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Abstract—We present a scheme for identifying the time profile
of actuator faults that may affect a robot manipulator. Starting
from our previous method for fault detection and isolation
(FDI) based on generalized momenta, fault identification is
additionally obtained through the H∞-design of a state observer
for uncertain systems. For each separate fault channel, the
identifier consists of a linear filter driven by the corresponding
residual signal. Under the weak assumption of bounded time
derivative for the otherwise unknown fault input to be identified,
the fault estimation error is shown to be ultimately uniformly
bounded, with ultimate bound that can be set arbitrarily small.
The information on the type and severity of the fault may then be
used for reconfiguring the control strategy. Experimental results
on a 2R planar manipulator are presented.

Index Terms—Fault detection and isolation, fault identifica-
tion, robot actuators, H∞-based state observers.

I. INTRODUCTION

The ability to automatically recognize the occurrence and

the nature of faults possibly affecting actuators or sensors

of a robotic system is a prerequisite for the design of fault

tolerant control strategies with active reconfiguration [1].

In the presence of a generic fault, three phases can be

considered: detection, isolation, and identification [2]. Fault

detection consists in the generation of a diagnostic signal

(residual) triggered by a significant deviation of the robot

from the expected behavior, based on the processing of avail-

able signals and/or the use of a dynamic model. Fault isolation

is achieved when the failed component is individuated. Fault

identification consists in estimating the time behavior of the

fault, i.e., of the difference between expected and actual

behavior of the variable affected by a fault (e.g., the measure

provided by a sensor or the torque produced by an actuator).

This information can be used to classify the occurred fault

(e.g., an additive bias to a sensor measurement or a power

loss of an actuator) and its severity, in order to choose the

most appropriate fault recovery strategy.

Several schemes have been proposed for the detection of

actuator faults in robot manipulators [3], [4], [5]. The most

efficient ones, which provide also fault isolation without

requiring acceleration measurements nor inversion of the

robot inertia matrix, are based on filtered torques [6] or on

the use of generalized momenta [7]. Both these model-based

techniques admit adaptive versions, coping with structured

uncertainty in the robot dynamics (see [8]).
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More recently, the problem of identifying actuator fault

profiles has been addressed in [9], building upon the results

in [6]. Under the assumption of bounded faults, with known

bounded first and second time derivative, the estimation

error is shown to converge asymptotically to zero (in the

absence of disturbances). The scheme uses a robot velocity

observer and involves the use of discontinuous signals and the

inversion of the inertia matrix. On the other hand, the fault

detection and isolation (FDI) method in [7] already provides

residuals that are low-pass filtered versions of the original

faults. Although the filter bandwidth could be set as large as

desired in principle, practical limitations are imposed by input

and measurement noise and by the uncertainties in the robot

dynamic model.

Motivated by these results, we introduce here a different

identification scheme based on a robust (H∞) observer de-

sign. In fact, the fault identification problem can be reformu-

lated as that of designing a state observer for a linear system

driven by the residuals and in the presence of unknown but

bounded disturbances [10]. The overall design can achieve

a trade-off between the level of measurement noise in the

residuals and the ultimate bound on the fault identification

error.

The paper is organized as follows. Modeling of robot

dynamics with actuation faults is recalled in Sect. II. In

Sect. III, the FDI method introduced in [7] for detecting

and isolating actuator faults in robot manipulators is briefly

summarized. The main result on the identification of the

actual profile of the detected actuator faults is presented in

Sect. IV. Experimental results are reported in Sect. V for the

Quanser Pendubot, a 2R planar robot moving under gravity

and having the second joint unactuated.

II. MODELING

We consider rigid robot manipulators with n joints that

may undergo actuator faults. Using a Lagrangian approach,

the standard robot dynamic model is

M(q)q̈ + c(q, q̇) + g(q) + Fv q̇ + Fc sign(q̇) = u − uf , (1)

where q is he n-vector of generalized coordinates, M(q) > 0
is the (symmetric) inertia matrix, c(q, q̇) is the Coriolis and
centrifugal vector, g(q) is the gravity vector, Fv ≥ 0 and
Fc ≥ 0 are, respectively, the viscous and Coulomb friction
(diagonal) matrices, u are the commanded (nominal) torques,
and uf are the (unknown) fault torques.



Note that the right-hand side of eq. (1) captures any type

of actuator fault, e.g., a total or partial failure, a torque bias,

or a saturation (see [7] for a complete list), with the faults

having any time history. In particular, it covers both abrupt

and incipient faults.

III. ACTUATOR FDI SCHEME

In [7], we have proposed a method for detecting and isolat-

ing actuator faults in robotic systems modeled by eq. (1). This

is based on the use of the generalized momenta p = M(q)q̇.
In fact, one can write the following first-order dynamic

equation

ṗ = u − uf − α(q, q̇), (2)

where, using eq. (1), the components of α(q, q̇) are given, for
i = 1, . . . , n, by

αi = −
1

2
q̇T ∂M(q)

∂qi

q̇ + gi(q) + Fviq̇i + Fci sign(q̇i). (3)

Note that only part of the Coriolis and centrifugal terms c are
present in α. It is also evident from eq. (2) that each fault (and
nominal input torque) affects one and only one component

of p and this decoupling allows separate isolation even of
concurrent actuator faults, The residual vector is defined as

r = K

[∫
(u − α − r)dt − p

]
, (4)

with K = diag{k1, . . . , kn} > 0. Note that the implementa-
tion of eq. (4) requires (q, q̇) and the nominal input u but no
acceleration q̈ nor inversion of the inertia matrix M(q). The
residual dynamics satisfies

ṙ = −Kr + Kuf ,

or

ṙi = −kiri + kiufi, i = 1, . . . , n, (5)

namely that of n linear exponentially stable and decoupled

systems, each driven by the associated fault input ufi.

Remark 1. In principle, by choosing very large gains ki

in eq. (5), the behavior of ri(t) would accurately reproduce
that of ufi(t). However, this nominal design does not take
into account the presence of measurement noise which sets

an upper limit to the useful range for the ki’s. Moreover, the

presence of uncertainties in the robot dynamic model leads to

the introduction of threshold mechanisms in order to prevent

false alarms. These thresholds would also become larger for

larger values of ki, thus reducing fault sensitivity. As a result,

arbitrary approximation of the fault profile ufi(t) based only
on eq. (5) and a large ki may be an unfeasible option.

IV. FAULT IDENTIFICATION

Starting from eq. (5), the problem of identifying the

evolution of the fault ufi can be formulated as that of

observing the state of a linear augmented system driven by the

residual ri and by an unknown input. Thanks to the decoupled

structure of eq. (5), n independent similar problems can be

considered. We assume that the generic fault input ufi is

described by a differentiable function with time derivative

φi(t). Dropping for compactness the index i, and having
set x = (x1, x2) = (r, uf ), the generic scalar fault-residual
behavior can be described by the two-dimensional dynamic

system
ẋ1 = −kx1 + kx2

ẋ2 = φ
y = x1,

(6)

i.e., a linear, time-invariant system in the form

ẋ = Ax + Bφ
y = Cx,

(7)

with

A =

[
−k k

0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
. (8)

Note that the couples (A, B) and (C, A) are controllable and,
respectively, observable, since k �= 0.
The time derivative φ(t) of the fault is an unknown input

for system (7). Therefore, in order to identify the actual

fault uf = x2, one may try to design an observer using

the theory for linear systems with unknown inputs [11].

Unfortunately, the necessary conditions for the existence of

such observer are violated in this case (in particular, condition

rank(CB) = rank(B) is not fulfilled). We propose thus an
alternative solution that, following the H∞ paradigm [10],

guarantees a uniformly ultimately bounded estimation error,

with arbitrarily small ultimate bound [12]. To this aim, we

need the following

Assumption. The amplitude of the input signal φ(t) is
bounded by a known constant µ > 0, i.e., |φ(t)| ≤ µ.

The observer has the structure

ξ̇ = Aξ + F (y − Cξ), (9)

with the 2 × 1 matrix F to be determined. Correspondingly,

the dynamics of the estimation error e = x − ξ is given by

ė = (A − FC)e + Bφ. (10)

Note that, whenever matrix (A−FC) is Hurwitz, the follow-
ing properties are guaranteed for the error e:

• since φ(t) is bounded, e(t) is also bounded;
• if φ(t) converges to zero, then also e(t) exponentially
converges to zero.

Following [10], it is possible to set a given bound ε on
‖e‖2, by choosing matrix F in eq. (9) of the form

F = P−1CT λ, (11)

where the 2× 2 matrix P is symmetric and positive definite,

and λ > 0 is a real constant. In fact, consider the positive
definite Lyapunov candidate

V = eT Pe ≥ 0, (V = 0 ⇔ e = 0). (12)

If one is able to establish that, for some admissible P and λ,

V̇ ≤ −aV + µ2, (13)



with arbitrary a > 0, then V is uniformly ultimately bounded

(u.u.b.) by

δ =
µ2

a
, (14)

with δ approaching zero as a grows to infinity. Corre-

spondingly, the square norm ‖e‖2 of the estimation error

is u.u.b. by ε = δ/σmin(P ), where σmin(P ) > 0 is the
smallest eigenvalue of matrix P . Furthermore, from (13), the

exponential convergence of V and thus of e to their ultimate
bounds also follow.

The computation of the time derivative of V yields

V̇ = eT
(
PA + AT P − 2CT Cλ

)
e + 2(eT PB)φ

≤ eT
(
PA + AT P − 2CT Cλ + PBBT P

)
e + µ2,

(15)

where we have used eqs. (10-11), our Assumption, and

the triangular inequality. Condition (13) clearly holds if the

following matrix inequality is verified

PA + AT P − 2CT Cλ + PBBT P ≤ −aP. (16)

Without loss of generality, the above subproblem can be

reformulated as follows. For each a > 0, find a symmetric,
definite positive matrix P and a constant λ > 0 that verify
the equation

PA + AT P − 2CT Cλ + PBBT P = −2aP,

or

P (A + aI) + (A + aI)T P − 2CT Cλ + PBBT P = 0. (17)

Since (A + aI, B) is controllable and (C, A + aI) is observ-
able, the Riccati equation (17) is certainly solvable.

For sufficiently large a, one possible solution (P, λ) is
computed as

P11 =
3a2

2k2
(3a−k), P12 = P21 = −

3a2

2k
, P22 = a (18)

and

λ = a2

[
45a2

8k2
−

6a

k
+

3

2

]
> 0, (19)

from which the expression of the observer matrix F in

eq. (11) follows.

Remark 2. Since input and measurement noise certainly
affect system (1) and thus the residual behavior (6), practical

limits exist on the choice of a in eqs. (13-14), and thus on the
smallest upper bound that can be obtained for the estimation

error e. In fact, the value of a reflects in the gain F in eq. (9)

and must be chosen as a trade-off between accurate fault

tracking and sensitivity to noise.

Remark 3. The level of input noise affecting the residual
behaviors (5) can be tuned by suitable choices of the scalar

gains in matrix K . In particular, a ‘small’ K should be taken

in order to get low sensitivity to noise for the residual gener-

ator. The corresponding loss in terms of speed of reaction to

faults may then be recovered by the possibility of choosing

higher values for parameter a in the observer design. Under

the same fault reaction capabilities, the fault estimation ξ2

provided by system (9) is often a less noisy signal than the

residual r itself. Therefore, ξ2 can be used in place of r as a
diagnostic signal with higher sensitivity to faults.

V. EXPERIMENTAL RESULTS

The proposed fault identification scheme has been experi-

mentally tested on the Quanser Pendubot, a 2R planar robot

moving under gravity, with the first joint driven by a DC

motor and the second joint passive (see Fig. 1). The dynamic

model (1) takes the form[
a1 + 2a2c2 a3 + a2c2

a3 + a2c2 a3

] [
q̈1

q̈2

]

+

[
−a2q̇2 (q̇2 + 2q̇1) s2

a2q̇
2
1s2

]
+

[
a4s1 + a5s12

a5s12

]

+

[
Fv1q̇1

Fv2q̇2

]
+

[
Fc1 sign (q̇1)
Fc2 sign (q̇2)

]
=

[
u1 − uf1

u2 − uf2

]
,

where (q1, q2) = 0 is the asymptotically stable, free equi-
librium configuration and the expressions of the dynamic

coefficients ai’s are

a1 = I1 + m1d
2

1
+ I2 + m2d

2

2
+ m2l

2

1

a2 = m2d2l1

a3 = I2 + m2d
2

2

a4 = g(m1d1 + m2l1)

a5 = gm2d2,

being, for the i-th link, mi the mass, li the length, di the

distance of the center of mass from the joint axis, and Ii

the barycentric inertia, whereas Fvi, Fci are the viscous and,

respectively, Coulomb friction coefficients for the i-th joint1.
The evaluation of α from eq. (3) yields in this case

α1 = a4s1 + a5s12 + Fv1q̇1 + Fc1 sign (q̇1)

α2 = a2q̇1(q̇1 + q̇2)s2 + a5s12 + Fv2q̇2 + Fc2 sign (q̇2) .

The joint positions are measured by sliding-contact en-

coders. On the other hand, joint velocities are obtained by

numerical differentiation of positions, which is the main

source of measurement noise. The DC motor at the first joint

is driven by a PWM circuit, introducing a relevant amount of

input noise (and a nonlinear input-output characteristic map).

Several types of faults have been tested on the first joint

actuator (bias, saturation, power loss, partial or total actuator

failures), while on the second (unactuated) joint only a

total actuator failure can be considered when requiring some

torque u2 that, of course, cannot be provided (uf2 ≡ u2).

Results are reported here for a faulty situation occurring in a

feedback control experiment, with the first joint variable being

1For the considered robot it is, in particular, m1 = 0.193 and m2 =
0.073 Kg, l1 = 0.1492 and l2 = 0.1905 m, d1 = 0.1032 and
d2 = 0.084 m, I1 = 0.0015 and I2 = 1.949 · 10−4 Kgm2. Fur-
thermore, [Fv1, Fv2] = [5.753, 0.281] · 10−4 Ns, and [Fc1, Fc2] =
[0.0052, 0.0001] Nm.



Fig. 1. The Quanser Pendubot used for experiments
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Fig. 2. Joint positions q1 (solid, blue) and q2 (dashed, red)

regulated to the reference value q1d = 30◦ by a standard PID
controller with KP = 0.2, KI = 1, and KD = 0.02.
A total actuator failure occurs at the second joint for t ∈

[0.5, 1] s (the commanded torque was u2 = −0.01 Nm) and
a power loss of 10% affects the actuator of the first joint in

the interval t ∈ [1.7, 2] s. The robot joint trajectories and the
commanded torques are shown in Fig. 2 and, respectively,

in Fig. 3. Note that the considered faults are of low severity

and thus are not easily detectable from the measured position

profiles or from the torque history.

The use of the FDI method (4) alone, with large gains but

without an explicit identification scheme, is evaluated first.

The residuals of Fig. 4 were obtained using k1 = k2 = 50.
Reaction to faults is very fast, but the fault event at the first

joint is not clearly detectable due to the high level of noise

affecting the associated residual. As a matter of fact, both

residuals exceed several times the chosen thresholds for fault

detection even during normal operation (false alarms). On the

other hand, larger thresholds may fail to detect the fault on

actuator 1 (see Fig. 4). Moreover, low-pass filtering of the

residuals in order to eliminate noise would slow down the

response time of the detection and identification scheme.

Next, the complete detection and identification scheme has

been implemented using lower gains k1 = k2 = 0.01 in

eq. (4) and selecting a value a = 10 in eqs. (18–19), which
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Fig. 3. Commanded torques u1 (top) and u2 (bottom) — fault intervals
are also indicated
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Fig. 4. Residuals r1 and r2 (solid, blue) for k1 = k2 = 50 and actuator
faults (dashed, red) — detection thresholds are also indicated

results in an observer gain matrix

F =
[

24.99 37485
]T

.

Figure 5 shows the behavior of the residuals r1 and r2. The

choice of very low values for k1 and k2 leads to low levels of

noise affecting these signals. As expected, reaction to faults

is quite slow, so that a relevant delay would characterize

the detection of fault start/end when using these signals for

diagnosis. However, the estimated fault behaviors reported in

Fig. 6 show good tracking capabilities despite of the relevant

noise and disturbances affecting the system. Since a bound on

the derivative of the fault can be been computed as µ = 0.2
and σmin(P ) = 4.9983, the theoretical ultimate bound on the
squared norm of the estimation error is ε � 8 · 10−4, which

turns out to be quite conservative in the present case.

It is worth noting that the estimated fault torques in Fig. 6

are more suitable diagnostic signals than the residuals in

Fig. 4, which were obtained with higher gains. In particular,
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Fig. 6. Actuator faults: real (dashed, red) and estimated (solid, blue) for
k1 = k2 = 0.01 and a = 10 — detection thresholds are also indicated

the occurrence and end of the faults are clearly and promptly

detected (and isolated). To this purpose, much lower threshold

values can now be taken (compare these in Fig. 4 and

Fig. 6), getting thus better fault sensitivity and no false alarms.

Finally, the fault severity can be evaluated by comparing the

identified fault behaviors with the commanded joint torques

displayed in Fig. 3.

VI. CONCLUSIONS

Faults of general type affecting the actuators of a robot

manipulator can be detected, isolated, and identified though

the combined use of generalized momenta of the robot

dynamics and a linear robust observer of fault time profiles,

allowing an estimation error that is ultimately bound by an

arbitrarily small value.

The implementation of these concepts on a robot with

uncertain dynamics (mostly due to friction and actuator

nonlinearities) and with only joint position measures available

(with associated need of numerical differentiation for joint

velocity evaluation) has shown the relevant role played by

input and measurement noise on the fault detection and

identification problems. The presented approach allows the

independent tuning of only two detection and identification

gains for each actuator channel, so as to obtain satisfactory

diagnostic signals in the presence of realistic levels of un-

certainty and noise. Further improvements can be expected

from an adaptation mechanism that copes with parametric

model uncertainties (see [8]) and from an explicit modeling

and quantitative characterization of disturbances and noise

covariances, within an optimal robust observer approach.

The presented scheme works independently of the control

scheme used to generate the torque input applied to the

robot. Indeed, the collected information on the identified

actuator fault should be used in different ways for control

reconfiguration, depending on the specific feedback law in

action. For instance, the reported results indicate that a mild

power loss of the actuator is well tolerated in terms of

performance degradation when using a PID control law for

joint-space regulation.
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