Fun with PHanféanypes

e RALF'I;IINZE

i =

:I' L -
L5 Irstitu@iiur [nforllfe " 7,{Jniversitét Bonn
omerstraBe 1pU=s&@#1 / Bonn, Germany
i

Email: ralf@i ﬂ

ey gt

1k.uni-bonn.de
Homepage: http://www .1 atik.uni-bonn.de/"ralf

2003

(Pick the slides at 1 “ralf/talks.html#T35.)

B

" = i

o 4 > » U



“A puzzle: C’s printf in Haskell

Here is a session that illustrates the puzzle—we renamed printf to format.

Main) :type format (Lit "Richard")
String

Main) format (Lit "Richard")
"Richard"

Main) :type format Int
Int — String

Main) format Int 60
||60||

Main) :type format (String :~: Lit " is " :~: Int)

String — Int — String

Main) format (String :~: Lit " is " :": Int) "Richard" 60
"Richard is 60"

NB. ‘Main) ' is the prompt; ‘: type’ displays the type of an expression.

9 2 « <> » O



““Introducing phantom types )

Suppose you want to embed a simple expression language in Haskell.

You are a firm believer of static typing, so you would like your embedded language
to be statically typed, as well.

|:| This rules out a simple Term data type as this choice would allow us to
freely mix terms of different types.

|dea: parameterize the Term type so that Term 7 comprises only terms of type 7.

Zero o Term Int

Succ, Pred :: Term Int — Term Int

IsZero . Term Int — Term Bool

If . VYa. Term Bool — Term o — Term a — Term «

Alas, the signature above cannot be translated into a data declaration.

9 3 « <> » O



¢ Introducing phantom types—continued )

|dea: augment the data construct by type equations that allow us to constrain
the type argument of Term.

data Term 7 = Zero with 7 = Int
| Succ (Term Int) with 7 = Int
| Pred (Term Int) with 7 = Int
| IsZero (Term Int) with 7 = Bool
| If (Term Bool) (Term «) (Term «) with 7 = «

Thus, Zero has Type T with the additional constraint 7 = Int.

NB. The type variable @ does not appear on the left-hand side; it can be seen as
being existentially quantified.

E 4 o <> » [



¢ Introducing phantom types—continued )

Here is a simple interpreter for the expression language. lts definition proceeds by
straightforward structural recursion.

eval s Vr.Term T — 1

eval (Zero) =0

eval (Succ e) = eval e +1

eval (Pred e) = eval e — 1

eval (IsZero e) = eval e == (

eval (If e; ey e3) = if eval e; then eval e, else eval e;

Even though eval is assigned the type V7. Term 7 — 7, each equation has a
more specific type as dictated by the type constraints.

|:| The interpreter is quite noticeable in that it is tag free. If it receives a
Boolean expression, then it returns a Boolean.

9 5

o 4 > » U



‘“Introducing phantom types—continued

Here is a short interactive session that shows the interpreter in action.

Main) let one = Succ Zero
Main) :type one

Term Int
Main) eval one
1

Main) eval (IsZero one)
False

Main) IsZero (IsZero one)
Type error: couldn’t match ‘Int’ against ‘Bool’

9 6 « <> » O



4

Introducing phantom types—continued

The type Term T is quite unusual.

» Term is not a container type: an element of Term Int is an expression that
evaluates to an integer; it is not a data structure that contains integers.

» We cannot define a mapping function (« — () — (Term a — Term ) as
for many other data types.

» The type Term [3 might not even be inhabited: there are, for instance, no
terms of type Term String.

Since the type argument of Term is not related to any component, we call Term
a phantom type.

9 7 « <> » O



“Generic functions

We can use phantom types to implement generic functions, functions that work
for a family of types.

Basic idea: define a data type whose elements represent types.

data Type 7 = Rint with 7 = Int
| RChar with 7 = Char
| RList (Type «) with 7 = [a]
| RPair (Type o) (Type B) with 7 = («, )
rString .. Type String
rString = RList RChar

|:| An element rt of type Tlype 7 is a representation of 7.

9 8 « <> » O



" Generic functions—continued

A useful generic function is compress which compresses data to string of bits.

Main) :type compress RInt

Int — | Bit]

Main) compress RInt 60
<00111100000000000000000000000000>

Main) :type compress rString

| Char] — [ Bit]

Main) compress rString "Richard"
<101001011100101111100011100010111100001110100111100100110>

9 9 « <> » O



" Generic functions—continued

The generic function compress pattern matches on the type representation and

then takes the appropriate action.

data Bit =01
compress w V7. Type T — 7 — | Bit]
compress (RInt) 1 = compressint i
compress (RChar) ¢ = compressChar c
compress (RList ra) [] = 0:]]
compress (RList ra) (a:as) = 1:compress ra a
+ compress (RList ra)
compress (RPair ra rb) (a,b) = compress ra a
H-compress rb b

as

NB. We assume that compressint :: Int — | Bit| and
compressChar :: Char — [ Bit| are given.

9 10

o 4 > » U




¢ Dynamic values )

Using the type of type representations we can also implement dynamic values.

data Dynamic = Dyn (Type 7) T

|:| A dynamic value is a pair consisting of a type representation of Type 7 and a
value of type 7 for some type 7.

To be able to form dynamic values that contain dynamic values (for instance, a
list of dynamics), we add Dynamic to Type 7.

data Type v = ---
| RDyn with 7 = Dynamic

|:| Type and Dynamic are now defined by mutual recursion.

9 11 « <> » O



¢ Dynamic values—continued )

It is not difficult to extend compress so that it also works for dynamic values: a
dynamic value contains a type representation, which compress requires as a first
argument.

compress RDyn (Dyn ra a) = compressRep (Rep ra) 4 compress ra a

Exercise: Implement the function compressRep that compresses a type
representation.

data Rep = Rep (Type 7)

compressRep 1 Rep — [ Bit]

9 12 « <> » O



¢ Dynamic values—continued

The following session illustrates the use of dynamics and generics.

Main) let ds = [Dyn RInt 60, Dyn rString "Bird"|
Main) :type ds
| Dynamic]

Main) Dyn (RList RDyn) ds
Dyn (RList RDyn) | Dyn RlInt 60, Dyn (RList RChar) "Bird"]

Main) compress RDyn it
<01010010000011110000000000000000000000000010100011010000
111001011101001111001001100>

Main) uncompress RDyn it

Dyn (RList RDyn) | Dyn RInt 60, Dyn (RList RChar) "Bird"|

NB. it always refers to the previously evaluated expression.

9 13 « <> » O



¢ Dynamic values—continued

Turning a dynamic value into a static value involves a dynamic type check.

tequal 2 V1 v. Type T — Type v — Maybe (T — v)
tequal (RInt) (RInt) = return id
tequal (RChar) (RChar) = return id
tequal (RList ray) (RList ras,)
= ULftM list (tequal Tay ras)
tequal (RPair ray vby) (RPair ray 1bs)
= LftM2 pair (tequal ray ray) (tequal by rby)
tequal — = fail "types are not equal".

NB. The functions list and pair are the mapping functions of the list and the
pair type constructor.

|:| ‘tequal’ can be made more general and more efficient!

9 14 « <> » O



The function cast transforms a dynamic value into a static value of a given type.

cast . V7. Dynamic — Type 7 — Maybe T
cast (Dyn ra a) 1t = fmap (\f — f a) (tequal ra 1t)

Here is a short session that illustrates its use.

Main) let d = Dyn RInt 60
Main) cast d RiInt

Just 60

Main) cast d RChar
Nothing

9 15 « <> » O



* Generic traversals E

|:| Generic functions are first-class citizens.

Let us illustrate this point by implementing a small combinator library for so-called
generic traversals.

type Name = String
type Age = Int
data Person = Person Name Age
data Typet = ---
| RPerson with 7 = Person

9 16 « <> » O



The function tick s is an ad-hoc traversal—Traversal will be defined shortly.

tick . Name — Traversal
tick s (RPerson) (Person n a)

| s==n = Personn (a+1)
tick srtt =t

The following session shows tick in action.

Main) let ps = [Person "Norma" 50, Person "Richard" 59|

Main) everywhere (tick "Richard") (RList RPerson) ps
| Person "Norma" 50, Person "Richard" 60]

|:| everywhere applies its argument ‘everywhere’ in a given value.

9 17 « <> » O



¢ Generic traversals—continued

A generic traversal takes a type representation and transforms a value of the
specified type.

type Traversal = V7. Type 7 — 7 — T.

|:| The universal quantifier makes explicit that the function works for all
representable types.

Here is a tiny ‘traversal algebra’.

copy 0 Traversal

copy rt = id

(0) = Traversal — Traversal — Traversal
(fog)rt = frt-grt

9 18 « <> » O



" Generic traversals—continued

The everywhere combinator is implemented in two steps.

First, we define a function that applies a traversal [ to the immediate components
of avalue: C't; ... t, is mapped to C' (f 7t1ty) ... (f rt, t,) where 1t; is the

representation of ¢;'s type.

mmap . Traversal — Traversal

imap f (RInt) 1 = 1

imap f (RChar) ¢ = ¢

imap f (RList ra) (] =

imap f (RList ra) (a: as) = fraa:f (RList ra) as

imap f (RPair ra rb) (a, b) = (fraa,frbb)

imap f (RPerson) (Person n a) = Person (f rString n) (f RInt a)

|:| imap can be seen as a ‘traversal transformer’.

9 19 « <> » O



" Generic traversals—continued

Second, we tie the recursive knot.

everywhere, everywhere’ . Traversal — Traversal
everywhere f f o imap (everywhere f)
everywhere’ f imap (everywhere’ f) o f

|:| everywhere f applies f after the recursive calls (it proceeds bottom-up),
whereas everywhere’ applies f before (it proceeds top-down).

9 20 « <> » O



Recall the printf puzzle.

Main) :type format (Lit "Richard")
String

Main) format (Lit "Richard")
"Richard"

Main) :type format Int
Int — String

Main) format Int 60
||60||

Main) :type format (String :~: Lit " is " :~: Int)

String — Int — String

Main) format (String :~: Lit " is " :": Int) "Richard" 60
"Richard is 60"

9 21

o 4 > » U




" Functional unparsing—first try

Obvious idea: turn the type of directives, Dir, into a phantom type so that

format 2 V0. Dir 0 — 0
(String :~: Lit " is " :": Int) = Dir (String — Int — String).

The format directive can be seen as a binary tree of type representations: Lit s,
Int, String form the leaves, “:~:" constructs the inner nodes.

The type of format is obtained by linearizing the binary tree.

9 22 « <> » O



¢ Functional unparsing—first try

The types of Lit, Int, and String are immediate.

Lit o String — Dir String
Int g Dir (Int — String)
String Dir (String — String)

The type of :~:" is more involved.

(:72) . V0 p.Dir 0 — Dir p — Dir (0 —o p)
String —o v = v
(> 7T)—ov = a— (T —ov)

NB. Read ‘—' as concatenation, String as the empty list, and ‘—" as cons.

|:| Alas, on the type level we can only use cons, not concatenation.
9 23 « <> » O



¢ Accumulating parameters

Fortunately, Richard knows how to get rid of concatenation, see IFPH 7.3.1.

data Btree o = Leaf a | Fork (Btree a) (Btree a)
flatten . Va. Btree a — |«

flatten t = flatcat t []

flatcat . Ya. Btree a — [a] — [a]

flatcat (Leaf a) as = a:as

flatcat (Fork tl tr) as = flatcat tl (flatcat tr as)

The helper function flatcat enjoys

flatten t =x = Vas. flatcat t as = x H as.

9 24 « <> » O



|:| Add an accumulating parameter to Dir.

Lit . String — V60 . DirCat 6 0
Int . VO . DirCat 0 (Int — 0)
String VO . DirCat 6 (String — 0)

The data type DirCat enjoys

e:Dirt = e:V0.DirCat 0 (1 —0).

The constructor :~:" realizes type composition.

(ZAZ) . V@l 92 63 . DirCat 92 (93 — DirCat 91 02 — DirCat 61 93

9 25

o 4 > » U




¢ Functional unparsing—second try—continued

Now, let's tackle the definition of format.

format . V0. DirCat String 6 — 6
format (Lit s) = s

format (Int) Ai — show i

format (St'rmg) As — 8

format (dy :": dy) = 7

|:| The type of format is not general enough to push the recursion through.

9 26 « <> » O



|:| Fortunately, continuations save the day.

format’ . VO p. DirCat 0 p — (String — 0) — (String — p)
format’ (Lit s) = Acont out — cont (out 4 s)

format’ (Int) = Acont out — Ai — cont (out # show i)

format’ (Stmng) = Acont out — s — cont (out H s)

format' (dy :~: dy) = Acont out — format' dy (format’' dy cont) out

The helper function takes a continuation and an accumulating string argument.

format  :: ¥p.DirCat String p — p
format d = format’ d id ""

o 4 > » U




j

Functional unparsing—third try—continued

Ouch, format’ has a quadratic running time.
q g

But again, Richard knows how to cure this deficiency ...

9 28 « <> » O



