) is generated by assignment transitions

〈x := e,m, E,G〉 → 〈stop,m′, E′,G′〉, where 〈m, e〉 ⇓ v, and by all transitions

whose derivation includes a subderivation of such a transition.

We write 〈c,m, E,G〉 V (x, v, t) if configuration 〈c,m, E,G〉 produces a se-

quence of events (x, v, t) = (x1, v1, t1) . . . (xn, vn, tn) and reaches a final configura-

tion 〈stop,m′, E′,G′〉 for some m′, E′,G′.
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`A-observable events An event (x, v, t) is observable to the adversary at level `A

when Γ(x) v `A. Given a configuration 〈c,m, E,G〉 such that 〈c,m, E,G〉V (x, v, t),

we write 〈c,m, E,G〉V`A (x′, v′, t′) for the longest subsequence of (x, v, t) such that

for all events (xi, vi, ti) in (x′, v′, t′) it holds that Γ(xi) v `A.

For example, for program l1 := l2; h1 := l1, the H-adversary observes two

assignments: 〈c,m, E,G〉 VH (l1, v1, t1), (h1, v2, t2) for some v1, t1, v2 and t2. For

the L-adversary, we have 〈c,m, E,G〉 VL (l1, v1, t1), which does not include the

assignment to h1.

5.2.2 Measuring leakage in a multilevel environment

Using `A-observable events, we can define a novel information-theoretic mea-

sure of leakage: leakage from a set of security levels L to an adversary level `A.

We start with an observation on our adversary model and the corresponding

auxiliary definition.

Because an adversary observes all levels up to `A, we can exclude these se-

curity levels from the ones that give new information. Let L`A be the subset of

L that excludes all levels observable to `A, that is L`A , {`
′ | `′ ∈ L ∧ `′ @ `A}. For

example, for a three-level lattice L v M v H, with `A = M, if L = {M,H} then

L`A = {H}.

Figure 5.4(a) illustrates a general form of this definition. The adversary level

`A is represented by the white point; the levels observable to the adversary cor-

respond to the small rectangular area under the point `A. The set of security

levels L is represented by the dashed rectangle (though in general this set does
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(a) Leakage from L to `A (b) Variations with Lv

Figure 5.4: Quantitative leakage.

not have to be contiguous). The gray area corresponds to the security levels that

are in L`A .

Leakage from L to `A We measure the quantitative leakage as the logarithm

(base 2) of the number of distinguishable observations of the adversary—the

possible (x, v, t) sequences—from indistinguishable memory and machine envi-

ronments. As shown in Section 4.1.2, this measure bounds those of Shannon

entropy and min-entropy, used in the literature [21, 54, 77].

Definition 11 (Quantitative leakage from L to `A ) Given any `A, m, and E, the

leakage of program c from levels L to level `A, denoted by Q(L, `A, c,m, E) is defined as

follows

Q(L, `A, c,m, E) , log(| {(x, v, t) | ∃m′, E′ . (∀`′ . `′ < L`A .

m '`′ m′ ∧ E '`′ E′) ∧ 〈c,m′, E′, 0〉V`A (x, v, t)} |)

This definition usesL`A to restrict the quantification of the memory and machine

environments so that we allow variations only in L`A parts of memory and ma-

chine environments. This is expressed by requiring projected equivalence (on
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the second line of the definition) for all levels `′ not in L`A . Visually, using Fig-

ure 5.4(a), this captures the flows from the gray area to the lower rectangle.

Note that the definition distinguishes flows between different levels. For

example, in a three-level security lattice L v M v H and a program sleep (h)

where h has level H, the leakage from {M} to L is zero even though flow from

{H} to L is not.

5.2.3 Guarantees of the type system

The type system provides an important property: leakage from L to `A is

bounded by the timing variation of the mitigate commands whose mitigation

level `′ is in the upward closure of L`A .

Upward closure In order to correctly approximate leakage from levels in L`A ,

we need to account for all levels that are as restrictive as the ones in L`A . For

example, in a three-level lattice L v M v H, let L be the set {M}, and let `A = L;

then L`A = {M}. Information from M can flow to H, so in order to account

conservatively for leakage from {M}, we must also account for leakage from

H. Our definitions therefore use the upward closure of L`A , written as L`A↑ ,

{`′ | ∃` ∈ L`A ∧ ` v `′}. In this example, L`A↑ = {M,H}. Figure 5.4(b) illustrates

the relationship between L`A and its upper closure, where L`A↑ includes both

shaded areas of gray.

Trace and projection of mitigate commands Next, we focus on the amount of

time a mitigate command takes to execute. Recall from Section 5.1 that each
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mitigate in a program source has an η-identifier. For brevity, we refer to the

command mitigateη as Mη. Consider trace 〈c,m, E,G〉 →∗ 〈stop,m′, E′,G′〉. We

overload the notation for V, by writing 〈c,m, E,G〉 V (M, t), where (M, t) is a

vector of mitigate commands executed in the above trace. The vector consists

of the individual tuples (M, t) = (Mη1 , t1) . . . (Mηn , tn) where (Mηi , ti) are ordered

by the time of completion, and each (Mηi , ti) corresponds to a mitigateηi taking

time ti to execute.

Further, we define the projection of mitigate commands (M, t)� f as the longest

subsequence of (M, t), such that each (Mη, t) in the subsequence satisfies the

predicate f.

Low-determinism of mitigate commands Consider the following well-typed

program that uses mitigate twice.

mitigate1(1,H) {

if (high)
then mitigate2(1, H) { h:=h+1 }

else skip; }

Let us write pc(Mη) for the value of the pc-label at program point η. It is easy to

see that pc(M1) = L, and pc(M2) = H. Because M2 is nested within M1, the timing

of M2 is accumulated in the timing of M1. Therefore, when reasoning about the

timing of the whole program, it is sufficient to only reason about the timing

of M1. In general, given a set of levels L, an adversary level `A, and a vector

(M, t), we filter high mitigate commands by the projection (M, t) � pc(Mη)<L`A↑.

This projection consists of all the mitigate commands whose pc-label is in the

white area in Figure 5.4(b).
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Filtering out high mitigate commands rules out unrelated variations in the

mitigate commands. It turns out that in well-typed programs, the occurrence

of the remaining low mitigate commands is deterministic (we call these com-

mands low-deterministic). This result, formalized in the following lemma, is used

in the derivation of leakage bounds in Section 5.3.

Lemma 19 (Low-determinism of mitigate commands). For all programs c such that

Γ ` c, adversary levels `A, sets of security levels L, and memories and environments

E1, E2,m1,m2 such that (∀`′ < L`A↑ . E1 '`′ E2 ∧ m1 '`′ m2), we have

〈c,m1, E1, 0〉V (M1, t1)∧〈c,m2, E2, 0〉V (M2, t2) =⇒ M1 �
pc(Mη)<L`A↑ = M2 �

pc(Mη)<L`A↑

Note that there are no constraints on time components t1 and t2. That is,

the same mitigate commands may take different times to execute in different

traces. The proof is contained in Section 5.4.

Mitigation levels Per Section 5.1, the argument ` in mitigateη (e, `) c is an

upper bound on the timing leakage of command c. Let lev(Mη) be the label

argument of mitigateη command. We call this the mitigation level of Mη. Note

that lev(Mη) is unrelated to pc(Mη). For instance, in the example above, pc(M1) =

L, because M1 appears in the L-context, but lev(M1) = H.

Mitigation levels are connected to how much information an adversary at

level `A may learn. For example, information at level ` can leak to adversary at

level `A (` @ `A ) by a command Mη only when ` v lev(Mη). In general, infor-

mation from a set of levels L can be leaked by mitigate commands such that

lev(Mη) ∈ L`A↑.
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This leads to the definition of timing variations.

Definition 12 (Timing variations of mitigate commands) Given a set of secu-

rity levels L, an adversary level `A, program c, memory m, and a machine environment

E, let V be the timing variations of mitigate commands:

V(L, `A, c,m, E) , {t′ | ∃m′, E′ . (∀`′ < L`A↑ .m '`′ m′∧E '`′ E′)∧〈c,m′, E′, 0〉V (M, t)

∧ (M′, t′) = (M, t)� pc(Mη)<L`A↑∧lev(Mη)∈L`A↑}

An interesting component of this definition is the predicate used to project

(M, t). In essence, we only focus on the mitigate commands that appear in low

contexts and have high mitigation levels, such as the first mitigate in the exam-

ple earlier. Also notice that this set counts only the distinct timing components

of the mitigate command projection, ignoring the M′ component. This is suffi-

cient because for well-typed programs the M′ components of the vectors (M′, t′)

are low-deterministic by Lemma 19.

In this definition, memory and machine environments are quantified differ-

ently from Definition 11, by considering variations with respect to a larger set

of security levelsL`A↑. In Figure 5.4(b), this corresponds to flows from both gray

areas to the area observable by the adversary.

Leakage bounds guaranteed by the type system The type system ensures that

only the execution time of mitigate commands within certain projections may

leak information.
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Theorem 6 (Bound on leakage via variations) Given a command c, such that Γ `

c, and an adversary level `A, we have that for all m, E and L it holds that

Q(L, `A, c,m, E) ≤ log |V(L, `A, c,m, E)|

The proof is included in Section 5.4. An interesting corollary of the theorem is

that leakage is zero whenever a program c contains no mitigate command, or

more generally, when all mitigate commands take fixed time since there is only

one timing variation of mitigate commands in this special case.

5.3 Predictive mitigation

The predictive mitigation framework introduced in Chapter 4 removes confi-

dential information from timing of public events by delaying them according

to predefined schedules. We now build upon this framework to enable tight

leakage bounds when mitigate commands are used.

Instead of delaying public assignments themselves, we delay the comple-

tions of mitigate commands that may potentially precede public events. This

is sufficient for well-typed programs, because according to Theorem 6, only tim-

ing variations of mitigate commands carry sensitive information. The idea is

that as long as the execution time of the mitigate command is no greater than

predicted, little information is leaked. Upon a misprediction (when actual exe-

cution time is longer than predicted), a new schedule is chosen in such a way

that future mispredictions are rarer.
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〈update(n, `),m, E,G〉 →
〈(while (t − sη ≥ predict(n, `)) do (Miss[`] := Miss[`] + 1; )[⊥,⊥])[⊥,⊥],m, E,G〉

(S-UPDATE)

〈mitigateη (n, `) c,m, E,G〉 →
〈sη := t[⊥,⊥]; c; update(n, `); (sleep (predict(n, `) − t + sη))[⊥,⊥],m, E,G〉

(S-MTGPRED)

Figure 5.5: Predictive semantics for mitigate.

5.3.1 Mitigating semantics

Figure 5.5 shows the fragment of the small-step semantics that implements pre-

dictive mitigation. We record mispredictions in a special array Miss, assum-

ing Miss is initialized to zeros and is otherwise unreferenced in programs.

Expression time provides the current value of the global clock. Expression

predict(n, `) = max(n, 1) · 2Miss[`] returns the current prediction for level ` with

initial estimate n. This prediction is the fast doubling scheme (Section 4.1.4) with

the local penalty policy (Section 4.7.2); other schemes and penalty policies are

possible (Chapter 4), but are not considered here.

In rule (S-MTGPRED), mitigate transitions to a code fragment that penal-

izes and delays the execution time of c. Variable sη records the time when mit-

igation has started. If execution of c takes less time (time − sη) than predicted,

command update does nothing; the execution idles until the predicted time. If

executing c takes longer than predicted, update increments Miss[`] until the

new prediction is greater than the time that c has consumed.
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5.3.2 Leakage analysis of the global policy

Note that all auxiliary commands in Figure 5.5 have labels [⊥,⊥], ensuring that

no confidential information about machine environments is leaked when exe-

cuting these commands. Moreover, the execution time of the whole mitigated

block is at least predict(n, `). Thus, the timing variation of a single mitigate

command is controlled by the variation of possible values of predict(n, `).

The global policy (Section 4.7.2) penalizes all future mitigate commands

after a misprediction. That is, whenever there is a misprediction, Miss[`] is in-

creased for all ` in the system in Rule (S-UPDATE), rather than just for the level

that triggers the misprediction, as shown in Figure 5.5.

Let us analyze the variation of execution times given a sub-trace of mitigate

commands with pc(Mη) < L`A↑ ∧ lev(Mη) ∈ L`A↑. We call the period when there is

no misprediction (including the mispredictions from other mitigate commands

not in the trace) epoch.

Notice that by Definition 12 and Theorem 6, the only source of leakage is

through the timing variation, which we bound next. The variation of the execu-

tion times of the sub-trace of mitigate commands depends on three factors:

1. Variation in one epoch: since all mitigate commands are delayed accord-

ing to the schedule, variation in one epoch is bounded by the number of miti-

gate commands in the trace, which can be conservatively bounded by K, where

K is the number of relevant mitigate statements in the trace, i.e., the ones that

satisfy pc(Mη) < L`A↑ ∧ lev(Mη) ∈ L`A↑, according to Theorem 6.

2. Possible schedules after misprediction: because in fast doubling scheme
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there is only one possible schedule after every misprediction, this factor does

not contribute to the number of variations.

3. Number of epochs: at the Nth epoch, predicted execution time is tη × 2N−1

for all mitigate commands, where tη is the initial prediction for Mη. Since ∀η.tη ≥

1, we have 2N−1 ≤ tη × 2N−1 ≤ T with running time T . Therefore, N ≤ 1 + log T .

Putting them together, the total variation of execution times is bounded by

(K +1)1+log T . This results in leakage of at most log(K +1)× (1+ log T ) bits. When K

is unknown, it can be conservatively bounded by T , yielding an O(log2 T ) bound

on leakage.

Number of epochs when worst-case execution time is known Note that most

commands take limited time to execute. For example, command sleep(x) takes

at most 28 time units to execute when x ∈ [0, 28 − 1] (we assume interacting with

the machine environment takes less than 1 time unit). Denote by Tw the worst-

case execution time for all mitigated commands. When Tw is known, the number

of epochs can be bounded by 1 + log Tw. Therefore, the leakage can be bounded

by log(K + 1) · (1 + log Tw).

5.3.3 Leakage analysis of the local policy

In contrast, the local policy (Section 4.7.2) only penalizes future mitigate com-

mands with the same mitigation level. That is, a misprediction of mitigation

level ` only increase Miss[`] in Rule (S-UPDATE), which is the policy shown in

Figure 5.5.
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Consider level `′ and a sub-trace of mitigate commands with lev(Mη) = `′.

By the nature of local penalty policy, the execution time of such commands are

not affected by other mitigate commands executed. We refine the epoch as the

period when there is no misprediction with level `′. Similarly to the analysis

of global penalty policy, the timing variation of the sub-trace is bounded by

(K + 1)1+log T .

For the leakage from L, we only need to analyze the variation of mitigate

commands with lev(Mη) ∈ L`A↑ according to Theorem 6. This gives us a bound

of |L`A↑| × log(K + 1)×(1 + log T ) in total.

This bound on leakage has a nice property: the higher the information is

in the lattice, the tighter is the bound. So, this policy introduces a differential

leakage bound for multiple levels: information with more strict usage—labels

higher in lattice—is enforced to leak less through the timing channel than less

security-sensitive information—labels lower in lattice.

Number of epochs when worst-case execution time is known Similar to

the analysis of the global policy, we can derive a tighter leakage bound when

worst-case execution time is known. Denote by Tw the worst-case execution

time for all mitigated commands. When Tw is known, the number of epochs

can be bounded by 1 + log Tw. Therefore, the leakage can be bounded by

|L`A↑| × log(K + 1) · (1 + log Tw).
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5.4 Proofs

Like earlier, we use a distinguished label L (“low”) to define what is observable

to the low observer. Since the lemmas and theorems are valid regardless of what

level L is, the propositions proved hold for any label ` in the security lattice.

5.4.1 Extended language

Extended syntax The extended syntax is shown in Figure 5.7. We augment

memories to map high variables to bracketed results. In a similar way, the syn-

tax is augmented to include bracketed results, and bracketed commands. In-

tuitively, bracketed results represent values from high memory, and bracketed

commands represent commands executed in a high pc context (such as in a

branch with a high guard). Moreover, to keep the structure of mitigate com-

mands in the small-step semantics, we introduce braced commands {c}. Braced

commands are executed in mitigate commands.

Extended semantics The operational semantics is augmented to propagate

brackets and braces, as shown in Figure 5.8, 5.9. All rules are extensions to

n ∼ n [n1] ∼ [n2] m1 ∼ m2 =⇒ ∀x.m1(x) ∼ m2(x)

c ∼ c
c1 ∼ c3 c2 ∼ c4

c1; c2 ∼ c3; c4
[c1] ∼ [c2]

c1 ∼ c2

{c1} ∼ {c2}

Figure 5.6: Equivalence on memories and commands.

e ::= . . . | [n]
c ::= . . . | [c] | {c}

Figure 5.7: Ex-
tended syntax.
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the original grammar except that (S-ASGN) is split into three rules: (S-ASGN1),

(S-ASGN2), (S-ASGN3), (S-MITIGATE) is replaced with (S-MITIGATE1) which

introduces braced commands. All rules with brackets and braces work the same

way as the normal rules from computational perspective. Brackets and braces

are just syntactic markers.

To make the proof self-contained, typing rules for expressions are shown in

Figure 5.10. Most of these rules are standard, except the rule (T-BRACKETEXP)

that treats bracketed expression as high. Additional typing rules in Figure 5.11

are given to support the soundness proof. A command in bracket is treated as a

command conditioned on high information in the type system, but commands

in braces type-check in the same way as those without braces. The rule (T-STOP)

handles stop, which appears only during evaluation. The subsumption rule (T-

SUB) is introduced to simplify the proof. The intuition is that the end-label can

always be treated more conservatively without hurting security.

Equivalence on memories and commands We define the equivalence of mem-

ories and commands up to the observable level of an adversary as in Fig. 5.6.

Intuitively, bracketed memory and commands are indistinguishable. Braces are

syntactic, so the equivalence on a command in brace is identical to that of a

command without a brace.

We write ` m if the values of all high (and only high) variables have brackets,

and say that such a memory is well-formed.
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〈[n],m〉 ↓ [n]
〈e1,m〉 ↓ [v1] 〈e2,m〉 ↓ v2 v = v1 op v2

〈e1 op e2,m〉 ↓ [v]

〈e1,m〉 ↓ v1 〈e2,m〉 ↓ [v2] v = v1 op v2

〈e1 op e2,m〉 ↓ [v]

〈e1,m〉 ↓ [v1] 〈e2,m〉 ↓ [v2] v = v1 op v2

〈e1 op e2,m〉 ↓ [v]

Figure 5.8: Extended semantics of expressions.

S-STOP1

〈[stop],m〉 → 〈stop,m〉

S-STOP2

〈{stop},m〉 → 〈stop,m〉

S-BRACKET

〈c,m〉 → 〈c′,m′〉

〈[c],m〉 → 〈[c′],m′〉

S-BRACE

〈c,m〉 → 〈c′,m′〉

〈{c},m〉 → 〈{c′},m′〉

S-ASGN1

〈e,m〉 ↓ v Γ(x) v L

〈x := e[`r ,`w],m〉 → 〈stop,m[x 7→ v]〉

S-ASGN2

〈e,m〉 ↓ v Γ(x) @ L

〈x := e[`r ,`w],m〉 → 〈stop,m[x 7→ [v]]〉

S-ASGN3

〈e,m〉 ↓ [v]

〈x := e[`r ,`w],m〉 → 〈stop,m[x 7→ [v]]〉

S-IF3

〈e,m〉 ↓ [n] n , 0

〈(if e then c1 else c2)[`r ,`w],m〉 → 〈[c1],m〉

S-IF4

〈e,m〉 ↓ [n] n = 0

〈(if e then c1 else c2)[`r ,`w],m〉 → 〈[c2],m〉

S-WHILE3

〈e,m〉 ↓ [n] n , 0

〈(while e do c)[`r ,`w],m〉 → 〈[c; (while e do c)[`r ,`w]],m〉

S-WHILE4

〈e,m〉 ↓ [n] n = 0

〈(while e do c)[`r ,`w],m〉 → 〈[stop],m〉

S-MITIGATE1

〈mitigate (e, `) c,m〉 → 〈{c},m〉

Figure 5.9: Extended semantics of commands.
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Γ ` n : ⊥ T-CONST

Γ(x) = `

Γ ` x : `
T-VAR

Γ ` e : ` Γ ` e′ : `

Γ ` e op e′ : `
T-OP

Γ ` e : ` ` v `′

Γ ` e : `′
T-SUBEXP

T-BRACKETEXP
` @ L

Γ ` [n] : `

Figure 5.10: Typing rules: expressions.

T-STOP

Γ, pc, τ ` stop : τ

T-BRACKETCMD

Γ, `, τ ` c : τ′ pc v ` ` @ L

Γ, pc, τ ` [c] : τ′

T-BRACECMD

Γ, pc, τ ` c : τ′

Γ, pc, τ ` {c} : τ

T-SUB

Γ, pc, τ ` c : τ1 τ1 v τ2

Γ, pc, τ ` c : τ2

Figure 5.11: Extended typing rules.
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5.4.2 Notations

While `A-observable events in big-step style are already defined byV`A , the cor-

responding event in a single step is not defined. We represent the assignment

generated by a single step as

〈c1,m1, E1,G1〉
(x,v)
−−−→ 〈c′1,m

′
1, E

′
1,G

′
1〉

(x, v) = ∅when evaluating c1 does not generate an assignment. Similarly, that of

multiple steps is denoted as 〈c1,m1, E1,G1〉
(x,v)
−−−→

∗

〈c′1,m
′
1, E

′
1,G

′
1〉.

The `-projection of observable events (x, v), denoted by (x, v)� `, is the longest

subset such that for any (x, v) ∈ (x, v)� `,Γ(x) v `. By definition, we have

〈c1,m1, E1,G1〉
(x,v)
−−−→

∗

〈stop,m′1, E
′
1,G

′
1〉 ⇔ 〈c1,m1, E1,G1〉V`A (x, v)� `A

5.4.3 Completeness of the extended language

We need to show the extended semantics is complete with regard to the original

semantics. Completeness means every step in the new semantics can be per-

formed in the original semantics (maybe with removal of brackets and braces)

and vice versa.

More formally, given that c is a command in the extended language, let us

use the notation of bcc to denote removal of all brackets and braces from c in

the obvious way, yielding a command from the original language. We define

bmc to convert memory in a similar way. Completenesss can be expressed as the

following lemma.
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Lemma 20 (Completeness of extended language)

` c ∧ 〈bcc, bmc, E,G〉 →∗ 〈stop,m′, E′,G′〉

=⇒ ∃m′′. 〈c,m, E,G〉 →∗ 〈stop,m′′, E′,G′〉 ∧ m′ = bm′′c

Proof. By rule induction on each evaluation step. �

5.4.4 Useful lemmas

Lemma 21 Low expressions always evaluate to ordinary integers (without brackets):

` m ∧ Γ ` e : ` ∧ ` v L =⇒ ∃n.〈e,m〉 ↓ n

Proof. By induction on the structure of expressions.

• Case e = n: trivial.

• Case e = [n]: Γ ` [n] : ` ∧ ` @ L by the typing rule. Contradiction.

• Case e = x: two conditions depending on Γ(x):

– Γ(x) v L: since m is well-formed, m(x) = n for some n. Therefore

〈e,m〉 ↓ n.

– Γ(x) @ L: contradicts the condition that ` v L.

• Case e = e1 op e2: suppose Γ ` e1 : `1∧`1 @ L then e cannot be typed as ` v L.

Otherwise, we have `1 v ` by (T-SUBEXP) and `1 v L by the transitivity

of v relation. Contradiction. Similarly, suppose Γ ` e2 : `2, we must have

`2 v L. By the induction assumption, ∃n1, n2.〈e1,m〉 ↓ n1 ∧ 〈e2,m〉 ↓ n2.

Therefore, 〈e,m〉 ↓ n1 op n2.
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�

Lemma 22 (Monotonicity of TC) The timing end label is no less than the pc label

and timing start label. That is:

Γ, pc, τ ` c : τ′ =⇒ pc t τ v τ′

Proof. Induction on the typing derivation Γ, pc, τ ` c : τ′. �

Lemma 23 (PC Subsumption)

Γ, pc, τ ` c : τ′ ∧ pc′ v pc =⇒ Γ, pc′, τ ` c : τ′

Proof. Induction on the typing derivation Γ, pc, τ ` c : τ1.

• Case (T-SKIP): from the typing rule Γ, pc′, τ ` skip[`r ,`w] : τ t `r.

• Case (T-STOP), (T-BRACECMD): by the typing rule, τ′ = τ.

• Case (T-SUB): by the induction hypothesis.

• Case (T-SLEEP): from the typing rule, Γ ` e : ` ∧ τ′ = τ t ` t `r. Also,

Γ, pc′, τ ` sleep (e) : τ t ` t `r.

• Case (T-ASGN): from the typing rule, τ′ = Γ(x) and ` t pc t τ t `r v Γ(x).

Since pc′ v pc, ` t pc′ t τ t `r v Γ(x). So Γ, pc′, τ ` (x := e)[`r ,`w] : Γ(x).

• Case (T-SEQ): from the typing rule, Γ, pc, τ ` c1 : τ1 ∧ Γ, pc, τ1 ` c2 : τ′. By

the induction hypothesis, we have Γ, pc′, τ ` c1 : τ1 ∧ Γ, pc′, τ1 ` c2 : τ′.

• Case (T-BRACKETCMD): from the typing rule, Γ, `′, τ ` c : τ′∧ pc v `′∧ `′ @

L. Since pc′ v pc v `′ too, Γ, pc′, τ ` [c] : τ′.
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• Case (T-IF): from the typing rule, τ′ = `t τt τ1t τ2 and Γ, `t pc, `t τt `r `

ci : τi where Γ ` e : `. Since pc′ v pc, Γ, ` t pc′, ` t τ t `r ` ci : τi by the

induction hypothesis.

• Case (T-WHILE): from the typing rule, Γ ` e : ` ∧ pc v `w ∧ ` t τ t `r v

τ′ ∧ Γ, ` t pc, τ′ ` c : τ′. By the induction hypothesis, all conditions are still

satisfied by replacing pc with pc′.

• Case (T-MTG): by the typing rule, Γ ` e : `′ ∧ pc v `w ∧ Γ, pc, τ t `′ t `r ` c :

τ′ ∧ τ′ v `. Since pc′ v pc, pc′ v `w. Moreover, Γ, pc′, τ t `′ t `r ` c : τ′ by the

induction hypothesis.

�

Lemma 24 (TC Subsumption)

Γ, pc, τ ` c : τ1 ∧ τ
′ v τ =⇒ Γ, pc, τ′ ` c : τ1

Proof. Induction on the typing derivation Γ, pc, τ ` c : τ1.

• Case (T-SKIP): from the typing rule, τ1 = τ t `r and Γ, pc, τ′ ` c : τ′ t `r.

Since τ′ v τ, Γ, pc, τ′ ` c : τ1 by (T-SUB).

• Case (T-STOP): Γ, pc, τ′ ` c : τ′. Since τ′ v τ, the result is true by (T-SUB).

• Case (T-SUB): by the induction hypothesis.

• Case (T-SLEEP): from the typing rule, Γ ` e : ` ∧ τ1 = τ t ` t `r. Also,

Γ, pc, τ′ ` sleep (e)[`r ,`w] : τ′ t ` t `r. Since τ′ v τ, the result is true by

(T-SUB).

• Case (T-ASGN): from the typing rule, ` t pc t τ t `r v Γ(x). Since τ′ v τ,

` t pc t τ′ t `r v Γ(x) too. So Γ, pc, τ′ ` c : Γ(x).
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• Case (T-SEQ): from the typing rule, Γ, pc, τ ` c1 : τ2 ∧ Γ, pc, τ2 ` c2 : τ1. By

the induction hypothesis, we have Γ, pc, τ′ ` c1 : τ2. Therefore, by (T-SEQ),

Γ, pc, τ ` c1; c2 : τ1.

• Case (T-BRACKETCMD): from the typing rule, Γ, `′, τ ` c : τ1∧pc v `′∧ `′ @

L. Since, τ′ v τ, Γ, L′, τ′ ` c : τ1 by the induction hypothesis. By (T-

BRACKETCMD), Γ, pc, τ′ ` [c] : τ1.

• Case (T-BRACECMD): by the induction hypothesis.

• Case (T-IF): from the typing rule, Γ ` e : `∧Γ, `tpc, `t τt `r ` ci : τi. Since

τ′ v τ, Γ, `tpc, `t τ′t `r ` ci : τi by the induction hypothesis. Result is true

by applying (T-IF) again.

• Case (T-WHILE): from the typing rule, Γ ` e : ` ∧ pc v `w ∧ ` t τ t `r v

τ′′ ∧ Γ, ` t pc, τ′′ ` c : τ′′. Since τ′ v τ, ` t τ′ t `r v τ′′ still holds. Other

conditions are not affected by this replacement.

• Case (T-MTG): from the typing rule, Γ ` e : `′∧Γ, pc, τt`′t`r ` c : τ′′∧τ′′ v

`. Since τ′ v τ, Γ, pc, τ′ t `′ t `r ` c : τ′′ by the induction hypothesis. So by

(T-MTG), the result is true.

�

Lemma 25 (Preservation)

` m ∧ Γ, pc, τ ` c : τ′ ∧ 〈c,m〉 → 〈c′,m′〉 =⇒ ` m′ ∧ Γ, pc, τ ` c′ : τ′

Proof. By rule induction on 〈c,m〉 → 〈c′,m′〉.

• (S-SKIP, S-STOP1, S-STOP2, S-SLEEP, S-WHILE2): ` m′ is trivial since m′ =

m. Since c′ = stop, Γ, pc, τ ` c′ : τ. By Lemma 22, τ v τ′. By (T-SUB),

Γ, pc, τ ` c′ : τ′.
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• (S-BRACKET, S-BRACE): by the induction hypothesis.

• 〈c1; c2,m〉 → 〈c′1; c2,m′〉 ((S-SEQ1)): from the evaluation rule, 〈c1,m〉 →

〈c′1,m
′〉. By the typing rule, Γ, pc, τ ` c1 : τ1 ∧ Γ, pc, τ1 ` c2 : τ′. By the

induction hypothesis, ` m′ and Γ, pc, τ ` c′1 : τ1. So, Γ, pc, τ ` c′1; c2 : τ′.

• 〈c1; c2,m〉 → 〈c2,m′〉 ((S-SEQ2)): by the typing rule, Γ, pc, τ ` c1 : τ1 ∧

Γ, pc, τ1 ` c2 : τ′. By Lemma 22, τ v τ1. By Lemma 24, Γ, pc, τ ` c2 : τ′.

By the induction hypothesis, ` m′.

• (S-ASGN1): Γ, pc, τ ` c′ : τ′ is similar to (S-SKIP). Moreover, we have

Γ(x) v L. So changing the mapping of x to an ordinary integer in well-

formed memory will result in well-formed memory too.

• (S-ASGN2) and (S-ASGN3): Similar to (S-ASGN1) except for ` m′. For rule

(S-ASGN2), the type of x is high, so memory m′ is still well-formed after

the mapping for x is changed to a bracketed integer. For rule (S-ASGN3),

Γ ` e : ` ∧ ` @ L since otherwise, ∃v, 〈e,m〉 ↓ v from Lemma 21. From

the typing rule, ` v Γ(x), so Γ(x) @ L. So changing the mapping of x to a

bracketed integer will result in a well-formed memory too.

• (S-IF1) and (S-IF2): ` m′ since m′ = m. From the typing rule, Γ, ` t pc, ` t

τ t `r ` ci : τi. By Lemma 23 and 24, we have Γ, pc, τ ` ci : τi.

• (S-IF3) and (S-IF4): ` m′ since m′ = m. Since in either case, e evaluates to

high value by evaluation rule, Γ ` e : ` ∧ ` @ L by Lemma 21. From the

typing rule, Γ, ` t pc, ` t τ t `r ` ci : τi. Thus, Γ, pc, ` t τ t `r ` [ci] : τi.

By Lemma 24, Γ, pc, τ ` [ci] : τi. Since τ′ = ` t τ t τi, Γ, pc, τ ` [ci] : τ′ by

(T-SUB).

• (S-WHILE1): ` m′ is trivial. From the typing rule, there is a τ′ such that

Γ ` e : `∧`tτt`r v τ
′∧Γ, `tpc, τ′ ` c : τ′. By Lemma 23, 24, Γ, pc, τ ` c : τ′.
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Also, since ` t τ′ t `r = τ′, we can derive Γ, pc, τ′ ` (while e do c)[`r ,`w] : τ′.

By (T-SEQ), the result is true.

• (S-WHILE3): similar to (S-IF3), we have ` @ L. Setting `′ = ` t pc and by

similar derivation as (S-WHILE1), we have Γ, `′, τ ` c; (while e do c)[`r ,`w] :

τ′. Thus, by (T-BRACKETCMD), the result is true.

• (S-WHILE4): similar to (S-IF3), we get ` @ L. By the typing rule, checking

[stop] has the following form (`′ = ` t pc):

Γ, `′, τ ` stop : τ pc v `′ `′ @ L

Γ, pc, τ ` [stop] : τ

By Lemma 22, τ v τ′. So Γ, pc, τ ` [stop] : τ′ by (T-SUB).

• (S-MITIGATE1): ` m′ since m′ = m. From the typing rule, Γ, pc, τ t ` t `r `

c : τ′′. By Lemma 24, Γ, pc, τ ` c : τ′′. So Γ, pc, τ ` {c} : τ by (T-BRACECMD).

By (T-SUB), Γ, pc, τ ` {c} : τ′.

�

Lemma 26 (High-pc lemma) Commands that type-check in a high-pc context neither

generate low assignments nor modify low machine environment in one step.

∀pc, τ.pc @ L∧Γ, pc, τ ` c : τ′∧〈c,m, E,G〉
(x,v)
−−−→ 〈c′,m′, E′,G′〉 =⇒ (x, v)� L = ∅∧E ≈L E′

Proof. First we show E ≈L E′ by induction on the structure of c.

• stop: by the semantics, it does not change E.

• c1; c2, {c}, [c]: by the induction hypothesis.
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• Other commands: all other commands have the form c[`r ,`w]. We have

pc v `w by the typing rule. Since pc @ L, ∀`′ v L, `w @ `′ (otherwise,

by transitivity of v, we have `w v L). Therefore, by Property 5, we have

∀`′ v L, E(`′) = E′(`′). That is, E ≈L E′.

Next, we show (x, v)� L = ∅ by rule induction on the core semantics.

• Case (S-SKIP, S-STOP1, S-STOP2, S-SLEEP, S-IF1, S-IF2, S-IF3, S-IF4, S-

WHILE1, S-WHILE2, S-WHILE3, S-WHILE4, S-MITIGATE): trivial since

none of them generate an assignment in one step.

• Case (S-BRACKET): from the typing rule, Γ, `′, τ ` c ∧ `′ @ L. So the result

is true by the induction hypothesis.

• Case (S-BRACE): by the induction hypothesis.

• Case (S-SEQ1): from the typing rule, Γ, pc, τ ` c1. Since pc @ L, (x, v)� L = ∅

from the induction hypothesis.

• Case (S-SEQ2): similar to (S-SEQ1).

• Case (S-ASGN1): from the typing rule, `tpctτt `r v Γ(x), where Γ ` e : `.

Since pc @ L, Γ(x) @ L. This contradicts the condition of (S-ASGN1).

• Case 〈x := e,m, E,G〉 → 〈stop,m[x 7→ [v]], E′,G′〉 ((S-ASGN2) and (S-

ASGN3)): for (S-ASGN2), Γ(x) @ L. By Lemma 21 and typing rule, Γ(x) @ L

for (S-ASGN3). So (x, v)� L = ∅.

�
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Lemma 27 (High-timing lemma) Commands that type-check with high timing start

label do not modify low memory or the machine environment in one step.

∀pc, τ.τ @ L∧Γ, pc, τ ` c : τ′∧〈c,m, E,G〉
(x,v)
−−−→ 〈c′,m′, E′,G′〉 =⇒ (x, v)� L = ∅∧E ≈L E′

Proof. Similar to the proof of Lemma 26 except that using the result of

Lemma 26 for bracketed commands. �

Lemma 28

∀`.m1 ∼` m2 ∧ Γ ` e : `′ ∧ `′ v ` ∧ 〈e,m1〉 ↓ v1 =⇒ ∃v2.〈e,m2〉 ↓ v2 ∧ v1 = v2

Proof. By rule induction on expression evaluation. �

Lemma 29 (Unwinding)

` m1∧ ` m2∧ ` c1∧ ` c2∧m1 ≈L m2∧E1 ≈L E2∧c1 ∼ c2∧〈c1,m1, E1,G1〉
(x,v)
−−−→ 〈c′1,m

′
1, E

′
1,G

′
1〉

=⇒ (∃c′2,m
′
2, E

′
2,G

′
2.c
′
2 ∼ c′1 ∧ 〈c2,m2, E2,G2〉

(x,v)
−−−→

∗

〈c′2,m
′
2, E

′
2,G

′
2〉

∧ (x, v)� L = (x, v)� L ∧ E′1 ≈L E′2) ∨ (〈c2,m2〉 ⇑ ∧∃c.c2 = [c])

Proof. By rule induction on 〈c1,m1, E1,G1〉 → 〈c′1,m
′
1, E

′
1,G

′
1〉.

• Case (S-SKIP, S-SLEEP, S-STOP2, S-MITIGATE1): since c1 ∼ c2. Say c′2 is the

result of taking one step from c2. By the evaluation rule, we have c′1 ∼ c′2.

(x, v)� L = (x, v)� L since no assignments are generated by these commands.

By Property 7, E′1 ≈L E′2.

• Case (S-STOP1): since c1 ∼ c2, c2 = [c4]. If c2 diverges, we are done with

c = c4. Otherwise, we have 〈[c4],m2, E2,G2〉 →
∗ 〈[stop],m′2, E

′
2,G

′
2〉 →
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〈stop,m′2, E
′
2,G

′
2〉. By the typing rule, c4 is typable with pc @ L. By

Lemma 26 and induction on the number of steps, we have (x, v) � L =

(x, v)� L = ∅ ∧ E′1 ≈L E′2. We choose c′2 = stop.

• Case 〈[c],m1, E1,G1〉 → 〈[c′],m′1, E
′
1,G

′
1〉 ((S-BRACKET)): since c2 ∼ c1, c2 =

[c4]. By the typing rule, c is typable with L′ @ L. By Lemma 26, we have

(x, v)� L = ∅ ∧ E′1 ≈L E1 ≈L E2. Therefore, we choose c′2 = c2.

• Case (S-BRACE, S-SEQ1, S-SEQ2): by the induction hypothesis.

• Case (S-ASGN1, S-ASGN2, S-ASGN3): since c2 ∼ c1, so c2 = c1. Thus the

same evaluation rule will be applied when c2 take one step. So (x, v) has

the form (x′, v′). Since c2 = c1, x = x′. For (S-ASGN1), we have condition

〈e,m1〉 ↓ n. By Lemma 28, 〈e,m2〉 ↓ n. So v = v′. For (S-ASGN2, S-ASGN3),

we have Γ(x) @ L, thus (x, v)� L = (x′, v′)� L = ∅. From Property 7, E′1 ≈L E′2.

We choose c′2 = stop.

• Case (S-IF1): assume c1 = (if e then c3 else c4)[`r ,`w]. Since c2 ∼ c1, c2 = c1.

By the evaluation rule, 〈e,m1〉 ↓ n∧ n , 0. By Lemma 28, 〈e,m2〉 ↓ n∧ n , 0.

So we evaluate c2 by one step and choose c′2 = c3. Since no assignment is

generated, (x, v) � L = (x, v) � L = ∅. E′1 ≈L E′2 by Property 7 and transitivity

of ≈L.

• Case (S-IF2, S-WHILE1, S-WHILE2): similar to (S-IF1).

• Case (S-IF3): assume c1 = (if e then c3 else c4)[`r ,`w]. Since c2 ∼ c1, c2 = c1.

By the evaluation rule, we have 〈e,m1〉 ↓ [n]. By Lemma 28, 〈e,m2〉 ↓ [n]. So

c2 may evaluate to either [c5] or [c6] by the evaluation rule. In either case,

choosing c′2 to be the next step gives the desired properties.

• Case (S-IF4, S-WHILE3, S-WHILE4): similar to (S-IF3).

�
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Lemma 30

∀E1, E2,m1,m2,G, c, ` . Γ ` c ∧ m1 ∼` m2 ∧ E1 ∼` E2

∧ 〈c,m1, E1,G〉 →∗ 〈stop,m′1, E
′
1,G1〉 ∧ 〈c,m1, E1,G〉VL (x1, v1, t1)

∧ 〈c,m2, E2,G〉 →∗ 〈stop,m′2, E
′
2,G2〉 ∧ 〈c,m2, E2,G〉VL (x2, v2, t2)

=⇒ (x1, v1) = (x2, v2) ∧ E′1 ∼` E′2

Proof. Induction on the number of steps using Lemma 25 and 29. �

Proof of Theorem 1

∀E1, E2,m1,m2,G, c, ` . Γ ` c ∧ m1 ∼` m2 ∧ E1 ∼` E2

∧ 〈c,m1, E1,G〉 →∗ 〈stop,m′1, E
′
1,G1〉 ∧ 〈c,m2, E2,G〉 →∗ 〈stop,m′2, E

′
2,G2〉

=⇒ m′1 ∼` m′2 ∧ E′1 ∼` E′2

Proof. Note that memory below level L can only be modified by assignments

where Γ(x) v L. The result is directly implied by Lemma 30. �

Corollary 1

∀E1, E2,m1,m2,G, c, ` . Γ ` c ∧ (∀`′ < L`A↑.m1 '`′ m2 ∧ E1 '`′ E2)

∧ 〈c,m1, E1,G〉 →∗ 〈stop,m′1, E
′
1,G1〉 ∧ 〈c,m2, E2,G〉 →∗ 〈stop,m′2, E

′
2,G2〉

=⇒ ∀`′ < L`A↑ . m′1 '`′ m′2 ∧ E′1 '`′ E′2

Proof. Consider any `1 < L`A↑ and any `2 v `1. We have `2 < L`A↑ since otherwise,

by definition of upward closure, we have `1 ∈ L`A↑. Contradiction. Therefore,

by condition, we have m1 '`2 m2 ∧ E1 '`2 E2. Since this is true for all `2 v `1,
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m1 ∼`1 m2 ∧E1 ∼`1 E2. By Theorem 1, we have m′1 ∼`1 m′2 ∧E′1 ∼`1 E′2. In particular,

m′1 '`1 m′2 ∧ E′1 '`1 E′2. Notice that this result applies to all `1 < L`A↑, thus we get

the desired result. �

5.4.5 Proof of timing properties

Lemma 31

∀` < L`A↑ . m1 ∼` m2 ∧ E1 ∼` E2 ⇐⇒ ∀` < L`A↑ . m1 '` m2 ∧ E1 '` E2

Proof. =⇒ : by definition of ∼.

⇐=: for any level ` and `′ v `, we have `′ < L`A↑ since otherwise, ` ∈ L`A↑ by

definition of upward closure. Contradiction. Therefore, m1 '`′ m2 ∧ E1 '`′

E2. Since this is true for all `′ v `, we have m1 ∼` m2 ∧ E1 ∼` E2.

�

Proof of Lemma 19 For all programs c, such that Γ ` c, adversary levels `A,

sets of security levels L, and memories and environments E1, E2,m1,m2 such

that (∀`′ < L`A↑.E1 '`′ E2 ∧ m1 '`′ m2), we have

〈c,m1, E1, 0〉V (M1, t1)∧〈c,m2, E2, 0〉V (M2, t2) =⇒ M1 �
pc(Mη)<L`A↑ = M2 �

pc(Mη)<L`A↑

Proof. Consider any label L < L`A↑, we have E1 ∼L E2 ∧ m1 ∼L m2 by condition

and Lemma 31. First consider all mitigate commands in the trace such that

pc(Mη) v L.
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By the definition of environment pc, we have Γ, pc(Mη), τ ` Mη : τ′ for some

Γ, τ, τ′. By the rule (T-BRACKETCMD), we know that Mη cannot appear in brack-

ets since otherwise, we have pc(Mη) @ L by typing rule. Therefore, similar to the

proof of Lemma 29, we can show M1 �
pc(Mη)vL = M2 �

pc(Mη)vL. Since L can be an

arbitrary label satisfying L < L`A↑, the whole projection is identical. �

Lemma 32

∀e,Γ,m1,m2 . m1 ≈L m2 ∧ Γ ` e : L =⇒ ∀x ∈ Varse.m1(x) = m2(x)

Proof. By induction on the structure of e. �

Lemma 33 (Timing determinism) Starting from memory and machine environ-

ment that only differ in L`A↑, execution time of any command that type checks with

end timing label that is not in L`A↑ is determined by low-deterministic mitigate trace

s.t. lev(Mη) ∈ L`A↑. That is

∀pc, τ, c,m1,m2, E1, E2,G1,G2 . Γ, pc, τ ` c : τ′∧τ′ < L`A↑∧(∀`′ < L`A↑.E1 ∼`′ E2∧m1 ∼`′ m2)

∧ 〈c,m1, E1,G0〉V (M1, t1) ∧ 〈c,m2, E2,G0〉V (M2, t2)

∧ (M1, t1)� pc(Mη)<L`A↑∧lev(Mη)∈L`A↑ = (M2, t2)� pc(Mη)<L`A↑∧lev(Mη)∈L`A↑

∧ 〈c,m1, E1,G0〉 →
∗ 〈stop,m′1, E

′
1,G1〉 ∧ 〈c,m2, E2,G0〉 →

∗ 〈stop,m′2, E
′
2,G2〉

=⇒ G1 = G2

Proof. Induction on the structure of c.

• stop: trivial since G1 = G0 = G2.
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• skip[`r ,`w]: by the typing rule, `r v τ
′. Therefore, `r < L`A↑, since otherwise

τ′ ∈ L`A↑ by the definition of upward closure. Therefore, E1 ∼`r E2 by the

condition. By Property 6, G1 = G2.

• sleep (e)[`r ,`w]: by the typing rule, Γ ` e : ` ∧ ` t `r v L`A↑. Similar to skip,

E1 ∼`r E2 ∧ m1 ∼`r m2. By Lemma 32 and Property 6, G1 = G2.

• x := e[`r ,`w]: similar to sleep command.

• [c]: by (T-BRACKETCMD), Γ, `1, τ ` c : τ′ for some `1. Since τ′ < L`A↑ by

condition, G1 = G2 by the induction hypothesis.

• c1; c2: The evaluation must take the form 〈c1; c2,m, E,G0〉 →∗

〈c2,m′, E′,G′〉 →∗ 〈stop,m′′, E′′,G〉. Suppose that 〈c1,m, E,G0〉 V (M′
1, t
′
1)

and 〈c2,m′, E′,G0〉 V (M′
2, t
′
2) . We distinguish the notations starting from

〈m1, E1〉 and 〈m2, E2〉 using subscript 1 and 2 in the obvious way. Then we

have (M1, t1) = (M′
1 ·M

′′
1 , t
′
1 · t

′′
2 ). Similarly for (M2, t2).

By Lemma 19, M′
1 �

pc(Mη)<L`A↑ = M′
2 �

pc(Mη)<L`A↑. Therefore, we have

(M′
1, t
′
1)� pc(Mη)<L`A↑∧lev(Mη)∈L`A↑ = (M′

2, t
′
2)� pc(Mη)<L`A↑∧lev(Mη)∈L`A↑

and

(M′′
1 , t
′′
1 )� pc(Mη)<L`A↑∧lev(Mη)∈L`A↑ = (M′′

2 , t
′′
2 )� pc(Mη)<L`A↑∧lev(Mη)∈L`A↑

By the typing rule, we have Γ, pc, τ ` c1 : τ1 and Γ, pc, τ1 ` c2 : τ′. By

Lemma 22, τ1 v τ′. Since τ′ < L`A↑, we have τ1 < L`A↑. Thus by the

induction hypothesis on c1, we have G′1 = G′2. By Corollary 1, we have

∀`′′ < L`A↑.m
′
1 '`′′ m′2 ∧ E′1 '`′′ E′2. By the induction hypothesis on c2, we

have G1 = G2.

• (if e then c1 else c2)[`r ,`w]: suppose i = 1, 2. We have Γ ` e : ` ∧ Γ, ` t pc, ` t

τt `r ` ci : τi ∧ τ1 t τ2 < L`A↑ by (T-IF). Therefore, `r < L`A↑ ∧ ` < L`A↑. Thus,

m1 ∼` m2 by the condition.
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By Lemma 28, e evaluates to the same value whether in 〈m1, E1〉 or 〈m2, E2〉.

So the same rule must be applied. Without losing generality, let us con-

tinue rule (S-IF) when e , 0. The evaluation must take this form:

〈if e then c1 else c2,mi, Ei,G0〉 → 〈c1,mi, E′′i ,G
′′
i 〉 →

∗ 〈stop,m′i , E
′
i ,Gi〉

Since `r < L`A↑, we have E1 ∼`r E2. As m1 ∼` m2, we have G′′1 = G′′2 by

Property 6. Since the first step produces no mitigate command event,

the second part produces identical mitigate command projections. By

Property 7 and condition, we have ∀`′′ < L`A↑.E
′′
1 '`′ E′′2 . By Lemma 25,

Γ, pc, τ ` c1 : τ′. Therefore, G1 = G2 by the induction hypothesis.

• (while e do c)[`r ,`w]: by the typing rule, we have Γ ` e : `1 ∧ `1 t τ t `r v τ
′.

So `1 v τ
′ ∧ `r v τ

′. Therefore, we have `1 < L`A↑ ∧ `r < L`A↑ since τ′ < L`A↑.

Thus m1 ∼`1 m2 and E1 ∼`r E2 by the assumption.

Similarly to the case of an if command, the same evaluation rule can be

applied. We proceed with (S-WHILE1) and (S-WHILE2) since (S-WHILE3)

is similar to (S-WHILE1) and (S-WHILE4) is similar to (S-WHILE2). We

proceed by induction on the evaluation rule.

– (S-WHILE2): since m1 ∼`1 m2 and E1 ∼`r E2, G1 = G2 by Lemma 32 and

the Property 6.

– (S-WHILE1): denote (while e do c)[`r ,`w] as W. Evaluation has the form

〈W,mi, Ei,G0〉 → 〈c; W,mi, E′′i ,G
′′
i 〉 →∗ 〈W,m′′′i , E

′′′
i ,G

′′′
i 〉 →∗

〈stop,m′i , E
′
i ,G

′
i〉, where i = 1, 2.

Similarly to the proof for if command, we can show ∀`′′ < L`A↑.E
′′
1 '`′′

E′′2 ∧ G′′1 = G′′2 . Moreover, as in the proof for composition (c1; c2), we

have

∀`′′ < L`A↑.m
′′′
1 ∼`′′ m′′′2 ∧ E′′′1 ∼`′′ E′′′2 ∧G′′′1 = G′′′2
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and

(M′
1, t
′
1)� pc(Mη)<L`A↑∧lev(Mη)∈L`A↑ = (M′

2, t
′
2)� pc(Mη)<L`A↑∧lev(Mη)∈L`A↑

where 〈W,m′′′i , E
′′′
i ,G

′′′
i 〉V (M′

i , t
′
i). By the induction hypothesis on the

induction rule, we get G1 = G2.

• (mitigateη (e, `) c)[`r ,`w]: first consider ` ∈ L`A↑. We have Γ, pc, τ `

(mitigate (e, `) c)[`r ,`w] : τ′ ∧ τ′ < L`A↑ by the condition. Therefore, we

have pc < L`A↑ since otherwise, we have τ′ ∈ L`A↑ because pc v τ′. Contra-

diction. By definition, (η,Gi) is the last element in both projections. Since

these two projections are equal, we have G1 = G2.

Otherwise (when ` < L`A↑), The evaluation must take the form

〈(mitigateη (e, `) c)[`r ,`w],mi, Ei,G0〉 → 〈c,mi, E′′i ,G
′′
i 〉 →

∗ 〈stop,m′i , E
′
i ,Gi〉

Since ` < L`A↑ and by the typing rule Γ ` e : `′ ∧ `′ t `r v `, we have

`′ < L`A↑ ∧ `r < L`A↑, and thus m1 ∼` m2 and E1 ∼`r E2. So, by Lemma 32 and

the Property 6, we have G′′1 = G′′2 . Since the first step produces no mitigate

command event to the trace (only the end of a mitigate command may

add to a trace), the second part produces the same trace projection.

For all `′′ < L`A↑, we can infer that E1 ∼`′′ E2 by condition. By Property 7,

E′′1 ∼`′′ E′′2 . So we have ∀`′′ < L`A↑.E
′′
1 ∼`′′ E′′2 . By the typing rule (T-MTG),

we have Γ ` e : `′ ∧ Γ, pc, τ t `′ t `r ` c : τ′ ∧ τ′ v `. Since ` < L`A↑, τ
′ < L`A↑

too. Therefore, G1 = G2 by the induction hypothesis.

• {c}: braced command does not appear in the source code. Structural in-

duction does not rely on this case.

�
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Lemma 34 (Determinism of L-observable assignment events) Focusing on `A =

L for any label L, starting from memory and machine environment that only differ in

LL↑, L-observable assignment events that are generated by well-typed commands are

determined by low-deterministic mitigate trace s.t. lev(Mη) ∈ LL↑. That is

∀pc, τ, τ′, c,m1,m2, E1, E2 . ∧ Γ, pc, τ ` c : τ′ ∧ (∀`′ < LL↑ . m1 ∼`′ m2 ∧ E1 ∼`′ E2)

∧ 〈c,m1, E1,G0〉V (M1, t1) ∧ 〈c,m2, E2,G0〉V (M2, t2)

∧ (M1, t1)� pc(Mη)<LL↑∧lev(Mη)∈LL↑ = (M2, t2)� pc(Mη)<LL↑∧lev(Mη)∈LL↑

∧ 〈c,m1, E1,G0〉VL (x1, v1, t1) ∧ 〈c,m2, E2,G0〉VL (x2, v2, t2)

=⇒ (x1, v1, t1) = (x2, v2, t2)

Proof. Induction on the structure of c.

• sleep (e)[`r ,`w], skip[`r ,`w], stop: trivial since they produce no L-observable

assignments.

• [c]: by Lemma 26, it produces no side effects either.

• x := e[`r ,`w]: when Γ(x) @ L, this command does not produce any L-

observable assignment. Otherwise, we have Γ, pc, τ ` x := e[`r ,`w] : L by

(T-ASGN) and (T-SUB). Also, we have Γ ` e : ` ∧ ` v L. By Lemma 28,

v1 = v2.

Suppose 〈c,mi, Ei,G0〉 → 〈stop,m′i , E
′
i ,G

′
i〉 where i = 1, 2. By definition, we

have

〈c,mi, Ei,G0〉VL (xi, vi, ti) where ti = G′i −G0. Notice that L < LL↑ by defini-

tion, G′1 = G′2 by Lemma 33. So t1 = t2.

• c1; c2: by the typing rule, Γ, pc, τ ` c1 : τ1 and Γ, pc, τ1 ` c2 : τ′. More-

over, the evaluation has the form 〈c1; c2,m, E,G〉 →∗ 〈c2,m′′, E′′,G′′〉 →∗
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〈stop,m′, E′,G′〉. By the induction hypothesis, the first part produces same

L-observable events. When τ1 @ L, by Lemma 27, the second part pro-

duces no L-observable events, so we are done. Otherwise, by Lemma 33,

G′′1 = G′′2 . By Corollary 1, ∀`′ < LL↑.m′′1 ∼`′ m′′2 ∧ E′′1 ∼`′ E′′2 . By the induction

hypothesis for c2, the second part produces the same L-observable effects

too.

• (if e then c1 else c2)[`r ,`w]: by the typing rule, Γ ` e : `′∧Γ, pct`′, τt`′t`r `

ci : τi. When τ t `′ t `r @ L, by Lemma 27, ci produces no L-observable

events. We are done. Otherwise, by Lemma 28, the same branch is taken.

Without loss of generality, assume c1 is executed. Then the evaluation

must have this form:

〈if e then c1 else c2,mi, Ei,G0〉 → 〈c1,mi, E′′i ,G
′′
i 〉 →

∗ 〈stop,m′i , E
′
i ,Gi〉

By Property 6, we have G′′1 = G′′2 . By Property 7, E′′1 ≈L E′′2 . Therefore, the

result is true by the induction hypothesis on c1.

• (while e do c)[`r ,`w]: by the typing rule, there is some τ′ such that Γ, pc, τ′ `

c : τ′. When τ′ @ L, c can produce no L-observable events by Lemma 27.

We are done. Otherwise, we have Γ ` e : `′∧`′tτt`r v τ
′ v L by the typing

rule (T-WHILE). So only rule (S-WHILE1) and (S-WHILE2) can be applied

and same rule is applied. We proceed by induction on the evaluation rule.

– (S-WHILE2): trivial since no L-observable event is produced.

– (S-WHILE1): denote (while e do c)[`r ,`w] as W, evaluation has the form

〈W,mi, Ei,G0〉 → 〈c; W,mi, E′′i ,G
′′
i 〉 →∗ 〈W,m′′′i , E

′′′
i ,G

′′′
i 〉 →∗

〈stop,m′i , E
′
i ,G

′
i〉, where i = 1, 2. Since `′ t `r v L, G′′1 = G′′2 by Prop-

erty 6. Also, E′′1 ∼L E′′2 by Property 7. By the induction hypothesis

on command c; W, the second part of the evaluation produces the

201



same L-observable events. Moreover, since τ′ v L and Γ, pc, τ′ ` c : τ′

from (T-WHILE), τ′ < LL↑. Because otherwise, we have L ∈ LL↑,

which contradicts the definition of upward closure. By Lemma 33,

G′′′1 = G′′′2 . By Corollary 1, ∀`′ < LL↑ . m′′′1 ∼`′ m′′′2 ∧ E′′′1 ∼`′ E′′′2 .

Therefore, by the induction hypothesis of the evaluation rule of (S-

WHILE1) and (S-WHILE2), the last part in the evaluation trace pro-

duces same L-observable events too.

• (mitigate (e, `) c)[`r ,`w]: By the typing rule, we have Γ ` e : `′∧Γ, pc, τt`t`r `

c : τ′. When τt`t`r @ L, c produces no L-observable events by Lemma 27.

We are done.

Otherwise, the evaluation must take the form

〈(mitigate (e, `) c)[`r ,`w],mi, Ei,G0〉 → 〈c,mi, E′′i ,G
′′
i 〉 →

∗ 〈stop,m′i , E
′
i ,Gi〉

Since `′ t `r v L, we have G′′1 = G′′2 by Lemma 32 and Property 6. By Prop-

erty 7, E′′1 = E′′2 . Therefore, the result is true by the induction hypothesis

on the second step.

• {c}: braced command does not appear in the source code. Structural in-

duction does not rely on this case.

�

Proof of Theorem 6 Given a command c such that Γ ` c, we have that for all

m, E, L, ` and `A:

Q(L, `A, c,m, E) ≤ log |V(L, `A, c,m, E)|
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Proof. For any L, memory m and machine environment E, consider the case

`A = L, where L is an arbitrary label. We use a larger set Q′, which is same as Q

except that more parts of memory are allowed to vary, to bound Q:

Q′(L, L, c,m, E) , log(| {(x, v, t) | ∃m′, E′ .

(∀`′ . `′ < LL↑ . m ∼`′ m′ ∧ E ∼`′ E′)) ∧ 〈c,m′, E′, 0〉VL (x, v, t)} |)

Consider the following set

V′(L, L, c,m, E) , {(M′, t′)� pc(η)<LL↑∧lev(Mη)∈LL↑|

∃ m′, E′ . (∀`′ < LL↑ . m ∼`′ m′ ∧ E ∼`′ E′) ∧ 〈c,m′, E′, 0〉V (M′, t′)}

Notice that memory is quantified using ∼ instead of ' because of Lemma 31.

By Lemma 19, we have V′(L, L, c,m, E) = V(L, L, c,m, E).

Given any element v ∈ V′(L, L, c,m, E), consider this set of memory and ma-

chine environments:

(m,E) = {(m′, E′)|(∀`′ < LL↑ . m′ ∼`′ m ∧ E′ ∼`′ E)

∧ 〈c,m′, E′, 0〉V (M′, t′) ∧ (M′, t′)� pc(Mη)<LL↑∧lev(Mη)∈LL↑ = v}

Pick any (m1, E1) ∈ (m,E), say 〈c,m1, E1, 0〉VL (x1, v1, t1). Then by Lemma 34, we

have ∀(m′, E′) ∈ (m,E), 〈c,m′, E′, 0〉VL (x1, v1, t1).

Therefore, for all memory and machine environments that give the same

element in V′, they give the same element in Q′. By definition, both V′ and Q′

are quantifying over the same space of m, E, so we have

Q′(L, L, c,m, E) ≤ log |V′(L, L, c,m, E)|
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Since the proof above works for any L,L,m, E, ` and by the fact that V = V′,

we get

∀m, E,L, `, `A.Q′(L, `A, c,m, E) ≤ log |V(L, `A, c,m, E)|

Since Q(L, `A, c,m, E) ≤ Q′(L, `A, c,m, E), so

∀m, E,L, `, `A.Q(L, `A, c,m, E) ≤ log |V(L, `A, c,m, E)|

�

Proof of Theorem 2

∀E1, E2,m1,m2,G, c, ` . Γ ` c∧c has no mitigate commands∧m1 ∼` m2∧E1 ∼` E2

∧ 〈c,m1, E1,G〉V` (x1, v1, t1) ∧ 〈c,m2, E2,G〉V` (x2, v2, t2)

=⇒ x1 = x2 ∧ v1 = v2 ∧ t1 = t2

Proof. Direct implication of Theorem 6, since c contains no mitigate com-

mands. �
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CHAPTER 6

EVALUATION

To evaluate our approach on real-world applications, we implemented a sim-

ulation of the partitioned cache design described in Section 2.4.3, as well as a

formally verified MIPS processor using SecVerilog. As case studies, we chose

two applications previously shown to be vulnerable to timing attacks, as well

as security benchmarks. The results suggest that the approach proposed in this

dissertation is sound and has reasonable performance.

6.1 Compilation

We use a modified GCC compiler to compile C applications with timing anno-

tations. Sensitive data in applications are labeled, and timing labels are then

inferred as the least restrictive labels satisfying the typing rules from Figure 3.5

(transferring the rules from Section 2.5 to C is straightforward).

To inform the hardware of the current timing label, a new register is added

in hardware as an interface to communicate the timing label from the software

to the hardware. Simply encoding the timing labels into instructions does not

work, since labels may be required before the instruction is fetched and de-

coded: for example, to guide instruction cache behavior. Labels are also prop-

agated along the pipeline to restrict the behavior of hardware. Assembly code

setting the timing-label register is inserted before and after command blocks

with same labels.
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Name # of sets issue block size latency
L1 Data Cache 128 4-way 32 byte 1 cycle
L2 Data Cache 1024 4-way 64 byte 6 cycles
L1 Inst. Cache 512 1-way 32 byte 1 cycle
L2 Inst. Cache 1024 4-way 64 byte 6 cycles

Data TLB 16 4-way 4KB 30 cycles
Instruction TLB 32 4-way 4KB 30 cycles

Table 6.1: Machine environment parameters.

Selecting the initial prediction With the doubling policy, the slowdown of

mitigation is at most twice the worst-case time. To improve performance, we

can sample the running time of mitigated commands, and then set the initial

prediction to be a little higher than the average. In the experiments, we used

110% of average running time, measured with randomly generated secrets, as

the initial prediction.

6.2 Partitioned cache simulation

We developed a detailed, dynamically scheduled processor model supporting

two-level data and instruction caches, data and instruction TLBs, and specula-

tive execution. Table 6.1 summarizes the features of the machine environment.

We implemented this processor design by modifying the SimpleScalar simula-

tor, version 3.0e [14].

As discussed in Section 2.5.1, commodity cache designs require `r = `w. In

our implementation, we treat this requirement as an extra side condition in the

type system.
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6.2.1 Web login case study

Web applications have been shown vulnerable to timing channel attacks. For

example, Bortz and Boneh [11] have shown that adversaries can probe for valid

usernames using a timing channel in the login process. This is unfortunate since

usernames can be abused for spam, advertising, and phishing.

The pseudo-code for a simple web-application login procedure is shown be-

low. The variable response and user inputs user, pass are public to users. Con-

tents of the preloaded hashmap m (MD5 digests of valid usernames and cor-

responding passwords), password digest hash and the login status state are

secrets. The final assignment to public variable response is always 1 on pur-

pose in order to avoid the storage channel arising from the response. However,

the timing of this assignment might create a timing channel.

Hashmap m:=loadusers()

while true
(user, pass):=input()
uhash:=MD5(user)

if uhash in m
hash:=m.get(uhash)

phash:=MD5(pass)

if phash=hash
state:=success

state:=fail

response:=1

The information leakage is explicit when all confidential data (m, hash and

state) are labeled H. The type system forces line 1 and line 5–10 to have high

timing labels, so without a mitigate command, type checking fails at line 11.

We secure this code by separately mitigating both line 1 and lines 5–10. The

code then type-checks.
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Correctness In each of our experiments, we measured the time needed to per-

form a login attempt using 100 different usernames. Since valid usernames (the

hashmap m) are secrets in this case study, we varied the number of these user-

names that were valid among 10, 50, and 100. The resulting measurements are

shown as three curves in the upper part of Figure 6.1. The horizontal axis shows

which login attempt was measured and the vertical axis is time.

The data for 10 and 50 valid usernames show that an adversary can easily

distinguish invalid and valid usernames using login time. There is also measur-

able variation in timing even among different valid usernames. It is not clear

what a clever adversary could learn from this, but since passwords are used in

the computation, it seems likely that something about them is leaked too.

The lower part of the figure shows the timing of the same experiments with

timing channel mitigation in use. With mitigation enabled, execution time does

not depend on secrets, and therefore all three curves coincide. This result val-

idates the soundness of our approach. The roughly 30-cycle timing difference

between different requests does not represent a security vulnerability because it

is unaffected by secrets; it is influenced only by public information such as the

position in the request sequence.

Performance Table 6.2 shows the execution time of the main loop with various

options, including both valid/invalid usernames, hardware with no partitions

(nopar), and secure hardware both without (moff) and with (mon) mitigation.

As shown in Figure 6.1, for unmitigated logins, valid and invalid usernames

can be easily distinguished, but mitigation prevents this (we also verified that

the tiny difference is unaffected by secrets). Table 6.2 shows that partitioned

208



 87000

 87015

 87030

 87045

0 10 20 30 40 50 60 70 80 90 100

different usernames

with mitigation

 39600
 39800
 40000
 40200
 40400

 69500
 70000
 70500
 71000
 71500
 72000

no mitigation

lo
g
in

 t
im

e
 (

in
 #

 o
f 
c
lo

c
k
 c

y
c
le

s
)

valid usernames

10 50 100

Figure 6.1: Login time with various secrets.

nopar moff mon
ave. time (valid) 70618 78610 86132

ave. time (invalid) 39593 43756 86147
overhead (valid) 1 1.11 1.22

Table 6.2: Login time with various options (in clock cycles).

hardware is slower by about 11%. On valid usernames, language-based mitiga-

tion adds 10% slowdown; slowdown with combined software/hardware miti-

gation is about 22%.

6.2.2 RSA case study

The timing of efficient RSA implementations depends on the private key, cre-

ating a vulnerability to timing attacks [43, 13]. Using the RSA reference im-

plementation, we demonstrate that its timing channels can be mitigated when

decrypting a multi-block message.
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Figure 6.2: Decryption time with various secrets.

In the pseudo-code below, only the fourth line uses the confidential vari-

able key. Therefore, source code corresponding to this line is labeled as high.

Both “preprocess” and “postprocess” include low assignments whose timing is

observable to the adversary.

text:=readText()

for each block b in text
. . . preprocess . . .
compute (p:=bkey mod n)

. . . postprocess . . .
write(output, plain)

Correctness We use 100 encrypted messages and two different private keys to

measure whether secrets affect timing. The upper plot in Figure 6.2 shows that

different private keys have different decryption times, so decryption time does

leak information about the private key. The lower plot shows that mitigated

time is exactly 32,001,922 cycles regardless of the private key. Timing channel

leakage is successfully mitigated.
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Figure 6.3: Language-level vs. system-level mitigation.

Performance To evaluate how mitigation affects decryption time, we use 10

encrypted secret messages whose size ranges from 1 to 10 blocks; the size is

treated as public. We also compared the performance of language-level mitiga-

tion with the black-box mitigation (Section 4.1.1), where the entire decryption

computation is mitigated, even though system-level mitigation is not effective

against the strong, coresident attacker. To simulate system-level mitigation, the

entire code body was wrapped in a single mitigate command. The results in

Figure 6.3 show that fine-grained language-based mitigation is faster because it

does not have to mitigate the timing variation due to the number of decrypted

blocks, which is public information.

6.3 Formally verified MIPS processor

We used SecVerilog (Chapter 3) to design and verify a secure MIPS processor.

We sketch the processor design, and show how SecVerilog helped avoid security

vulnerabilities, including some not identified in prior work. We then provide re-

sults on the overhead of SecVerilog and timing channel protection. Overall, we

found that the capability to statically control information flow at a fine gran-
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ularity enables efficient secure hardware designs, and that the SecVerilog type

system only requires a small number of changes to the Verilog code with no

added run-time overhead.

6.3.1 A secure MIPS processor design

We implemented a SecVerilog compiler based on Icarus Verilog [1]. The con-

straints generated by the type system are solved by Z3 [58]. Using this imple-

mentation, we designed a complete MIPS processor that enforces the timing

label contract discussed in Section 3.1.3. Our processor is based on a classic 5-

stage in-order pipeline with separate instruction and data caches, both of which

are 32kB and 4-way associative. The processor also includes typical pipelining

techniques, such as data hazard detection, stalling and data bypassing, as well

as a floating point unit (FPU) that we constructed using the Synopsys Design-

Ware library.

The Verilog code for our processor has more than 1700 LOC excluding the

FPU, as shown in Table 6.3. LOC for the FPU is not reported because the source

for the DesignWare library component is not available. Table 6.4 summarizes

the processor’s ISA, which is rich enough that we can compile a recent OpenSSL

release with an off-the-shelf GCC compiler. The ISA is at least comparable to

the ISAs of prior processors with formally verified security (e.g., [48]). New

instructions setr and setw are used to set timing labels.

Our secure processor design supports fine-grained sharing of hardware re-

sources between different security levels. For example, the design allows both

high and low cache partitions to be securely used by a single program. This
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Module Name LOC
Fetch 60

Decode + Register File 465
Execute + ALU 218

FPU N/A
Memory + Cache 537

Write Back 20
Control Logic + Forwarding + Stalling 419

Total w/o FPU 1719

Table 6.3: Lines of Code (LOC) for each processor component.

Instruction type Instructions
Additive Arithmetic add, addi, addiu, addu, sub, subu

Binary Arithmetic and, or, xor, nor, srl, sra, sll, sllv
srlv, srav, slt, sltu, slti, sltiu, andi, ori, xori

Multiply/divide mult, multu, div, divu
Floating point add.s, sub.s, mul.s, div.s, neg.s, abs.s

mov.s, cvt.s.w, cvt.w.s, c.lt.s, c.le.s
Branch and jump bne, beq, blez, bgtz, jr, jalr, j, jal

Memory operation lw, lhu, lh, lbu, lb, sw, sh, sb, swc1, lwc1
Others mfhi, mflo, lui, mtc1, mfc1

syscall, break
Security-related setr, setw

Table 6.4: Complete ISA of our MIPS processor.

effectively increases the cache size and improves performance for applications

with multiple security levels.

To implement such a rich policy, we divide a 4-way cache into a low par-

tition and a high partition. When the timing label is H, both low and high

partitions can be used securely. When the timing label is L, both the low and

high partitions are still searched. However, to ensure that timing can be af-

fected only by the low cache partition, a cache access is treated as a miss even

when there is a hit in the high partition. To avoid the problem of data duplica-

tion, the cache line moves from the high partition to the low partition when the
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data arrives from memory, achieving functional correctness without violating

the timing constraint. Since cache states have static labels, they are not zeroed

out when timing label changes.

The pipeline, on the other hand, is dynamically partitioned using the timing

label. When the timing label changes, the pipeline is flushed to avoid leak-

ing information. A pipeline that interleaves high and low instructions without

flushing is indeed insecure, since high instructions may stall low ones.

We found that implementing such a complex policy securely would be diffi-

cult without using SecVerilog. For example, the SecVerilog type checker caught

a security flaw not foreseen by us: the dirty bit copied from the high partition

to the low partition created a potential timing channel. Our solution is to set the

dirty bit for every cache line immediately after it is fetched. This change still

allows store hits to write directly to cache line without writing to memory.

Another security issue caught by the SecVerilog type checker is a stall at the

instruction fetch stage affecting the memory stage: in our pipeline implementa-

tion, a load miss in an instruction could stall instructions in later pipeline stages.

Thus, when the timing label changes, an instruction with timing label H can stall

another instruction with label L, breaking the timing-label contract. To make the

design type-check, the pipeline is flushed at every timing-label switch.

6.3.2 Overhead of SecVerilog

SecVerilog may require designers to add additional branches to establish in-

variants needed to convince the type system of the security of the design. For
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instance, the type system fails to infer in our cache design that variable way can

only be 2 or 3 at a particular point in the code. In this case, the design needs to

include an if-statement establishing this fact. These added branches represents

the overhead of using SecVerilog.

To measure this overhead, we compare our secure MIPS processor written in

SecVerilog (“Verified”) with another secure design written in Verilog (“Unveri-

fied”). The Unverified design is essentially the same as Verified, including the

same timing channel protections. Because it eliminates the if-statements neces-

sary for type checking, it cannot be verified.

Designer effort and verification time The Unverified MIPS processor com-

prises 1692 lines of Verilog code. Converting this design to the Verified proces-

sor requires adding only 27 lines of extra code to the cache module, in order to

establish necessary invariants to convince the type checker, suggesting that very

little overhead is imposed by imprecision of the type system.

The current implementation of SecVerilog requires a programmer to explic-

itly write down one security label for each variable declaration, unless the vari-

able has the default label L. However, most labels can be automatically inferred

via adding type inference (e.g., as in [60, 17, 91]) to the SecVerilog compiler,

which we leave as future work.

The verification process is fast. For our processor design, it takes a total of

two seconds to both generate all obligations and then discharge them with Z3.

Delay, area and power We synthesized the processor designs using the Syn-

opsys synthesis flow, using the 90nm saed90nm_max digital standard cell library.
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For all designs, we increased the frequency of the processors to the maximum

achievable to see what overhead the Verified design adds to the critical path.

The synthesis results are shown in Table 6.5. Here “Insecure” represents the

baseline, unmodified MIPS processor without timing channel protection. We

discuss the baseline result in the next subsection.

The Verified design only adds 27 lines of code to Unverified, so we found

that the delay, area, and power consumption of the two designs are almost iden-

tical. For example, area overhead is only 0.16% even without including cache

SRAM, which is identical for all designs. This overhead is much lower than

that of other secure design techniques, as reported in [48]: GLIFT, 660%; Cais-

son, 100%; and Sapper, 4%. Power consumption of the two designs is identical.

Critical path delay is slightly lower for Verified, likely due to randomness in

synthesis. The results show the benefit of sharing hardware across security lev-

els and of controlling information flow at design time, without run-time checks.

Performance The Verified design does not add any performance overhead

over the Unverified design because the added logic does not change cycle-by-

cycle behavior.

6.3.3 Overhead of timing channel protection

The timing channel protection mechanisms in our processor (“Verified”) adds

overheads compared to the unmodified and unprotected baseline (“Baseline”).
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Baseline Unverified Verified
Delay w/ FPU (ns) 4.20 4.20 4.20

Delay w/o FPU (ns) 1.64 1.67 1.66
Area (µm2) 399400 401420 402079

Power (mW) 575.5 575.6 575.6

Table 6.5: Comparing processor designs.

Delay, area and power When an FPU is included, we found that the critical

path delay is identical for both Verified and Baseline, as shown in Table 6.5.

This is because the critical path of the processor lies in the FPU, which is largely

unmodified for secure designs. To more meaningfully evaluate the impact of

secure design, we also measured the maximum achievable frequency without

an FPU. Nevertheless, the delay overhead is still only 1.22%. The area overhead

of 0.67% is also quite low, and power overhead is almost negligible. Because

SecVerilog allows hardware resources to be shared across security levels while

properly restricting their allocations, timing channel protection mostly does not

require duplicating or adding hardware.

Performance The timing channel protection in our secure processor design

imposes restrictions on cache usage and results in additional pipeline flushes

and cache write-backs. We measured the performance overhead of the Verified

processor and tested its correctness on two security benchmarks.

Our benchmarks include three security programs (blowfish, rijndael, SHA-

1) from MiBench, a popular embedded benchmark suite for architectural de-

signs1 [33], as well as ciphers and hash functions in a recent release (version

1.0.1g) of OpenSSL, a widely used open-source SSL library.

1The only benchmark omitted is PGP, which requires a full-featured OS.
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Figure 6.4: Performance overhead of timing channel protection.

Thanks to the rich ISA of our MIPS processor, compiling and running these

benchmarks requires only modest effort. We use an off-the-shelf GCC com-

piler to cross-compile the benchmarks to the MIPS 1 platform. We use Cadence

NCVerilog to simulate our processor design running these binaries. Because

we lack an operating system on the processor, system calls (e.g., open, read,

close, time) are emulated by Programming Language Interface (PLI) routines.

Dynamic memory allocation is implemented by simple code using preallocated

static memory.

Most test programs in these benchmarks were used as is. The only excep-

tions are a few tests in OpenSSL that take a long time to simulate. To make

evaluation feasible on these tests, we replace long inputs with shorter ones.

We evaluate two security policies: “nomix”, a coarse-grained policy where

the entire program is labeled H, corresponding to the security policy targeted by

previous secure hardware design methods, and “mixed”, a fine-grained policy

allowing mixed H and L instructions, enabled by the new features of SecVerilog.

In the latter case, we use a simple policy to decide timing labels: for ciphers (e.g.,

AES, RSA), the encryption and decryption functions are marked as H; for secure

hash functions (e.g., MD4, SHA512), we pretend part of the input is secret, and

mark the hash functions on these inputs as H. Performance results for a single
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run of each test are shown in Figure 6.4. Multiple runs are unnecessary for our

evaluation since the simulation is deterministic.

From the MiBench suite, only rijndael shows noticeable performance over-

head, at 19.6%. Overhead is reduced to 12.2% when the fine-grained model with

mixed labels is used. Overhead on OpenSSL ranges from 0.3% (Blowfish) to

34.9% (SHA-0), with an average of 21.0%. For the fine-grained model, the over-

head on OpenSSL ranges from −3.9% (CAST5) to 21.7% (DES), with an average

of 8.8%. CAST5 runs faster with the partitioned cache because H instructions

cannot evict frequently used data in the L partition.

The results clearly show the benefit of fine-grained information flow control

within a single application. Most slowdown comes from the restriction that H

instructions cannot write to the low cache partition. Allowing mixed H and L

instructions in a single program improves performance because the restrictions

only apply to a subset of program instructions.

We could not compare our performance overhead with prior work [84, 49,

48] because they do not report the overhead over a baseline design with unpar-

titioned cache2.

2The previous method [48] calls a secure but unverified design “insecure”, and reports the
overhead of verified vs. unverified as we do in Section 6.3.2.
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CHAPTER 7

CONCLUSIONS

This dissertation presents sound and practical methods for full-system timing

channel control. The proposed approach consists of a new software-hardware

timing contract, as well as control mechanisms present at both the software level

and the hardware level.

Solving the timing channel problem requires work at both the hardware level

and the software level. Neither level has enough information to allow accurate

and complete reasoning about timing channels, because timing is a property

that crosses abstraction boundaries. This dissertation introduces a new timing

contract of read and write labels. The new contract makes it possible to control

timing channels completely and effectively across abstraction boundaries.

At the software level, the timing contract provides just enough information

for programming languages to accurately and completely control timing chan-

nels, assuming the underlying hardware obeys the contract. In particular, this

dissertation proposes a novel type system that uses read and write labels to con-

trol timing channels. It is formally proved that any well-typed program has no

timing channel leakage, assuming that the hardware obeys the timing contract.

At the hardware level, this dissertation introduces SecVerilog, a new hard-

ware design language for statically verifying timing-channel-free hardware de-

signs. SecVerilog makes it possible to design complex and efficient hardware

where most resources are shared across security domains. This is enabled by

novel features such as type-valued functions for dependent labels, the ability

to soundly and precisely use mutable variables within labels, and the modular
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incorporation of program analyses to improve precision. Moreover, SecVerilog

comes with strong security assurance; we formally prove that all forms of in-

formation flow, including explicit flows, implicit flows, and flows via timing

channels, are controlled in a well-typed hardware design.

For applications where entirely blocking timing channels is too restrictive,

this dissertation proposes a general framework, called predictive mitigation, to

improve the tradeoff between security and performance. Predictive mitigation

offers the possibility of mitigating timing channels for general computations,

while ensuring rigorous leakage bound: timing channel leakage is provably

bounded by a programmer-specified function. Experiments show that predic-

tive mitigation successfully defends against several published timing channel

attacks, with an acceptable performance overhead. Moreover, this disserta-

tion integrates predictive mitigation into the aforementioned restrictive soft-

ware language which provably eliminates all timing channels. The result is a

permissive programming model which improves the tradeoff between security

and performance for many real-world applications.

Finally, we implement the proposed approach and apply it to real-world

security-sensitive applications. Notably, using SecVerilog, we design and for-

mally verify a reasonably complex MIPS processor which satisfies the proposed

timing contract. Applications with read and write labels are run on the secure

processor via a modified compiler. The results suggest that the mechanisms

present at both the software level and the hardware level together control timing

channels in these applications. Moreover, the verified processor has overheads

of only about 1% in chip area, delay and power consumption. The application

performance overhead is reasonable, with an average of about 20%.
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[46] Boris Köpf and Geoffrey Smith. Vulnerability bounds and leakage re-

225



silience of blinded cryptography under timing attacks. In Proc. IEEE Com-
puter Security Foundations (CSF), pages 44–56, July 2010.

[47] Butler W. Lampson. A note on the confinement problem. Comm. of the
ACM, 16(10):613–615, October 1973.

[48] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram Ra-
jarathinam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Fred-
eric T. Chong. Sapper: A language for hardware-level security policy en-
forcement. In Proc. 19th Int’l Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 97–112, 2014.

[49] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong,
Timothy Sherwood, and Ben Hardekopf. Caisson: a hardware description
language for secure information flow. In Proc. ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (PLDI), pages 109–120, 2011.

[50] Fangfei Liu and Ruby B. Lee. Random fill cache architecture. In Proc. 47th

Annual IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pages 203–215,
2014.

[51] Yali Liu, Dipak Ghosal, Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen
Schulz, and Stefan Katzenbeisser. Hide and seek in time—robust covert
timing channels. In Proc. European Symp. on Research in Computer Security
(ESORICS), pages 120–135, 2009.

[52] Luı́sa Lourenço and Luı́s Caires. Dependent information flow types. FC-
T/UNL Technical Report, October 2013.

[53] Gavin Lowe. Quantifying information flow. In Proc. IEEE Computer Security
Foundations Workshop (CSFW), pages 18–31, June 2002.

[54] Jonathan K. Millen. Covert channel capacity. In Proc. IEEE Symp. on Security
and Privacy, Oakland, CA, April 1987.

[55] Jonathan K. Millen. Finite-state noiseless covert channels. In Proc. 2nd IEEE
Computer Security Foundations Workshop, pages 11–14, June 1989.

[56] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The
program counter security model: automatic detection and removal of
control-flow side channel attacks. In Proc. 8th International Conference on
Information Security and Cryptology, pages 156–168, 2006.

226



[57] Ira S. Moskowitz and Allen R. Miller. The channel capacity of a certain
noisy timing channel. IEEE Trans. on Information Theory, 38(4):1339–1344.

[58] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Proc. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008.

[59] Andrew C. Myers. JFlow: Practical mostly-static information flow con-
trol. In Proc. 26th ACM Symp. on Principles of Programming Languages (POPL),
pages 228–241, January 1999.

[60] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. Jif 3.0: Java information flow. Software release, http:
//www.cs.cornell.edu/jif, July 2006.

[61] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Verification
of information flow and access control policies with dependent types. In
Proc. IEEE Symp. on Security and Privacy, pages 165–179, 2011.

[62] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and
Ryan Kastner. Theoretical analysis of gate level information flow tracking.
In Proc. 47th Design Automation Conference, pages 244–247, 2010.

[63] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and
Ryan Kastner. Information flow isolation in I2C and USB. In Proc. 48th

Design Automation Conference, pages 254–259, 2011.

[64] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley DB. In Proc.
USENIX Annual Technical Conference, 1999.

[65] Dag A. Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of AES. Topics in Cryptology–CT-RSA 2006, pages 1–20,
January 2006.

[66] M. A. Padlipsky and D. W. Snow. Limitations of end-to-end encryption in
secure computer networks. Technical Report ESD TR-78-158, Mitre Corp.,
1978.

[67] Dan Page. Partitioned cache architecture as a side-channel defense mecha-
nism. In Cryptology ePrint Archive, Report 2005/280, 2005.

[68] Colin Percival. Cache missing for fun and profit. In BSDCan, 2005.

227



[69] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Quantifying
timing leaks and cost optimisation. Information and Communications Secu-
rity, pages 81–96, 2010.

[70] A. W. Roscoe. CSP and determinism in security modelling. In Proc. IEEE
Symp. on Security and Privacy, pages 114–127, May 1995.

[71] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In Proc. 23rd IEEE Computer Security Foundations (CSF),
CSF ’10, pages 186–199, 2010.

[72] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
January 2003.

[73] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-
threaded programs. In Proc. 13th IEEE Computer Security Foundations Work-
shop, pages 200–214. IEEE Computer Society Press, July 2000.

[74] Gaurav Shah, Andres Molina, and Matt Blaze. Keyboards and covert chan-
nels. Proc. 15th USENIX Security Symp., August 2006.

[75] Vincent Simonet. The Flow Caml System: documentation and user’s man-
ual. Technical Report 0282, Institut National de Recherche en Informatique
et en Automatique (INRIA), July 2003.

[76] Geoffrey Smith. A new type system for secure information flow. In Proc.
IEEE Computer Security Foundations Workshop (CSFW), pages 115–125, June
2001.

[77] Geoffrey Smith. On the foundations of quantitative information flow. Foun-
dations of Software Science and Computational Structures, 5504:288–302, 2009.

[78] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In Proc. 25th ACM Symp. on Principles of
Programming Languages (POPL), pages 355–364, January 1998.

[79] Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing stateful authoriza-
tion and information flow policies in Fine. In Proc. European Symposium on
Programming (ESOP), pages 529–549, 2010.

[80] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan

228



Bhargavan, and Jean Yang. Secure distributed programming with value-
dependent types. In Proc. 16th ACM SIGPLAN Int’l Conf. on Functional Pro-
gramming (ICFP), pages 266–278, 2011.

[81] Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable: A language
for enforcing user-defined security policies. In Proc. IEEE Symp. on Security
and Privacy (S&P), pages 369–383, 2008.

[82] Mohit Tiwari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong, and Tim-
othy Sherwood. Execution leases: A hardware-supported mechanism for
enforcing strong non-interference. In Proc. Annual IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), December 2009.

[83] Mohit Tiwari, Jason Oberg, Xun Li, Jonathan K. Valamehr, Timothy Levin,
Ben Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood.
Crafting a usable microkernel, processor, and I/O system with strict and
provable information flow security. In Proc. Annual International Symp. on
Computer Architecture (ISCA), pages 189–200, June 2011.

[84] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore,
Frederic T. Chong, and Timothy Sherwood. Complete information flow
tracking from the gates up. In Proc. Int’l Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 109–120,
2009.

[85] Stephen Tse and Steve Zdancewic. Run-time principals in information-
flow type systems. ACM Trans. on Programming Languages and Systems,
30(1):6, 2007.

[86] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with min-
imum typings. In Proc. 10th IEEE Computer Security Foundations Workshop,
pages 156–168, 1997.

[87] Zhenghong Wang and Ruby B. Lee. Covert and side channels due to pro-
cessor architecture. In Proc. Annual Computer Security Applications Confer-
ence (ACSAC), pages 473–482, 2006.

[88] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In Proc. Annual International
Symp. on Computer Architecture (ISCA), pages 494–505, 2007.

[89] Zhenghong Wang and Ruby B. Lee. A novel cache architecture with en-

229



hanced performance and security. In Proc. 41st Annual IEEE/ACM Int’l
Symp. on Microarchitecture (MICRO), pages 83–93, 2008.

[90] John C. Wray. An analysis of covert timing channels. In Proc. IEEE Symp. on
Security and Privacy (S&P), pages 2–7, 1991.

[91] Hongwei Xi. Imperative programming with dependent types. In Proc. IEEE
Symposium on Logic in Computer Science, pages 375–387, 2000.

[92] Hongwei Xi and Frank Pfenning. Dependent types in practical program-
ming. In Proc. ACM Symp. on Principles of Programming Languages (POPL),
pages 214–227, 1999.

[93] Steve Zdancewic and Andrew C. Myers. Observational determinism for
concurrent program security. In Proc. 16th IEEE Computer Security Founda-
tions Workshop, pages 29–43, June 2003.

[94] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Predictive mit-
igation of timing channels in interactive systems. In Proc. 18th ACM
Conf. on Computer and Communications Security (CCS), pages 563––574, Oc-
tober 2011.

[95] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based
control and mitigation of timing channels. In Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), pages 99–110,
June 2012.

[96] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A
hardware design language for timing-sensitive information-flow security.
In Proc. 20th Int’l Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 503–516, 2015.

[97] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static
information flow control. Intl’ J. of Information Security, 6(2–3), March 2007.

230


