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Abstract: 

The design space of object-based languages is 
characterized in terms of objects, classes, inheritance, 
data abstraction, strong typing, concurrency, and 
persistence. Language classes (paradigms) associated 
with interesting subsets of these features are 
identified and language design issues for selected 
paradigms are examined. Orthogonal dimensions 
that span the object-oriented design space are related 
to non-orthogonal features of real languages. The 
self-referential application of object-oriented metho- 
dology to the development of object-based language 
paradigms is demonstrated. 

Delegation is defined as a generalization of 
inheritance and design alternatives such as non-strict, 
multiple, and abstract inheritance are considered. 
Actors and prototypes are presented as examples of 
classless (delegation based) languages. Processes are 
classified by their degree of internal concurrency. 
The potential inconsistency of object-oriented sharing 
and distributed autonomy is discussed, suggesting 
that compromises between sharing and autonomy will 
be necessary in designing strongly typed object- 
oriented distributed database languages. 

1. Design Space for Object-Based Languages 

In order to examine design alternatives for 
object-based languages the following “dimensions” of 
language design are considered: 

objects 
classes 
inheritance 
data abstraction 
strong typing 
concurrency 
persistence 
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These features span the design space of object-based 
languages. Each relates to a different aspect of com- 
putational behavior. Objects are autonomous enti- 
ties that respond to messages or operations and share 
a state. Classes classify objects by their common 
operations. Inheritance serves to classify classes by 
their shared behavior. Data abstraction hides the 
representation of data and the implementation of 
operations. Strong typing imposes static constraints 
on the appiicability of operations, both within and 
among objects. Concurrency allows objects to exe- 
cute concurrently with other objects and to have 
internal concurrency. Persistence allows object iden- 
tity to persist across applications and to be indepen- 
dent of values or keys used in object selection. 

Language classes worthy of special study are 
identified and the efficiency, simplicity, and methodol- 
ogy of the associated paradigms is examined. We 
first consider just objects, classes, and inheritance, 
then add data abstraction and strong typing, and 
finally consider concurrency and persistence. Along 
the way global properties of design dimensions such 
as consistency and orthogonality are introduced and 
related to non-orthogonal features that occur in real 
languages. 

2. Objects, Classes, and Inheritance 

Objects have the following properties: 

object: An object has a set of “operations” and a 
“state” that remembers the effect of operations. 
Objects may be contrasted with functions, which 
have no memory. Function values are completely 
determined by their arguments, being precisely the 
same for each invocation. In contrast, the value 
returned by an operation on an object may depend 
on its state as well as its arguments. An object may 
learn from experience, its reaction to an operation 
being determined by its invocation history. 

The term “object-based language” may now be 
defined as follows: 
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object-based language: A language is object-based 
if it supports objects as a language feature. 

Support of objects is a necessary but not 
sufficient requirement for being object-oriented. 
Object-oriented languages must additionally support 
object classes and class inheritance: 

object-oriented language: An object-based 
language is object-oriented if its objects belong to 
classes and class hierarchies may be incrementally 
defined by an inheritance mechanism. That is: 

object-oriented = objects + classes + inheritance 

The notions “class” and “inheritance” used in 
the above definition can be defined as follows: 

class: A class is a template (cookie cutter) from 
which objects may be created by “create” or “new” 
operations. Objects of the same class have common 
operations and therefore uniform behavior. Classes 
have one or more “interfaces” that specify the opera- 
tions accessible to clients through that interface. A 
“class body” specifies code for implementing opera- 
tions in the class interface. 

inheritance: A class may inherit operations from 
“superclasses” and may have its operations inherited 
by “subclasses”. An object of the class C created by 
the operation “C new” has C as its “base class” and 
may use operations defined in its base class as well as 
operations defined in superclasses. Inheritance from a 
single superclass is called single inheritance; inheri- 
tance from multiple superclasses is called multiple 
inheritance. 

Inheritance is here defined narrowly as a 
mechanism for resource sharing in class hierarchies. 
In the literature the term is used loosely to denote a 
variety of other forms of hierarchical resource shar- 
ing. We will later define “delegation” as a more gen- 
eral class-independent term for dynamic hierarchical 
resource sharing. 

The class of object-based languages includes 
Ada [DOD], Modula [Wi], CLU [LSAS], and Actor 
languages [Ag] but not Pascal, Algol, or Fortran. 
Ada’s objects are realized by packages, Modula’s 
objects are called modules, and CLU’s objects are 
instances of clusters. 

The class of object-oriented languages is nar- 
rower than the class of object-based languages, 
excluding languages like Ada, Modula, and CLU but 
including languages like Smalltalk and C++. 

Ada is object-based but is not object-oriented 
according to our definition because its objects (pack- 
ages) do not have a class (type). CLU’s clusters are 
effectively classes since they serve as templates for 
creating instances and allow instances to be “first- 
class objects” in the sense that they can be assigned 
to variables, be passed as parameters, and be com- 
ponents of structures. But CLU does not have an 
inheritance relation for defining hierarchical relations 
between clusters, and is therefore not object-oriented. 

In accordance with our approach of naming 
“interesting*’ language classes we call object-based 
languages which require every object to have a class 
“class-based” or “classical” languages. 

class-based (classical) languages: An object-based 
language is class-based (classical) if every object has 
a class. 

Class-based languages are a proper subset of 
object-based languages, while object-oriented 
languages are in turn a proper subset of class-based 
languages. Ada is an example of an object-based 
language that is not class-based while CLU is an 
example of a class-based language that is not object- 
oriented. This hierarchy of language classes is illus- 
trated in Figure 1. 

t classes 

i 
Ada, Actors 

@&y&.;;;;:, 

i 
Simula, Smalltalk 

Figure 1: From Object-Based to Object- 
Oriented Languages 

Figure 1 may be viewed as an inheritance 
hierarchy which uses object-oriented techniques to 
classify object-based languages. We may think of 
class-based languages as inheriting the attributes of 
object-based languages, and of object-oriented 
languages as in turn inheriting the attributes of both 
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the class-based and the object-based languages. This 
self-application of object-oriented methodology to 
object-based languages both illustrates its general 
power in classifying and organizing knowledge and 
provides substantive insight into the particular 
domain which is the subject of this paper. 

It is not surprising that object-oriented inheri- 
tance surfaces as a technique for defining the relation 
between language classes. Figure 1 classifies 
languages into hierarchies by imposing progressively 
stronger requirements on the features they possess. 
Such classification is precisely the purpose of inheri- 
tance in object-oriented systems, as pointed out in 
[we]. 

We briefly consider the impact of objects, 
classes, and inheritance on programming methodol- 
ogy. Objects serve to group operations with the data 
they will transform and provide a data-oriented prin- 
ciple for program design. Classes serve to manage 
collections of objects, allowing objects to be treated 
as first-class values within the language so that they 
can be passed as parameters, assigned as values of 
variables, and organized into structures. Class inher- 
itance serves to organize collections of classes, allow- 
ing application domains to be described by class 
hierarchies. 

Object-based languages like Ada support the 
functionality of objects. But object management 
must be handled by mechanisms outside the language 
like libraries, because it is not supported within the 
language. Class-based languages languages provide 
some degree of management of objects within the 
language but no mechanism for the management of 
classes. Object-oriented languages allow both objects 
and classes to be managed within the language, 
thereby providing a uniform mechanism for both 
design and implementation of applications. They are 
“wide spectrum languages” because they support both 
the high-level design of class hierarchies and the low- 
level implementation of objects. 

3. Data Abstraction and Strong Typing 

The terms “data abstraction” and “strong typ- 
ing”, may be defined as follows: 

data abstraction: A data abstraction is an object 
whose state is accessible only through its operations. 
The state is generally represented by instance vari- 
ables. Instance variables of a data abstraction are 
hidden from its clients and are accessible only 
through the object’s operations. 

strong typing: A language is strongly typed if type 
compatibility of all expressions representing values 
can be determined from the static program represen- 
tation at compile time. 

Object-oriented languages with data abstrac- 
tion and strong typing are a narrower class of 
languages with stronger structuring properties than 
the class we have chosen to call object-oriented. This 
narrower class excludes Simula, whose objects are not 
data abstractions because their instance variables 
can be accessed by other objects, and Smalltalk, 
which is not strongly typed because its variables may 
be assigned values of different type at different points 
of execution. The term “object-oriented” has been 
carefully defined to be sufficiently narrow to exclude 
languages like Ada, Modula, and CLU and sufficiently 
broad to include languages like Simula and 
Smalltalk. 

Object-oriented languages which have strong 
typing and require all objects to be data abstractions 
will be called strongly typed object-oriented 
languages: 

strongly typed object-oriented language: An 
object-oriented language is strongly typed if it has 
strong typing and requires all objects to be data 
abstractions. 

Strong typing and data abstraction have the 
common objective of strengthening object modularity 
but are independent in the sense that strong typing is 
possible for objects that are not data abstractions (as 
demonstrated by Simula), and data abstraction is 
possible without strong typing and indeed without 
any typing at all (as demonstrated by Smalltalk). 

Should object-oriented languages require 
abstraction and strong typing? Smalltalk has cons- 
ciously avoided strong typing in order to achieve 
dynamic binding, while Lisp-based object-oriented 
languages in the Flavors tradition [Mo,DG] have 
consciously avoided both strong typing and abstrac- 
tion. Flavors goes even further and does not actually 
have objects as a language primitive. It has the more 
primitive notion of a data template to which opera- 
tions may be attached. Flavors do not specify opera- 
tions but may be used as an anchor for operations. 
Thus Flavors-style languages are not, strictly speak- 
ing, object-based but serve as a substrate which may 
be used in an object-based or object-oriented way. 
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The inclusion of data abstraction and strong 
typing is clearly not an unqualified benefit. It 
involves a tradeoff between structure and discipline 
on the one hand and flexibility and efficiency on the 
other. Abstraction is good when we can commit our- 
selves to particular abstractions early in the design 
process, but may be unduly constraining when we are 
unsure of the precise abstractions appropriate to a 
problem and wish to experiment with abstractions as 
part of the design and prototyping process. This is 
often the case with artificial intelligence applications 
or in other experimental applications concerned with 
understanding concepts that underlie a class of prob- 
lems rather than with the solution of a specific prob- 
lem. Lisp-based object-oriented systems are intended 
for such applications and consciously provide non- 
abstract objects to enhance the conceptual flexibility 
of problem solving. 

Does it make sense to have non-abstract 
strongly typed languages? Although languages like 
Simula illustrate that commitment to strong typing is 
possible without commitment to abstraction, this 
may be a historical accident. It may well be that 
non-abstract objects are useful primarily for untyped 
formalisms where the absence of both abstractions 
and types encourages conceptual flexibility. Typed 
formalisms may discourage experimentation to such 
an extent that non-abstract objects are no longer 
useful. However, this is just speculation, and closer 
analysis might well reveal that non abstract strongly 
typed objects are in fact useful in certain kinds of 
experimental applications. 

In spite of these reservations, the accepted wis- 
dom is that strongly typed object-oriented languages 
should be the norm for application programming and 
especially for programming in the large. An object- 
oriented programming environment should probably 
support Lisp-style untyped programming for purposes 
of prototyping and strongly typed object-oriented 
languages for traditional application programming. 
Moreover, there should be provision for automatically 
freezing experimental prototype code to turn it into 
strongly typed code if and when it is ready to be used 
for production programming. 

4. Consistency and Orthogonality 

The consistency of a collection of language 
features may be defined as follows: 

consistency: A collection of language features is con- 
sistent if they can coexist, that is, if there is a “model 
language” that realizes the features. Consistency can 

be demonstrated by exhibiting a language that has 
the set of features. 

The five features that define strongly typed 
object-oriented languages are consistent since 
strongly typed languages exist, for example Owl [SC]. 
Moreover, consistency of a set of features implies con- 
sistency of any subset of the features. 

A collection of language features is orthogonal 
if no feature is a consequence of any of the other 
language features. This notion of independence is 
captured by the following condition: 

orthogonality: A collection of features is orthogonal 
(independent) if, for every subset, there is a language 
that possesses that subset of features and no features 
in the complementary subset. 

Objects, classes, and inheritance are far from 
orthogonal. Classes are defined in terms of objects 
and inheritance is in turn defined in terms of classes. 
We write this dependence as follows: 

classes + objects 
inheritance + classes 

This lack of orthogonality suggests that we look 
for orthogonal concepts that define the essence of 
being a class in an object-independent way and the 
essence of inheritance in a way that is independent of 
classes and objects. In the case of classes the orthog- 
onal concept is the notion of type which, as a first 
approximation, may be defined as follows: 

type: A type is a behavior specification that may be 
used to generate instances having the behavior. 

The orthogonality of objects and types is illus- 
trated by Ada which has a well developed notion of 
type and even strong typing but does not support 
typed objects. 

In order to define a notion of inheritance 
orthogonal to classes and objects the clasa- 
independent “essence” of inheritance must be 
identified. We view inheritance as a mechanism for 
sharing incrementally defined resources that internal- 
izes shared resources, treating them as part of an 
extended self. Following Cook [Co], we define a 
class-independent form of inheritance in terms of a 
particular mechanism for self-reference that allows 
remotely defined operations to be internalized as part 

Odober 4-8,1987 OOPSLA ‘87 Proceedings 



of the extended identity of an object. The class- 
independent notion of inheritance will be called dele- 
gation and may be defined as follows: 

delegation: Delegation is a mechanism that, allows 
objects to delegate responsibility for performing an 
operation or finding a value to one or more desig- 
nated “ancestors”. A key feature is that self- 
reference in an ancestor dynamically denotes the 
delegating object, thereby allowing the ancestor to be 
part of the extended identity of the delegating object. 
Dynamic binding of self-reference realizes sharing and 
reusability by allowing the resources of an ancestor 
to be part of the extended identity of different 
delegating objects at different points of execution. 

Delegation is defined independently of classes. 
The key concept is the internalization of delegated 
operations so they can be treated as part of an 
extended self. Delegation is defined to be a form of 
resource sharing that allows shared resources to be 
viewed as belonging to the entity on behalf of which 
they are executed. This effect is realized by dynami- 
cally binding “self’ to each entity on behalf of which 
it is executed for the duration of its execution. Thus 
a given operation can “belong” to different entities on 
different instances of execution. 

Inheritance may be viewed as a specialization 
of delegation in which the entities that inherit are 
classes, and is therefore considered to be in the same 
“design dimension” as delegation. If we had to choose 
between these two notions to characterize this design 
dimension we would choose delegation, since it is 
purer and is “orthogonal” to other design dimensions. 
However, inheritance is more familiar and is needed 
to characterize object-oriented programming 

Methodologically, orthogonality is a nice pro- 
perty of design dimensions that is useful for purposes 
of classification. When dimensions are not, orthogonal 
it is often useful to go through the exercise of identi- 
fying what it takes to make them orthogonal, as we 
did in identifying the notion of delegation as an 
orthogonal form of the notion of inheritance. 

How can we extend the design space determined 
by objects, types, and delegation to take account of 
data abstraction and strong typing? Data abstrac- 
tion is not orthogonal to these dimensions because it 
depends on objects. The associated orthogonal notion 
is abstraction or information hiding-defined so that it 
is uniformly applicable to any entity: 

abstraction: An abstraction is a specification of an 

entity by an interface that controls access to the 
entity by other entities. 

Strong typing is not orthogonal since it is a 
form of typing. There is no additional dimension 
because strong typing simply requires every value to 
have a type and that operator/operand compatibility 
can be determined at compile time. Thus strongly 
typed object-oriented languages can be characterized 
in a design space with the following four orthogonal 
dimensions: 

objects - modular computing agents 
types - expression classification mechanism 
delegation - resource sharing mechanism 
abstraction - interface specification mechanism 

These dimensions provide a design framework 
for object-based languages in terms of computing 
agents, classification mechanisms, sharing mechan- 
isms, and interface specification mechanisms. Specific 
languages in this design space are defined by con- 
straints on these design dimensions such as the spe- 
cialization of types to have classes and include strong 
typing, of delegation to be inheritance of classes, and 
of abstraction to be data abstraction. The con- 
straints define a subspace of the design space deter- 
mined by orthogonal design dimensions. 

5. Design Alternatives for Delegation 

Delegation may be specialized by selecting 
among the following design alternatives: 

(1) classless delegation versus inheritance 
Classless delegation realizes dynamic sharing 

in an instance hierarchy while while inheritance 
realizes dynamic sharing in a class hierarchy. 

(2) striEt versus non-strict inheritance 
Strict inheritance requires descendants to be 

behaviorally compatible with ancestors, while 
non-strict inheritance allows operations of 
ancestors to be arbitrarily redefined and cap 
tures the notion of “similarity” rather than 
“behavioral compatibility. In between there are 
forms of controlled redefinition. In [WZ] we 
refer to strict behavioral compatibility as an 
“is-a” relation and to non-strict similarity as a 
“like” relation. 

(3) single versus multiple inheritance 
Multiple inheritance allows an object to 

inherit from multiple ancestors and provides a 
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more flexible behavior composition mechanism 
than single inheritance. There is no agreement 
on the mechanisms of method combination that 
multiple inheritance should support. 

abstract interface versus code sharing 
Should sharing by inheritance be at the level 

of code sharing or abstract interfaces? 
Smalltalk and Flavors view inheritance as a 
code sharing mechanism. CommonObjects [Sn] 
is based on abstract inheritance. Actra [LTP] 
supports both specification hierarchies based on 
abstract inheritance and implementation 
hierarchies based on code sharing. 

Figure 2 demonstrates the hierarchical selection 
of design alternatives. It shows that the object- 
oriented classification method can be applied to pro- 
gressively more finely grained design decisions to 
select among’alternative delegation strategies. 

Figure 2. Design Alternatives for Inheritance 

6. Delegation-Based Languages 

Since classless object-based languages with dele- 
gation are interesting we christen them as follows: 

delegation-based languages: A delegation-based 
language is an object-based language that supports 
classless objects and delegation: 

delegation-based = objects - classes + delegation 

Delegation was conceived by Lieberman [Li] and 
used by Cook [Co], Stein /St], Lalonde, Thomas, and 

Pugh [LTP], Hailpern and Nguyen [HN], and others 
in exploring classless models of inheritance. 

Our definition of delegation differs from that of 
Lieberman [Li] in that we view inheritance as a spe- 
cial case of delegation while Lieberman views delega- 
tion and inheritance as two distinct mechanisms. We 
have taken the liberty of slightly redefining the term 
to focus on the class-independent essence of inheri- 
tance rather than on a concept that parallels inheri- 
tance. We could have used another term but the 
term “delegation” seems to capture the intuition of 
sharing by delegating responsibility without commit- 
ment to either classes or class-independence. 

Delegation captures the essence of the dynamic 
resource-sharing paradigm underlying inheritance in 
a purer form than the earlier class-dependent 
definition. Features of dynamic hierarchical resource 
sharing are more clearly characterized by delegation 
than in terms of specialized notions of inheritance. 
We consider two such features, namely object auton- 
omy and virtual operations. 

The dynamic resource sharing provided by dele- 
gation has its costs in object autonomy. It is as 
though objects are connected to ancestors by an 
umbilical cord which they can never cut. Such 
dynamic sharing is expensive in distributed systems 
where ancestors are in different distributed com- 
ponents from their descendants. Delegation is an 
acceptable sharing mechanism for objects in a single 
address space but may be unacceptable as a sharing 
mechanism between address spaces. 

The notion of virtual operations of Simula and 
other class-based languages may be defined more gen- 
erally for delegation-based languages. Virtual opera- 
tions arise when an ancestor specifies resources that 
will be implemented later in a descendant: 

virtual resource (operation): A resource (opera- 
tion) named and specified in an ancestor whose imple- 
mentation will be provided by a descendant. 

In class-based languages classes with virtual 
resources are called abstract classes and cannot be 
instantiated because there is generally no way to 
bind virtual to actual resources except at instance 
creation time. 

abstract class: A class with virtual resources that 
can be instantiated only as an instance of a subclass 
for which virtual resources of the cl&s are imple- 
mented. 
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However, there is no inherent reason why 
separately defined actual resources should not be con- 
nected to already created objects either at load time 
or dynamically as they are generated by the system. 
Specification and implementation should be 
sufficiently decoupled so that implementations can be 
bound to specifications in a flexible way. 

7. Classless Languages 

Objects not required to have a class will be 
called classless objects and languages with classless 
objects will be called classless languages: 

classless objects: Objects that do not have a class. 
classless languages: Object-based languages whose 

objects may be classless. 

Classless languages represent a more radical 
form of typelessness than languages that are object- 
oriented but not strongly typed. The relation 
between Smalltalk and classless languages is similar 
to that between Snob014 and Lisp. Values in Snob014 
have a type but allow variables to assume values of 
different types at different points of execution, while 
values in Lisp are untyped. Classlessness provides 
greater freedom for experimental programming than 
lack of strong typing but is correspondingly less 
structured. The arguments in favor of classlessness 
include the following: 

(1) class-independent operations 
It does not always make sense to associate an 

operation with a specific class, since: 
a) an operation may have objects of several 

different classes as arguments, and transform 
the state of several different classes. 

b) an operation may transform not only an 
object’s state but also its interface. 

c) an operation may be applicable to many 
different classes (friends in C++) 

(2) classes with a singleton element 
When classes have just a single instance (the 

class of all planets nearest the sun or of all suc- 
cessors of 0) the separate specification of shared 
behavior and a non-shared state makes no 
sense, since the shared behavior is shared by 
only one object. However, when such classes 
are formed by specialization (inheritance) from 
more general classes (the class of planets or 
integers) then classes with even a singleton ele- 
ment may be worthwhile. 

(3) auxiliary entities 
Classes are auxiliary entities having no neces- 

sary existence in the domain of discourse being 
modelled. The class hierarchy (Integer, 
Number, Magnitude, Object) used to model 
integers in Smalltalk is determined by an arbi- 
trary design decision of Smalltalk rather than 
by a necessary property of the integers. We 

may in principle dispense with auxiliary 
abstractions and capture the properties of col- 
lections of objects directly by prototypes whose 
properties serve to specify both particular 
instances and defaults for dependent instances. 

Languages with classless objects are object- 
based but not object-oriented. We can subdivide 
such languages into two categories: 

classless languages without delegation 
classless languages with delegation 

We shall examine Actor languages as an exam- 
ple of classless languages without delegation, and 
Lieberman’s prototypes [Li] as an example of classless 
languages with delegation. 

8. Actors 

Actor languages support objects, abstraction, 
and concurrency but not classes, inheritance, or 
strong typing: 

actor languages = 
objects + abstraction + concurrency 
- classes - inheritance - strong typing 

Actor languages are low-level languages that 
.may be used to build higher-level, more structured 
languages. The concurrency supported by actors is 
fine-grained in the sense that actors not only execute 
concurrently with other actors but may also execute 
their internal actions concurrently. Actors represent 
a point in the design space of object-based languages 
very different from that of traditional object-oriented 
languages. They raise fundamental questions relating 
to the nature of concurrency that are beyond the 
scope of this paper. We are here interested in actor 
languages because of the clear and simple model they 
provide of objects without classes rather than as a 
basis for a practical programming language. 

Actors are objects which have a mail address 
(mailbox name) and a behavior. The mail address 
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designates a buffer which can store an unbounded 
linear sequence of messages (called “communica- 
tions”). The behavior of an actor is defined by its 
actions in response to a communication. A pure 
actor can process just a single communication from 
its mailbox before it “dies”. Computational actors, 
like the human ones described in Macbeth, “strut and 
fret their hour upon the stage and then are no more”. 

The identity of an actor is determined by its 
mailbox name which is firmly decoupled from its state 
and behavior. Moreover, the state and behavior for 
an actor is totally independent of the state and 
behavior of its successor. The process of creating a 
successor is not unlike reincarnation in that the 
“soul”, represented by the mailbox name, is reincar- 
nated for an entirely new body. 

An actor may respond to a communication by 
sending messages, creating new actors, and creating 
its replacement, as illustrated in Figure 3: 

specifies replacement 

Figure 3: Behavior of Actors 

(1) An actor may send a finite number of communi- 
cations to other actors with known mailbox 
names (its acquaintances). 

(2) It may create a finite number of new actors. 
The mailbox name of newly created names is 
known to the creating actor and may be 
disseminated to other actors by sending them 

communications that contain the mailbox name. 

(3) It must designate a successor with the same 
identity (mailbox name) as its parent to process 
the next communication to the actor. The 
behavior of the successor is called the replace- 
ment behavior. There are no constraints on the 
relation between the behavior of an actor and 
its replacement behavior. In particular, the 
message set meaningful for an actor 
(corresponding to its set of operations) need 
bear no relation to the message set meaningful 
for its successor. 

Supposing an actor sends p communications to 
other actors and creates q new actors as well as its 
successor before it dies. These p+q+l activities are 
in principle concurrent, so that the processing of a 
single communication spawns p+q+l concurrent 
tasks. The successor actor occupies a special place 
among these since it represents the continuation of 
the main process. Th e successor may initiate its 
activity by responding to the next communication in 
the mailbox as soon as it is fully created, and may 
execute concurrently while its progenitor is complet- 
ing its other tasks. This permits pipelining, that is, 
concurrently applying the sequence of incarnations of 
a given actor to a sequence of communications in its 
mailbox. 

The actor associated with a mail queue has a 
sequence of incarnations with Xn representing the 
incarnation that processes the nth communication. 
Xn must wait until its communication (in slot n of 
the mailbox) arrives. It then creates a replacement 
behavior X(n+l) which processes the (n+l)th com- 
munication, and may send communications to other 
actors and create new actors with associated new 
mail queues. 

Following (Ag] we briefly show how the factorial 
function is computed in the actor formalism. We 
define a factbrial actor which responds to messages of 
the form (n,r), where n is the integer whose factorial 
is being computed and r is the mailbox to which the 
result will be sent. The factorial actor has a simple 
response when n=O and a more complex response 
when n>O. 

When n=O the factorial actor simply sends a 
message with value 1 to the actor with mailbox 
address r. When n>O it performs the following 
actions: 
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(1) It creates a replacement behavior Fn that has 
the same behavior as the original factorial 
actor. 

(2) It creates an actor, say “An”, which computes 
“n*k” on receiving the message k arid sends the 
result to r. 

(3) It sends a message to “self” consisting of the 
integer “n-l” and the return address of the 
newly created actor “An”. If (n-l) > 0 this in 
turn causes its replacement behavior to 

1) create an actor “A(n-1)” which, on receiving 
the message k, computes “(n-l)*k”, and 

2) send the message with integer (n-2) and 
return address “A(n-1)” to self. 

Thus the message “(n,r)” sent to the factorial 
actor will create a sequence of n incarnations of the 
factorial actor Fn, F(n-1), ..,, Fl, and an associated 
set of created actors An, A(n-1), . . . . Al such that Ai 
will receive a message with value (i-l) factorial and 
send i factorial to A(i+l). Finally, “An” will receive 
(n-l) factorial and send n factorial to r. 

This example does not demonstrate concurrency 
since the computation takes 2*n sequential steps: n to 
create the auxiliary actors An,...,Al, and another n 
to perform the n multiplications. Using actors to 
compute factorials is like using a sledgehammer to 
crack a nut. But it does illustrate the role of replace- 
ment behavior, actor creation, and message creation 
in a concrete, albeit simple, computation. In doing so 
it provides insight into the reasons for requiring these 
three mechanisms as a basis for defining actor compu- 
tation. 

Actors provide a flexible model of computation 
based on a powerful computation primitive. The 
model is too powerful and flexible for most computa- 
tions that arise in practice, and certainly too power- 
ful for computing factorials. However, the actor 
model simply demonstrates how computations on 
classless objects may be realized and how the model 
may be specialized to class preserving computations, 
namely by constraining the replacement behavior. 

9. Prototypes 

Delegation-based languages allow objects to 
share and internalize operations of “ancestor” objects, 
called prototypes, that serve both as instances and as 
templates for descendants: 

prototype: A prototype is an object that is both an 
instance and a template. Objects may delegate 

responsibility for performing operations or finding 
values to a prototype. The prototype provides 
defaults for its operations and values to objects that 
request the prototype to perform an operation on 
their behalf. 

When classes that have only a single member 
we are assured that there will never be an occasion 
when the prototype needs to be used as a template, 
and it can play the role of an instance without wor- 
rying about the effect of changes on delegating 
objects. Even when classes have many members pro- 
totypes are a natural way of representing the first 
member of the class that is encountered but may 
cause problems when additional members delegate 
their default behavior to the prototype. 

For example, if we encounter an elephant, say 
Clyde, there is no need to store both the instance and 
its class and we may store just the instance. If we 
then encounter a second elephant, say Fred, we can 
view Clyde as a prototype for representing knowledge 
about Fred. Fred may be represented by his 
differences from Clyde. Properties that Fred shares 
with Clyde can be omitted from the representation of 
Fred since the default values in Fred’s prototype 
Clyde may be used. 

In this example, prototypes require less over- 
head than the alternative of creating an elephant 
abstraction independent of Clyde and Fred. They 
also appear to model the cognitive acquisition of 
knowledge about elephants more naturally. It is only 
after seeing many elephants that an elephant 
abstraction becomes cognitively established and prac- 
tically useful. The prototype mechanism appears to 
model knowledge acquisition more closely than the 
class mechanism for human cognitive processes, and 
its computational models have less overhead for 
classes with a small number of instances. However, 
classes model cognitive processes and knowledge 
organization of the specialist so that both mechan- 
isms are needed to span the complete range of cogni- 
tive situations. 

We shall refer to delegation-based languages 
based on prototypes as “prototypical”: 

prototypical languages: Prototypical languages are 
delegation-based languages that realize delegation by 
prototypes. 

The transition from a prototypicai to a classical 
representation of objects could in principle be 
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performed automatically. It reflects the leap in 

abstraction that comes from recognizing the common 
structure of a collection of instances and defining a 
class that captures this structure. It is performed 
repeatedly in childhood in learning the meanings of 
words like cookie, dog, and table. In computation, 
unification is an example of an automatic method of 
finding the common structure of a collection of pat- 
terns. A similar technique could be developed for 
finding the common class structure of a collection of 
objects. Moreover, the commonality assumptions 
could be expressed as constraints on variability and 
the “unification” technique could be reapplied when- 
ever variability constraints were violated. 

The distinction between classical and prototypi- 
cal systems reflects a long-standing philosophical 
debate concerning the status and representation of 
abstraction. Plato viewed abstractions like “ideal” 
tables as having an existence more real than 
instances of tables in the real world. Object-oriented 
languages like Smalltalk are Platonic in their explicit 
use of classes to represent similarity among collec- 
tions of objects. 

The alternative view, that abstractions are 
unnecessary auxiliary constructs, has not been pro- 
pounded as cogently, probably because, taken to the 
extreme, it may simply be wrong. While any given 
set of auxiliary entities may be unnecessary in the 
description of a domain of discourse, the stronger 
position that complex domains should be described 
without any auxiliary entities whatsoever seems 
untenable. 

Prototypical systems are adequate as a primi- 
tive substrate for organizing domains of discourse, 
just as untyped computational formalisms such as 
assembly languages or the lambda calculus are ade- 
quate for expressing all possible computations. How- 
ever, when a prototypical system or untyped formal- 
ism is used to model a complex universe, types and 
classes for expressing regularities in the domain creep 
in by the back door, and it becomes preferable to 
introduce explicit typing and classification schemes 
rather than rely on ad hoc ingenuity. It may well be 
appropriate to adopt a prototyping view of the world 
in the early stages of modelling a domain and to 
switch to a typed view when the classes appropriate 
to the domain become established. In switching from 
an untyped to a typed model we give up some flexibil- 
ity in the interests of structure and regularity. 

Classical and prototypical languages have 
different approaches to the knowledge representation 
of shared abstractions. Classical languages 

distinguish between two sharing mechanisms: sharing 
of class attributes by instances and sharing of super- 
class attributes by classes. In contrast, prototypical 
languages have just one kind of sharing, namely the 
sharing by instances (which may be prototypes) of 
default properties defined in their prototypes. 

Delegation may be used for managing shared 
information represented by prototypes. However, our 
definition of delegation is broader than Lieberman’s 
and may be used also for managing shared informa- 
tion in classical inheritance. 

10. Object-Based Concurrency 

Concurrent object-based languages model the 
world by concurrently executable objects called 
processes. The term “process” is used in the context 
of operating systems to mean a machine language 
representation of a computation that is performed on 
a processor . We use the term in the context of pro- 
gramming languages to capture the higher-level 
notion of a concurrently executing object: 

process: Processes have an interface of executable 
operations or entry points and one or more threads of 
control that may be active or suspended. 

Process-based languages are object-based 
languages whose objects may execute concurrently. 

process-baskd language: A process-based language 
is an object-based language that has processes. 

Object-based languages model the world by 
autonomous objects that are constrained to execute 
sequentially. Process-based languages extend the 
autonomy of objects to autonomy in time. 

The primitive executable processing elements 
within a process are called threads: 

thread: A thread consists of a thread control block 
containing a locus of control and a stack which 
represents its “state” of execution and is initially 
empty. 

Threads are data structures that can become 
active by being loaded into a processor. Thread data 
structures may be passed as message requests to 
processes, and may be queued in message buffers until 
a process is ready to execute them. They may be 
suspended if conditions required for their execution 
are not appropriate and reactivated when the 
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conditions again obtain. We classify processes in 
terms of the properties of their threads. 

We distinguish between sequential processes 
with a single thread of control, quasi-concurrent 
processes with at most one active thread of control, 
and concurrent processes with multiple threads of 
control. 

sequential process: A process that has just one 
thread of control. 

quasi-concurrent process: A process that has at 
most one active thread of control. 

concurrent process: A process that may have 
multiple active threads of control. 

Sequential processes (Ada and Nil) generally 
have a body with an interface of entry points at 
which messages to perform operations may be queued. 
An invoking operation (incoming message) must wait 
until the already executing process is ready to accept 
it by means of a “rendezvous” which joins the incom- 
ing and active threads of control for purposes of syn- 
chronization and argument communication and then 
separates the threads so that invoking and invoked 
processes may again proceed in parallel. 

Quasi concurrent processes allow threads of 
control to be suspended while waiting for a condition 
to be fulfilled and resumed when the condition is 
satisfied. They differ from sequential processes in 
having “condition queues” of suspended threads as 
well as entry queues of threads that are waiting to 
enter the process. An incoming thread can become 
active only if the current thread terminates or is 
suspended, or if the incoming thread fuses with the 
active thread by a mechanism such as rendezvous. 
Monitors [Ho, Ha] are an example of quasi-concurrent 
processes. 

In concurrent processes there is no restriction on 
active threads and an invoking operation may freely 
create a new thread. But attempts to access shared 
data in critical regions (atomic objects in Argus) may 
cause a thread to be suspended until the shared data 
can safely be accessed. Concurrency within processes 
allows finer-grained control that permits suspension 
to be delayed from process entry time to the time of 
entry to critical regions. 

The concurrent languages CSP [HOI], Ada, and 
Nil [SY] have sequential processes. Monitor-based 
languages like DP [Ha], ABCL/l [YEE], and Orient 
84/K [IT] have quasi-concurrent processes. Actor 
languages and Argus [Li] have concurrent processes. 

Note that all three language classes are fully 
concurrent. They differ in their restriction on con- 
currency within processes but are similar in placing 
no restriction on concurrency between processes. 

Restrictions on concurrency between processes 
are in fact useful in defining weaker (subconcurrent) 
languages that allow multiple independent but not 
concurrent threads. For example, Simula with its 
coroutines and Smalltalk 80 with its “processes” are 
“quasi-concurrent languages” because they allow 
objects to have independent threads of control but 
allow only one thread to execute at a time: 

sequential language: A languages with a single 
thread of control. 

quasi-concurrent language: A language with mul- 
tiple independent threads but only one active thread. 

concurrent language: A language with multiple 
active threads. 

In this section we are committed to full con- 
currency at the language level and focus on design 
alternatives for concurrency within processes. The 
question whether processes should have internal con- 
currency can be addressed at the level of both con- 
ceptual modelling and language design. At the con- 
ceptual level some applications are more naturally 
modelled by sequential or quasi-concurrent processes 
while others are more naturally modelled by fully 
concurrent processes. 

At the design and implementation levels sequen- 
tial and quasi-concurrent processes allow the unit of 
modularity and concurrency to be the same and 
result in much simpler languages than concurrent 
processes. Concurrent processes permit units of 
modularity to contain multiple units of concurrency 
and require distinct synchronization and communica- 
tion mechanisms for inter and intra process con- 
currency at both the language and system levels 

ww - 
However, concurrent processes are more uniform 

in permitting the same concurrency primitives to be 
used both within and between processes. They have 
a hierarchical rather than a flat process structure. 
Moreover, concurrent processes permit more finely 
grained concurrency and are more expressive in 
modelling situations in the real world which require 
such concurrency. 

The step from sequential to quasi-concurrent 
processes makes scheduling of threads within a pro- 
cess more flexible without causing mutual exclusion 
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problems for simple access to data structures. How- 
ever, quasi-concurrent processes present mutual exclu- 
sion problems when processing transactions because 
suspending a thread in the middle of a transaction 
could cause integrity constraints of the transaction to 
be violated. 

Transactions may be viewed as “temporal 
modules” in the sense that they represent uninterrup- 
tible non-atomic temporal units of execution. Quasi 
concurrent processes present no mutual exclusion 
problems for atomic operations but cause problems 
when we try to combine the temporal modularity of 
transactions with the traditional spatial modularity 
of objects and processes. Concurrent languages based 
on quasi-concurrent processes, like ABCL/l or Orient 
84K, are harder to extend to transaction processing 
than languages based on concurrent sequential 
processes. Thus there is a tradeoff between flexibility 
and extensibility in replacing sequential by quasi- 
concurrent processes. 

Concurrent object-oriented systems must be 
able to handle transactions and must therefore deal 
with temporal modularity (atomic actions) as well as 
spatial modularity (atomic objects). Mechanisms for 
transaction-based concurrency control have been 
reviewed in [BG]. The carefully crafted concurrency 
control mechanisms of the Argus system are decribed 
in [LS]. A model for nested transactions in terms of 
input/output automata is presented in [LM]. 

11. Distributed Processes 

Is concurrency consistent with and orthogonal 
to the design dimensions of sequential object-based 
programming? This question has a simpler answer for 
orthogonality than for consistency, Concurrency in 
its general form is clearly orthogonal to other design 
dimensions. However, in the context of object-based 
programming we are concerned with concurrently 
executing objects. Processes specialize the notion of 
concurrency in the direction of object-based 
languages. They implement the notion of con- 
currency in a particular way and determine a value 
or range of values in the dimension of concurrency. 
Thus concurrency is an orthogonal dimension of 
language design and processes are a specialization of 
that dimension. 

Concurrency is a consistent extension of sequen- 
tial object-based programming, since actors provide 
an existence proof of concurrent object-based pro- 
gramming. However, there is a potential conflict 
between the independence required for concurrency 
and the structured sharing required for inheritance. 

This is particularly true when concurrency is aug- 
mented by the stronger requirement that processes be 
distributed: 

distributed process: A distributed process is a pro- 
cess with a separate address space, that is, it cannot 
directly access any resources outside its local address 
space and can communicate with the outside world 
only by message passing. 

Distribution increases the autonomy of 
processes but makes it expensive to share nonlocal 
resources by mechanisms such as inheritance or dele- 
gation. In fact, we can say that distribution is incon- 
sistent with inheritance. This explains why there are 
no languages with distributed processes that support 
inheritance. 

The inconsistency between distribution and 
inheritance arises because the goals of modularity 
and sharing are incompatible, Modularity requires 
strong separation between components of a system 
while sharing requires fusion of components. 
Dynamic sharing requires fusion of components during 
execution and is incompatible with distribution which 
requires execution time separation. 

Design alternatives for distributed processes 
involve interaction between the units of modularity, 
concurrency, and name space. 

unit of modularity: 
Unit that defines the user interface 
unit of concurrency: 
Unit that represents a single thread 
unit of naming: Unit that determines name space 

Processes for which the unit of modularity, con- 
currency, and naming are the same are called distri- 
buted sequential processes. 

distributed sequential processes: A distributed 
sequential process is a distributed process with its 
own name space. 

Distributed sequential processes are aestheti- 
cally appealing because the interface for message 
passing, mutual exclusion, and transactions can be 
identified. They are a basis for the process model of 
NIL [Str]. But this clean identification of interface, 
concurrency, and name space comes at a cost of con- 
ceptual flexibility and efficiency. Conceptual flexibil- 
ity is sacrificed because the unit of sharing must have 
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the same granularity as the unit of modularity and 
concurrency so that sharing among modules or con- 
current units is precluded. Efficiency is sacrificed 
because of the high cost of making the transition 
between distributed components. 

Two distributed processes A, B may share a 
third process C if ports of A and B are both con- 
nected to a port of C. Such sharing is at the level of 
abstract interfaces. Inheritance of abstract inter- 
faces [Sn] is in principle possible for distributed 
processes, although it is a good deal more expensive 
than in shared memory. 

An important dichotomy in distributed systems 
is that between static and dynamic interconnection: 

statically interconnected distributed processes: 
The connections of each process to its environment is 
determined at process creation time and cannot be 
changed during the subsequent lifetime of the process. 

dynamically interconnected distributed 
processes: The connections of a process to its 
environment can be changed by language commands 
during process execution. 

Ports in dynamically interconnected distributed 
processes are variables to which process connections 
(sometimes called channels) can be assigned. It is 
prudent to associate types with ports and to permit 
connection only if the type and input/output mode of 
port values are compatible with that of the port vari- 
able to which it is assigned. Input ports may be 
thought of as sockets and output ports as plugs that 
must fit the sockets. Dynamically interconnected dis- 
tributed processes may be modelled by a plugboard 
with wires corresponding to channels of communica- 
tion. 

12. Object-Oriented Persistence 

Persistence is a property of data that deter- 
mines how long it should be kept. In traditional 
languages the lifetime of data generally does not 
transcend the lifetime of a particular program. Some 
data, such as locally declared data or procedure 
parameters, have an even shorter lifetime. Databases 
store data whose persistence transcends that of indi- 
vidual programs. Adding persistence to an object- 
oriented language allows it to be used as a basis for 
database implementation. 

Objects provide a better starting point for 
databases than procedures since their state persists 
between the execution of operations. They provide a 

more flexible way of organizing data than relations in 
a relational database. The class declarations of 
object-oriented languages can serve as a data 
definition language for databases. However, an 
object-oriented language by itself is insufficient to 
realize an object-oriented database. 

A database may be viewed as a long-lived 
object or process with special properties. It is glo- 
bally accessible (sharable) by a large number of users. 
Generally access is asynchronous from the point of 
view of the user, and we may think of the database 
as a non terminating process that services asynchro- 
nous user requests. Asynchronous access may be han- 
dled either directly by the database process or by a 
database server that organizes user requests and 
feeds them to the database. The database itself may 
be a sequential process (dealing with requests in a 
serial order), a quasi concurrent process, or a fully 
concurrent process with locks that enforce mutual 
exclusion for data access. 

Some of the special features of database 
processes are enumerated below: 

(1) To support persistence we need a strong notion 
of object identity that is independent of the key 
used in object selection and persists across pro- 
grams and projects. 

(2) We need a query language that can process 
traditional database queries (such as finding the 
set of all employees that make more than their 
managers). This kind of query may involve 
objects of more than one type and and produces 
results that are collection of objects. Queries in 
relational database languages may be viewed as 
“select” operations on an aggregate type, 
namely the type “set” or “relation”. They have 
the form: 

select(set, predicate) 
Query complexity and efficiency are determined 
by the nature of the predicate. Relational 
query languages specify all queries in terms of a 
restricted set of relational query primitives 
whose optimization has been extensively stu- 
died. Object-oriented query languages must 
accommodate the greater richness of object- 
oriented specifications for which optimization is 
not as well understood. One of the issues in 
object-oriented query languages is to make 
them efficient, so that the user does not pay in 
terms of efficiency for the flexibility provided by 
object-oriented programming. 
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(3) Since object-oriented databases are particularly 
suited to the management of evolutionary sys- 
tems they require a mechanism for version con- 
trol and other tools for evolving systems. 

(4) Databases should be able to specify constraints 
and check that constraints are not violated as 
the database is modified. This may be achieved 
by active variables of triggers [ZW]. 

(5) Multiple views should be supported with 
automatic updating of all views when the data 
is modified. Lazy updating for views that are 
not currently active is clearly appropriate. 

Databases must support transaction processing 
and concurrency control so that user requests can be 
processed in a safe but efficient manner. The level of 
safety and resilience in the face of software and 
hardware failures must be much greater than for 
traditional programs. Facilities for aborting transac- 
tions and for failure recovery must be provided. 
Type dependent concurrency control [Wei] could con- 
siderably increase the efficiency of object-based data- 
base transactions over corresponding relational tran- 
sactions. 

13. Conclusions 

Persistence is orthogonal to concurrency and to 
other dimensions for object-oriented language design. 
We therefore have identified a total of six orthogonal 
dimensions of object-oriented language design: 

objects 

types 
delegation 
abstraction 
concurrency 
persistence 

This list of dimensions is not in itself surprising 
and could easily have been generated on the fly. Our 
contribution has been to relate these dimensions to 
non orthogonal concepts in real programming 
languages, to examine design tradeoffs and interrela- 
tions between instances, and to identify and interest- 
ing points in the object-oriented design space. 

The study of languages as points in a design 
space and of language classes as classes of an object- 
oriented hierarchy is a novel approach to the analysis 
of programming languages. We have tried to demon- 
strate that this approach is worthwhile when there 
are sufficient points in the design space that 

meaningful comparisons can be made. 

There are many dependence relations and 
design alternatives we have not considered, and our 
examples only scratch the surface. But they do 
demonstrate the potential of exploring dependence 
among design dimensions of a language design space, 
and- iIlustrate that the use of object-oriented 
classification techniques to structure the design space 
simplify the presentation of design alternatives and 
help us to better understand the complex issues 
involved. 
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