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Figure 1: Left: A man-made model with unnatural orientation. Middle: Six orientations obtained by aligning the model into a canonical
coordinate frame using Principal Component Analysis. Right: Our method automatically detects the upright orientation of the model from
its geometry alone.

Abstract

Humans usually associate an upright orientation with objects, plac-
ing them in a way that they are most commonly seen in our sur-
roundings. While it is an open challenge to recover the function-
ality of a shape from its geometry alone, this paper shows that it
is often possible to infer its upright orientation by analyzing its
geometry. Our key idea is to reduce the two-dimensional (spher-
ical) orientation space to a small set of orientation candidates using
functionality-related geometric properties of the object, and then
determine the best orientation using an assessment function of sev-
eral functional geometric attributes defined with respect to each
candidate. Specifically we focus on obtaining the upright orienta-
tion for man-made objects that typically stand on some flat surface
(ground, floor, table, etc.), which include the vast majority of ob-
jects in our everyday surroundings. For these types of models ori-
entation candidates can be defined according to static equilibrium.
For each candidate, we introduce a set of discriminative attributes
linking shape to function. We learn an assessment function of these
attributes from a training set using a combination of Random For-
est classifier and Support Vector Machine classifier. Experiments
demonstrate that our method generalizes well and achieves about
90% prediction accuracy for both a 10-fold cross-validation over
the training set and a validation with an independent test set.

1 Introduction

A well-known postulate of design states that form ever follows func-
tion [Sullivan 1896]. It is unclear to what degree the opposite is
true, namely how much of the object functionality can be deduced
from its shape alone. While it is questionable whether a computer-
based algorithm can effectively recognize a given shape or recover
its functionality, this paper poses a more practical question: whether

one can infer the upright orientation of a shape from its geome-
try alone. The upright orientation that humans naturally associate
with an object is arguably linked to its everyday use or functional-
ity [Blanz et al. 1999]. Without recognizing the full functionality
of an object, analyzing and inferring its orientation are challenging
tasks.

3D models created by various modeling and scanning systems of-
ten have different upright orientations, since models are always cre-
ated in a particular context (e.g., a customized coordinate system).
Given a model, automatically obtaining its upright orientation fa-
cilitates the exploration of the object from natural views (e.g., an
intuitive fly-around view shown in the accompanying video). It
also helps to generate easily recognizable thumbnail images of ob-
jects, useful for the management of large 3D shape repositories.
An upright orientation reduces the number of degrees of freedom
for object alignment in shape retrieval (see Section 2), and makes
it easier for users to place objects during complex scene composi-
tion [Snyder 1995; Xu et al. 2002].

In this paper, we present an effective solution to the problem of
automatic detection of upright orientation for commonly used 3D
geometric shapes, which, to the best of our knowledge, has not
been studied before. We observe that for many types of objects,
searching for the best orientation in the whole (spherical) solution
space is unnecessary. Instead, we can reduce the problem of shape
orientation to the selection of the best orientation from a small set
of orientation candidates. This reduction not only decreases the
computational complexity but also better defines the problem. Ob-
viously, the types of models to which an orientation algorithm is
applicable are highly dependent on the selection of the candidate
set. In this paper, we focus on standing man-made models, that
is, models that are designed to stand on a flat surface and hence
have well-defined upright orientations. This includes most objects
in our everyday surroundings with a few exceptions, such as float-
ing objects like ships or airplanes. We observe that the orientation
of such an object is influenced by gravity and hence it must have
a supporting base on which the object can be steadily positioned.
These potential supporting bases naturally form a set of orientation
candidates.

Given the candidate bases, a key challenge is to construct a set of
quantitative geometric attributes for each candidate such that they
are sufficiently discriminative to make the natural base stand out.
The attributes must generalize across different types of man-made
objects. We develop a set of geometric attributes that reflect func-



tional design considerations as discussed in Section 4.2. Since func-
tional considerations can often conflict, none of the attributes on its
own has sufficient discrimination power for general upright orienta-
tion detection, requiring our system to combine multiple attributes
in a principled way. We therefore use a supervised learning ap-
proach to design an assessment function combining all of the at-
tributes to determine the most probable base (Section 5). We com-
bine a Random Forest classifier and a Support Vector Machine clas-
sifier to learn the assessment function from a training set consisting
of a large variety of standing man-made models, for each of which
the upright orientation is given. Given a new unoriented model, we
use the learned assessment function to compute a score for each of
its candidate bases and choose the candidate with the highest score
as the best base.

We evaluate the effectiveness of our method using both 10-fold
cross-validation over a training set of 345 standing models and a
validation with an independent test set of 819 standing models (Sec-
tion 6). Experiments demonstrate that our method generalizes well
and successfully predicts the upright orientations of most models
with prediction accuracy of about 90% for both validations. Figure
1 illustrates an upright orientation detected with our method. An ad-
ditional advantage of the method is that it can robustly estimate the
reliability of its prediction. For example, limiting our predictions
to the 30% most reliable predictions increases the performance to
95% accuracy.

2 Related Work

Pose Normalization. Pose normalization aims to align an object
into a canonical coordinate frame. Principal Component Analysis
(PCA) is the most commonly used technique for this task: the cen-
ter of mass is chosen as the origin and the principal axes are chosen
as the canonical axes [Duda et al. 2000]. However, it is well known
that principal axes are not robust for pose normalization of many
models [Kazhdan et al. 2003] and they certainly do not always pro-
duce compatible alignments with the upright orientations of objects,
as illustrated by Figure 1. More important, PCA does not fully re-
solve the orientation problem, but simply reduces the orientation
candidate set to six candidates. Podolak et al. [2006] demonstrate
that principal symmetry axes are more robust than principal axes
for the normalization of symmetric objects. Symmetry is a very
strong cue for shape orientation in symmetric objects. However, it
does not define the upright orientation but only reduces the likely
orientation set. Moreover, not all man-made models are symmet-
ric, nor does symmetry necessarily imply their upright orientations
(Figure 6). We use symmetry as only one of multiple attributes
with respect to each candidate base, relying on other considerations
to obtain the unique upright orientation.

Viewpoint Selection. Automatically selecting good viewpoints
for 3D models has always been important, especially for appli-
cations such as browsing a huge database of 3D models. Pre-
vious work either maximizes the visibility of interesting con-
tent using metrics like viewpoint entropy [Vázquez et al. 2003],
view saliency [Lee et al. 2005] or shape distinction [Shilane and
Funkhouser 2007], or minimizes visible redundant information
such as symmetry [Podolak et al. 2006] or similarity [Yamauchi
et al. 2006]. None of these methods considers shape orientation:
due to the rotation-invariant metrics employed, they cannot dis-
tinguish between different orientations of a shape around a view
direction. Recently, Saleem et al. [2007] proposed an exemplar-
based method to correct the orientation of a projected shape in the
2D image plane associated with a given viewpoint (e.g., the best
viewpoint). Our orientation method can help to determine the up
direction of a camera for viewing an object in a natural way.

Image Orientation. Image orientation aims to automatically derive
the upright orientation of a given image, typically among the four

possible orientations of 0◦, 90◦, 180◦ , and 270◦ [Wang and Zhang
2004; Luo and Boutell 2005; Lumini and Nanni 2006]. Most exist-
ing techniques pose this problem as a four-class classification. They
rotate the input image with respect to each possible orientation and
represent each rotated image with a high-dimensional (on the order
of thousands) feature vector [Wang and Zhang 2004; Lumini and
Nanni 2006]. Each feature vector is then fed into a classifier, such
as a Support Vector Machine and is assigned a score, with the high-
est score corresponding to the best orientation. It might be possible
to adapt these image orientation methods to 3D shape orientation
given an appropriate small set of orientation candidates. However,
the high dimension of feature vectors would demand a very large
training database of 3D models, much more difficult to provide than
a training database of images.

3D Shape Retrieval. Given a query object, 3D shape retrieval sys-
tems retrieve objects with similar shapes from large databases of
models (see [Tangelder and Veltkamp 2004; Iyer et al. 2005] and
the references therein). The challenge here is to design a robust and
efficient method for computing the similarity between two shapes
over the space of all transformations [Kazhdan et al. 2003]. To ad-
dress this challenge, most techniques align all of the models into a
common coordinate frame before matching them, either automati-
cally (typically based on PCA alignment) or manually. Since our
orientation tool generates a consistent upright direction for models,
it can reduce the orientation alignment problem from two to one
degrees of freedom.

Stable Pose Estimation. Evaluating the stability of an object in
contact with a supporting surface is useful for many tasks in ma-
chine vision and robotics, especially for the design of robotic parts
feeders (see [Moll and Erdmann 2002] and the references therein).
There are a number of methods for estimating the probability dis-
tribution of an object’s stable poses, e.g., through maximizing the
so-called capture regions [Kriegman 1997]. Those often rely on re-
peated dynamic simulation of an object under a random initial con-
figuration. When the supporting surface is flat, the estimation can
be equivalently performed on the convex hull of the object. Observ-
ing the usefulness of per-base stability for orientation identification,
we introduce a simple yet effective static stability measure to avoid
complex and often time-consuming dynamic simulation. We note
that higher stable-pose probability does not necessarily imply a nat-
ural upright orientation (e.g., for the table model in Figure 3).

3 System Overview

Humans usually associate an upright orientation with objects, plac-
ing them in a way that they are most commonly seen in our sur-
roundings. The ability to correctly orient objects seems related
to objects’ functionality and the viewers’ familiarity with similar
objects, suggesting that orientations of models are learnable. Su-
pervised learning techniques allow us to exploit the fact that func-
tionality is implicitly encoded in objects’ geometry and that objects
with similar functionality tend to have similar orientations.

Let us assume a training set of objects together with their prescribed
upright orientations. The question is how the upright orientations
of new objects can be inferred from the training set. The simplest
way would be using the “by example” principle, that is, by match-
ing the given object with one of the training examples and then by
aligning them to determine the orientation. However, the task of
matching shapes is highly complex and not reliable enough, and
the alignment of two given shapes is a challenging task on its own.

Rather than directly discerning the orientation of a given object in-

side the full S2 orientation space, we first reduce the problem to a
discrete space of orientation candidates and then use a learning ap-
proach to select the best orientation. Since the objects that we are
considering stand on a flat surface, each of them has a natural base,



Figure 2: Left: A stool model and its convex hull segmented into
planar regions (shown in different colors). Right: The reduced
set of supporting polygons (in red), corresponding to 7 candidate
bases.

namely a set of coplanar points on the model that touch the flat sur-
face. Moreover, the base points lie on the convex hull of the model,
forming some of its facets. Given an object, we thus first extract a
set of candidate bases by analyzing the object’s convex hull. The
number of extracted candidates is typically fairly small, at most a
dozen per object.

Each candidate base is associated with a feature vector of geometric
properties. These are computed by analyzing the object geometry
with respect to the candidate base and are related to functional con-
siderations of the base’s suitability. To make our method general-
ize well, we introduce properties that are abstracted from concrete
shapes and tailored for orientation discrimination only. To learn the
correlation between the feature vectors and the natural bases, we
use a training set consisting of candidate bases associated with fea-
ture vectors and tagged with a binary label that indicates whether
the candidate is a natural base or not.

The problem is now transformed into a supervised classification
problem of finding the natural base given the features of the dif-
ferent candidates, for which there exists a wide variety of well-
studied algorithms. The features extracted are not independent
(for example we have three features related to symmetry) and have
very different distributions. With these concerns in mind and fol-
lowing empirical testing we propose to combine a Random For-
est classifier [Breiman 2001] and a Support Vector Machine classi-
fier [Vapnik 1995], which together provide enhanced generalization
performance. With the trained classifier, each candidate base of an
object is scored and the upright orientation is finally determined by
the candidate with the highest score.

4 Shape Analysis and Feature Extraction

This section describes the selection of candidate bases for a given
object and then presents a set of attributes, defined with respect to
each candidate base.

4.1 Selecting Candidate Bases

A candidate base is a set of coplanar points on the model lying
on its convex hull. Since objects are acted on by gravity and the
base has width, namely its points are not all collinear, each base
defines a supporting plane. We define the supporting polygon of
a base as the 2D convex hull of the base points in the supporting
plane. Each base uniquely determines an upright direction as the
normal of the supporting plane pointing toward our model. The
supporting polygons correspond to faces of the object convex hull

and hence are easily computed 1. To merge coplanar hull facets and
eliminate noise we simplify the convex hull using the Variational
Shape Approximation method [Cohen-Steiner et al. 2004] before
extracting the supporting polygons (Figure 2).

1We use CGAL [Fabri et al. 2000] to compute 2D and 3D convex hulls.

The set of candidate bases can be further reduced by taking into ac-
count stability considerations. For a rigid object in contact with a
supporting plane and acted upon by gravity, the necessary condition
for static equilibrium is that its center of mass lies over the support-
ing polygon. Therefore, we restrict the orientation candidates to the
set of supporting polygons that lead to stable poses. We compute
the center of mass as the weighted average of the face barycenters
of the mesh. For each candidate base we check whether the pro-
jection of the center of mass to the supporting plane is inside the
supporting polygon and discard the candidates for which the pro-
jection is outside. Figure 2 illustrates the orientation candidates of
a stool.

4.2 Feature Extraction

Given the set of candidate bases, we assign them geometric at-
tributes, which convey information that distinguishes the natural
base from the other candidate bases. The attributes are derived us-
ing a combination of functional and aesthetic considerations. As
the input meshes might suffer from poor sampling, inconsistent
vertex/face normals, or isolated components, we cannot rely on at-
tributes whose computation involves second- or higher-order sur-
face derivatives, such as curvatures and feature lines. Note that
each attribute should be appropriately normalized within individual
objects, since the subsequent assessment-function learning needs to
use attributes derived from different objects which may vary con-
siderably in scale and proportions.

Static Stability. Most standing objects are designed to be reason-
ably stable with respect to small perturbing forces. It is commonly
accepted that static stability is related to the proportion of the mass
of the object located above the base. Since we have no knowledge
of the materials involved, we use a geometric estimate of this prop-
erty. We consider three geometric entities (illustrated in Figure 2)
which, when combined, provide such a metric: the center of mass
projected onto the supporting plane of the base (in yellow), the sup-
porting polygon (in red), and the projection of the convex hull of
the object to the supporting plane (in pink). The latter serves as
a proxy for the projection of the object itself to the plane, which
is more time-consuming to compute. Stability is typically better
if the projected center of mass is far away from the boundary of
the supporting polygon. Similarly, stability improves if the sup-
porting polygon covers a large part of the convex-hull projection.
Taking both considerations into account we measure stability as
min0≤θ<2π dinner(θ )/douter(θ ), where dinner(θ ) and douter(θ ) are
the distances from the projected center of mass to the boundary
of the supporting polygon and the boundary of the projected hull
respectively, along a direction determined by θ . This metric is nat-
urally normalized to be between zero and one.

b2

b3

b1

b2

b1

Figure 3: Left: Candidate bases b2 (side) and b3 (bottom) have
better stability than b1 (front); b1 and b3 have better symmetry than
b2 (in terms of collinearity distance). Right: A negative example
for the stability attribute: the natural base b2 has worse stability
than b1. b1 and b2 have the same degree of symmetry (the four
characteristic points coincide).

Figure 3 shows examples of candidate bases with different de-



grees of stability. While stability is clearly important, it is not the
only consideration in determining orientation. For instance, plac-
ing nearly every table upside down results in greater stability than
placing it on its feet.

Symmetry. Symmetry plays an important role in human visual per-
ception and as such provides a strong cue to upright orientation de-
tection. As observed by Podolak et al. [2006], if objects exhibit re-
flective symmetry, the symmetry plane is typically vertical, or in our
case, orthogonal to the natural base. Considering that direct sym-
metry computation [Mitra et al. 2006; Podolak et al. 2006; Simari
et al. 2006] is time-consuming, we trade off precision for computa-
tional efficiency. Specifically, we reduce the symmetry estimation
with respect to a given base to measuring distances, involving four
characteristic points in the supporting plane. These four points, il-
lustrated in Figure 2, are:

⋄ the projected center of mass (in yellow);
⋄ the barycenter (in red) of the supporting polygon;
⋄ the barycenter (in pink) of the convex hull projection to the sup-

porting plane;
⋄ the barycenter (in blue) of the actual base (facets in blue and ver-

tices in green).

We observe that perfect symmetry of a model with respect to a re-
flection plane perpendicular to the base implies collinearity of the
above four characteristic points, since they all should lie in both the
reflection plane and the supporting plane. Moreover, if there are
multiple reflection planes, the four points must coincide.

According to these observations, we introduce two global
symmetry-related attributes: the coincidence distance (the average
distance of the four points to their centroid) and the collinearity dis-
tance (the average distance of the four points to their least-squares
best-fit line). The attributes are normalized by the radius of the
bounding sphere of the model. We also note that for many models,
the natural base itself is symmetric. Consider, for example, the legs
of a chair, a base of a vase, and so on. In our setup base symme-
try can be estimated by the distance between the barycenters of the
actual base and the supporting polygon. This distance effectively
measures the deviation of the base from uniform mass distribution.
To obtain a scale-invariant metric this distance is also normalized by
the radius of the model’s bounding sphere. Symmetry is extremely
useful in discarding relatively bad candidates (e.g., side bases of the
stool model in Figure 2, side base b2 of the chair model in Figure 3),
but used alone it does not distinguish well between candidate bases
orthogonal to the reflection plane(s) (e.g., bases b1 and b3 of the
chair model in Figure 3).

Parallelism. Psychophysical experiments have indicated that hu-
mans tend to integrate local orientation information to identify the
global orientation of an object [Saarinen et al. 1997]. That is, the
global orientation is highly connected to the local orientations of
the model surface. We observe that having large areas of the sur-
face parallel to the base is often an indicator of a natural base. Thus
we introduce a face parallelism attribute measured as the area of
model faces that are parallel to the supporting plane, for example,
the faces in green in Figure 4. We normalize this attribute by the to-
tal area of the model. We also notice that for many models, there is
a clear vertical axis, with both the top and the bottom planes orthog-
onal to it, being good candidate bases. This is reflected by our sec-
ond parallelism-related metric, base parallelism, which measures
the area of other supporting polygons that are parallel to the refer-
ence supporting polygon. This attribute is normalized by the area
of the convex hull of the object.

Visibility. As object geometry often reflects its function, we may
reasonably assume that the surface of the object exists for a rea-
son. When an object is placed on a supporting plane, part of it be-
comes inaccessible and is no longer visible. For instance, consider

Figure 4: Left: An illustration of face parallelism for the bottom
supporting polygon. Right: A negative example for the face par-
allelism attribute: the natural base (in red) has worse face paral-
lelism than the side candidate (in green).

an upside-down cup: the inside surface of the cup is no longer visi-
ble. Similarly, the large surface of the top of an upside-down table
is no longer visible. Thus a candidate base is more likely to be op-
timal if much of the model remains visible after the object is placed
on the corresponding supporting plane. To measure visibility we
estimate the occlusion caused when adding the supporting poly-
gon to the model. We employ a similar approach to [Sheffer and
Hart 2002] to efficiently compute per-face visibility. We render the
model from 32 uniformly sampled view directions with each face
assigned a distinct color and then count the number of hits per face.
Faces which are seen in less than a fraction of the views (0.05 was
used in our experiments) are considered occluded (e.g., the faces in
red in Figure 5). The per-base visibility is computed as the sum of
areas of visible faces. We normalize this attribute by the mesh vis-
ibility without introducing any supporting polygon as an occluder.
We make this choice because in some models parts of the model
can be hidden in all views.

Figure 5: Left: An illustration of the visibility map when introduc-
ing the top supporting polygon as an occluder. Right: A negative
example for the visibility attribute: the natural base (in red) has
worse visibility than the side candidate (in green).

Another attribute that helps to distinguish orientations is the base
area, normalized by the entire mesh area. This attribute can be con-
sidered visibility-related, since the actual base is occluded when the
object is positioned on the corresponding supporting polygon.

Collecting these attributes, we obtain vectors of 8 features per can-
didate base, which are passed to our learning algorithm described
next.

5 Assessment Function Learning

One of the best ways for constructing an assessment function is
learning it from examples. To this end we use a supervised learning
algorithm, which is able to tune function parameters based on the
statistics of a training set. The latter is composed of a set of models
with multiple candidate bases and is described in the next section.
The vast majority of the models have a single natural base. There-
fore, we adopt a representation where the set of candidate bases per
model contains a single “correct” base. Notice that this constraint
renders the problem into a structured estimation problem.

Preliminary experimentation with exponential models [Wainwright



and Jordan 2003], where the output space was designed to be com-
patible to the above constraint gave mediocre results. We therefore
turned to classification algorithms, which produce classifiers that
score each candidate base in isolation, without explicitly assigning
a natural base to a model. Instead, the base with the highest score
is selected as the natural base. Since the attributes are interdepen-
dent, linear methods are not expected to perform well. Indeed naı̈ve
Bayes, linear regression [Duda et al. 2000] and linear Support Vec-
tor Machine (SVM) [Vapnik 1995] all produced unsatisfactory per-
formance. We thus resorted to more complex models and combined
a Random Forest classifier and an SVM classifier with a polynomial
kernel.

5.1 Random Forest

A Random Forest (RF) [Breiman 2001] is made up of an ensemble
of decision trees. The individual trees are trained using a variant
of the CART (Classification and Regression Tree) algorithm [Duda
et al. 2000]. Each tree is grown as follows: a bootstrap sample of
n examples, where n is the size of the training set, is sampled with
replacement from the training set. Due to the sampling, some train-
ing examples are typically represented in the bootstrap sample more
than once whereas other examples are missing altogether. A tree of
maximal depth is grown on the bootstrap sample. The examples not
used for growing the tree, called out-of-bag examples, are used to
give an unbiased estimate for the classification error of each indi-
vidual tree, as well as to get an estimate for variable importance.
The bootstrap sample is unique per individual tree learning, thus
producing a wide variety of decision trees. The final classification
of a test example is usually given by majority voting of the ensem-
ble. Furthermore, one may also interpret the fraction of votes per
output class as an estimate of its likelihood. The fact that a large
number of different trees are voted makes Random Forest resistant
to overfitting.

5.2 Support Vector Machine

SVM has been used extensively for a wide range of classification,
regression and ranking applications in science, medicine and engi-
neering and has shown excellent empirical performance. SVM has
several advantages for the present task. First, it is based on the prin-
ciple of risk minimization and thus provides good generalization
control. Second, using nonlinear kernels, SVM can model nonlin-
ear dependencies among features, which may prove advantageous
for the problem at hand. Third, SVM allows natural control on the
relative cost of false positives and false negatives. This is quite de-
sirable in our case, since the number of natural bases per model is
much smaller than the number of remaining candidate bases. Here

we used soft-margin SVM implemented in SVMlight [Joachims
1999].

5.3 Combined Classifier

We observe that used on their own the Random Forest classifier and
the SVM classifier produce comparable results, with slight advan-
tage to the former. SVM was trained using a quadratic kernel (poly-
nomial kernel of degree 2) and RF was trained using a large num-
ber of trees (= 2000) whereas all other parameters attained their
defaults values. Further analysis shows two interesting facts. First,
the models for which the classifiers err are quite distinct. Second,
for certain models, the Random Forest classifier assigns zero score
for all the candidate bases. This happens when no candidate base
of the model appears to be a typical natural base, and hence none
of the trees votes in favor of it.

We take advantage of these two observations and combine the Ran-
dom Forest and the quadratic SVM classifiers as our final classifier.
Formally, the combined classifier is formulated as:

Ycombined(f) = α Yr f (f)+(1−α) Ysvm(f), (1)

where f ∈ R
8 is a feature vector of attributes described in the pre-

vious section, Yr f (f)∈ [0,1] is the raw output of the Random Forest
classifier, and Ysvm(f) = 1/(1 + exp(−osvm)) with osvm being the
raw output of the quadratic SVM classifier. We use α as a mixing
parameter, optimized by performing a linear search using cross-
validation. α is 0.6 in our experiments. This combination results
in considerable improvement in performance, compared to standard
RF or SVM alone.

6 Implementation and Results

In this section, we describe the construction of the training set for
assessment function learning and the validation results.

6.1 Training

Our learning algorithm does not rely on the classification of training
models. However, having many unbiased classes of models does
help the learning process to better understand the essence of orien-
tation identification among different kinds of models, thus boosting
generalizability. We construct a training set of standing man-made
models using the Princeton Shape Benchmark (PSB) [Shilane et al.
2004], a publicly available database of polygonal models. For train-
ing purposes, we select from it a representative sample of models
covering the major classes of man-made models present in PSB. In
all, there are 345 unique training models with around five candidate
bases per model. The candidate bases of each training model are
manually labeled as natural or not.

6.2 Validation

We validate the effectiveness of our method using the prediction ac-
curacy, which measures the ratio of the number of models correctly
oriented to the number of models in set. Note that for a model with
multiple natural bases (e.g., the bottom and top candidate bases of
the bookshelf in Figure 6 are both considered natural), a correct
detection means that any of these bases is identified.

SVM RF Combined Classifier

Training 81.9% 83.4% 90.5%

Test 78.6% 85.3% 87.5%

Table 1: Prediction accuracies with different learning methods.

K-fold Cross-Validation. We perform a 10-fold cross-validation
on the the training set. Achieving high prediction accuracy on the
training set is not an easy task, as demonstrated when using individ-
ual attributes to identify upright orientations. For example, with the
stability attribute alone, the prediction accuracy using SVM alone

is only 50.1%2. Our combined classifier with all the attributes
achieves 90.5% prediction accuracy, compared to 83.4% with RF
alone and 81.9% with quadratic SVM alone.

Validation with Independent Test Set. We also use an indepen-
dent test set to validate our method. The test set consists of standing
models, including models from PSB excluded from the training set.
We introduce additional test models taken from well-known model
repositories (e.g., Google 3D Warehouse, Turbo Squid, 3D Cafe).
We check all the test models to guarantee that there is no duplica-
tion between the training and test sets. We tested 819 models with
on average 5.75 candidate bases per model. We use the assessment
function trained with the whole training set to detect the orienta-
tions of the test models. Table 1 compares the prediction accuracies
with different learning methods.

Our algorithm is highly generalizable. Not only is it able to ori-
ent diverse objects within function classes present in the training
set, such as tables or cars, but is successfully applicable to objects

2It is impossible to run the combined classifier on a single feature, since

RF needs more features to train.



Figure 6: Examples of correct upright orientations found by our method.

that belong to other function classes. For example, even though the
training set contains no humanoid models, almost all the humanoid
figures in the test set are oriented correctly. Figures 1 through 6
show dozens of models correctly oriented by our algorithm. See
the accompanying video and supplemental images for the whole
training and test sets with the failed models highlighted. Note that
although our feature set is specifically chosen for man-made ob-
jects, our algorithm also works well for certain natural objects (e.g.
4-legged animals and human figures in rest pose).

As with other learning based approaches, it is difficult to precisely
analyze the failure modes of our method. However, inspecting the
models on which it failed, we could suggest several possible rea-
sons for failure. In around 20% of the failed cases more than one
orientation is plausible and only subtle details indicate the natu-
ral orientation. Most of those models have box-like shapes (e.g.,
refrigerator and cabinet models). In addition, for about 30% of
the models (e.g., the bed and sofa models in Figure 7) geometric
features do not seem to provide enough information to distinguish
between plausible orientations. We speculate that geometry alone
might not be sufficient in these cases. We found that about 5% of
the models have representation problems (e.g., one-sided represen-
tation, holes, and noise), leading to incorrect visibility computation
or unstable convex-hull computation. We speculate that the rest of
models failed mainly due to the strong conflict among the current
features (e.g., between the visibility and stability features for the
mirror model in Figure 7), generally demanding new features.
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Confidence Dependent Performance.
For many applications estimating the
confidence of prediction could consid-
erably enhance their practicality. For
example, in cases when prediction is
estimated to be less reliable, manual in-
tervention can be sought. The figure to
the right illustrates the performance of
our classifier for various levels of prediction confidence on the test
set. Specifically, for a given score level t, we calculate the predic-

tion accuracy on a subset S(t) of models, where the highest score
of their candidate bases is larger than the threshold t. For simplic-
ity, the accuracy is plotted against the relative size of S(t) (namely
S(t)/S(0)), so that the rightmost point on the graph corresponds to
all models (no rejection) whereas the leftmost point corresponds to
maximal rejection, i.e. only models with the most reliable predica-
tion. Limiting our predictions to the 30% most reliable predictions
increases the performance to about 95% accuracy.

Avg. # Avg. # Candidate Feature Testing Total

Vertices Faces Selection Extraction

17,148 22,358 7.09s 3.53s 2.2ms 10.62s

Table 2: Average model statics and timing.

Timings. Table 2 gives the model statistics and detailed timings
of our experiments, measured on an Intel Core 2 2.13GHz desktop
with 2GB of RAM using a single thread implementation. The tim-
ings are computed as average times per model. Computing the ob-
ject convex hulls is the bottleneck of candidate selection. It can be
accelerated by simplifying the models being processed in advance.
The bottleneck of feature extraction is the visibility computation,
which can be sped up using graphics hardware implementation. Af-
ter training set construction and labeling, it took our method 12.00
seconds to train the assessment function on the entire set.

7 Conclusion and Future Work

This work addresses for the first time, to the best of our knowledge,
the problem of computing the upright orientation of 3D models. We
provide an effective solution to this problem, in the case of stand-
ing objects, by selecting the best orientation from a small set of
candidates determined from model geometry alone. This selection
process is readily learnable from a training set of models with a
labeled feature vector of geometric attributes defined with respect
to each candidate. We have demonstrated that the necessary geo-
metric attributes for orientation discrimination are largely unrelated
to specific model shapes, thus making our method highly general-
izable and leading to high prediction accuracy for many kinds of



Figure 7: Examples of models oriented incorrectly by our method.
We misorient only about 10% of the models tested.

models. Theoretically, it might be possible to further improve pre-
diction accuracy by exploring additional geometric attributes. This
paper focuses on orientation detection for standing man-made mod-
els. It will be very interesting to find similar ways to orient other
types of man-made or even natural shapes by using different meth-
ods to form orientation candidates. For example, it might be possi-
ble to employ (visually) dominant line and plane features to define
candidate directions in these cases.

Acknowledgements

We would like to thank the reviewers for their valuable comments,
Derek Bradley and Ian South-Dickinson for their great help dur-
ing video production, and Wei-Lwun Lu, Jia Chen and Kai Zhang
for the illuminating discussion on the learning method. This work
was partially supported by grants from NSERC, MITACS NCE,
GEOIDE NCE, National ICT Australia, the Israeli Ministry of Sci-
ence, and the Israel Science Foundation.

References

BLANZ, V., TARR, M. J., AND BÜLTHOFF, H. H. 1999. What
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