Fun with Phantom Types

RALF HINZE

Institut für Informatik III, Universität Bonn Romerstraße 164, 53117 Bonn, Germany Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf

March₁ 2003

(Pick the slides at ... \mathbb{Z} ralf/talks.html#T35.)

1 JJ J I II ✷

A puzzle: C's printf in Haskell

Here is a session that illustrates the puzzle—we renamed $print$ to $format$.

```
Main: type format (Lit "Richard")
String
Main\ format (Lit "Richard")
"Richard"
Main : type format Int
Int \rightarrow StringMain\ format Int 60
"60"
\langle Main \rangle: type format (Suring : \hat{\cdot} : Lit \cup \{ist\})String \rightarrow Int \rightarrow StringMain format (String : \hat{i}: Lit " is " : \hat{j}: Int) "Richard" 60
"Richard is 60"
```
NB. $'Main$ ' is the prompt; $':$ type' displays the type of an expression.

Introducing phantom types

Suppose you want to embed a simple expression language in Haskell.

You are a firm believer of static typing, so you would like your embedded language to be statically typed, as well.

 \mathbb{CP} This rules out a simple $Term$ data type as this choice would allow us to freely mix terms of different types.

Idea: parameterize the $Term$ type so that $Term \tau$ comprises only terms of type τ .

Alas, the signature above cannot be translated into a data declaration.

Idea: augment the data construct by type equations that allow us to constrain the type argument of $Term$.

Thus, Zero has Type τ with the additional constraint $\tau = Int$.

NB. The type variable α does not appear on the left-hand side; it can be seen as being existentially quantified.

Here is a simple interpreter for the expression language. Its definition proceeds by straightforward structural recursion.

Even though *eval* is assigned the type $\forall \tau$. Term $\tau \rightarrow \tau$, each equation has a more specific type as dictated by the type constraints.

 \mathbb{C} The interpreter is quite noticeable in that it is tag free. If it receives a Boolean expression, then it returns a Boolean.

Here is a short interactive session that shows the interpreter in action.

```
Main\ let one = Succ Zero
\langle Main \rangle: type one
Term Int
\langle Main \rangle eval one
1
Main\ eval (IsZero one)
False
Main \; IsZero \; (IsZero \; one)Type error: couldn't match 'Int' against 'Bool'
```
The type $Term \tau$ is quite unusual.

- \triangleright Term is not a container type: an element of $Term Int$ is an expression that evaluates to an integer; it is not a data structure that contains integers.
- \triangleright We cannot define a mapping function $(\alpha \rightarrow \beta) \rightarrow (Term \alpha \rightarrow Term \beta)$ as for many other data types.
- \blacktriangleright The type $Term \; \beta$ might not even be inhabited: there are, for instance, no terms of type Term String.

Since the type argument of $Term$ is not related to any component, we call $Term$ a phantom type.

Generic functions

We can use phantom types to implement generic functions, functions that work for a family of types.

Basic idea: define a data type whose elements represent types.

 \mathbb{CP} An element rt of type $Type \tau$ is a representation of τ .

Generic functions—continued

A useful generic function is *compress* which compresses data to string of bits.

```
Main: type compress RInt
Int \rightarrow [Bit]Main\ compress RInt 60
<00111100000000000000000000000000>
\langle Main \rangle: type compress rString
[Char] \rightarrow [Bit]Main\ compress rString "Richard"
<101001011100101111100011100010111100001110100111100100110>
```
Generic functions—continued

The generic function *compress* pattern matches on the type representation and then takes the appropriate action.

NB. We assume that $compressInt::Int \rightarrow [Bit]$ and $compressChar::Char \rightarrow [Bit]$ are given.

Using the type of type representations we can also implement dynamic values.

data $Dynamic = Dyn (Type \tau) \tau$

 \mathbb{CP} A dynamic value is a pair consisting of a type representation of $Type \tau$ and a value of type τ for some type τ .

To be able to form dynamic values that contain dynamic values (for instance, a list of dynamics), we add $Dynamic$ to $Type \tau$.

data Type $\tau = \cdots$ $RDyn$ with $\tau = Dynamic$

 \mathbb{C} Type and $Dynamic$ are now defined by mutual recursion.

It is not difficult to extend $compress$ so that it also works for dynamic values: a dynamic value contains a type representation, which $compress$ requires as a first argument.

$$
\cdots
$$

compress *RDyn* (*Dyn ra a*) = compress *Rep* (*Rep ra*) + compress *ra a*

Exercise: Implement the function $compressRep$ that compresses a type representation.

data Rep = Rep (Type τ) $compressRep :: Rep \rightarrow [Bit]$

The following session illustrates the use of dynamics and generics.

```
Main\ let ds = |Dyn RInt 60, Dyn rString "Bird"Main : type ds
[Dynamic ]
```
 $Main\$ Dyn (RList RDyn) ds $Dyn(RList\ RDyn)$ $[Dyn\ RInt\ 60, Dyn\ (RList\ RChar)$ "Bird"

 $Main\$ compress RDyn it <01010010000011110000000000000000000000000010100011010000 111001011101001111001001100> $Main\$ uncompress RDyn it $Dyn(RList\ RDyn)$ $[Dyn\ RInt\ 60, Dup(RList\ RChar)$ "Bird"

 $NB.$ it always refers to the previously evaluated expression.

Turning a dynamic value into a static value involves a dynamic type check.

tequal $\therefore \forall \tau \nu$. Type $\tau \rightarrow Type \nu \rightarrow Maybe (\tau \rightarrow \nu)$ $tequal (RInt) (RInt)$ = return id $tequal (RChar) (RChar) = return id$ tequal (RList ra₁) (RList ra₂) $=$ liftM list (tequal ra₁ ra₂) tequal $(RPair \, ra_1 \, rb_1)$ $(RPair \, ra_2 \, rb_2)$ $=$ liftM2 pair (tequal ra₁ ra₂) (tequal rb₁ rb₂) $\text{tequal} \quad \text{---} \quad \text$

NB. The functions *list* and $pair$ are the mapping functions of the list and the pair type constructor.

 \mathbb{CP} 'tequal' can be made more general and more efficient!

The function *cast* transforms a dynamic value into a static value of a given type.

cast ::
$$
\forall \tau \, . \, Dynamic \rightarrow Type \, \tau \rightarrow Maybe \, \tau
$$

cast (Dyn ra a) rt = fmap ($\lambda f \rightarrow f$ a) (tequal ra rt)

Here is a short session that illustrates its use.

Main) let $d = Dyn RInt 60$ $Main\$ cast d RInt Just 60 $\langle Main \rangle$ cast d RChar Nothing

9

 $C^{\mathcal{F}}$ Generic functions are first-class citizens.

Let us illustrate this point by implementing a small combinator library for so-called generic traversals.

 $type\ Name = String$ $\tt type Age = Int$ $data Person = Person Name Age$

data *Type*
$$
\tau
$$
 = \cdots
 \vert *RPerson* **with** τ = *Person*

Generic traversals—continued

The function $tick\ s$ is an ad-hoc traversal— $Traversal$ will be defined shortly.

 $tick :: Name \rightarrow Traversal$ tick s (RPerson) (Person n a) $| s = n = Person n (a + 1)$ tick s rt $t = t$

The following session shows $tick$ in action.

零

 $Main\$ let $ps = [Person$ "Norma" 50, $Person$ "Richard" 59]

 $Main\$ everywhere (tick "Richard") (RList RPerson) ps [Person "Norma" 50, Person "Richard" 60]

 \mathbb{CP} everywhere applies its argument 'everywhere' in a given value.

Generic traversals—continued

A generic traversal takes a type representation and transforms a value of the specified type.

type Traversal = $\forall \tau$. Type $\tau \rightarrow \tau \rightarrow \tau$.

☞ The universal quantifier makes explicit that the function works for all representable types.

Here is a tiny 'traversal algebra'.

copy
$$
rt
$$
 = id

\n(o) \therefore *Traversal* \rightarrow *Traversal*

\n(f o g) rt = $f rt \cdot g rt$

Generic traversals—continued

The *everywhere* combinator is implemented in two steps.

First, we define a function that applies a traversal f to the immediate components of a value: $\,C\,\,t_{1}\,\,\ldots\,\,t_{n}$ is mapped to $\,C\,\,(f\,\,r t_{1}\,\,t_{1})\,\,\ldots\,\,(f\,\,r t_{n}\,\,t_{n})$ where $\,r t_{i}$ is the representation of t_i 's type.

 \mathbb{CP} imap can be seen as a 'traversal transformer'.

Second, we tie the recursive knot.

 $everywhere, every where' :: Travel \rightarrow Traversal$ $everywhere f = f \circ imp (everywhere f)$ $everywhere' f$ $f = \text{image}(everywhere' f) \circ f$

 \circ everywhere f applies f after the recursive calls (it proceeds bottom-up), whereas $\overset{e}{\textit{everywhere'}}$ applies f before (it proceeds top-down).

Functional unparsing

Recall the printf puzzle.

9

```
Main: type format (Lit "Richard")
String
Main\ format (Lit "Richard")
"Richard"
Main : type format Int
Int \rightarrow StringMain\ format Int 60
"60"
Main\: type format (String : : Lit " is " : : Int)String \rightarrow Int \rightarrow StringMain\ format (String : i: Lit " is " : i: Int) "Richard" 60
"Richard is 60"
```


Obvious idea: turn the type of directives, Dir , into a phantom type so that

format :: $\forall \theta \cdot Dir \theta \rightarrow \theta$ $(String : \hat{\cdot} : Lit \text{ " is " : \hat{\cdot} : Int) :: Dir (String \rightarrow Int \rightarrow String).$

The format directive can be seen as a binary tree of type representations: Lit s, Int, String form the leaves, \therefore constructs the inner nodes.

 22 \blacksquare

The type of $format$ is obtained by linearizing the binary tree.

Functional unparsing—first try

The types of Lit , Int , and $String$ are immediate.

The type of ':[^]:' is more involved.

$$
(:\hat{ } \cdot)\qquad :: \forall \theta \rho \text{ . } Dir \theta \to Dir \rho \to Dir (\theta \multimap \rho)
$$
\n
$$
String \multimap \nu = \nu
$$
\n
$$
(\alpha \to \tau) \multimap \nu = \alpha \to (\tau \multimap \nu)
$$

 23 JJ J \blacksquare \blacksquare \blacksquare **NB.** Read ' \sim ' as concatenation, $String$ as the empty list, and ' \rightarrow ' as cons. Alas, on the type level we can only use cons, not concatenation.

Accumulating parameters

Fortunately, Richard knows how to get rid of concatenation, see IFPH 7.3.1.

The helper function $flated$ enjoys

flatten $t = x \equiv \forall as.$ flatcat $t \ as = x + as.$

Functional unparsing—second try

 \mathbb{CP} Add an accumulating parameter to Dir .

The data type $DirCat$ enjoys

 e :: $Dir \tau \equiv e$:: $\forall \theta$. $DirCat \theta (\tau \rightarrow \theta)$.

The constructor ':[^]:' realizes type composition.

 $((\cdot\hat{\cdot}) \ :: \ \forall \theta_1 \ \theta_2 \ \theta_3 \$. DirCat $\theta_2 \ \theta_3 \rightarrow DirCat \ \theta_1 \ \theta_2 \rightarrow DirCat \ \theta_1 \ \theta_3$

Functional unparsing—second try—continued

Now, let's tackle the definition of *format*.

format :: $\forall \theta$. DirCat String $\theta \rightarrow \theta$ $format (Lit s) = s$ format (Int) = $\lambda i \rightarrow show \, i$ $\begin{array}{rcl} \textit{format} \ (\textit{String}) & = & \lambda s \rightarrow s \end{array}$ format $(d_1 : \hat{d}_2) = ?$

 $\mathbb{C} \mathbb{F}$ The type of $format$ is not general enough to push the recursion through.

Functional unparsing—third try

 \circ Fortunately, continuations save the day.

The helper function takes a continuation and an accumulating string argument.

format :: $\forall \rho$. DirCat String $\rho \rightarrow \rho$ format $d = format' d id$ ""

9

Functional unparsing—third try—continued

- Ouch, $format'$ has a quadratic running time.
- But again, Richard knows how to cure this deficiency ...

