
Dimensions of Object-Based Language Design

Peter Wegner
Department of Computer Science

Brown University
Providence RI 02912

Abstract:

The design space of object-based languages is
characterized in terms of objects, classes, inheritance,
data abstraction, strong typing, concurrency, and
persistence. Language classes (paradigms) associated
with interesting subsets of these features are
identified and language design issues for selected
paradigms are examined. Orthogonal dimensions
that span the object-oriented design space are related
to non-orthogonal features of real languages. The
self-referential application of object-oriented metho-
dology to the development of object-based language
paradigms is demonstrated.

Delegation is defined as a generalization of
inheritance and design alternatives such as non-strict,
multiple, and abstract inheritance are considered.
Actors and prototypes are presented as examples of
classless (delegation based) languages. Processes are
classified by their degree of internal concurrency.
The potential inconsistency of object-oriented sharing
and distributed autonomy is discussed, suggesting
that compromises between sharing and autonomy will
be necessary in designing strongly typed object-
oriented distributed database languages.

1. Design Space for Object-Based Languages

In order to examine design alternatives for
object-based languages the following “dimensions” of
language design are considered:

objects
classes
inheritance
data abstraction
strong typing
concurrency
persistence

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

ici 1987 ACM O-8979 l-247-0/87/00 10-0168 $1.50

These features span the design space of object-based
languages. Each relates to a different aspect of com-
putational behavior. Objects are autonomous enti-
ties that respond to messages or operations and share
a state. Classes classify objects by their common
operations. Inheritance serves to classify classes by
their shared behavior. Data abstraction hides the
representation of data and the implementation of
operations. Strong typing imposes static constraints
on the appiicability of operations, both within and
among objects. Concurrency allows objects to exe-
cute concurrently with other objects and to have
internal concurrency. Persistence allows object iden-
tity to persist across applications and to be indepen-
dent of values or keys used in object selection.

Language classes worthy of special study are
identified and the efficiency, simplicity, and methodol-
ogy of the associated paradigms is examined. We
first consider just objects, classes, and inheritance,
then add data abstraction and strong typing, and
finally consider concurrency and persistence. Along
the way global properties of design dimensions such
as consistency and orthogonality are introduced and
related to non-orthogonal features that occur in real
languages.

2. Objects, Classes, and Inheritance

Objects have the following properties:

object: An object has a set of “operations” and a
“state” that remembers the effect of operations.
Objects may be contrasted with functions, which
have no memory. Function values are completely
determined by their arguments, being precisely the
same for each invocation. In contrast, the value
returned by an operation on an object may depend
on its state as well as its arguments. An object may
learn from experience, its reaction to an operation
being determined by its invocation history.

The term “object-based language” may now be
defined as follows:

168 OOPSLA ‘87 Proceedings October 4-8,1987

object-based language: A language is object-based
if it supports objects as a language feature.

Support of objects is a necessary but not
sufficient requirement for being object-oriented.
Object-oriented languages must additionally support
object classes and class inheritance:

object-oriented language: An object-based
language is object-oriented if its objects belong to
classes and class hierarchies may be incrementally
defined by an inheritance mechanism. That is:

object-oriented = objects + classes + inheritance

The notions “class” and “inheritance” used in
the above definition can be defined as follows:

class: A class is a template (cookie cutter) from
which objects may be created by “create” or “new”
operations. Objects of the same class have common
operations and therefore uniform behavior. Classes
have one or more “interfaces” that specify the opera-
tions accessible to clients through that interface. A
“class body” specifies code for implementing opera-
tions in the class interface.

inheritance: A class may inherit operations from
“superclasses” and may have its operations inherited
by “subclasses”. An object of the class C created by
the operation “C new” has C as its “base class” and
may use operations defined in its base class as well as
operations defined in superclasses. Inheritance from a
single superclass is called single inheritance; inheri-
tance from multiple superclasses is called multiple
inheritance.

Inheritance is here defined narrowly as a
mechanism for resource sharing in class hierarchies.
In the literature the term is used loosely to denote a
variety of other forms of hierarchical resource shar-
ing. We will later define “delegation” as a more gen-
eral class-independent term for dynamic hierarchical
resource sharing.

The class of object-based languages includes
Ada [DOD], Modula [Wi], CLU [LSAS], and Actor
languages [Ag] but not Pascal, Algol, or Fortran.
Ada’s objects are realized by packages, Modula’s
objects are called modules, and CLU’s objects are
instances of clusters.

The class of object-oriented languages is nar-
rower than the class of object-based languages,
excluding languages like Ada, Modula, and CLU but
including languages like Smalltalk and C++.

Ada is object-based but is not object-oriented
according to our definition because its objects (pack-
ages) do not have a class (type). CLU’s clusters are
effectively classes since they serve as templates for
creating instances and allow instances to be “first-
class objects” in the sense that they can be assigned
to variables, be passed as parameters, and be com-
ponents of structures. But CLU does not have an
inheritance relation for defining hierarchical relations
between clusters, and is therefore not object-oriented.

In accordance with our approach of naming
“interesting*’ language classes we call object-based
languages which require every object to have a class
“class-based” or “classical” languages.

class-based (classical) languages: An object-based
language is class-based (classical) if every object has
a class.

Class-based languages are a proper subset of
object-based languages, while object-oriented
languages are in turn a proper subset of class-based
languages. Ada is an example of an object-based
language that is not class-based while CLU is an
example of a class-based language that is not object-
oriented. This hierarchy of language classes is illus-
trated in Figure 1.

t classes

i
Ada, Actors

@&y&.;;;;:,

i
Simula, Smalltalk

Figure 1: From Object-Based to Object-
Oriented Languages

Figure 1 may be viewed as an inheritance
hierarchy which uses object-oriented techniques to
classify object-based languages. We may think of
class-based languages as inheriting the attributes of
object-based languages, and of object-oriented
languages as in turn inheriting the attributes of both

0&&r 4-a, i 987 OOPSLA ‘87 Proceedings 189

the class-based and the object-based languages. This
self-application of object-oriented methodology to
object-based languages both illustrates its general
power in classifying and organizing knowledge and
provides substantive insight into the particular
domain which is the subject of this paper.

It is not surprising that object-oriented inheri-
tance surfaces as a technique for defining the relation
between language classes. Figure 1 classifies
languages into hierarchies by imposing progressively
stronger requirements on the features they possess.
Such classification is precisely the purpose of inheri-
tance in object-oriented systems, as pointed out in
[we].

We briefly consider the impact of objects,
classes, and inheritance on programming methodol-
ogy. Objects serve to group operations with the data
they will transform and provide a data-oriented prin-
ciple for program design. Classes serve to manage
collections of objects, allowing objects to be treated
as first-class values within the language so that they
can be passed as parameters, assigned as values of
variables, and organized into structures. Class inher-
itance serves to organize collections of classes, allow-
ing application domains to be described by class
hierarchies.

Object-based languages like Ada support the
functionality of objects. But object management
must be handled by mechanisms outside the language
like libraries, because it is not supported within the
language. Class-based languages languages provide
some degree of management of objects within the
language but no mechanism for the management of
classes. Object-oriented languages allow both objects
and classes to be managed within the language,
thereby providing a uniform mechanism for both
design and implementation of applications. They are
“wide spectrum languages” because they support both
the high-level design of class hierarchies and the low-
level implementation of objects.

3. Data Abstraction and Strong Typing

The terms “data abstraction” and “strong typ-
ing”, may be defined as follows:

data abstraction: A data abstraction is an object
whose state is accessible only through its operations.
The state is generally represented by instance vari-
ables. Instance variables of a data abstraction are
hidden from its clients and are accessible only
through the object’s operations.

strong typing: A language is strongly typed if type
compatibility of all expressions representing values
can be determined from the static program represen-
tation at compile time.

Object-oriented languages with data abstrac-
tion and strong typing are a narrower class of
languages with stronger structuring properties than
the class we have chosen to call object-oriented. This
narrower class excludes Simula, whose objects are not
data abstractions because their instance variables
can be accessed by other objects, and Smalltalk,
which is not strongly typed because its variables may
be assigned values of different type at different points
of execution. The term “object-oriented” has been
carefully defined to be sufficiently narrow to exclude
languages like Ada, Modula, and CLU and sufficiently
broad to include languages like Simula and
Smalltalk.

Object-oriented languages which have strong
typing and require all objects to be data abstractions
will be called strongly typed object-oriented
languages:

strongly typed object-oriented language: An
object-oriented language is strongly typed if it has
strong typing and requires all objects to be data
abstractions.

Strong typing and data abstraction have the
common objective of strengthening object modularity
but are independent in the sense that strong typing is
possible for objects that are not data abstractions (as
demonstrated by Simula), and data abstraction is
possible without strong typing and indeed without
any typing at all (as demonstrated by Smalltalk).

Should object-oriented languages require
abstraction and strong typing? Smalltalk has cons-
ciously avoided strong typing in order to achieve
dynamic binding, while Lisp-based object-oriented
languages in the Flavors tradition [Mo,DG] have
consciously avoided both strong typing and abstrac-
tion. Flavors goes even further and does not actually
have objects as a language primitive. It has the more
primitive notion of a data template to which opera-
tions may be attached. Flavors do not specify opera-
tions but may be used as an anchor for operations.
Thus Flavors-style languages are not, strictly speak-
ing, object-based but serve as a substrate which may
be used in an object-based or object-oriented way.

170 OOPSIA ‘87 Proceedings October 4-8, 1987

The inclusion of data abstraction and strong
typing is clearly not an unqualified benefit. It
involves a tradeoff between structure and discipline
on the one hand and flexibility and efficiency on the
other. Abstraction is good when we can commit our-
selves to particular abstractions early in the design
process, but may be unduly constraining when we are
unsure of the precise abstractions appropriate to a
problem and wish to experiment with abstractions as
part of the design and prototyping process. This is
often the case with artificial intelligence applications
or in other experimental applications concerned with
understanding concepts that underlie a class of prob-
lems rather than with the solution of a specific prob-
lem. Lisp-based object-oriented systems are intended
for such applications and consciously provide non-
abstract objects to enhance the conceptual flexibility
of problem solving.

Does it make sense to have non-abstract
strongly typed languages? Although languages like
Simula illustrate that commitment to strong typing is
possible without commitment to abstraction, this
may be a historical accident. It may well be that
non-abstract objects are useful primarily for untyped
formalisms where the absence of both abstractions
and types encourages conceptual flexibility. Typed
formalisms may discourage experimentation to such
an extent that non-abstract objects are no longer
useful. However, this is just speculation, and closer
analysis might well reveal that non abstract strongly
typed objects are in fact useful in certain kinds of
experimental applications.

In spite of these reservations, the accepted wis-
dom is that strongly typed object-oriented languages
should be the norm for application programming and
especially for programming in the large. An object-
oriented programming environment should probably
support Lisp-style untyped programming for purposes
of prototyping and strongly typed object-oriented
languages for traditional application programming.
Moreover, there should be provision for automatically
freezing experimental prototype code to turn it into
strongly typed code if and when it is ready to be used
for production programming.

4. Consistency and Orthogonality

The consistency of a collection of language
features may be defined as follows:

consistency: A collection of language features is con-
sistent if they can coexist, that is, if there is a “model
language” that realizes the features. Consistency can

be demonstrated by exhibiting a language that has
the set of features.

The five features that define strongly typed
object-oriented languages are consistent since
strongly typed languages exist, for example Owl [SC].
Moreover, consistency of a set of features implies con-
sistency of any subset of the features.

A collection of language features is orthogonal
if no feature is a consequence of any of the other
language features. This notion of independence is
captured by the following condition:

orthogonality: A collection of features is orthogonal
(independent) if, for every subset, there is a language
that possesses that subset of features and no features
in the complementary subset.

Objects, classes, and inheritance are far from
orthogonal. Classes are defined in terms of objects
and inheritance is in turn defined in terms of classes.
We write this dependence as follows:

classes + objects
inheritance + classes

This lack of orthogonality suggests that we look
for orthogonal concepts that define the essence of
being a class in an object-independent way and the
essence of inheritance in a way that is independent of
classes and objects. In the case of classes the orthog-
onal concept is the notion of type which, as a first
approximation, may be defined as follows:

type: A type is a behavior specification that may be
used to generate instances having the behavior.

The orthogonality of objects and types is illus-
trated by Ada which has a well developed notion of
type and even strong typing but does not support
typed objects.

In order to define a notion of inheritance
orthogonal to classes and objects the clasa-
independent “essence” of inheritance must be
identified. We view inheritance as a mechanism for
sharing incrementally defined resources that internal-
izes shared resources, treating them as part of an
extended self. Following Cook [Co], we define a
class-independent form of inheritance in terms of a
particular mechanism for self-reference that allows
remotely defined operations to be internalized as part

Odober 4-8,1987 OOPSLA ‘87 Proceedings

of the extended identity of an object. The class-
independent notion of inheritance will be called dele-
gation and may be defined as follows:

delegation: Delegation is a mechanism that, allows
objects to delegate responsibility for performing an
operation or finding a value to one or more desig-
nated “ancestors”. A key feature is that self-
reference in an ancestor dynamically denotes the
delegating object, thereby allowing the ancestor to be
part of the extended identity of the delegating object.
Dynamic binding of self-reference realizes sharing and
reusability by allowing the resources of an ancestor
to be part of the extended identity of different
delegating objects at different points of execution.

Delegation is defined independently of classes.
The key concept is the internalization of delegated
operations so they can be treated as part of an
extended self. Delegation is defined to be a form of
resource sharing that allows shared resources to be
viewed as belonging to the entity on behalf of which
they are executed. This effect is realized by dynami-
cally binding “self’ to each entity on behalf of which
it is executed for the duration of its execution. Thus
a given operation can “belong” to different entities on
different instances of execution.

Inheritance may be viewed as a specialization
of delegation in which the entities that inherit are
classes, and is therefore considered to be in the same
“design dimension” as delegation. If we had to choose
between these two notions to characterize this design
dimension we would choose delegation, since it is
purer and is “orthogonal” to other design dimensions.
However, inheritance is more familiar and is needed
to characterize object-oriented programming

Methodologically, orthogonality is a nice pro-
perty of design dimensions that is useful for purposes
of classification. When dimensions are not, orthogonal
it is often useful to go through the exercise of identi-
fying what it takes to make them orthogonal, as we
did in identifying the notion of delegation as an
orthogonal form of the notion of inheritance.

How can we extend the design space determined
by objects, types, and delegation to take account of
data abstraction and strong typing? Data abstrac-
tion is not orthogonal to these dimensions because it
depends on objects. The associated orthogonal notion
is abstraction or information hiding-defined so that it
is uniformly applicable to any entity:

abstraction: An abstraction is a specification of an

entity by an interface that controls access to the
entity by other entities.

Strong typing is not orthogonal since it is a
form of typing. There is no additional dimension
because strong typing simply requires every value to
have a type and that operator/operand compatibility
can be determined at compile time. Thus strongly
typed object-oriented languages can be characterized
in a design space with the following four orthogonal
dimensions:

objects - modular computing agents
types - expression classification mechanism
delegation - resource sharing mechanism
abstraction - interface specification mechanism

These dimensions provide a design framework
for object-based languages in terms of computing
agents, classification mechanisms, sharing mechan-
isms, and interface specification mechanisms. Specific
languages in this design space are defined by con-
straints on these design dimensions such as the spe-
cialization of types to have classes and include strong
typing, of delegation to be inheritance of classes, and
of abstraction to be data abstraction. The con-
straints define a subspace of the design space deter-
mined by orthogonal design dimensions.

5. Design Alternatives for Delegation

Delegation may be specialized by selecting
among the following design alternatives:

(1) classless delegation versus inheritance
Classless delegation realizes dynamic sharing

in an instance hierarchy while while inheritance
realizes dynamic sharing in a class hierarchy.

(2) striEt versus non-strict inheritance
Strict inheritance requires descendants to be

behaviorally compatible with ancestors, while
non-strict inheritance allows operations of
ancestors to be arbitrarily redefined and cap
tures the notion of “similarity” rather than
“behavioral compatibility. In between there are
forms of controlled redefinition. In [WZ] we
refer to strict behavioral compatibility as an
“is-a” relation and to non-strict similarity as a
“like” relation.

(3) single versus multiple inheritance
Multiple inheritance allows an object to

inherit from multiple ancestors and provides a

172 OOPSLA ‘87 Proceedings October 4-8,1987

(4

more flexible behavior composition mechanism
than single inheritance. There is no agreement
on the mechanisms of method combination that
multiple inheritance should support.

abstract interface versus code sharing
Should sharing by inheritance be at the level

of code sharing or abstract interfaces?
Smalltalk and Flavors view inheritance as a
code sharing mechanism. CommonObjects [Sn]
is based on abstract inheritance. Actra [LTP]
supports both specification hierarchies based on
abstract inheritance and implementation
hierarchies based on code sharing.

Figure 2 demonstrates the hierarchical selection
of design alternatives. It shows that the object-
oriented classification method can be applied to pro-
gressively more finely grained design decisions to
select among’alternative delegation strategies.

Figure 2. Design Alternatives for Inheritance

6. Delegation-Based Languages

Since classless object-based languages with dele-
gation are interesting we christen them as follows:

delegation-based languages: A delegation-based
language is an object-based language that supports
classless objects and delegation:

delegation-based = objects - classes + delegation

Delegation was conceived by Lieberman [Li] and
used by Cook [Co], Stein /St], Lalonde, Thomas, and

Pugh [LTP], Hailpern and Nguyen [HN], and others
in exploring classless models of inheritance.

Our definition of delegation differs from that of
Lieberman [Li] in that we view inheritance as a spe-
cial case of delegation while Lieberman views delega-
tion and inheritance as two distinct mechanisms. We
have taken the liberty of slightly redefining the term
to focus on the class-independent essence of inheri-
tance rather than on a concept that parallels inheri-
tance. We could have used another term but the
term “delegation” seems to capture the intuition of
sharing by delegating responsibility without commit-
ment to either classes or class-independence.

Delegation captures the essence of the dynamic
resource-sharing paradigm underlying inheritance in
a purer form than the earlier class-dependent
definition. Features of dynamic hierarchical resource
sharing are more clearly characterized by delegation
than in terms of specialized notions of inheritance.
We consider two such features, namely object auton-
omy and virtual operations.

The dynamic resource sharing provided by dele-
gation has its costs in object autonomy. It is as
though objects are connected to ancestors by an
umbilical cord which they can never cut. Such
dynamic sharing is expensive in distributed systems
where ancestors are in different distributed com-
ponents from their descendants. Delegation is an
acceptable sharing mechanism for objects in a single
address space but may be unacceptable as a sharing
mechanism between address spaces.

The notion of virtual operations of Simula and
other class-based languages may be defined more gen-
erally for delegation-based languages. Virtual opera-
tions arise when an ancestor specifies resources that
will be implemented later in a descendant:

virtual resource (operation): A resource (opera-
tion) named and specified in an ancestor whose imple-
mentation will be provided by a descendant.

In class-based languages classes with virtual
resources are called abstract classes and cannot be
instantiated because there is generally no way to
bind virtual to actual resources except at instance
creation time.

abstract class: A class with virtual resources that
can be instantiated only as an instance of a subclass
for which virtual resources of the cl&s are imple-
mented.

Odobr 4-8,1987 OOPSIA ‘87 Proceedings 173

However, there is no inherent reason why
separately defined actual resources should not be con-
nected to already created objects either at load time
or dynamically as they are generated by the system.
Specification and implementation should be
sufficiently decoupled so that implementations can be
bound to specifications in a flexible way.

7. Classless Languages

Objects not required to have a class will be
called classless objects and languages with classless
objects will be called classless languages:

classless objects: Objects that do not have a class.
classless languages: Object-based languages whose

objects may be classless.

Classless languages represent a more radical
form of typelessness than languages that are object-
oriented but not strongly typed. The relation
between Smalltalk and classless languages is similar
to that between Snob014 and Lisp. Values in Snob014
have a type but allow variables to assume values of
different types at different points of execution, while
values in Lisp are untyped. Classlessness provides
greater freedom for experimental programming than
lack of strong typing but is correspondingly less
structured. The arguments in favor of classlessness
include the following:

(1) class-independent operations
It does not always make sense to associate an

operation with a specific class, since:
a) an operation may have objects of several

different classes as arguments, and transform
the state of several different classes.

b) an operation may transform not only an
object’s state but also its interface.

c) an operation may be applicable to many
different classes (friends in C++)

(2) classes with a singleton element
When classes have just a single instance (the

class of all planets nearest the sun or of all suc-
cessors of 0) the separate specification of shared
behavior and a non-shared state makes no
sense, since the shared behavior is shared by
only one object. However, when such classes
are formed by specialization (inheritance) from
more general classes (the class of planets or
integers) then classes with even a singleton ele-
ment may be worthwhile.

(3) auxiliary entities
Classes are auxiliary entities having no neces-

sary existence in the domain of discourse being
modelled. The class hierarchy (Integer,
Number, Magnitude, Object) used to model
integers in Smalltalk is determined by an arbi-
trary design decision of Smalltalk rather than
by a necessary property of the integers. We

may in principle dispense with auxiliary
abstractions and capture the properties of col-
lections of objects directly by prototypes whose
properties serve to specify both particular
instances and defaults for dependent instances.

Languages with classless objects are object-
based but not object-oriented. We can subdivide
such languages into two categories:

classless languages without delegation
classless languages with delegation

We shall examine Actor languages as an exam-
ple of classless languages without delegation, and
Lieberman’s prototypes [Li] as an example of classless
languages with delegation.

8. Actors

Actor languages support objects, abstraction,
and concurrency but not classes, inheritance, or
strong typing:

actor languages =
objects + abstraction + concurrency
- classes - inheritance - strong typing

Actor languages are low-level languages that
.may be used to build higher-level, more structured
languages. The concurrency supported by actors is
fine-grained in the sense that actors not only execute
concurrently with other actors but may also execute
their internal actions concurrently. Actors represent
a point in the design space of object-based languages
very different from that of traditional object-oriented
languages. They raise fundamental questions relating
to the nature of concurrency that are beyond the
scope of this paper. We are here interested in actor
languages because of the clear and simple model they
provide of objects without classes rather than as a
basis for a practical programming language.

Actors are objects which have a mail address
(mailbox name) and a behavior. The mail address

174 OOPSIA ‘87 Proceedings October 4-8,1987

designates a buffer which can store an unbounded
linear sequence of messages (called “communica-
tions”). The behavior of an actor is defined by its
actions in response to a communication. A pure
actor can process just a single communication from
its mailbox before it “dies”. Computational actors,
like the human ones described in Macbeth, “strut and
fret their hour upon the stage and then are no more”.

The identity of an actor is determined by its
mailbox name which is firmly decoupled from its state
and behavior. Moreover, the state and behavior for
an actor is totally independent of the state and
behavior of its successor. The process of creating a
successor is not unlike reincarnation in that the
“soul”, represented by the mailbox name, is reincar-
nated for an entirely new body.

An actor may respond to a communication by
sending messages, creating new actors, and creating
its replacement, as illustrated in Figure 3:

specifies replacement

Figure 3: Behavior of Actors

(1) An actor may send a finite number of communi-
cations to other actors with known mailbox
names (its acquaintances).

(2) It may create a finite number of new actors.
The mailbox name of newly created names is
known to the creating actor and may be
disseminated to other actors by sending them

communications that contain the mailbox name.

(3) It must designate a successor with the same
identity (mailbox name) as its parent to process
the next communication to the actor. The
behavior of the successor is called the replace-
ment behavior. There are no constraints on the
relation between the behavior of an actor and
its replacement behavior. In particular, the
message set meaningful for an actor
(corresponding to its set of operations) need
bear no relation to the message set meaningful
for its successor.

Supposing an actor sends p communications to
other actors and creates q new actors as well as its
successor before it dies. These p+q+l activities are
in principle concurrent, so that the processing of a
single communication spawns p+q+l concurrent
tasks. The successor actor occupies a special place
among these since it represents the continuation of
the main process. Th e successor may initiate its
activity by responding to the next communication in
the mailbox as soon as it is fully created, and may
execute concurrently while its progenitor is complet-
ing its other tasks. This permits pipelining, that is,
concurrently applying the sequence of incarnations of
a given actor to a sequence of communications in its
mailbox.

The actor associated with a mail queue has a
sequence of incarnations with Xn representing the
incarnation that processes the nth communication.
Xn must wait until its communication (in slot n of
the mailbox) arrives. It then creates a replacement
behavior X(n+l) which processes the (n+l)th com-
munication, and may send communications to other
actors and create new actors with associated new
mail queues.

Following (Ag] we briefly show how the factorial
function is computed in the actor formalism. We
define a factbrial actor which responds to messages of
the form (n,r), where n is the integer whose factorial
is being computed and r is the mailbox to which the
result will be sent. The factorial actor has a simple
response when n=O and a more complex response
when n>O.

When n=O the factorial actor simply sends a
message with value 1 to the actor with mailbox
address r. When n>O it performs the following
actions:

October 4-8,1987 OOPSLA ‘87 Proceedings 175

(1) It creates a replacement behavior Fn that has
the same behavior as the original factorial
actor.

(2) It creates an actor, say “An”, which computes
“n*k” on receiving the message k arid sends the
result to r.

(3) It sends a message to “self” consisting of the
integer “n-l” and the return address of the
newly created actor “An”. If (n-l) > 0 this in
turn causes its replacement behavior to

1) create an actor “A(n-1)” which, on receiving
the message k, computes “(n-l)*k”, and

2) send the message with integer (n-2) and
return address “A(n-1)” to self.

Thus the message “(n,r)” sent to the factorial
actor will create a sequence of n incarnations of the
factorial actor Fn, F(n-1), ..,, Fl, and an associated
set of created actors An, A(n-1), Al such that Ai
will receive a message with value (i-l) factorial and
send i factorial to A(i+l). Finally, “An” will receive
(n-l) factorial and send n factorial to r.

This example does not demonstrate concurrency
since the computation takes 2*n sequential steps: n to
create the auxiliary actors An,...,Al, and another n
to perform the n multiplications. Using actors to
compute factorials is like using a sledgehammer to
crack a nut. But it does illustrate the role of replace-
ment behavior, actor creation, and message creation
in a concrete, albeit simple, computation. In doing so
it provides insight into the reasons for requiring these
three mechanisms as a basis for defining actor compu-
tation.

Actors provide a flexible model of computation
based on a powerful computation primitive. The
model is too powerful and flexible for most computa-
tions that arise in practice, and certainly too power-
ful for computing factorials. However, the actor
model simply demonstrates how computations on
classless objects may be realized and how the model
may be specialized to class preserving computations,
namely by constraining the replacement behavior.

9. Prototypes

Delegation-based languages allow objects to
share and internalize operations of “ancestor” objects,
called prototypes, that serve both as instances and as
templates for descendants:

prototype: A prototype is an object that is both an
instance and a template. Objects may delegate

responsibility for performing operations or finding
values to a prototype. The prototype provides
defaults for its operations and values to objects that
request the prototype to perform an operation on
their behalf.

When classes that have only a single member
we are assured that there will never be an occasion
when the prototype needs to be used as a template,
and it can play the role of an instance without wor-
rying about the effect of changes on delegating
objects. Even when classes have many members pro-
totypes are a natural way of representing the first
member of the class that is encountered but may
cause problems when additional members delegate
their default behavior to the prototype.

For example, if we encounter an elephant, say
Clyde, there is no need to store both the instance and
its class and we may store just the instance. If we
then encounter a second elephant, say Fred, we can
view Clyde as a prototype for representing knowledge
about Fred. Fred may be represented by his
differences from Clyde. Properties that Fred shares
with Clyde can be omitted from the representation of
Fred since the default values in Fred’s prototype
Clyde may be used.

In this example, prototypes require less over-
head than the alternative of creating an elephant
abstraction independent of Clyde and Fred. They
also appear to model the cognitive acquisition of
knowledge about elephants more naturally. It is only
after seeing many elephants that an elephant
abstraction becomes cognitively established and prac-
tically useful. The prototype mechanism appears to
model knowledge acquisition more closely than the
class mechanism for human cognitive processes, and
its computational models have less overhead for
classes with a small number of instances. However,
classes model cognitive processes and knowledge
organization of the specialist so that both mechan-
isms are needed to span the complete range of cogni-
tive situations.

We shall refer to delegation-based languages
based on prototypes as “prototypical”:

prototypical languages: Prototypical languages are
delegation-based languages that realize delegation by
prototypes.

The transition from a prototypicai to a classical
representation of objects could in principle be

176 OOPSLA ‘87 Proceedings October 4-8,1987

performed automatically. It reflects the leap in

abstraction that comes from recognizing the common
structure of a collection of instances and defining a
class that captures this structure. It is performed
repeatedly in childhood in learning the meanings of
words like cookie, dog, and table. In computation,
unification is an example of an automatic method of
finding the common structure of a collection of pat-
terns. A similar technique could be developed for
finding the common class structure of a collection of
objects. Moreover, the commonality assumptions
could be expressed as constraints on variability and
the “unification” technique could be reapplied when-
ever variability constraints were violated.

The distinction between classical and prototypi-
cal systems reflects a long-standing philosophical
debate concerning the status and representation of
abstraction. Plato viewed abstractions like “ideal”
tables as having an existence more real than
instances of tables in the real world. Object-oriented
languages like Smalltalk are Platonic in their explicit
use of classes to represent similarity among collec-
tions of objects.

The alternative view, that abstractions are
unnecessary auxiliary constructs, has not been pro-
pounded as cogently, probably because, taken to the
extreme, it may simply be wrong. While any given
set of auxiliary entities may be unnecessary in the
description of a domain of discourse, the stronger
position that complex domains should be described
without any auxiliary entities whatsoever seems
untenable.

Prototypical systems are adequate as a primi-
tive substrate for organizing domains of discourse,
just as untyped computational formalisms such as
assembly languages or the lambda calculus are ade-
quate for expressing all possible computations. How-
ever, when a prototypical system or untyped formal-
ism is used to model a complex universe, types and
classes for expressing regularities in the domain creep
in by the back door, and it becomes preferable to
introduce explicit typing and classification schemes
rather than rely on ad hoc ingenuity. It may well be
appropriate to adopt a prototyping view of the world
in the early stages of modelling a domain and to
switch to a typed view when the classes appropriate
to the domain become established. In switching from
an untyped to a typed model we give up some flexibil-
ity in the interests of structure and regularity.

Classical and prototypical languages have
different approaches to the knowledge representation
of shared abstractions. Classical languages

distinguish between two sharing mechanisms: sharing
of class attributes by instances and sharing of super-
class attributes by classes. In contrast, prototypical
languages have just one kind of sharing, namely the
sharing by instances (which may be prototypes) of
default properties defined in their prototypes.

Delegation may be used for managing shared
information represented by prototypes. However, our
definition of delegation is broader than Lieberman’s
and may be used also for managing shared informa-
tion in classical inheritance.

10. Object-Based Concurrency

Concurrent object-based languages model the
world by concurrently executable objects called
processes. The term “process” is used in the context
of operating systems to mean a machine language
representation of a computation that is performed on
a processor . We use the term in the context of pro-
gramming languages to capture the higher-level
notion of a concurrently executing object:

process: Processes have an interface of executable
operations or entry points and one or more threads of
control that may be active or suspended.

Process-based languages are object-based
languages whose objects may execute concurrently.

process-baskd language: A process-based language
is an object-based language that has processes.

Object-based languages model the world by
autonomous objects that are constrained to execute
sequentially. Process-based languages extend the
autonomy of objects to autonomy in time.

The primitive executable processing elements
within a process are called threads:

thread: A thread consists of a thread control block
containing a locus of control and a stack which
represents its “state” of execution and is initially
empty.

Threads are data structures that can become
active by being loaded into a processor. Thread data
structures may be passed as message requests to
processes, and may be queued in message buffers until
a process is ready to execute them. They may be
suspended if conditions required for their execution
are not appropriate and reactivated when the

Ckbber ha,1987 OOPSIA ‘87 Proceedings 177

conditions again obtain. We classify processes in
terms of the properties of their threads.

We distinguish between sequential processes
with a single thread of control, quasi-concurrent
processes with at most one active thread of control,
and concurrent processes with multiple threads of
control.

sequential process: A process that has just one
thread of control.

quasi-concurrent process: A process that has at
most one active thread of control.

concurrent process: A process that may have
multiple active threads of control.

Sequential processes (Ada and Nil) generally
have a body with an interface of entry points at
which messages to perform operations may be queued.
An invoking operation (incoming message) must wait
until the already executing process is ready to accept
it by means of a “rendezvous” which joins the incom-
ing and active threads of control for purposes of syn-
chronization and argument communication and then
separates the threads so that invoking and invoked
processes may again proceed in parallel.

Quasi concurrent processes allow threads of
control to be suspended while waiting for a condition
to be fulfilled and resumed when the condition is
satisfied. They differ from sequential processes in
having “condition queues” of suspended threads as
well as entry queues of threads that are waiting to
enter the process. An incoming thread can become
active only if the current thread terminates or is
suspended, or if the incoming thread fuses with the
active thread by a mechanism such as rendezvous.
Monitors [Ho, Ha] are an example of quasi-concurrent
processes.

In concurrent processes there is no restriction on
active threads and an invoking operation may freely
create a new thread. But attempts to access shared
data in critical regions (atomic objects in Argus) may
cause a thread to be suspended until the shared data
can safely be accessed. Concurrency within processes
allows finer-grained control that permits suspension
to be delayed from process entry time to the time of
entry to critical regions.

The concurrent languages CSP [HOI], Ada, and
Nil [SY] have sequential processes. Monitor-based
languages like DP [Ha], ABCL/l [YEE], and Orient
84/K [IT] have quasi-concurrent processes. Actor
languages and Argus [Li] have concurrent processes.

Note that all three language classes are fully
concurrent. They differ in their restriction on con-
currency within processes but are similar in placing
no restriction on concurrency between processes.

Restrictions on concurrency between processes
are in fact useful in defining weaker (subconcurrent)
languages that allow multiple independent but not
concurrent threads. For example, Simula with its
coroutines and Smalltalk 80 with its “processes” are
“quasi-concurrent languages” because they allow
objects to have independent threads of control but
allow only one thread to execute at a time:

sequential language: A languages with a single
thread of control.

quasi-concurrent language: A language with mul-
tiple independent threads but only one active thread.

concurrent language: A language with multiple
active threads.

In this section we are committed to full con-
currency at the language level and focus on design
alternatives for concurrency within processes. The
question whether processes should have internal con-
currency can be addressed at the level of both con-
ceptual modelling and language design. At the con-
ceptual level some applications are more naturally
modelled by sequential or quasi-concurrent processes
while others are more naturally modelled by fully
concurrent processes.

At the design and implementation levels sequen-
tial and quasi-concurrent processes allow the unit of
modularity and concurrency to be the same and
result in much simpler languages than concurrent
processes. Concurrent processes permit units of
modularity to contain multiple units of concurrency
and require distinct synchronization and communica-
tion mechanisms for inter and intra process con-
currency at both the language and system levels

ww -
However, concurrent processes are more uniform

in permitting the same concurrency primitives to be
used both within and between processes. They have
a hierarchical rather than a flat process structure.
Moreover, concurrent processes permit more finely
grained concurrency and are more expressive in
modelling situations in the real world which require
such concurrency.

The step from sequential to quasi-concurrent
processes makes scheduling of threads within a pro-
cess more flexible without causing mutual exclusion

178 OOPSLA ‘87 Proceedings October 4-8,1987

problems for simple access to data structures. How-
ever, quasi-concurrent processes present mutual exclu-
sion problems when processing transactions because
suspending a thread in the middle of a transaction
could cause integrity constraints of the transaction to
be violated.

Transactions may be viewed as “temporal
modules” in the sense that they represent uninterrup-
tible non-atomic temporal units of execution. Quasi
concurrent processes present no mutual exclusion
problems for atomic operations but cause problems
when we try to combine the temporal modularity of
transactions with the traditional spatial modularity
of objects and processes. Concurrent languages based
on quasi-concurrent processes, like ABCL/l or Orient
84K, are harder to extend to transaction processing
than languages based on concurrent sequential
processes. Thus there is a tradeoff between flexibility
and extensibility in replacing sequential by quasi-
concurrent processes.

Concurrent object-oriented systems must be
able to handle transactions and must therefore deal
with temporal modularity (atomic actions) as well as
spatial modularity (atomic objects). Mechanisms for
transaction-based concurrency control have been
reviewed in [BG]. The carefully crafted concurrency
control mechanisms of the Argus system are decribed
in [LS]. A model for nested transactions in terms of
input/output automata is presented in [LM].

11. Distributed Processes

Is concurrency consistent with and orthogonal
to the design dimensions of sequential object-based
programming? This question has a simpler answer for
orthogonality than for consistency, Concurrency in
its general form is clearly orthogonal to other design
dimensions. However, in the context of object-based
programming we are concerned with concurrently
executing objects. Processes specialize the notion of
concurrency in the direction of object-based
languages. They implement the notion of con-
currency in a particular way and determine a value
or range of values in the dimension of concurrency.
Thus concurrency is an orthogonal dimension of
language design and processes are a specialization of
that dimension.

Concurrency is a consistent extension of sequen-
tial object-based programming, since actors provide
an existence proof of concurrent object-based pro-
gramming. However, there is a potential conflict
between the independence required for concurrency
and the structured sharing required for inheritance.

This is particularly true when concurrency is aug-
mented by the stronger requirement that processes be
distributed:

distributed process: A distributed process is a pro-
cess with a separate address space, that is, it cannot
directly access any resources outside its local address
space and can communicate with the outside world
only by message passing.

Distribution increases the autonomy of
processes but makes it expensive to share nonlocal
resources by mechanisms such as inheritance or dele-
gation. In fact, we can say that distribution is incon-
sistent with inheritance. This explains why there are
no languages with distributed processes that support
inheritance.

The inconsistency between distribution and
inheritance arises because the goals of modularity
and sharing are incompatible, Modularity requires
strong separation between components of a system
while sharing requires fusion of components.
Dynamic sharing requires fusion of components during
execution and is incompatible with distribution which
requires execution time separation.

Design alternatives for distributed processes
involve interaction between the units of modularity,
concurrency, and name space.

unit of modularity:
Unit that defines the user interface
unit of concurrency:
Unit that represents a single thread
unit of naming: Unit that determines name space

Processes for which the unit of modularity, con-
currency, and naming are the same are called distri-
buted sequential processes.

distributed sequential processes: A distributed
sequential process is a distributed process with its
own name space.

Distributed sequential processes are aestheti-
cally appealing because the interface for message
passing, mutual exclusion, and transactions can be
identified. They are a basis for the process model of
NIL [Str]. But this clean identification of interface,
concurrency, and name space comes at a cost of con-
ceptual flexibility and efficiency. Conceptual flexibil-
ity is sacrificed because the unit of sharing must have

October 4-8, 1987 OOPSLA ‘87 Proceedings Ii9

the same granularity as the unit of modularity and
concurrency so that sharing among modules or con-
current units is precluded. Efficiency is sacrificed
because of the high cost of making the transition
between distributed components.

Two distributed processes A, B may share a
third process C if ports of A and B are both con-
nected to a port of C. Such sharing is at the level of
abstract interfaces. Inheritance of abstract inter-
faces [Sn] is in principle possible for distributed
processes, although it is a good deal more expensive
than in shared memory.

An important dichotomy in distributed systems
is that between static and dynamic interconnection:

statically interconnected distributed processes:
The connections of each process to its environment is
determined at process creation time and cannot be
changed during the subsequent lifetime of the process.

dynamically interconnected distributed
processes: The connections of a process to its
environment can be changed by language commands
during process execution.

Ports in dynamically interconnected distributed
processes are variables to which process connections
(sometimes called channels) can be assigned. It is
prudent to associate types with ports and to permit
connection only if the type and input/output mode of
port values are compatible with that of the port vari-
able to which it is assigned. Input ports may be
thought of as sockets and output ports as plugs that
must fit the sockets. Dynamically interconnected dis-
tributed processes may be modelled by a plugboard
with wires corresponding to channels of communica-
tion.

12. Object-Oriented Persistence

Persistence is a property of data that deter-
mines how long it should be kept. In traditional
languages the lifetime of data generally does not
transcend the lifetime of a particular program. Some
data, such as locally declared data or procedure
parameters, have an even shorter lifetime. Databases
store data whose persistence transcends that of indi-
vidual programs. Adding persistence to an object-
oriented language allows it to be used as a basis for
database implementation.

Objects provide a better starting point for
databases than procedures since their state persists
between the execution of operations. They provide a

more flexible way of organizing data than relations in
a relational database. The class declarations of
object-oriented languages can serve as a data
definition language for databases. However, an
object-oriented language by itself is insufficient to
realize an object-oriented database.

A database may be viewed as a long-lived
object or process with special properties. It is glo-
bally accessible (sharable) by a large number of users.
Generally access is asynchronous from the point of
view of the user, and we may think of the database
as a non terminating process that services asynchro-
nous user requests. Asynchronous access may be han-
dled either directly by the database process or by a
database server that organizes user requests and
feeds them to the database. The database itself may
be a sequential process (dealing with requests in a
serial order), a quasi concurrent process, or a fully
concurrent process with locks that enforce mutual
exclusion for data access.

Some of the special features of database
processes are enumerated below:

(1) To support persistence we need a strong notion
of object identity that is independent of the key
used in object selection and persists across pro-
grams and projects.

(2) We need a query language that can process
traditional database queries (such as finding the
set of all employees that make more than their
managers). This kind of query may involve
objects of more than one type and and produces
results that are collection of objects. Queries in
relational database languages may be viewed as
“select” operations on an aggregate type,
namely the type “set” or “relation”. They have
the form:

select(set, predicate)
Query complexity and efficiency are determined
by the nature of the predicate. Relational
query languages specify all queries in terms of a
restricted set of relational query primitives
whose optimization has been extensively stu-
died. Object-oriented query languages must
accommodate the greater richness of object-
oriented specifications for which optimization is
not as well understood. One of the issues in
object-oriented query languages is to make
them efficient, so that the user does not pay in
terms of efficiency for the flexibility provided by
object-oriented programming.

180 OOPSLA ‘87 Proceedings Cider 4-8,1987

(3) Since object-oriented databases are particularly
suited to the management of evolutionary sys-
tems they require a mechanism for version con-
trol and other tools for evolving systems.

(4) Databases should be able to specify constraints
and check that constraints are not violated as
the database is modified. This may be achieved
by active variables of triggers [ZW].

(5) Multiple views should be supported with
automatic updating of all views when the data
is modified. Lazy updating for views that are
not currently active is clearly appropriate.

Databases must support transaction processing
and concurrency control so that user requests can be
processed in a safe but efficient manner. The level of
safety and resilience in the face of software and
hardware failures must be much greater than for
traditional programs. Facilities for aborting transac-
tions and for failure recovery must be provided.
Type dependent concurrency control [Wei] could con-
siderably increase the efficiency of object-based data-
base transactions over corresponding relational tran-
sactions.

13. Conclusions

Persistence is orthogonal to concurrency and to
other dimensions for object-oriented language design.
We therefore have identified a total of six orthogonal
dimensions of object-oriented language design:

objects

types
delegation
abstraction
concurrency
persistence

This list of dimensions is not in itself surprising
and could easily have been generated on the fly. Our
contribution has been to relate these dimensions to
non orthogonal concepts in real programming
languages, to examine design tradeoffs and interrela-
tions between instances, and to identify and interest-
ing points in the object-oriented design space.

The study of languages as points in a design
space and of language classes as classes of an object-
oriented hierarchy is a novel approach to the analysis
of programming languages. We have tried to demon-
strate that this approach is worthwhile when there
are sufficient points in the design space that

meaningful comparisons can be made.

There are many dependence relations and
design alternatives we have not considered, and our
examples only scratch the surface. But they do
demonstrate the potential of exploring dependence
among design dimensions of a language design space,
and- iIlustrate that the use of object-oriented
classification techniques to structure the design space
simplify the presentation of design alternatives and
help us to better understand the complex issues
involved.

Acknowledgements: Discussions with Tom
Doeppner and Stan Zdonik helped to clarify the ideas
in the sections on concurrency and persistence. This
research was supported in part by the National Sci-
ence Foundation, IBM Research, ONR contract
N00014-83-K146, and DARPA order No 4786.

14. References

[Ag] Agha G., Actors, A Model of Concurrent Compu-
tation in Distributed Systems, MIT Press, 1986.

[BG] Bernstein B. A. and Goodman N., Concurrency
Control in Distributed Database Systems, Computing
Surveys, June 1981.

[Co] Cook William, Self-Referential Models of Inheri-
tance, Brown University Report, March 1987.

[DG] DeMichel L. G. and Gabriel R. P., The Common
Lisp Object System, Proc ECOOP 1987.

[Do] Doeppner T. W., Threads - A System for the
Support of Concurrent Programming, Brown Univer-
sity Computer Science Tech Report CS-87-11, June
1987.

[DOD] Ad> R f e erence Manual, US Dept of Defense,
July 1980.

[GR] Goldberg A. and Robson D., Smalltalk 80: The
Language and Its Implementation, Addison-Wesley
1983.

[Ha] Hansen P. B., Distributed Processes, A Con-
current Programming Concept, CACM 1978.

[HN] Hailpern B. and Nguyen V., A Generalized
Object Model, In Research Directions in Object-
Oriented Programming, Eds. Shriver and Wegner,
MIT Press, 1987.

oc4ober 48.1987 OOPSIA '87 Proceedings 181

[Ho] Hoare C. A. R., Monitors, An Operating System Ada from a Process Model Perspective, International
Structuring Concept, CACM, October 1974. Ada Conference, Paris, May 1985.

[Hoi] Hoare C. A. R., Communicating Sequential
Processes, CACM, August 1978.

[IT] Ishikawa Y. and Tokoro M., Orient 84K: An
Object-Oriented Concurrent Programming Language
for Knowledge Representation, In Object-Oriented
Concurrent Programming, Eds Yonezawa and
Tokoro, MIT Press 1987.

[We] Wegner P., The Object-Oriented Classification
Paradigm, in Research Directions in Object-Oriented
Programming, Eds Shriver and Wegner, MIT Press
1987.

[wei] Weihl W. E., Specification and Implementation
of Atomic Data Types, PhD Thesis, MIT March 1984.

[Li] Lieberman H., Using Prototypical Objects to
Implement Shared Behavior in Object-Oriented
Languages, OOPSLA 86.

[Wi] Wirth N., Programming in Modula 2, Springer
Verlag 1982.

[WZ] Wegner P. and Zdonik S., Why Like Isn’t Like
Is-a, Brown University Technical Report, April 1984.

[LM] Lynch N. and Merritt M., Introduction to the
Theory of Nested Transactions, MIT/LCS/TR-367,
July 1986.

ryBS] Yonezawa A., Briot J. and Shibayama E.,
Tokyo Institute of Technology, OOPSLA 1986.

[LS] Liskov B. and Scheifler R., Guardians and
Actions, Linguistic Support for Robust Distributed
Programs, TOPLAS, July 1983.

[ZW] Zdonik S., and Wegner P., Language and
Methodology for Object-Oriented Databases, Hawaii
Conference on System Sciences, Jan 1986.

[LSAS] Liskov B., Snyder A., Atkinson R., and
Schaffert C., Abstraction Mechanisms in CLU,
CACM, August 1977.

[LTP] Lalonde W. R., Thomas D. A., and Pugh J. R.,
An Exemplar-Based Smalltalk, OOPSLA 86.

Kit
oon D Object-Oriented Programming with

, OOPSLA 86.

[SC] Schaffert C. et al., An Introduction to
Trellis/Owl, OOPSLA 86.

[Sn] Snyder A., Encapsulation and Inheritance in
Object-Oriented Languages, OOPSLA 86.

182 OOPSLA ‘87 Proceedings

[St] Stein Lynn, Delegation is Inheritance, OOPSLA
87.

[Str] Strom R., A Comparison of the Object-Oriented
and Process Paradigms, SIGPLAN Notices, October
1986.

[SY] Strom R. and Yemini S., NIL: An Integrated
Language and System for Distributed Programming,
Proc SIGPLAN ‘83 Symposium on Language Issues in
Software Systems, June 1983.

[SYW] Strom R., Yemini S., and Wegner P., Viewing

October 4-8,1987

