
University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 1

Texturing, Clipping
Week 9, Mon 27 Oct 2003

Week 9, Mon 27 Oct 03 © Tamara Munzner 2

Reading
• Chapter 7.1-7.10: texturing
• Chapter 8.3-8.7: clipping

• bump mapping extra reading
http://www.cs.wpi.edu/~matt/courses/cs563/talks/bump/bumpmap.html

Week 9, Mon 27 Oct 03 © Tamara Munzner 3

Texture Mapping
• texture map is an image, two-dimensional array of

color values (texels)
• texels are specified by texture’s (u,v) space
• at each screen pixel, texel can be used to

substitute a polygon’s surface property (color)
• we must map (u,v) space to polygon’s (s, t) space

U

V

S

T

Week 9, Mon 27 Oct 03 © Tamara Munzner 4

Example Texture Map

glVertex3d (s, s, s)
glTexCoord2d(1,1);

glVertex3d (-s, -s, -s)
glTexCoord2d(1,1);

Week 9, Mon 27 Oct 03 © Tamara Munzner 5

Texture Coordinate Transforms

glVertex3d (s, s, s)
glTexCoord2d(5, 5);

glVertex3d (s, s, s)
glTexCoord2d(1, 1);

Week 9, Mon 27 Oct 03 © Tamara Munzner 6

Texture Mapping

(s(s00,t,t00))

(s(s11,t,t11))

(s(s22,t,t22))

Week 9, Mon 27 Oct 03 © Tamara Munzner 7

Texture Mapping and Filtering
• ideal algorithm:
– given texture map as regular grid of texels,

reconstruct continuous texture function using low
pass filtering

– map this continuous texture onto 3D surface
– project surface onto image plane using model/view

and perspective transformation
– low-pass filter resulting continuous function

according to desired image resolution (avoid
aliasing)

– sample filtered continuous image at pixel positions

Week 9, Mon 27 Oct 03 © Tamara Munzner 8

Texture Mapping and Filtering
• in practice: 2 cases

TexelTexel

PixelPixel

texturetexture minificationminification

averagingaveraging

texturetexture magnificationmagnification

interpolationinterpolation

Week 9, Mon 27 Oct 03 © Tamara Munzner 9

Texture Magnification
• synopsis
– texture appears magnified on screen
– only need to low-pass filter in texture space

• that already removes frequencies higher than the
Nyquist limit for the final image resolution

– what filter to use?
• nearest neighbor: just choose color of closest texel

for every pixel
– worst of all possible choices!

• linear interpolation: interpolate from the closest
samples (2 in 1D texture, 4 for 2D, 8 for 3D)

Week 9, Mon 27 Oct 03 © Tamara Munzner 10

Texture Minification
• synopsis
– texture appears reduced in size on screen
– only need to low-pass filter in image space

• will also remove all the high frequencies in texture
space

– same filter as magnification case?
• problem: a lot of texels could fall within the support of

the low-pass filter for a single image
– e.g. when an object is very far away so that it maps to a

single pixel in the final image
– too expensive: have to evaluate filter function at an

unbounded number of places and average results!

Week 9, Mon 27 Oct 03 © Tamara Munzner 11

Texture Minification Filters
• solution: precomputation
– MIP-Mapping (Multum In Parvo)

• “many things in a small place”
• store not one texture image, but whole pyramid
• resolution from level to level varies by factor of two

(original resolution … 1x1)
• every level is correctly filtered for its resolution

Week 9, Mon 27 Oct 03 © Tamara Munzner 12

Environment Mapping
• used to model a object that reflects surrounding

textures to the eye
– polished sphere reflects walls and ceiling textures
– cyborg in Terminator 2 reflects flaming destruction

• texture is distorted fish-eye view of environment
• spherical texture mapping creates texture

coordinates that correctly index into this texture
map

Week 9, Mon 27 Oct 03 © Tamara Munzner 13

Sphere Mapping

Week 9, Mon 27 Oct 03 © Tamara Munzner 14

Blinn/Newell Latitude Mapping

Week 9, Mon 27 Oct 03 © Tamara Munzner 15

Cube Mapping

Week 9, Mon 27 Oct 03 © Tamara Munzner 16

Cube Mapping – Greene ‘86

A

B
C

E

F

D

Week 9, Mon 27 Oct 03 © Tamara Munzner 17

Cube Mapping – Greene ‘86

• direction of reflection vector r selects the face of
the cube to be indexed
– co-ordinate with largest magnitude

• e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face!

– remaining two coordinates (normalized by the 3rd

coordinate) selects the pixel from the face.
• e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

• difficulty in interpolating across faces!
• OpenGL support GL_CUBE_MAP

Week 9, Mon 27 Oct 03 © Tamara Munzner 18

Bump Mapping
• image encodes normal change

– see book, extra reading for full derivation

Week 9, Mon 27 Oct 03 © Tamara Munzner 19

Embossing
• at transitions

– rotate point’s surface normal by � or - �

Week 9, Mon 27 Oct 03 © Tamara Munzner 20

Displacement Mapping
• bump mapped normals are

inconsistent with actual
geometry.
– problems: shadows,

silhouettes

• displacement mapping
actually affects the surface
geometry

Week 9, Mon 27 Oct 03 © Tamara Munzner 21

Next Topic: Clipping
• we’ve been assuming that all primitives (lines,

triangles, polygons) lie entirely within the
viewport
– in general, this assumption will not hold:

Week 9, Mon 27 Oct 03 © Tamara Munzner 22

Clipping
• analytically calculating the portions of

primitives within the viewport

Week 9, Mon 27 Oct 03 © Tamara Munzner 23

Why Clip?
• bad idea to rasterize outside of

framebuffer bounds
• also, don’t waste time scan converting

pixels outside window
– could be billions of pixels for very close

objects!

Week 9, Mon 27 Oct 03 © Tamara Munzner 24

Line Clipping
• 2D
– determine portion of line inside an axis-aligned

rectangle (screen or window)

• 3D
– determine portion of line inside axis-ligned

parallelpiped (viewing frustum in NDC)
– simple extension to the 2D algorithms

Week 9, Mon 27 Oct 03 © Tamara Munzner 25

Clipping
• naïve approach to clipping lines:

for each line segment

for each edge of viewport
find intersection point

pick “nearest” point

if anything is left, draw it

• what do we mean by “nearest”?
• how can we optimize this?

A

B

C
D

Week 9, Mon 27 Oct 03 © Tamara Munzner 26

Trivial Accepts
• big optimization: trivial accept/rejects
• Q: how can we quickly determine whether a line

segment is entirely inside the viewport?

• A: test both endpoints.

Week 9, Mon 27 Oct 03 © Tamara Munzner 27

Trivial Rejects
• Q: how can we know a line is outside

viewport?
• A: if both endpoints on wrong side of same

edge, can trivially reject line

Week 9, Mon 27 Oct 03 © Tamara Munzner 28

Clipping Lines To Viewport
• combining trivial accepts/rejects

– trivially accept lines with both endpoints inside all edges of
the viewport

– trivially reject lines with both endpoints outside the same
edge of the viewport

– otherwise, reduce to trivial cases by splitting into two
segments

Week 9, Mon 27 Oct 03 © Tamara Munzner 29

Cohen-Sutherland Line Clipping
• outcodes
– 4 flags encoding position of a point relative to top,

bottom, left, and right boundary

• OC(p1)=0010
• OC(p2)=0000
• OC(p3)=1001

x=x=xxminmin x=x=xxmaxmax

y=y=yyminmin

y=y=yymaxmax

00000000

10101010 10001000 10011001

00100010 00010001

01100110 01000100 01010101

p1p1

p2p2

p3p3

Week 9, Mon 27 Oct 03 © Tamara Munzner 30

Cohen-Sutherland Line Clipping
• assign outcode to each vertex of line to test
– line segment: (p1,p2)

• trivial cases
– OC(p1)== 0 && OC(p2)==0

• both points inside window, thus line segment completely
visible (trivial accept)

– (OC(p1) & OC(p2))!= 0
• there is (at least) one boundary for which both points are

outside (same flag set in both outcodes)
• thus line segment completely outside window (trivial

reject)

Week 9, Mon 27 Oct 03 © Tamara Munzner 31

Cohen-Sutherland Line Clipping

• if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

• pick an edge that the line crosses (how?)
• intersect line with edge (how?)
• discard portion on wrong side of edge and assign

outcode to new vertex
• apply trivial accept/reject tests; repeat if necessary

Week 9, Mon 27 Oct 03 © Tamara Munzner 32

Cohen-Sutherland Line Clipping
• if line cannot be trivially accepted or rejected,

subdivide so that one or both segments can be
discarded

• pick an edge that the line crosses
– check against edges in same order each time

• for example: top, bottom, right, left

A

B

D E
C

Week 9, Mon 27 Oct 03 © Tamara Munzner 33

Cohen-Sutherland Line Clipping
• intersect line with edge (how?)

A

B

D E
C

Week 9, Mon 27 Oct 03 © Tamara Munzner 34

• discard portion on wrong side of edge and
assign outcode to new vertex

• apply trivial accept/reject tests and repeat if
necessary

Cohen-Sutherland Line Clipping

A

B

D
C

Week 9, Mon 27 Oct 03 © Tamara Munzner 35

Viewport Intersection Code

– (x1, y1), (x2, y2) intersect with vertical edge
at xright

• yintersect = y1 + m(xright – x1), m=(y2-y1)/(x2-x1)

– (x1, y1), (x2, y2) intersect with horizontal
edge at ybottom

• xintersect = x1 + (ybottom – y1)/m, m=(y2-y1)/(x2-x1)

Week 9, Mon 27 Oct 03 © Tamara Munzner 36

Cohen-Sutherland Review

– use opcodes to quickly eliminate/include lines
• best algorithm when trivial accepts/rejects are

common

– must compute viewport clipping of remaining
lines
• non-trivial clipping cost
• redundant clipping of some lines

• more efficient algorithms exist

Week 9, Mon 27 Oct 03 © Tamara Munzner 37

Line Clipping in 3D
• approach:
– clip against parallelpiped in NDC

• after perspective transform

– means that the clipping volume always the same
• xmin=ymin= -1, xmax=ymax= 1 in OpenGL

– boundary lines become boundary planes
• but outcodes still work the same way
• additional front and back clipping plane

zmin = -1, zmax = 1 in OpenGL

Week 9, Mon 27 Oct 03 © Tamara Munzner 38

Polygon Clipping
• objective
– 2D: clip polygon against rectangular window

• or general convex polygons
• extensions for non-convex or general polygons

– 3D: clip polygon against parallelpiped

Week 9, Mon 27 Oct 03 © Tamara Munzner 39

Polygon Clipping
• not just clipping all boundary lines
– may have to introduce new line segments

Week 9, Mon 27 Oct 03 © Tamara Munzner 40

• what happens to a triangle during clipping?
• possible outcomes:

triangle � triangle

Why Is Clipping Hard?

triangle � quad triangle � 5-gon

• how many sides can a clipped triangle have?

Week 9, Mon 27 Oct 03 © Tamara Munzner 41

How Many Sides?
• seven…

Week 9, Mon 27 Oct 03 © Tamara Munzner 42

• a really tough case:

Why Is Clipping Hard?

Week 9, Mon 27 Oct 03 © Tamara Munzner 43

• a really tough case:

Why Is Clipping Hard?

concave polygon � multiple polygons

Week 9, Mon 27 Oct 03 © Tamara Munzner 44

Polygon Clipping
• classes of polygons
– triangles
– convex
– concave
– holes and self-intersection

Week 9, Mon 27 Oct 03 © Tamara Munzner 45

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Mon 27 Oct 03 © Tamara Munzner 46

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Mon 27 Oct 03 © Tamara Munzner 47

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Mon 27 Oct 03 © Tamara Munzner 48

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Mon 27 Oct 03 © Tamara Munzner 49

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Mon 27 Oct 03 © Tamara Munzner 50

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Mon 27 Oct 03 © Tamara Munzner 51

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Mon 27 Oct 03 © Tamara Munzner 52

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Mon 27 Oct 03 © Tamara Munzner 53

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Mon 27 Oct 03 © Tamara Munzner 54

Sutherland-Hodgeman Algorithm

• input/output for algorithm:
– input: list of polygon vertices in order
– output: list of clipped poygon vertices

consisting of old vertices (maybe) and new
vertices (maybe)

• note: this is exactly what we expect from
the clipping operation against each edge

Week 9, Mon 27 Oct 03 © Tamara Munzner 55

Sutherland-Hodgeman Clipping
• Sutherland-Hodgman basic routine:

– go around polygon one vertex at a time
– current vertex has position p
– previous vertex had position s, and it has

been added to the output if appropriate

Week 9, Mon 27 Oct 03 © Tamara Munzner 56

Polygon Clipping
• clipping against one edge:
clipPolygonToEdge(p[n], edge) {

for(i= 0 ; i< n ; i++) {
if(p[i] inside edge) {

if(p[i-1] inside edge) // p[-1]= p[n-1]
output p[i];

else {
p= intersect(p[i-1], p[i], edge);
output p, p[i];

}
} else…

Week 9, Mon 27 Oct 03 © Tamara Munzner 57

Polygon Clipping
• clipping against one edge (cont)
– p[i] inside: 2 cases

outsideoutsideinsideinside insideinside outsideoutside

p[i]p[i]

p[ip[i--1]1]

Output: Output: p[i]p[i]

p[i]p[i]

p[ip[i--1]1]
pp

Output: Output: p,p, p[i]p[i]

Week 9, Mon 27 Oct 03 © Tamara Munzner 58

Polygon Clipping
• clipping against one edge (cont)

…
else { // p[i] is outside edge

if(p[i-1] inside edge) {
p= intersect(p[i-1], p[I], edge);
output p;

}

} // end of algorithm

Week 9, Mon 27 Oct 03 © Tamara Munzner 59

Polygon Clipping
• clipping against one edge (cont)
– p[i] outside: 2 cases

p[i]p[i]

p[ip[i--1]1]

Output: Output: pp

p[i]p[i]

p[ip[i--1]1]

pp

Output:nothingOutput:nothing

outsideoutsideinsideinside insideinside outsideoutside

Week 9, Mon 27 Oct 03 © Tamara Munzner 60

Polygon Clipping
• example

insideinside outsideoutside

p0p0

p1p1

p2p2

p3p3 p4p4

p5p5p7p7 p6p6

Week 9, Mon 27 Oct 03 © Tamara Munzner 61

Polygon Clipping
• Sutherland/Hodgeman Algorithm
– inside/outside tests: outcodes
– intersection of line segment with edge: window-

edge coordinates
– similar to Cohen/Sutherland algorithm for line

clipping

Week 9, Mon 27 Oct 03 © Tamara Munzner 62

Sutherland/Hodgeman Discussion
• clipping against individual edges independent
– great for hardware (pipelining)
– all vertices required in memory at the same time

• not so good, but unavoidable
• another reason for using triangles only in hardware

rendering

Week 9, Mon 27 Oct 03 © Tamara Munzner 63

Sutherland/Hodgeman Discussion
• for rendering pipeline:
– re-triangulate resulting polygon

(can be done for every individual clipping edge)

