
Theoretical Pearl
Monads from Comonads, Comonads from Monads

An Exercise in Program Transformation

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

ralf.hinze@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk/ralf.hinze/

1 Introduction

Shall I structure my programs using comonads or monads? Functional programmers have embraced
monads but they have not fallen in love with comonads. This is despite the fact that the simplest
example of a (co)monadic structure is a comonad, the product comonad. This pearl explains why
the product comonad has not taken off. Along the way, we develop a little theory of program
transformations. But we are skipping ahead, let us review comonads and monads first.

2 Comonads and monads

A comonad consists of three pieces of data: an endofunctor N and natural transformations

e : N→ I ,

d : N→ NN .

It is helpful to think of a comonad as a mechanism that supports computations in context. A
comonadic program is an arrow of type NA → B , where the comonad is wrapped around the
source. The operations that come with a comonad manipulate this context: e (short for extract)
discards the context, d (short for duplicate) creates two copies of it. The two operations have to
go together:

Ne · d = idN ,

eN · d = idN ,

Nd · d = dN · d .

NN

N
id

�

d �

N

eN
�

NN
Ne
�

d �

N
d
� NN

NN

d
g

dN
� NNN

Nd
g

The first two coherence properties, the unit laws, express that doubling a context and then dis-
carding one of the copies gives the original context. The third coherence property, the associative
law, requires that the two ways of creating three copies of a context are equivalent. (As an aside,
Ne denotes the composition of the functor N with the natural transformation e. In case you need
to brush up a bit on your category theory, Appendix A contains a refresher.)

An instance of the abstract concept is the costate comonad NA = AX ×X defined

e = app ,

d = (Λ id)×X .

The context can be seen as a store AX together with a memory location X , a focus of interest.
Extracting the data in the focus is implemented simply by function application. We defer a proof
that the definitions above define a comonad until later when this will fall out as a by-product.

2 Ralf Hinze

Comonads dualize to monads. For reference, let us spell out the details. A monad consists of
an endofunctor M and natural transformations

r : I→ M ,

j : MM→ M .

Think of a monad as a mechanism that supports effectful computations. A monadic program is
an arrow of type A→ MB , where the monad is wrapped around the target. The operations that
come with a monad organise effects: r (short for return) creates a pure computation, j (short for
join) merges two layers of effects. Like for comonads, the two operations have to go together:

j · rM = idM

j ·Mr = idM

j ·Mj = j · jM

MM

M
id

�
rM �

M

j
�

MM
j
�Mr �

MMM
Mj
� MM

MM

jM
g

j
� M

j
g

The unit laws state that merging a pure with a potentially effectful computation gives the effectful
computation. The associative law expresses that the two ways of merging three layers of effects
are equivalent.

A popular instance of the abstract concept is the state monad MA = (A×X)X defined

r = Λ id ,

j = Λ (app · app) .

This monad supports stateful computations, where the state X is threaded through a program.
The definitions of the costate comonad and the state monad expose striking similarities: they

both involve a product −×X and an exponential (−)X . This is, of course, not a coincidence. The
two structures are intimately related as they both arise out of the same adjunction, a concept we
study next.

3 Adjunctions

Adjunctions are among the most beautiful constructions in mathematics. Loosely speaking, an
adjunction allows us to transfer a problem from one domain to another, where the problem is
possibly simpler to solve. Our interest in adjunctions stems from the fact that they provide a
general framework for program transformations. Here is the categorical description.

Let C and D be categories. The functors L : C ← D and R : C → D are adjoint, L a R,

C
≺

L

⊥
R
�

D

if and only if there is a bijection between the hom-sets

C (LA,B) ∼= D(A,RB)

that is natural both in A and B . The functor L is said to be a left adjoint for R, while R is L’s
right adjoint. The function witnessing the isomorphism is called the left adjunct. It allows us to
trade L in the source for R in the target of an arrow. Its inverse is the right adjunct.

Because of the naturality requirement the adjuncts are fully determined by the image of a single
arrow, the identity. These two images are called the counit ε : LR→ I and the unit η : I→ RL of
the adjunction. In fact, an alternative definition of adjunctions builds solely on these units, which
have to satisfy

Theoretical Pearl Monads from Comonads, Comonads from Monads 3

εL · Lη = idL , (1) Rε · ηR = idR . (2)

These so-called triangle identities are equivalent to the requirement that the left adjunct is inverse
to the right adjunct.

Perhaps the best-known example of an adjunction is currying.

C
≺
−×X

⊥
(−)X

�
C Λ : C (A×X ,B) ∼= C (A,BX)

The existence of this adjunction is one of the requirements for cartesian closure. The left adjunct Λ

is also called curry , hence the name curry adjunction. The counit of the adjunction is application,
its unit is Λ id .

Every adjunction L a R induces a comonad N = LR and a monad M = RL. Their operations
have simple implementations in terms of the units.

e = ε

d = LηR

r = η

j = RεL

The unit laws are consequences of the triangle identities (1) and (2). The associative law follows
from the coherence property of horizontal composition (35).

The curry adjunction induces the (co)state (co)monad. The original definitions of the op-
erations are obtained from the generic ones by plugging in the definitions of L f = f × X ,
R g = Λ (g · app), ε = app, and η = Λ id .

All the operations we have encountered so far are natural transformations. In fact, this pearl
is 100% natural—the forthcoming proofs only involve natural transformations. To deal effectively
with those we lift adjunctions to functor categories, developing a little theory of ‘transformation
transformers’ in the remainder of this section.

3.1 Lifting adjunctions

Every adjunction L a R gives rise to an adjunction L− a R− between functor categories, where
L− is the higher-order functor that takes F to LF and α to Lα (see Appendix A).

C
≺

L

⊥
R
�

D then C E ≺
L−
⊥
R−
�

DE C E (LF,G) ∼= DE (F,RG)

The lifted isomorphism establishes a bijection between natural transformations and is itself natural
in F and G. We write b−c for the lifted left adjunct and b−c◦ for its inverse. We have noted before
that an adjunction can be defined either in terms of adjuncts or in terms of units. To avoid the
need for disambiguation we refer to the underlying adjunction only in terms of the units and to
the lifted adjunction only via the adjuncts. The lifted adjuncts can be defined in terms of the units
of the underlying adjunction as follows:

bα : LF→ Gc = Rα · ηF , (3) bβ : F→ RGc◦ = εG · Lβ . (4)

As a warm-up for the forthcoming calculations, let us prove that b−c◦ is left-inverse to b−c.

bbαcc◦

= { definition of b−c (3) }
bRα · ηFc◦

= { definition of b−c◦ (4) }
εG · L(Rα · ηF)

= { L− functor (27) }
εG · LRα · LηF

4 Ralf Hinze

= { horizontal composition (35): ε : LR→ I and α : LF→ G }
α · εLF · LηF

= { −F functor (29) }
α · (εL · Lη)F

= { triangle identity (1) }
α · idLF

= { −F functor (28) }
α · idLF

= { identity }
α

That b−c◦ is right-inverse to b−c follows by duality. All of the following statements come in pairs,
where one identity is dual to the other. Consequently, we only have to prove one of them. Also the
subsequent proofs will be less detailed, omitting obvious steps such as manipulating the identity.

The naturality properties of the adjuncts give rise to fusion laws, which allow us to move
natural transformations in and out of the brackets.

bαc · β = bα · Lβc (5)
Rα · bβc = bα · βc (6)

bαc◦ · Lβ = bα · βc◦

α · bβc◦ = bRα · βc◦

A direct consequence of the definitions (3) and (4) are the shift laws, which allow us to do the
same with functors.

bαcH = bαHc (7) bβc◦H = bβHc◦

Post-composition dualizes to pre-composition. Consequently, every adjunction L a R also in-
duces an adjunction −R a −L.

C
≺

L

⊥
R
�

D then E D ≺
−R

⊥
−L
�

E C E D(FR,G) ∼= E C (F,GL)

Note that left and the right adjoint are swapped in the lifted adjunction. (This is because pre-
composition −F is the arrow part of the contravariant functor C (−) : Catop → Cat.) The left
adjunct, written d−e◦, and the right adjunct, written d−e, are defined

dβ : FR→ Ge◦ = βL · Fη , dα : F→ GLe = Gε · αR . (8)

As an aide-mémoire: b−c turns an L in the source to an R in the target, while d−e turns an L in
the target to an R in the source.

The fusion laws

dαe◦ · β = dα · βRe◦

αL · dβe◦ = dα · βe◦
dαe · βR = dα · βe (9)
α · dβe = dαL · βe (10)

and the shift laws

Hdβe◦ = dHβe◦ Hdαe = dHαe (11)

are dual to those for post-composition.

Theoretical Pearl Monads from Comonads, Comonads from Monads 5

3.2 Transformation transformers

If we combine the adjuncts b−c and d−e, we can send natural transformations of type LF → GL
to transformations of type FR→ RG. The order in which we apply the adjuncts does not matter.

bdαec = dbαce (12) dbβc◦e◦ = bdβe◦c◦

The straightforward proof makes use of the fact that R− and −R are functors.

bdαec
= { definition of d−e (8) }
bGε · αRc

= { definition of b−c (3) }
R(Gε · αR) · ηFR

= { R− functor (27) }
RGε · RαR · ηFR

= { −R functor (29) }
RGε · (Rα · ηF)R

= { definition of d−e (8) }
dRα · ηFe

= { definition of b−c (3) }
dbαce

As an aside, we also have bdαe◦c = dbαce◦ and dbβc◦e = bdβec◦. These are the adjuncts of the
adjunction L−R a R−L.

Let us now assume that L and R are endofunctors. Then we can nest b−c and d−e arbitrarily
deep so that db−cmen sends LmF → GLn to RnF → GRm . We will refer to db−cmen simply as a
transformer. As an aide-mémoire: the number of bs corresponds to the number of Ls in the source,
and the number of ds corresponds to the number of Ls in the target. To get a better grip on iterated
adjuncts it is useful to introduce generalisations of the units: εn : LnRn → I and ηn : I → RnLn

defined ε0 = id I = η0 and

ε · LεnR = εn+1 = εn · LnεRn , (13) RnηLn · ηn = ηn+1 = RηnL · η . (14)

The generalised counit εn builds a tower of εs decorated with Ls and Rs. For instance, ε3 unfolds
to ε ·LεR ·LLεRR. The generalised units are the images of the identity on Ln and Rn , respectively.

didLn en = εn = bidRn c◦n (15) bidLn cn = ηn = didRn e◦n (16)

The proof of these laws proceeds by straightforward induction on n.
Using the generalised units we can characterise the n-fold adjuncts.

bα : LnF→ Gcn = Rnα · ηnF (17)
dβ : FRn → Ge◦n = βLn · Fηn

bβ : F→ RnGc◦n = εnG · Lnβ

dα : F→ GLnen = Gεn · αRn (18)

For the proofs we repeatedly appeal to fusion and shift. For the first identity we calculate

bαcn

= { b−c-fusion (6), n times }
Rnα · bidLnFcn

= { b−c-shift (7), n times }
Rnα · bidLn cnF

= { characterisation of ηn (16) }
Rnα · ηnF .

The other calculations are similar.
Finally, the generalised units satisfy generalised triangle identities.

6 Ralf Hinze

εnLn · Lnηn = idLn (19) Rnεn · ηnRn = idRn

The proof proceeds by induction over n. Case 0: the identity simplifies to id I · id I = id I. Case
n + 1: we reason

εn+1L
n+1 · Ln+1ηn+1

= { definition of εn+1 (13) and definition of ηn+1 (14) }
(ε · LεnR)Ln+1 · Ln+1(RnηLn · ηn)

= { −L functor (29) and L− functor (27) }
εLn+1 · LεnRLn+1 · Ln+1RnηLn · Ln+1ηn

= { horizontal composition (35): εn : LnRn → I and η : I→ RL }
εLn+1 · LηLn · LεnLn · Ln+1ηn

= { −L functor (29) and L− functor (27) }
(εL · Lη)Ln · L(εnLn · Lnηn)

= { triangle identity (1) and ex hypothesi }
idLn+1 .

Thus prepared we can now turn to the heart of the matter.

4 Monads from comonads, comonads from monads

Assume that a left adjoint is at the same time a comonad. Then its right adjoint is a monad!
Dually, the left adjoint of a monad, if it exists, is a comonad. The ‘transformation transformers’ of
the previous section allow us to systematically turn the comonadic operations into monadic ones
and vice versa.

r = bec : I→ R (20)
j = bdddeec : RR→ R (21)

e = brc◦ : L→ I

d = ddbj c◦e◦e◦ : L→ LL

Since the adjuncts are inverses, going round in a circle yields the original structure. Furthermore,
comonadic programs of type LA → B are in one-to-one correspondence to monadic programs of
type A→ RB . So in this particular situation, the choice between comonadic and monadic style is
not a matter of expressiveness, it is purely a matter of personal taste. (Functional programmers
seem to lean to the right.)

It remains to show that the comonadic laws imply the monadic laws and vice versa. For the
proof it is sufficient to concentrate on natural transformations of type Lm → Ln and Rn → Rm ,
respectively. We have seen in the previous section that these two types of transformations are in
one-to-one correspondence, as well. In particular, the transformers send the identity on Ln to the
identity on Rn and vice versa.

bdidLn encn = idRn (22) dbidRn c◦ne◦n = idLn (23)

This is a direct consequence of the characterisation of εn (15) and ηn (16). The transformers also
preserve composition of natural transformations.

dbβ · αcken = dbαckem · dbβcmen (24) dbβ · αc◦ke◦n = dbαc◦ke◦m · dbβc◦me◦n

Note that the order of the natural transformations β and α is swapped on the right-hand sides.
We will get back to this observation in a second. First, we reason

bdαemck · dbβcmen

= { b−c-fusion (5), k times }
b dαem · Lkdbβcmen ck

Theoretical Pearl Monads from Comonads, Comonads from Monads 7

= { d−e-shift (7), n times }
b dαem · dLkbβcmen ck

= { d−e-fusion (10), n times }
bd dαemLn · Lkbβcm enck

= { claim, see below }
bd β · α enck .

The claim can be shown as follows.

dαemLn · Lkbβcm

= { characterisation of d−em (18) and characterisation of b−cm (17) }
(εm · αRm)Ln · Lk (Rmβ · ηm)

= { −L functor (29) and L− functor (27) }
εmLn · αRmLn · LkRmβ · Lkηm

= { horizontal composition (35): α : Lk → Lm and β : Lm → Ln }
εmLn · LmRmβ · αRmLm · Lkηm

= { horizontal composition (35), twice:

εm : LmRm → I and β : Lm → Ln , and α : Lk → Lm and ηm : RmLm → I }
β · εmLm · Lmηm · α

= { generalised triangle identity (19) }
β · α

One way to look at these properties is to view the transformers as the arrow parts of two
contravariant functors—contravariant because an adjunction trades L in the source for R in the
target of an arrow. Specifically, consider the full subcategory L of C C whose objects are the
composites Ln and whose arrows are the natural transformations between them. The category R
whose objects are the composites Rn is defined likewise. Then the contravariant functors T−U :
L → Rop and T−U◦ : Rop → L defined

TLnU = Rn

Tα : Lm → LnU = dbαcmen : Rn → Rm

TRnU◦ = Ln

Tα : Rn → RmU◦ = dbαc◦ne◦m : Lm → Ln

are isomorphisms of categories. Thus it is little surprise that the comonadic structure is transmo-
grified into a monadic structure and vice versa. To actually prove this we need one final ingredient,
the flip laws.

bdLαen+1cm+1 = bdαencmR (25) bdαLen+1cm+1 = bRdαencm

Post-composition with L is mapped to pre-composition with R, and dually, pre-composition with L
is mapped to post-composition with R.

bdLαen+1cm+1

= { reorganise brackets (12) }
b dbdLαence cm

= { d−e-shift (11), n times }
b dbLdαence cm

= { b−c-fusion (5) }

8 Ralf Hinze

b dbidLc · dαene cm

= { d−e-fusion (10) }
b dbidLce · dαenR cm

= { preservation of identity (23) }
b dαenR cm

= { b−c-shift (7), m times }
bdαencmR

It is time to pick the fruit. The proof that the first comonadic unit law is equivalent to the
first monadic unit law is now a breeze.

Le · d = idL

⇐⇒ { inverses }
bdLe · dec = bdidLec

⇐⇒ { preservation of composition (24) and preservation of identity (22) }
bdddeec · bbdLeecc = idR

⇐⇒ { flip law (25) }
bdddeec · becR = idR

⇐⇒ { definition of j and definition of r }
j · rR = idR

The other two proofs consist of exactly the same steps.
Now, our running example, the curry adjunction, provides an example, where the left adjoint

L = −×X is also a comonad. Its operations are defined

e = outl ,
d = id M outr .

The so-called product comonad provides contextual information, e discards this information and d
duplicates it. Some straightforward calculations show that d and e thus defined are indeed nat-
ural transformations and that they satisfy the three comonad laws. For the curry adjunction the
transformers simplify to bαcA = Λ (αA) and dα : F→ GLeB = G app ·α (RB). The central result
then implies that L’s right adjoint R = (−)X is a monad with operations

r = boutlc = Λ outl ,
d = bddid M outreec = Λ (app · (app ×X) · (id M outr)) = Λ (app · (app M outr)) .

The resulting structure is known as the reader monad. The theory confirms our intuition that the
product comonad and the reader monad solve the same problem. To reiterate, programs of type
A × X → B that are structured using the product comonad are in one-to-one correspondence to
programs of type A→ BX that build on the reader monad.

Every comonad and every monad comes equipped with additional operations—these are related
too. For instance, the product comonad might provide a getter and an update operation:

get = outr : L→ ∆X ,

update (f : X → X) = id × f : L→ L ,

where ∆X is the constant functor that maps an arbitrary object to X . The transforms of get and
update correspond to operations called ask and local in the Haskell monad transformer library [1].

ask = boutrc = Λ outr : I→ R∆X

local (f : X → X) = bdid × f ec = Λ (app · (id × f)) : R→ R

The properties of the operations transfer as well. As an example, update satisfies functor-like
properties.

Theoretical Pearl Monads from Comonads, Comonads from Monads 9

update id = id , update (f · g) = update g · update f .

This is because id×f is actually the arrow part of a functor, namely A×−. It is only that update has
a more restricted type because, for simplicity, we choose not to parametrise the product comonad
with the type X of states. The corresponding properties of the reader monad are

local id = id , local (f · g) = local g · local f .

Note that g and f are swapped on the right-hand side: Λ (app · (id × f)) is the arrow part of
a contravariant functor, namely B (−). The framework of adjunctions explains why the covariant
functor A × − is mapped to the contravariant functor B (−). Using the concept of an adjunction
with a parameter this can be made precise. We resist the temptation to do so because it is time
to wrap up. Before we do this, here is a final twist.

5 The wrong way round

Does the translation also work if the left adjoint is simultaneously a monad? Yes and no. The
transformers happily take the monadic operations to comonadic ones. So L’s right adjoint is in-
deed a comonad. However, monadic programs of type A → LB are certainly not in one-to-one
correspondence to comonadic programs of type RA→ B .

Let us explore the implications, working through a concrete example. If X is a monoid with
operations [] : X and (++) : X × X → X , then L = − × X , our product comonad, also has the
structure of a monad.1

r a = (a, []) ,

j ((a, x1), x2) = (a, x1 ++ x2) .

(For simplicity, we assume that we are working in Set.) This instance is known as the “write to
a monoid” monad or simply the writer monad. Its right adjoint R = (−)X is then a comonad,
lovingly called the “read from a monoid” comonad. For the operations, we unfold dre = app · r
and bbdj ecc = Λ (Λ (app · j)).

e f = f [] ,
d f = λ x1 . λ x2 . f (x1 ++ x2) .

This worked out nicely. However, we cannot translate the accompanying infrastructure of the
writer monad. Consider, for instance, the write operation.

write : X → LX
write x = (x , x)

The L is on the wrong side of the arrow, write is not natural, so it has no counterpart in the
comonadic world.

6 Conclusion

Shall I structure my programs using comonads or using monads? We have seen that sometimes
this is a matter of personal taste. In general, the answer is to use both structures and both at
the same time. Of course, one has to ensure that effectful and context-dependent computations
interact nicely. This can be accomplished using a so-called distributive law of a comonad over a
monad. As an example, clocked data-flow computations can be described in such a setting [2].

1 I am grateful to Jeremy Gibbons for suggesting this example.

10 Ralf Hinze

A Composition of functors and natural transformations

This appendix contains supplementary material. It is intended primarily as a reference, so that
the reader can re-familiarise themselves with the category theory that is utilised in this pearl.

Specifically, we introduce composition of functors and natural transformations. We shall use
the following entities to frame the discussion (F,G : C → D are parallel functors, α : F → G is a
natural transformation between them etc).

B
E // C

F

��
G //

H

@@

α��

β��

D

K

��
L //

M

AA

γ��

δ��

E
N // F

Functors can be composed, written simply using juxtaposition KF. Rather intriguingly, the opera-
tion K−, post-composing a functor K, is itself functorial: the higher-order functor K− : DC → E C

maps the functor F to the functor KF and the natural transformation α to the natural transforma-
tion Kα defined (Kα) A = K (αA). Post-composition dualizes to pre-composition: the higher-order
functor −E : DC → DB maps the functor F to the functor FE and the natural transformation α to
the natural transformation αE defined (αE) A = α (EA). (The reader should convince themselves
that Kα : KF → KG and αE : FE → GE are again natural transformations.) Here are the functor
laws spelled out.

KidF = idKF (26)
K(β · α) = (Kβ) · (Kα) (27)

idFE = idFE (28)
(β · α)E = (βE) · (αE) (29)

Altogether, we have three different forms of composition: KF, γF and Kα. They are ‘pseudo-
associative’ and have the functor Id as their neutral element.

γ(FE) = (γF)E (30)
K(βE) = (Kβ)E (31)
N(Mα) = (NM)α (32)

Idα = α (33)
αId = α (34)

This means that we can freely drop parentheses when composing compositions.
Given two natural transformations α : F→ G and γ : K→ L, there are two ways to turn a KF

into a LG structure.

KF
Kα
� KG

LF

γF

g

Lα
� LG

γG

g

γα

�

The diagram commutes since γ is natural:

((γG) · (Kα)) X
= { definition of compositions }

γ (GX) · K (αX)
= { γ is natural: L h · γA = γB · K h }

L (αX) · γ (FX)
= { definition of compositions }

((Lα) · (γF)) X .

Theoretical Pearl Monads from Comonads, Comonads from Monads 11

The diagonal is called the horizontal composition of natural transformations, denoted γα.

(γG) · (Kα) = γα = (Lα) · (γF) (35)

As an aside, the definition witnesses the fact that functor composition E D × DC → E C is a
bi-functor: (35) defines its action on arrows.

References

1. Gill, A.: Monad transformer library (mtl package) (2010) http://hackage.haskell.org/package/mtl.
2. Uustalu, T., Vene, V.: The essence of dataflow programming. In Horváth, Z., ed.: Central European

Functional Programming School. Volume 4164 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg (2006) 135–167

